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a b s t r a c t

Penalty methods approximate a constrained variational or hemivariational inequality
problem through a sequence of unconstrained ones as the penalty parameter approaches
zero. The methods are useful in the numerical solution of constrained problems, and
they are also useful as a tool in proving solution existence of constrained problems.
This paper is devoted to a theoretical analysis of penalty methods for a general class of
variational–hemivariational inequalities with history-dependent operators. Unique solv-
ability of penalized problems is shown, as well as the convergence of their solutions
to the solution of the original history-dependent variational–hemivariational inequality
as the penalty parameter tends to zero. The convergence result proved here generalizes
several existing convergence results of penalty methods. Finally, the theoretical results
are applied to examples of history-dependent variational–hemivariational inequalities in
mathematical models describing the quasistatic contact between a viscoelastic rod and a
reactive foundation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Inequality problems arise in a variety of nonlinear models in Physics, Mechanics and Engineering Sciences, cf. [1–9] on
variational inequalities, and [10–13] on hemivariational inequalities. Studies of variational inequalities involve arguments
of monotonicity and convexity, including properties of the subdifferential of a convex function. Studies of hemivariational
inequalities are based on properties of the subdifferential in the sense of Clarke, defined for locally Lipschitz functions, which
may be nonconvex. Variational–hemivariational inequalities represent a special class of inequalities, in which both convex
and nonconvex functions are present.

Recently, inequalities with history-dependent operators were introduced and studied in connection with contact prob-
lems for memory dependent materials. Abstract classes of quasivariational inequalities with history-dependent operators
were considered in [14,15] where existence, uniqueness and regularity results were proved. In [16] and [17], a penalty
method and numerical analysis of the corresponding inequalities were provided, respectively. Hemivariational inequalities
with history-dependent operatorswere studied in [18–20]. The inequalities in these paperswere formulated in the particular
case of Sobolev spaces over a bounded domain in Rd and specific operators like the trace operator. A general existence and
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uniqueness result in the study of variational–hemivariational inequalities with history-dependent operators, on an abstract
setting of reflexive Banach spaces, was carried out in the recent paper [21].

Our aim in the current paper is to present a penaltymethod in the study of history-dependent variational–hemivariational
inequalities introduced in [21] and to apply it to a new model of contact. Penalty methods for variational inequalities have
been studied by many authors, for numerical purposes and for proofs of solution existence. The reader is referred to [2,3,6]
on penalty methods for variational inequalities. Themain feature of the penalty methods is that constraints in a problem are
enforced by penalty through a limiting procedure and the penalized problems are constraint free. The penalized problems
have unique solutionswhich converge to the solution of the original problem, as the penalty parameter tends to zero. Penalty
methods were also considered in [16] and [22] in the study of history-dependent variational inequalities and variational–
hemivariational inequalities, respectively. The results in this paper generalize and extend the convergence results obtained
in these two papers.

The remainder of the paper is structured as follows. In Section 2, we present the history-dependent variational–
hemivariational inequalities, introduce the penalized problems, and state our main theoretical result on solution existence
and convergence for the penalty method. The main result is proved in Section 3, in several steps. In Section 4 we present
twomathematical models which describe the contact of a viscoelastic rodwith a foundation. In the first model the contact is
with normal compliance and unilateral constraint, whereas in the second one, the unilateral constraint is penalized. For each
model we introduce aweak formulation as a history-dependent variational–hemivariational inequality for the displacement
field. Then, we state in Theorem 18 the unique weak solvability of the contact problems and the convergence of the weak
solution of the penalized problem to the weak solution of the original problem, as the stiffness coefficient of the foundation
converges to infinity. The proof of Theorem 18 is given in Section 5, through an application of the abstract result provided
by Theorems 2 and 5 of Section 2.

2. A history-dependent variational–hemivariational inequality

We use real spaces only. For a normed space X , its norm is denoted by ∥ · ∥X . When no confusion may arise, the duality
pairing between the dual space X∗ and X , ⟨·, ·⟩X∗×X , will be simply written as ⟨·, ·⟩.

We review some definitions. Let A : X → X∗. Then A is monotone if

⟨Av1 − Av2, v1 − v2⟩ ≥ 0 ∀ v1, v2 ∈ X .

It is strongly monotone with a constantmA > 0 if

⟨Av1 − Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥
2
X ∀ v1, v2 ∈ X . (2.1)

The operator A is demicontinuous if

un → u as n → ∞ H⇒ Aun → Auweakly as n → ∞.

It is hemicontinuous if the function t ↦→ ⟨A(u + t v), w⟩ is continuous on [0, 1] for all u, v, w ∈ X . Finally, the operator A is
pseudomonotone if it is bounded and un → u weakly in X together with lim sup ⟨Aun, un − u⟩X∗×X ≤ 0 imply

⟨Au, u − v⟩X∗×X ≤ lim inf ⟨Aun, un − v⟩X∗×X ∀ v ∈ X .

A function ϕ : X → R is said to be lower semicontinuous (l.s.c.) if for any sequence {xn} ⊂ X , xn → x in X implies
ϕ(x) ≤ lim infϕ(xn).

Let ϕ : X → R be a locally Lipschitz function. Its generalized (Clarke) directional derivative at x ∈ X in the direction
v ∈ X is defined by

ϕ0(x; v) = lim sup
y→x, λ↓0

ϕ(y + λv) − ϕ(y)
λ

.

Its generalized gradient (subdifferential) at x is a subset of the dual space X∗:

∂ϕ(x) =
{
ζ ∈ X∗

| ϕ0(x; v) ≥ ⟨ζ , v⟩X∗×X ∀ v ∈ X
}
.

It is said to be regular in the sense of Clarke at x ∈ X if for all v ∈ X , the one-sided directional derivative ϕ′(x; v) exists and
ϕ0(x; v) = ϕ′(x; v).

We use the symbol N for the set of positive integers and R+ = [0,+∞) for the set of nonnegative real numbers. The
notation C(R+; X) stands for the space of X-valued continuous functions defined on R+. For a subset K ⊂ X , C(R+; K ) ⊂

C(R+; X) denotes the set of K -valued continuous functions defined on R+.
Given a reflexive Banach space X , K ⊂ X , a normed space Y , operators A : X → X∗ and S : C(R+; X) → C(R+; Y ), a

function ϕ : Y × X × X → R, a locally Lipschitz function j : X → R, and f : R+ → X∗, we consider the following problem.

Problem 1. Find u ∈ C(R+; K ) such that for all t ∈ R+,

⟨Au(t), v − u(t)⟩ + ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), u(t))
+ j0(u(t); v − u(t)) ≥ ⟨f (t), v − u(t)⟩ ∀ v ∈ K . (2.2)
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We list conditions on the operators and functions that will be needed later.

A : X → X∗ is pseudomonotone and strongly monotone with constantmA. (2.3)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S : C(R+; X) → C(R+; Y ) and
for any n ∈ N there exists sn > 0 such that

∥(Su1)(t) − (Su2)(t)∥Y ≤ sn

∫ t

0
∥u1(s) − u2(s)∥X ds

∀ u1, u2 ∈ C(R+; X), ∀ t ∈ [0, n].

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ : Y × X × X → R is a function such that
(a) ϕ(y, u, ·) : X → R is convex and l.s.c., for all y ∈ Y , u ∈ X .
(b) there exists αϕ ≥ 0 and βϕ ≥ 0 such that

ϕ(y1, u1, v2) − ϕ(y1, u1, v1) + ϕ(y2, u2, v1) − ϕ(y2, u2, v2)
≤ αϕ∥u1 − u2∥X ∥v1 − v2∥X + βϕ∥y1 − y2∥Y ∥v1 − v2∥X

∀ y1, y2 ∈ Y , u1, u2, v1, v2 ∈ X .

(2.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j : X → R is a function such that
(a) j is locally Lipschitz.
(b) ∥∂ j(v)∥X∗ ≤ c0 + c1∥v∥X ∀ v ∈ X with c0, c1 ≥ 0.
(c) there exists αj ≥ 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj∥v1 − v2∥
2
X ∀ v1, v2 ∈ X .

(2.6)

The following result is proved in [21].

Theorem 2. Let X be a reflexive Banach space, K ⊂ X nonempty, closed and convex, and Y a normed space. Assume (2.3)–(2.6)
and

αϕ + αj < mA. (2.7)

Then, for any f ∈ C(R+; X∗), Problem 1 has a unique solution u ∈ C(R+; K ).

We comment that S represents a history-dependent operator. Examples of S satisfying the condition (2.4) can be found
in [14,18], including Volterra-type operators and other integral-type operators. The hypothesis (2.6)(c) is equivalent to the
condition

⟨∂ j(v1) − ∂ j(v2), v1 − v2⟩X∗×X ≥ −αj∥v1 − v2∥
2
X ∀ v1, v2 ∈ X, (2.8)

known as the relaxedmonotonicity condition. It is extensively used in the literature, see for instance [11] and the references
therein. Examples of nonconvex functionswhich satisfy condition (2.6) can be found in [19]. If j : X → R is a convex function,
then (2.6)(c) and (2.8) are satisfied with αj = 0, due to the monotonicity of the (convex) subdifferential.

Note that the function ϕ is assumed to be convexwith respect to its third argumentwhile the function j is locally Lipschitz
in its second argument and is allowed to be nonconvex. In addition, the inequality (2.2) involves a history-dependent
operator S. We refer to Problem 1 as a history-dependent variational–hemivariational inequality.

The condition u(t) ∈ K in Problem 1 imposes a constraint. The main goal of this paper is to introduce and study a
penalty method for approximating Problem 1 through a sequence of unconstrained penalized problems. In particular, we
will investigate the convergence property of the penalty method. The penalty method is defined through a penalty operator
P : X → X∗ and a penalty parameter λ > 0. The penalty operator P has the following properties (cf. [22] for examples):⎧⎨⎩

P : X → X∗ is such that
(a) P is bounded, demicontinuous and monotone.
(b) Pu = 0 if and only if u ∈ K .

(2.9)

For each λ > 0, we introduce the following penalized problem which is defined over the entire space X .

Problem 3. Find uλ ∈ C(R+; X) such that for all t ∈ R+,

⟨Auλ(t), v − uλ(t)⟩ +
1
λ

⟨Puλ(t), v − uλ(t)⟩

+ϕ((Suλ)(t), uλ(t), v) − ϕ((Suλ)(t), uλ(t), uλ(t))
+ j0(uλ(t); v − uλ(t)) ≥ ⟨f (t), v − uλ(t)⟩ ∀ v ∈ X . (2.10)
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In the study of the penalty method, we need to impose further conditions on j : X → R and ϕ : Y × X × X → R:

un → uweakly in X H⇒ lim sup j0(un; v − un) ≤ j0(u; v − u) ∀ v ∈ X . (2.11)⎧⎨⎩
There exists a continuous function cϕ : R+ × R+ → R+

such that for all y ∈ Y , u, v1, v2 ∈ X,
ϕ(y, u, v1) − ϕ(y, u, v2) ≤ cϕ(∥y∥Y , ∥u∥X ) ∥v1 − v2∥X .

(2.12)

The following result is proved in [22] on sufficient conditions for functions satisfying both (2.6) and (2.11).

Lemma 4. Let X and Y be reflexive Banach spaces,ψ : Y → R satisfy (2.6)with X replaced by Y , and either ψ or −ψ be regular.
Let M : X → Y be given by Mv = Lv + v0, where L : X → Y is a linear compact operator and v0 ∈ Y . Then the function
j : X → R defined by j(v) = ψ(Mv), v ∈ X, satisfies conditions (2.6) and (2.11).

The main theoretical result of the paper is the following, and it will be proved in the next section.

Theorem 5. Keep the assumptions stated in Theorem 2. Additionally, assume (2.9), (2.11) and (2.12).
(i) For each λ > 0, there exists a unique solution uλ ∈ C(R+; X) to Problem 3.
(ii) The solution uλ of Problem 3 converges to the solution u of Problem 1, i.e.,

∥uλ(t) − u(t)∥X → 0 as λ → 0, t ∈ R+. (2.13)

3. Proof of the main result

This section is devoted to a proof of Theorem 5. The proof is carried out in three steps. Throughout the section, we make
the assumptions stated in Theorem 5, and recall that u ∈ C(R+; K ) is the solution of Problem 1.

In the first step, we prove the statement (i) of Theorem 5.

Lemma 6. For each λ > 0, there exists a unique solution uλ ∈ C(R+; X) to Problem 3.

Proof. By the properties (2.9) and Exercise I.9 in Section 1.9 of [23], it follows that the operator P : X → X∗ is bounded,
hemicontinuous and monotone. Thus, P is pseudomotone ([24, Proposition 27.6]). Define an operator Aλ : X → X∗ by

Aλv = Av +
1
λ
Pv, v ∈ X . (3.1)

It is easy to see that Aλ satisfies the condition (2.3) with the same constant mA. Therefore, applying Theorem 2 with K = X
we know that Problem 3 has a unique solution uλ ∈ C(R+; X). □

In the second step, we define an auxiliary problem and show that its solution converges to the solution u(t) of Problem 1
at all t ∈ R+.

For each λ > 0, the auxiliary problem is the following.

Problem 7. Find ũλ ∈ C(R+; X) such that for all t ∈ R+,

⟨Ãuλ(t), v − ũλ(t)⟩ +
1
λ

⟨Pũλ(t), v − ũλ(t)⟩

+ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), ũλ(t))
+ j0 (̃uλ(t); v − ũλ(t)) ≥ ⟨f (t), v − ũλ(t)⟩ ∀ v ∈ X . (3.2)

Note that while (2.10) is a history-dependent variational–hemivariational inequality, (3.2) is merely a time-dependent
variational–hemivariational inequality. We will show, in turn, that Problem 7 admits a unique solution, the weak conver-
gence and then the strong convergence of the solution to the solution of Problem 1 at each t ∈ R+, as the penalty parameter
λ → 0.

Lemma 8. For each λ > 0, Problem 7 has a unique solution ũλ ∈ C(R+; X).

Proof. For t ∈ R+ fixed but arbitrary, consider a function φt : X × X → R defined by

φt (w, v) = ϕ((Su)(t), u(t), v), w, v ∈ X . (3.3)

Note that actually φt (w, v) is independent of w. By assumption (2.5), we see that for all w ∈ X , φt (w, ·) : X → R is convex
and l.s.c., and

φt (w1, v2) − φt (w1, v1) + φt (w2, v1) − φt (w2, v2) = 0 ∀w1, w2, v1, v2 ∈ X .
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From the proof of Lemma 6, we know that the operator Aλ of (3.1) is pseudomonotone, coercive and stronglymonotonewith
the same constantsmA and αj. Due to the assumption (2.7), we can apply [22, Theorem 5] and conclude that there is a unique
element ũλ(t) ∈ X satisfying

⟨Ãuλ(t), v − ũλ(t)⟩ +
1
λ

⟨Pũλ(t), v − ũλ(t)⟩ + φt (̃uλ(t), v)

−φt (̃uλ(t), ũλ(t)) + j0 (̃uλ(t); v − ũλ(t)) ≥ ⟨f , v − ũλ(t)⟩ ∀ v ∈ X . (3.4)

Then, (3.2) holds.
We now show the continuity of the map t ↦→ ũλ(t) : R+ → X . Let t1, t2 ∈ R+ and denote ũλ(ti) = ũi, u(ti) = ui,

(Su)(ti) = yi and f (ti) = fi for i = 1, 2. We take v = u2 in (3.2) at t = t1, take v = u1 in (3.2) at t = t2, and add the
corresponding inequalities, to get

⟨Ãu1 − Ãu2, ũ1 − ũ2⟩ +
1
λ

⟨Pũ1 − Pũ2, ũ1 − ũ2⟩

≤ ϕ(y1, u1, ũ2) − ϕ(y1, u1, ũ1) + ϕ(y2, u2, ũ1) − ϕ(y2, u2, ũ2)
+ j0 (̃u1; ũ2 − ũ1) + j0 (̃u2; ũ1 − ũ2) + ⟨f1 − f2, u1 − u2⟩.

Then use (2.3), (2.6)(c), (2.5)(b) and (2.9)(a) to obtain

mA∥̃u1 − ũ2∥X ≤ αϕ∥u1 − u2∥X + βϕ∥y1 − y2∥Y + αj∥̃u1 − ũ2∥X + ∥f1 − f2∥X∗ .

Apply the condition (2.7) to get, for a constant C > 0,

∥̃u1 − ũ2∥X ≤ C (∥u1 − u2∥X + ∥y1 − y2∥Y + ∥f1 − f2∥X∗ ). (3.5)

Inequality (3.5) combined with the continuity of functions Su, f and u imply that t ↦→ ũ(t) : R+ → X is continuous.
This concludes the existence proof. The uniqueness is a direct consequence of that of the element ũλ(t) which solves the
variational–hemivariational inequality (3.2) for each t ∈ R+. □

Next, we explore the weak convergence of the sequence {̃uλ(t)}, for t ∈ R+ fixed.

Lemma 9. For each t ∈ R+, there exists a subsequence of the sequence {̃uλ(t)}, again denoted by {̃uλ(t)}, which converges weakly
to an element ũ(t) ∈ X, i.e.,

ũλ(t) → ũ(t) weakly in X, as λ → 0. (3.6)

Proof. We start by proving the boundedness of the sequence {uλ(t)} ⊂ X . Choose an element u0 ∈ K . Write

j0 (̃uλ(t); u0 − ũλ(t)) =
[
j0 (̃uλ(t); u0 − ũλ(t)) + j0(u0; ũλ(t) − u0)

]
− j0(u0; ũλ(t) − u0).

Applying (2.6) and [11, Proposition 3.23(iii)], we have

j0 (̃uλ(t); u0 − ũλ(t)) ≤ αj∥̃uλ(t) − u0∥
2
X + |max {⟨ζ , ũλ(t) − u0⟩ | ζ ∈ ∂ j(u0)}|

≤ αj∥̃uλ(t) − u0∥
2
X + (c0 + c1∥u0∥X )∥̃uλ(t) − u0∥X . (3.7)

Take v = u0 ∈ K in (3.2), use inequality (3.7), the strong monotonicity of the operator A and equality Pu0 = 0 to obtain

mA ∥̃uλ(t) − u0∥
2
X ≤ ⟨Ãuλ(t) − Au0, ũλ(t) − u0⟩

= ⟨Ãuλ(t), ũλ(t) − u0⟩ − ⟨Au0, ũλ(t) − u0⟩

≤
1
λ

⟨Pũλ(t), u0 − ũλ(t)⟩ + ϕ(Su(t), u(t), u0) − ϕ(Su(t), u(t), ũλ(t))

+ j0 (̃uλ(t); u0 − ũλ(t)) + ⟨f (t) − Au0, ũλ(t) − u0⟩

≤ −
1
λ

⟨Pu0 − Pũλ(t), u0 − ũλ(t)⟩ + ϕ(Su(t), u(t), u0)

−ϕ(Su(t), u(t), ũλ(t)) + αj∥̃uλ(t) − u0∥
2
X

+ (c0 + c1∥u0∥X )∥̃uλ(t) − u0∥X + ∥f (t) − Au0∥X∗ ∥̃uλ(t) − u0∥X .

Therefore, using the monotonicity of the operator P and assumption (2.12), we have

(mA − αj) ∥̃uλ(t) − u0∥X ≤ cϕ(∥Su(t)∥Y , ∥u(t)∥X ) + c0 + c1∥u0∥X + ∥f (t) − Au0∥X∗ .

Thus,

∥̃uλ(t) − u0∥X ≤ C(t), (3.8)
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where

C(t) =
1

mA − αj

[
cϕ(∥Su(t)∥Y , ∥u(t)∥X ) + c0 + c1∥u0∥X + ∥f (t) − Au0∥X∗

]
.

The inequality (3.8) shows the boundedness of {̃uλ(t)}λ in X . Since X is reflexive, there exists an element ũ(t) ∈ X such that,
passing to a subsequence if necessary, the weak convergence (3.6) holds. □

Let us show that the weak limit in Lemma 9 coincides with the solution of Problem 1.

Lemma 10. For each t ∈ R+,

ũ(t) = u(t). (3.9)

Proof. We first prove that ũ(t) ∈ K . Use (3.2), assumptions (2.3), (2.6) and (2.12) to see that, for all v ∈ X ,
1
λ

⟨Pũλ(t), ũλ(t) − v⟩ ≤ ⟨Ãuλ(t), v − ũλ(t)⟩

+ϕ(Su(t), u(t), v) − ϕ(Su(t), u(t), ũλ(t))
+ j0 (̃uλ(t); v − ũλ(t)) + ⟨f (t), ũλ(t) − v⟩

≤ −⟨Ãuλ(t) − Av, ũλ(t) − v⟩ − ⟨Av − f (t), ũλ(t) − v⟩

+

(
cϕ(∥Su(t)∥Y , ∥u(t)∥X ) + c0 + c1∥̃uλ(t)∥X

)
∥̃uλ(t) − v∥X

≤

(
∥Av − f (t)∥X∗ + cϕ(∥Su(t)∥Y , ∥u(t)∥X ) + c0 + c1∥̃uλ(t)∥X

)
∥̃uλ(t) − v∥X .

Using the bound (3.8), we infer that
1
λ

⟨Pũλ(t), ũλ(t) − v⟩ ≤ C(t, v) ∀ v ∈ X, (3.10)

where the constant C(t, v) > 0 is independent of λ. Choosing v = ũ(t) in (3.10), we have

lim sup
λ→0

⟨Pũλ(t), ũλ(t) − ũ(t)⟩ ≤ 0. (3.11)

We now use (3.6), (3.11) and the pseudomonotonicity of the operator P to obtain

⟨Pũ(t), ũ(t) − v⟩ ≤ lim inf
λ→0

⟨Pũλ(t), ũλ(t) − v⟩ ∀ v ∈ X . (3.12)

The inequalities (3.10) and (3.12) together imply that

⟨Pũ(t), ũ(t) − v⟩ ≤ 0 ∀ v ∈ X,

which leads to

⟨Pũ(t), w⟩ = 0 ∀w ∈ X .

Thus, Pũ(t) = 0, and by (2.9)(b), ũ(t) ∈ K .
Let v ∈ K . Then, using (3.2) and (2.9)(b), we have

⟨Ãuλ(t), ũλ(t) − v⟩ ≤ −
1
λ

⟨Pv − Pũλ(t), v − ũλ(t)⟩

+ ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), ũλ(t))

+ j0 (̃uλ(t); v − ũλ(t)) + ⟨f (t), ũλ(t) − v⟩.

Therefore, the monotonicity of P yields

⟨Ãuλ(t), ũλ(t) − v⟩ ≤ ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), ũλ(t))

+ j0 (̃uλ(t); v − ũλ(t)) + ⟨f (t), ũλ(t) − v⟩. (3.13)

By the weak convergence (3.6) and the weak lower semicontinuity of ϕ, cf. (2.5)(a),

lim sup
λ→0

(ϕ((Su)(t), u(t), ũ(t)) − ϕ((Su)(t), u(t), ũλ(t))) ≤ 0. (3.14)

From hypothesis (2.11) and (3.6),

lim sup
λ→0

j0 (̃uλ(t); ũ(t) − ũλ(t)) ≤ 0. (3.15)
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Take v = ũ(t) ∈ K in (3.13), then use the weak convergence (3.6), and inequalities (3.14) and (3.15) to obtain that

lim sup
λ→0

⟨Ãuλ(t), ũλ(t) − ũ(t)⟩ ≤ 0.

From this inequality, (3.6) and the pseudomonotonicity of the operator A, we have

⟨Ãu(t), ũ(t) − v⟩ ≤ lim inf
λ→0

⟨Ãuλ(t), ũλ(t) − v⟩ ∀ v ∈ X . (3.16)

We now pass to the upper limit in (3.13). Using (3.6), the weak lower semicontinuity of ϕ with respect to the third
argument and (2.11), we obtain, for all v ∈ K ,

lim sup
λ→0

⟨Ãuλ(t), ũλ(t) − v⟩ ≤ ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), ũ(t))

+ j0 (̃u(t); v − ũ(t)) + ⟨f (t), ũ(t) − v⟩. (3.17)

Combining (3.16) and (3.17), we have

⟨Ãu(t), ũ(t) − v⟩ ≤ ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), ũ(t))

+ j0 (̃u(t); v − ũ(t)) + ⟨f (t), ũ(t) − v⟩ ∀ v ∈ K .

Therefore,

⟨Ãu(t), v − ũ(t)⟩ + ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), ũ(t))
+ j0 (̃u(t); v − ũ(t)) ≥ ⟨f (t), v − ũ(t)⟩ ∀ v ∈ K . (3.18)

Take v = ũ(t) in (2.2), v = u(t) in (3.18), both being in K , add the corresponding inequalities and use assumptions (2.3)(b),
(2.6)(c) to find that

(mA − αj)∥̃u(t) − u(t)∥X ≤ 0.

Due to the assumption (2.7), we deduce from the above inequality that ũ(t) − u(t) = 0, i.e., (3.9) holds. □

Since the weak limit in (3.6) is independent of the subsequence in the proof of Lemma 9, the entire family {̃uλ(t)}
converges weakly to the same limit.

Lemma 11. For each t ∈ R+,

ũλ(t) → u(t) weakly in X, as λ → 0.

We proceed to prove the strong convergence.

Lemma 12. For each t ∈ R+,

∥̃uλ(t) − u(t)∥X → 0 as λ → 0. (3.19)

Proof. We take v = ũ(t) ∈ K in both (3.16) and (3.17) to obtain

0 ≤ lim inf
λ→0

⟨Ãuλ(t), ũλ(t) − ũ(t)⟩ and lim sup
λ→0

⟨Ãuλ(t), ũλ(t) − ũ(t)⟩ ≤ 0,

respectively. These inequalities combined with (3.9) imply that

⟨Ãuλ(t), ũλ(t) − u(t)⟩ → 0 as λ → 0. (3.20)

By the weak convergence of the sequence {̃uλ(t)} to u(t) from Lemma 11,

⟨Au(t), ũλ(t) − u(t)⟩ → 0 as λ → 0. (3.21)

Using the strong monotonicity of A, (3.20) and (3.21), we have

mA∥̃uλ(t) − u(t)∥2
X ≤ ⟨Ãuλ(t), ũλ(t) − u(t)⟩ − ⟨Au(t), ũλ(t) − u(t)⟩ → 0. (3.22)

Hence, the convergence (3.19) follows. □

In the last step, we prove the strong convergence (2.13).

Lemma 13. For each t ∈ R+,

∥uλ(t) − u(t)∥X → 0 as λ → 0. (3.23)
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Proof. Choose n ∈ N large enough so that t ∈ [0, n]. We take v = uλ(t) in (3.2) and v = ũλ(t) in (2.10), and add the two
resulting inequalities,

⟨Auλ(t) − Ãuλ(t), ũλ(t) − uλ(t)⟩ +
1
λ

⟨Puλ(t) − Pũλ(t), ũλ(t) − uλ(t)⟩

+ϕ((Suλ)(t), uλ(t), ũλ(t)) − ϕ((Suλ)(t), uλ(t), uλ(t))
+ϕ((Su)(t), u(t), uλ(t)) − ϕ((Su)(t), u, ũλ(t))
+ j0(uλ(t), ũλ(t) − uλ(t)) + j0 (̃uλ(t), uλ(t) − ũλ(t)) ≥ 0.

We use assumptions (2.3)(b), (2.5)(b), (2.6)(c) and the monotonicity of the operator P , (2.9)(a), to obtain that

mA ∥̃uλ(t) − uλ(t)∥2
X ≤ αϕ∥uλ(t) − u(t)∥X ∥̃uλ(t) − uλ∥X

+ βϕ∥(Suλ)(t) − (Su)(t)∥Y ∥̃uλ(t) − uλ(t)∥X

+ αj∥̃uλ(t) − uλ(t)∥2
X .

Thus,

∥̃uλ(t) − uλ(t)∥X ≤
αϕ

mA − αj
∥uλ(t) − u(t)∥X

+
βϕ

mA − αj
∥(Suλ)(t) − (Su)(t)∥Y . (3.24)

Next, we write

∥uλ(t) − u(t)∥X ≤ ∥uλ(t) − ũλ(t)∥X + ∥̃uλ(t) − u(t)∥X ,

and then by (3.24),

∥uλ(t) − u(t)∥X ≤ ∥̃uλ(t) − u(t)∥X +
αϕ

mA − αj
∥uλ(t) − u(t)∥X

+
βϕ

mA − αj
∥(Suλ)(t) − (Su)(t)∥Y . (3.25)

Use assumptions (2.7) and (2.4) to deduce that the existence of two positive constants c and sn, independent of λ and t , such
that

∥uλ(t) − u(t)∥X ≤ c ∥̃uλ(t) − u(t)∥X + sn

∫ t

0
∥uλ(s) − u(s)∥X ds.

Apply the Gronwall inequality,

∥uλ(t) − u(t)∥X ≤ c ∥̃uλ(t) − u(t)∥X + snc
∫ t

0
esn(t−s)

∥̃uλ(s) − u(s)∥X ds. (3.26)

Note that esn(t−s)
≤ esnt ≤ ensn for all s ∈ [0, t]; thus, (3.26) yields

∥uλ(t) − u(t)∥X ≤ c ∥̃uλ(t) − u(t)∥X + sncensn
∫ t

0
∥̃uλ(s) − u(s)∥X ds. (3.27)

By the boundedness (3.8), Lemma 12 and Lebesgue’s convergence theorem, we have∫ t

0
∥̃uλ(s) − u(s)∥X ds → 0 as λ → 0. (3.28)

The convergence (3.23) then follows from (3.19), (3.27) and (3.28). □

4. Two contact models for rods

The abstract results presented in Section 2 can be applied in the study of various mathematical models which describe
the contact between a deformable body and a foundation. In this section, we consider two quasistatic problems describing
the contact of a rod with a foundation. The rod occupies the interval [0, L] on the Ox axis, is fixed at one end x = 0, is acted
by body forces of density f0, and its other end x = L is in contact with a reactive obstacle.

We denote by u : [0, L]×R+ → R the displacement field and by σ : [0, L]×R+ → R the stress field. These are functions
of x ∈ [0, L] and t ∈ R+. We use a prime to denote the derivative with respect to x; thus, u′ represents the linearized strain
field. We model the material’s behavior with a viscoelastic constitutive law with long memory, i.e.,

σ (x, t) = F(x) u′(x, t) +

∫ t

0
R(t − s)u′(x, s) ds for (x, t) ∈ (0, L) × R+. (4.1)
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Here F and R represent given constitutive functions, which describe the elasticity and the relaxation properties of the
material. We neglect the inertial term in the equation of motion. Therefore, we have the equilibrium equation

σ ′(x, t) + f0(x, t) = 0 for (x, t) ∈ (0, L) × R+. (4.2)

Since the rod is fixed at x = 0,

u(0, t) = 0 for t ∈ R+. (4.3)

In the first model we consider the following boundary condition at x = L:

u(L, t) ≤ g,
σ (x, t) + k(u(L, t)) = 0 if u(L, t) < g
σ (x, t) + k(u(L, t)) ≤ 0 if u(L, t) = g

⎫⎬⎭ for t ∈ R+. (4.4)

The condition (4.4) represents a contact condition with normal compliance and unilateral constraint. It models the contact
with a rigid foundation covered by a layer of elasticmaterial, see for instance [9]. Here k is a given positive function vanishing
for a negative argument and g > 0 represents the thickness of the elastic layer. Let t ∈ R+ be given. Then, a detailed
description of this condition is the following.

(a) First, note that the unilateral constraint u(L, t) ≤ g represents a bound for the displacement at x = L, which is imposed
since the rigid body does not allow penetration.

(b) Second, when u(L, t) < 0 we have σ (L, t) = 0. This shows that when there is separation between the rod and the
foundation then there is no reaction on the point x = L.

(c) Next, when 0 < u(L, t) < g we have −σ (L, t) = k(u(L, t)). In this case there is partial penetration into the elastic
layer; moreover, the reaction of the foundation is towards the rod and depends on the penetration.

(d) Finally, when u(L, t) = g we have −σ (L) ≥ k(u(t, L)). This situation arises when the elastic layer is completely
penetrated and, therefore, the tip x = L reached the rigid body. In this case the magnitude of the reaction at this point is
larger than k(u(L, t)), since at the reaction of the elastic layer we add the reaction of the rigid body, which now is active.

We gather the above equations and condition to obtain the following model of contact.

Problem 14. Find a displacement field u : [0, L]×R+ → R and a stress field σ : [0, L]×R+ → R such that (4.1)–(4.4) hold.

In the second model we assume that the stress in x = L satisfies the condition

− σ (x, t) = k(u(L, t)) +
1
λ
p(u(L, t) − g) for t ∈ R+. (4.5)

This is a normal compliance condition modeling the contact with an elastic foundation, as explained in [5,25]. Here p
is a given positive function vanishing for a negative argument. The penalty parameter λ > 0 can be interpreted as a
deformability coefficient of the foundation [5,25]. Note that in this condition the displacement is not restricted by the bound
g . Nevertheless, the penetration is penalized by the second term in (4.5).

The second contact model is based on the use of the contact condition (4.5).

Problem 15. Find a displacement field u : [0, L] × R+ → R and a stress field σ : [0, L] × R+ → R such that (4.1)–(4.3) and
(4.5) hold.

Note that the solution of Problem 15 depends on λ and, therefore, we shall denote it below by (uλ, σλ). In the study of
Problems 14 and 15 we use the space

V = { v ∈ H1(0, L) | v(0) = 0 }.

It is a real Hilbert space with the inner product

(u, v)V =

∫ L

0
u′ v′ dx, u, v ∈ V .

The Sobolev trace theorem states that there exists a positive constant k0 such that

|v(L)| ≤ k0∥v∥V ∀ v ∈ V . (4.6)

We denote by ⟨·, ·⟩ the duality pairing between V ∗ and V .
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We assume that the elasticity operator F , the relaxation functionR and the normal compliance functions k, p satisfy the
following conditions.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : (0, L) × R → R.

(b) There exists LF > 0 such that

|F(x, ε1) − F(x, ε2)| ≤ LF |ε1 − ε2|

∀ ε1, ε2 ∈ R, a.e. x ∈ (0, L).

(c) There exists mF > 0 such that

(F(x, ε1) − F(x, ε2))(ε1 − ε2) ≥ mF |ε1 − ε2|
2

∀ ε1, ε2 ∈ R, a.e. x ∈ (0, L).

(d) The mapping x ↦→ F(x, ε) is measurable on (0, L),

for any ε ∈ R.

(e) The mapping x ↦→ F(x, 0) belongs to L2(0, L).

(4.7)

R : R+ → R is continuous. (4.8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) k : R → R.

(b) k is continuous.

(c) There exists c0 > 0, c1 > 0 such that

|k(r)| ≤ c0 + c1 |r| ∀ r ∈ R.

(d) There existsαk > 0 such that

r ↦→ αkr + k(r) is nondecreasing.

(e) k(r) ≥ 0 if r > 0 and k(r) = 0 if r ≤ 0.

(4.9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) p : R → R.

(b) There exists Lp > 0 such that

|p(r1) − p(r2)| ≤ Lp |r1 − r2| ∀ r1, r2 ∈ R.

(c) (p(r1) − p(r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R.

(d) p(r) ≥ 0 if and only if r ≤ 0.

(4.10)

For the density of body forces, we assume

f0 ∈ L2(0, L). (4.11)

Finally, we assume the smallness condition

αk <
mF

k20
, (4.12)

where k0, mF and αk are the constants in (4.6), (4.7) and (4.9), respectively.
Introduce the set of admissible displacement fields

U = { v ∈ V | v(L) ≤ g }. (4.13)

Following a standard approach, we can derive the following weak formulation for Problem 14.

Problem 16. Find a displacement field u : R+ → U such that, for all t ∈ R+,∫ L

0
Fu′(t)(v′

− u′(t)) dx +

∫ L

0

(∫ t

0
R(t − s)u′(s) ds

)
(v′

− u′(t)) dx

+ k(u(L))(v(L) − u(L)) ≥

∫ T

0
f (t)(v − u(t)) dx ∀ v ∈ U .

Here and below, for simplicity, we do not indicate the dependence of various functions on the spatial variable x. Theweak
formulation for Problem 15 is the following.



M. Sofonea et al. / Computers and Mathematics with Applications 75 (2018) 2561–2573 2571

Problem 17. Find a displacement field uλ : R+ → V such that, for all t ∈ R+,∫ L

0
Fu′

λ(t)(v
′
− u′

λ(t)) dx +

∫ L

0

(∫ t

0
R(t − s)u′

λ(s) ds
)
(v′

− u′

λ(t)) dx

+ k(uλ(L))(v(L) − uλ(L)) +
1
λ
p(uλ(L))(v(L) − uλ(L))

=

∫ T

0
f0(t)(v − uλ(t)) dx ∀ v ∈ V .

In the study of these problems, we have the following existence, uniqueness and convergence result; the proof of the
result is given in the next section.

Theorem 18. Assume (4.7)–(4.11). Then the following statements hold.
(i) There exists a unique solution u ∈ C(R+;U) to Problem 16.
(ii) For each λ > 0, there exists a unique solution uλ ∈ C(R+; V ) to Problem 17.
(iii) The solution uλ of Problem 17 converges to the solution u of Problem 16, that is, for all t ∈ R+,

∥uλ(t) − u(t)∥V → 0 as λ → 0. (4.14)

Theorem 18(i), (ii) provides the unique weak solvability of Problems 14 and 15, respectively, in terms of displacement.
Once the displacement field is obtained, the corresponding stress field is uniquely determined by using the constitutive law
(4.1). The convergence result in Theorem 18(iii) is important from themechanical point of view, since it shows that theweak
solution of the viscoelastic contact problemwith a deformable foundation approaches, as closely as one wishes, the solution
of an viscoelastic contact problem with a rigid–deformable foundation, with a sufficiently small deformability coefficient.

5. Proof of Theorem 18

The proof of Theorem 18 will be done in several steps, based on the abstract existence, uniqueness and convergence
results provided by Theorems 2 and 5. Throughout this section, we assume (4.7)–(4.12). Introduce the operators A : V → V ∗,
P : V → V ∗, S : C(R+; V ) → C(R+; L2(0, L)) and the function f : R+ → V ∗ defined by

⟨Au, v⟩ =

∫ L

0
F(u′) v′ dx, u, v ∈ V , (5.1)

⟨Pu, v⟩ = p(u(L) − g)v(L), u, v ∈ V , (5.2)

(Su)(t) =

∫ t

0
R(t − s)u′(s) ds, u ∈ C(R+; V ), (5.3)

⟨f (t), v⟩ =

∫ L

0
f0(t)v dx, v ∈ V , t ∈ R+. (5.4)

Denote by q : R → R and j : V → R the functions defined by

q(r) =

∫ r

0
k(s) ds, r ∈ R, (5.5)

j(v) = q(v(L)), v ∈ V . (5.6)

Consider the following problems.

Problem 19. Find a function u ∈ C(R+;U) such that, for all t ∈ R+,

⟨Au(t), v − u(t)⟩ + ((Su)(t), v′
− u′(t))L2(0,L)

+ j0(u(t); v − u(t)) ≥ ⟨f (t), v − u(t)⟩ ∀ v ∈ U . (5.7)

Problem 20. Find a function uλ ∈ C(R+; V ) such that, for all t ∈ R+,

⟨Auλ(t), v − u(t)⟩ +
1
λ

⟨Puλ(t), v − uλ(t)⟩ + ((Suλ)(t), v′
− u′

λ(t))L2(0,L)

+ j0(uλ(t); v − uλ(t)) = ⟨f (t), v − uλ(t)⟩ ∀ v ∈ V . (5.8)

We have the following equivalence result.
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Lemma 21. Let u : R+ → U and uλ : R+ → V . Then:
(1) The function u is a solution to Problem 16 with regularity u ∈ C(R+;U) if and only if u is a solution to Problem 19.
(2) The function uλ is a solution to Problem 17 with regularity uλ ∈ C(R+; V ) if and only if uλ is a solution to Problem 20.

Proof. The function q defined by (5.5) is a regular function in the sense of Clarke; moreover, the generalized directional
derivative of q is

q0(s; r) = k(s) r, r, s ∈ R.

A simple computation based on (5.6) shows that

j0(u; v) = q0(u(L); v(L)), u, v ∈ V .

It follows from above that

j0(u; v) = k(u(L))v(L) ∀ u, v ∈ V . (5.9)

Lemma 21 is now is a direct consequence of notation (5.1)–(5.4) combined with equality (5.9). □

The next result concerns the operator P .

Lemma 22. The operator (5.2) is a penalty operator of the set U, i.e., it satisfies condition (2.9) with X = V and K = U.

Proof. Let u, w ∈ V and v ∈ U . From (5.2), (4.10) and (4.6) it is easy to see that

|⟨Pu − Pv,w⟩| ≤ k20Lp∥u − v∥V∥w∥V ,

⟨Pu − Pv, u − v⟩ ≥ 0.

These inequalities show that P is a Lipschitz continuous and monotone operator; therefore, (2.9)(a) holds.
Assume Pu = 0. Then, ⟨Pu, u⟩V = 0 which implies that

p(u(L) − g)u(L) = 0. (5.10)

This equality combined with assumption (4.10) implies that u(L) ≤ g , i.e., u ∈ U . Conversely, if u ∈ U it follows that
u(L) ≤ g . Using assumption (4.10)(d), we deduce that p(u(L)− g) = 0. From the definition (5.2) of the operator P , we deduce
that ⟨Pu, v⟩ = 0 for all v ∈ V , which implies that Pu = 0. It follows from above that P satisfies the condition (2.9)(b) which
concludes the proof. □

Let us now complete the proof of Theorem 18.

Proof. We apply Theorems 2 and 5 with X = V , K = U and Y = L2(0, L). Observe that the set (4.13) is nonempty, closed
and convex in V . We use properties (4.7) of the constitutive function F to see that the operator A given by (5.1) satisfies the
inequalities

⟨Au − Av,w⟩ ≤ LF∥u − v∥V∥w∥V ,

⟨Au − Av, u − v⟩ ≥ mF∥u − v∥2
V

for any u, v, w ∈ V . Hence, A satisfies condition (2.3) with constant mA = mF . From the definition (5.3) and assumption
(4.8), we have

∥(Su1)(t) − (Su2)(t)∥L2(0,L) ≤ max
r∈[0,n]

|R(r)|
∫ t

0
∥u1(s) − u2(s)∥V ds

for all n ∈ N, t ∈ [0, n] and u1, u2 ∈ C(R+; V ). This inequality shows that the operator S satisfies condition (2.4) with
sn = maxr∈[0,n]|R(r)|.

Define the functional ϕ : L2(0, L) × V × V → R by

ϕ(y, u, v) = (y, v′)L2(0,L) ∀ y ∈ L2(0, L), u, v ∈ V .

Then, it is easy to see that ϕ satisfies condition (2.5) and (2.12) with αϕ = 0, βϕ = 1 and cϕ(r1, r2) = r1, for all r1, r2 ∈ R+.
Moreover, note that

ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), u(t)) = ((Su)(t), v′
− u′)L2(0,L) ∀ u ∈ C(R+, V ), v ∈ V , t ∈ R+. (5.11)

By standard arguments on subdifferential calculus (cf. [11, Theorem 3.47]) and (4.9) (c) it follows that the function j
defined by (5.6) satisfies conditions (2.6) (a) and (b). In addition, using (4.9) (d) we have

j0(u; v − u) + j0(v; u − v) =
(
k(u(L)) − k(v(L))

)
(u(L) − v(L))

≤ αk|u(L) − v(L)|2



M. Sofonea et al. / Computers and Mathematics with Applications 75 (2018) 2561–2573 2573

for all u, v ∈ V . Therefore, using the trace inequality (4.6) we see that j satisfies condition (2.6)(c) with αj = αkk20. Since
αϕ = 0, we conclude from (4.12) that the smallness condition (2.7) holds, too.

We can use a compactness argument to see that if un → u weakly in V , then un(L) → u(L); therefore, equality (5.9)
implies that

j0(un; v − un) → j0(u; v − u) ∀ v ∈ V .

It follows that condition (2.11) is satisfied. Note also that assumption (4.11) and definition (5.4) imply that f ∈ C(R+; V ∗).
Finally, we recall Lemma 22 which shows that the operator P satisfies condition (2.9) with X = V and K = U .

We conclude from the above that the assumptions of Theorems 2 and 5 are satisfied. Therefore, with the equality (5.11), it
follows fromTheorem2 that there exists a unique solution u ∈ C(R+;U) to Problem19.Moreover, it follows fromTheorem2
that, for each λ > 0, there exists a unique solution uλ ∈ C(R+;U) to Problem 20 and, in addition, the convergence (4.14)
holds. Theorem 18 is now a consequence of Lemma 21. □
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