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A new class of history-dependent variational–hemivariational inequalities was recently

studied in Migórski et al. (2015 Nonlinear Anal. Ser. B: Real World Appl. 22, 604–618). There,

an existence and uniqueness result was proved and used in the study of a mathematical

model which describes the contact between a viscoelastic body and an obstacle. The aim

of this paper is to continue the analysis of the inequalities introduced in Migórski et al.

(2015 Nonlinear Anal. Ser. B: Real World Appl. 22, 604–618) and to provide their numerical

analysis. We start with a continuous dependence result. Then we introduce numerical schemes

to solve the inequalities and derive error estimates. We apply the results to a quasistatic

frictional contact problem in which the material is modelled with a viscoelastic constitutive

law, the contact is given in the form of normal compliance, and friction is described with a

total slip-dependent version of Coulomb’s law.
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1 Introduction

Variational and hemivariational inequalities play an important role in the study of

both qualitative and quantitative analysis of nonlinear boundary value problems. The

study of variational inequalities started in the early sixties and is based on arguments

of monotonicity and convexity, including properties of the subdifferential of a convex

function. References in the field are [2–4, 11, 12, 21, 22, 28], among others. The theory

of hemivariational inequalities was introduced in the early eighties and is based on the

properties of generalized gradient introduced and studied in [6–8]. References in the field

include [9, 17, 24, 26, 29]. Applications of the variational and hemivariational inequalities

in mechanics and engineering, especially in contact mechanics, can be found in [1, 10,

14–16, 18, 20, 23, 24, 28, 30–32], among others. Variational–hemivariational inequalities

represent a special class of inequalities, in which both convex and nonconvex functions

are involved. Interest in their study is motivated by various problems in mechanics, as

illustrated in [26, 27, 29].

A class of stationary variational–hemivariational inequalities was studied in [13]. An

inequality in the class involves two nonlinear operators and two nondifferentiable func-

tionals, among which at least one is convex. An existence and uniqueness result was proved

for a solution of the inequality, through arguments of surjectivity for pseudomonotone

operators and the Banach fixed point theorem. Continuous dependence of the solution on

the data was shown. Numerical methods for solving the inequality were introduced, and

their convergence was established rigorously. Moreover, an error estimate was derived

which is of an optimal order for the linear finite element method under appropriate solu-

tion regularity assumptions. Finally, results on the well-posedness and error estimation

of numerical solutions were applied to a variational–hemivariational inequality arising in

the study of a new model of elastic contact.

An evolutionary version of the variational–hemivariational inequalities studied in [13]

was considered in [25]. There, the structure of the inequalities involves two history-

dependent operators and two nondifferentiable functionals, one convex and the other

nonconvex. An existence and uniqueness result was proved by using arguments of sur-

jectivity for pseudomonotone operators and fixed point. Then, these abstract results were

used in the study of a new model of viscoelastic frictionless contact, in which both the

instantaneous and the memory effects of the foundation were taken into account. We

note that, unlike a large number of references, including [24], the inequality problems

considered in [25] are formulated on the unbounded interval of time �+ = [0,∞). This

requires the use of the framework of Fréchet spaces of continuous functions, instead of

that of the classical Banach spaces of continuous functions defined on a bounded interval

of time, used in many papers.

The present paper represents a continuation of [25] and parallels part of [13]. Its aim

is threefold. The first one is to show the continuous dependence of the solutions of the

variational–hemivariational inequalities on the problem data. The second one is to provide

the numerical analysis for solving such history-dependent inequalities. The third aim is

to apply our abstract result in the study of a new model of quasistatic contact, which

describes the equilibrium of a nonlinear viscoelastic body in contact with a foundation.

In contrast to the model considered in [25], here the contact is assumed frictional.
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The class of variational–hemivariational inequalities studied in this paper represents a

general framework in which a large number of quasistatic contact problems, associated

with various constitutive laws and frictional or frictionless contact conditions, can be cast.

Therefore, our work provides arguments and tools useful for the unique solvability of a

large number of quasistatic contact problems together with their numerical solution.

The rest of the paper is structured as follows. In Section 2, we review some material

from [25]. In Section 3, we state and prove the continuous dependence of the solution

with respect to the data. In Section 4, we study a fully discrete scheme. We derive error

estimates and prove convergence results. In Section 5, we introduce a quasistatic frictional

contact problem in which the material is modelled with a viscoelastic constitutive law,

the contact is given in the form of normal compliance and friction is described with a

total slip-dependent friction law. We show that this problem leads to a history-dependent

quasivariational inequality for the velocity field. Then, in Section 6, we use our theoretical

results in the variational and numerical analysis of this contact problem. Finally, in Section

7, we present some concluding remarks.

2 History-dependent variational inequalities

In this section, we introduce the class of history-dependent variational–hemivariational

inequalities and recall an existence and uniqueness result proved in [25]. We start by

presenting some notation, definitions and preliminary results used later in this paper.

We use � for the set of positive integers and �+ for the set of non-negative real

numbers, i.e., �+ = [0,+∞). Let X be a normed space. We denote its norm by ‖ · ‖X , its

topological dual by X∗ and the duality pairing of X and X∗ by 〈·, ·〉X∗×X . Let h : X → �
be a locally Lipschitz function. Then, the generalized (Clarke) directional derivative of h

at x ∈ X in the direction v ∈ X, denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv) − h(y)

λ
.

The generalized gradient (subdifferential) of h at x, denoted by ∂h(x), is a subset of the

dual space X∗ given by

∂h(x) = { ζ ∈ X∗ | h0(x; v) � 〈ζ, v〉X∗×X for all v ∈ X }.

An operator A : X → X∗ is called pseudomonotone, if it is bounded and un → u weakly

in X together with lim sup 〈Aun, un − u〉X∗×X � 0 imply

〈Au, u − v〉X∗×X � lim inf 〈Aun, un − v〉X∗×X,

for all v ∈ X.

We also use the notation C(�+;X) for the space of continuous functions defined on

�+ with values in X. It is well known that, if X is a Banach space, then C(�+;X) can be

organized in a canonical way as a Fréchet space, i.e., as a complete metric space in which

the corresponding topology is induced by a countable family of seminorms. Moreover,

the convergence of a sequence {xk}k to the element x, in the space C(�+;X), can be
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described as follows:

⎧⎨
⎩

xk → x in C(�+;X) as k → ∞ if and only if

max
r∈[0,n]

‖xk(r) − x(r)‖X → 0 as k → ∞, for all n ∈ �.
(2.1)

In other words, the sequence {xk}k converges to the element x in the space C(�+;X) if

and only if it converges to x in the space C([0, n];X) for all n ∈ �, C([0, n];X) being

the space of continuous functions defined on the compact interval [0, n] with values in X,

endowed with its canonical norm.

Let Ω ⊂ �d be an open bounded subset of �d with a Lipschitz continuous boundary

∂Ω and let Γ be a measurable subset of ∂Ω. Below, we use the symbol m(Γ ) to denote

the d − 1 dimensional Lebesgue measure of Γ . Let V be a closed subspace of H1(Ω; �s),

s � 1, and let H = L2(Ω; �s). We denote the trace operator by γ : V → L2(Γ ; �s), its

norm in L(V , L2(Γ ; �s)) by ‖γ‖ and the adjoint operator to γ by γ∗ : L2(Γ ; �s) → V ∗.

From the theory of Sobolev spaces, we know that (V ,H, V ∗) forms an evolution triple of

spaces and the embedding V ⊂ H is compact.

Consider the operators A : V → V ∗, S : C(�+;V ) → C(�+;V ∗), R : C(�+;V ) →
C(�+;L2(Γ )), the functions ϕ, j : Γ × �s → � and f : �+ → V ∗. The problem under

consideration is to find a function u : �+ → V such that

〈Au(t), v − u(t)〉V ∗×V + 〈(Su)(t), v − u(t)〉V ∗×V

+

∫
Γ

(Ru)(t)
(
ϕ(γv) − ϕ(γu(t))

)
dΓ

+

∫
Γ

j0(γu(t); γv − γu(t)) dΓ � 〈f(t), v − u(t)〉V ∗×V , (2.2)

for all v ∈ V and all t ∈ �+.

In the study of equation (2.2), we assume the following hypotheses:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : V → V ∗ is such that

(a) A is pseudomonotone and there exists α > 0 such that

〈Av, v〉V ∗×V � α ‖v‖2
V for all v ∈ V ;

(b) A is strongly monotone, i.e., there exists mA > 0 such that

〈Av1 − Av2, v1 − v2〉V ∗×V � mA‖v1 − v2‖2
V

for all v1, v2 ∈ V .

(2.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S : C(�+;V ) → C(�+;V ∗) is such that

for every n ∈ � there exists sn > 0 such that

‖(Su1)(t) − (Su2)(t)‖V ∗ � sn

∫ t

0

‖u1(s) − u2(s)‖V ds

for all u1, u2 ∈ C(�+;V ), for all t ∈ [0, n].

(2.4)
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⎪⎪⎪⎪⎪⎪⎪⎩

R : C(�+;V ) → C(�+;L2(Γ )) is such that

(a) for every n ∈ � there exists rn > 0 such that

‖(Ru1)(t) − (Ru2)(t)‖L2(Γ ) � rn

∫ t

0

‖u1(s) − u2(s)‖V ds

for all u1, u2 ∈ C(�+;V ), for all t ∈ [0, n];

(b) (Ru)(t) � 0 a.e. on Γ , for all u ∈ C(�+;V ), all t ∈ �+.

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ : Γ × �s → � is such that

(a) ϕ(·, ξ) is measurable on Γ for all ξ ∈ �s and there exists

ẽ ∈ L2(Γ ; �s) such that ϕ(·, ẽ(·)) ∈ L2(Γ );

(b) ϕ(x, ·) is convex for a.e. x ∈ Γ ;

(c) there exists Lϕ > 0 such that

|ϕ(x, ξ1) − ϕ(x, ξ2)| � Lϕ‖ξ1 − ξ2‖�s

for all ξ1, ξ2 ∈ �s, a.e. x ∈ Γ .

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j : Γ × �s → � is such that

(a) j(·, ξ) is measurable on Γ for all ξ ∈ �s and there exists

e ∈ L2(Γ ; �s) such that j(·, e(·)) ∈ L1(Γ );

(b) j(x, ·) is locally Lipschitz on �s for a.e. x ∈ Γ ;

(c) ‖∂j(x, ξ)‖�s � c0 + c1 ‖ξ‖�s for a.e. x ∈ Γ ,

all ξ ∈ �s with c0, c1 � 0;

(d) j0(x, ξ1; ξ2 − ξ1) + j0(x, ξ2; ξ1 − ξ2) � β ‖ξ1 − ξ2‖2
�s

for a.e. x ∈ Γ , all ξ1, ξ2 ∈ �s with β � 0.

(2.7)

f ∈ C(�+;V ∗). (2.8)

Concerning the above assumptions we have the following comments. First, following

the terminology in [33], conditions (2.4) and (2.5)(a) show that the operators S and R are

history-dependent operators. On the other hand, we note that the function ϕ is assumed to

be convex with respect to its second argument, while the function j is locally Lipschitz in

the second argument and could be nonconvex. For this reason, inequality (2.2) represents,

in fact, a variational–hemivariational inequality. To combine these two ingredients, we refer

to inequality (2.2) as a history-dependent variational–hemivariational inequality.

We have the following existence and uniqueness result.

Theorem 1 Assume the hypotheses (2.3)–(2.8) and the smallness condition

β ‖γ‖2 < mA. (2.9)

If one of the following hypotheses

α > c1

√
2 ‖γ‖2, (2.10)

j0(x, ξ; −ξ) � d (1 + ‖ξ‖�s ) for all ξ ∈ �s, a.e. x ∈ Γ with d � 0, (2.11)

is satisfied, then inequality (2.2) has a unique solution u ∈ C(�+;V ).
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The proof of Theorem 1 was given in [25]. It is based on arguments of surjectivity

for pseudomonotone operators and a fixed point result for a special class of operators

defined on the Fréchet space C(�+;V ).

3 Continuous dependence on data

We now study the continuous dependence of the solution of the history-dependent

variational–hemivariational inequality (2.2) with respect to the problem data. Assume in

what follows that equations (2.3)–(2.8) hold and denote by u ∈ C(�+;V ) the solution

of equation (2.2) stated in Theorem 1. For each ρ > 0 let Sρ, Rρ, jρ and fρ represent

perturbed data corresponding to S, R, j and f, which satisfy conditions (2.4), (2.5), (2.7)

and (2.8), respectively. We denote by sρn, rρn the constants involved in assumptions (2.4)

and (2.5), respectively, and βρ will represent the constant involved in assumptions (2.7).

In addition, assume that there exists m0 such that

βρ‖γ‖2 � m0 < mA for all ρ > 0. (3.1)

Then it follows from Theorem 1 that there exists a unique function uρ ∈ C(�+;V ) such

that

〈Auρ(t), v − uρ(t)〉V ∗×V + 〈(Sρuρ)(t), v − uρ(t)〉V ∗×V

+

∫
Γ

(Rρuρ)(t)
(
ϕ(γv) − ϕ(γuρ(t))

)
dΓ

+

∫
Γ

j0
ρ(γuρ(t); γv − γuρ(t)) dΓ � 〈fρ(t), v − uρ(t)〉V ∗×V , (3.2)

for all v ∈ V and all t ∈ �+.

Our interest lies in the behaviour of the solution uρ as ρ tends to zero. To this end we

consider the following additional assumptions.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

For each n ∈ � there exist Gn : C([0, n];V ) → �+

and gn : (0,∞) → �+ such that

(a) ‖(Sρu)(t) − (Su)(t)‖V ∗ � gn(ρ)Gn(u)

for all u ∈ C(�+;V ), for all t ∈ [0, n], for all ρ > 0.

(b) gn(ρ) → 0 as ρ → 0.

(3.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

For each n ∈ � there exist Hn : C([0, n];V ) → �+

and hn : (0,∞) → �+ such that

(a) ‖(Rρu)(t) − (Ru)(t)‖L2(Γ ) � hn(ρ)Hn(u)

for all u ∈ C(�+;V ), for all t ∈ [0, n], for all ρ > 0.

(b) hn(ρ) → 0 as ρ → 0.

(3.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

There exist K ∈ �+ and k : (0,∞) → �+ such that

(a) j0(x, ξ; η) − j0
ρ(x, ξ; η) � k(ρ)(‖ξ‖�s + K)‖η‖�s

for all ξ, η ∈ �s, a.e. x ∈ Γ , for all ρ > 0.

(b) k(ρ) → 0 as ρ → 0.

(3.5)
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For each n ∈ � there exists s̃n > 0 such that sρn � s̃n ∀ ρ > 0. (3.6)

For each n ∈ � there exists r̃n > 0 such that rρn � r̃n ∀ ρ > 0. (3.7)

fρ → f in C(�+;V ∗) as ρ → 0. (3.8)

Examples of operators S and Sρ, R and Rρ which satisfy conditions (3.3), (3.4), (3.6)

and (3.7) will be provided in Section 6. Examples of functions j and jρ which satisfy the

condition (3.5) have been provided in [13].

We have the following convergence result.

Theorem 2 Assume the hypotheses of Theorem 1. Moreover, let Sρ, Rρ, jρ and fρ satisfy

assumptions of Theorem 1 and, in addition, assume that equations (3.1) and (3.3)–(3.8) hold.

Then the solution uρ of the inequality (3.2) converges to the solution u of the inequality (2.2),

i.e.,

uρ → u in C(�+;V ) as ρ → 0. (3.9)

Proof. Let ρ > 0, n ∈ � and t ∈ [0, n]. We take v = u(t) in equation (3.2) and v = uρ(t) in

equation (2.2) and add the resulting inequalities to obtain

〈Auρ(t) − Au(t), uρ(t) − u(t)〉V ∗×V

� 〈(Sρuρ)(t) − (Su)(t), u(t) − uρ(t)〉V ∗×V

+

∫
Γ

(
(Rρuρ)(t) − (Ru)(t)

)(
ϕ(γu) − ϕ(γuρ)

)
dΓ

+

∫
Γ

(
j0
ρ(γuρ(t); γu(t) − γuρ(t)) + j0(γu(t); γuρ(t) − γu(t))

)
dΓ

+ 〈fρ(t) − f(t), uρ(t) − u(t)〉V ∗×V . (3.10)

Let us bound each term in equation (3.10). First, it follows from assumption (2.3)(b)

that

〈Auρ(t) − Au(t), uρ(t) − u(t)〉V ∗×V � mA‖uρ(t) − u(t)‖2
V . (3.11)

Next, we write

〈(Sρuρ)(t) − (Su)(t), u(t) − uρ(t)〉V ∗×V

= 〈(Sρuρ)(t) − (Sρu)(t), u(t) − uρ(t)〉V ∗×V

+ 〈(Sρu)(t) − (Su)(t), u(t) − uρ(t)〉V ∗×V

�
(

‖(Sρuρ)(t) − (Sρu)(t)‖V + ‖(Sρu)(t) − (Su)(t)‖
)

‖uρ(t) − u(t)‖V ,

then we use the assumptions (2.4), (3.3) and (3.6). As a result we find that

〈(Sρuρ)(t) − (Su)(t), u(t) − uρ(t)〉V ∗×V

�
(
s̃n

∫ t

0

‖uρ(s) − u(s)‖V ds + gn(ρ)Gn(u)
)

‖uρ(t) − u(t)‖V . (3.12)
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Similar arguments, based on assumptions (2.5), (2.6), (3.4) and (3.7), lead to the inequality

∫
Γ

(
(Rρuρ)(t) − (Ru)(t)

)(
ϕ(γu) − ϕ(γuρ)

)
dΓ

� Lϕ‖γ‖
(
r̃n

∫ t

0

‖uρ(s) − u(s)‖V ds + hn(ρ)Hn(u)
)

‖uρ(t) − u(t)‖V . (3.13)

On the other hand, the property (2.7)(d) of the function jρ combined with assumption

(3.5) yields

∫
Γ

(
j0
ρ(γuρ(t); γu(t) − γuρ(t)) + j0(γu(t); γuρ(t) − γu(t))

)
dΓ

=

∫
Γ

(
j0
ρ(γuρ(t); γu(t) − γuρ(t)) + j0

ρ(γu(t); γuρ(t) − γu(t))
)
dΓ

+

∫
Γ

(
j0(γu(t); γuρ(t) − γu(t)) − j0

ρ(γu(t); γuρ(t) − γu(t))
)
dΓ

� βρ

∫
Γ

‖γuρ(t) − γu(t)‖2
�s dΓ + k(ρ)

∫
Γ

(‖γu(t)‖�s + K)‖γuρ(t) − γu(t)‖�sdΓ .

Therefore,

∫
Γ

(
j0
ρ(γuρ(t); γu(t) − γuρ(t)) + j0(γu(t); γuρ(t) − γu(t))

)
dΓ

� βρ‖γ‖2‖uρ(t) − u(t)‖2
V

+k(ρ) ‖γ‖
(
‖γ‖ ‖u(t)‖V + K

√
m(Γ )

)
‖uρ(t) − u(t)‖V ,

which implies that

∫
Γ

(
j0
ρ(γuρ(t); γu(t) − γuρ(t)) + j0(γu(t); γuρ(t) − γu(t))

)
dΓ

� βρ‖γ‖2‖uρ(t) − u(t)‖2
V + k(ρ)Fn(u)‖uρ(t) − u(t)‖V , (3.14)

where

Fn(u) = max
t∈[0,n]

‖γ‖
(
‖γ‖ ‖u(t)‖V + K

√
m(Γ )

)
.

Finally, note that

〈fρ(t) − f(t), uρ(t) − u(t)〉V ∗×V � δn(ρ)‖uρ(t) − u(t)‖V , (3.15)

where

δn(ρ) = max
t∈[0,n]

‖fρ(t) − f(t)‖V ∗ . (3.16)
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We now combine inequalities (3.10)–(3.15) to deduce that

(
mA − βρ‖γ‖2)‖uρ(t) − u(t)‖V � s̃n

∫ t

0

‖uρ(s) − u(s)‖V ds + gn(ρ)Gn(u)

+ Lϕ‖γ‖ r̃n
∫ t

0

‖uρ(s) − u(s)‖V ds

+ hn(ρ)Lϕ‖γ‖Hn(u) + k(ρ)Fn(u) + δn(ρ).

Denote

ζn =
s̃n + Lϕ‖γ‖ r̃n

mA − m0
,

mn(ρ) =
1

mA − m0

(
gn(ρ)Gn(u) + hn(ρ)Lϕ‖γ‖Hn(u) + k(ρ)Fn(u) + δn(ρ)

)
.

Then, using assumption (3.1) we see that

‖uρ(t) − u(t)‖V � ζn

∫ t

0

‖uρ(s) − u(s)‖V ds + mn(ρ).

Therefore, the Gronwall argument yields

‖uρ(t) − u(t)‖V � mn(ρ) eζnt.

We conclude from this inequality that

max
t∈[0,n]

‖uρ(t) − u(t)‖V � mn(ρ) eζnn. (3.17)

Note that assumption (3.8), definitions (2.1) and (3.16) imply that

δn(ρ) → 0 as ρ → 0. (3.18)

Therefore, using equations (3.3)(b), (3.4)(b), (3.5)(b) and (3.18), it follows from equation

(3.17) that

max
t∈[0,n]

‖uρ(t) − u(t)‖V → 0 as ρ → 0. (3.19)

The convergence (3.9) is now a consequence of equations (3.19) and (2.1). This completes

the proof of the theorem. �

4 Analysis of a numerical method

In this section, we introduce and study a numerical scheme for the inequality (2.2)

where the time variable is discretized by finite difference and the spatial variable by

finite elements. We solve the inequality (2.2) on a time interval [0, T ]. For simplicity

in exposition, we use uniform partition of the time interval [0, T ] and comment that

analysis of the numerical scheme can be extended in a straightforward way to the case of

non-uniform partitions. For a positive integer N, let k = T/N be the time step size and
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define

tn = n k, 0 � n � N.

For a continuous function v(t) with values in a function space, we write vj = v(tj), 0 �
j � N. Note that the condition (2.4) is satisfied for operators S : C(�+;V ) → C(�+;V ∗)

of the form

(Sv)(t) = S

(∫ t

0

q(t, s) v(s) ds + aS

)
for all v ∈ C(�+;V ), t ∈ �+, (4.1)

where S ∈ L(V , V ∗), q ∈ C(�+ × �+; L(V )), aS ∈ V . For an operator S of the form

(4.1), we approximate the integral
∫ t

0
q(t, s) v(s) ds by numerical integration. We take the

trapezoidal rule as an example for the discretization of the time integration. All the

discussion and results below can be extended to schemes based on other numerical

quadratures. Recall the trapezoidal rule

∫ tn

0

z(s) ds ≈ k

n∑′

j=0

z(tj), (4.2)

where a prime indicates that the first and last terms in the summation are to be halved.

Then the operator Sn := S(tn) is approximated by Sk
n defined as follows:

Sk
nv

k := S

⎛
⎝k

n∑′

j=0

q(tn, tj) v
k
j + aS

⎞
⎠ for 0 � n � N, vk = {vkj }Nj=0. (4.3)

While it is possible to consider numerical methods for the problem (2.2) for a general

operator R satisfying the condition (2.5), in the following we focus on the special case

where

Rv = R0 ∈ L2(Γ ), R0 � 0 a.e. on Γ , (4.4)

for which an optimal order error estimate will be derived for the linear element solution.

For the spatial discretization, we let {Vh}h>0 be a family of finite dimensional subspaces

of V , indexed by a discretization parameter h > 0. Then the fully discrete scheme for the

problem (2.2) is to find the discrete solution ukh := {ukhn }Nn=0 ⊂ Vh such that

〈Auhkn , vh − uhkn 〉 + 〈Sk
nu

hk, vh − uhkn 〉 +

∫
Γ

R0

(
ϕ(γvh) − ϕ(γuhkn )

)
dΓ

+

∫
Γ

j0(γuhkn ; γvh − γuhkn ) dΓ � 〈fn, vh − uhkn 〉 for all vh ∈ Vh. (4.5)

Here and below, we use 〈·, ·〉 to stand for 〈·, ·〉V ∗×V . It can be shown that under the

assumptions of Theorem 1, the discrete problem has a unique solution uhk . The rest of

the section is devoted to an error estimation.

Consider the inequality (2.2) at t = tn, which takes the form

〈Aun, v − un〉 + 〈Snu, v − un〉 +

∫
Γ

R0 (ϕ(γv) − ϕ(γun)) dΓ

+

∫
Γ

j0(γun; γv − γun) dΓ � 〈fn, v − un〉 for all v ∈ V . (4.6)
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For any vh ∈ Vh, write

〈Aun − Auhkn , un − uhkn 〉 = 〈Aun, un − uhkn 〉 − 〈Auhkn , vh − uhkn 〉
− 〈Auhkn , un − vh〉.

Apply equation (4.6) with v = uhkn to the first term on the right side and apply equation

(4.5) with an arbitrary vh ∈ Vh to the second term on the right side to obtain

〈
Aun − Auhkn , un − uhkn

〉
�

〈
Aun − Auhkn , un − vh

〉
+

〈
Aun, v

h − un
〉

+
〈
Snu, v

h − un
〉

−
〈
fn, v

h − un
〉

+
〈
Snu, u

hk
n − vh

〉
+

〈
Sk

nu
hk, vh − uhkn

〉
+

∫
Γ

R0

[
ϕ(γvh) − ϕ(γun)

]
dΓ

+

∫
Γ

[
j0

(
γun; γu

hk
n − γun

)
+ j0

(
γuhkn ; γvh − γuhkn

)]
dΓ . (4.7)

To proceed further, we replace v by 2un − v in equation (4.6) and get

〈Aun, v − un〉 + 〈Snu, v − un〉 − 〈fn, v − un〉

�

∫
Γ

[
R0 (ϕ(2γun − γv) − ϕ(γun)) + j0(γun; γun − γv)

]
dΓ .

We use this inequality with v = vh in equation (4.7),

〈
Aun − Auhkn , un − uhkn

〉
�

〈
Aun − Auhkn , un − vh

〉
+ IS,n + IR,n + Ij,n, (4.8)

where

IS,n =
〈
Snu − Sk

nu
hk, uhkn − vh

〉
, (4.9)

IR,n =

∫
Γ

R0

(
ϕ(γvh) + ϕ(2γun − γvh) − 2ϕ(γun)

)
dΓ , (4.10)

Ij,n =

∫
Γ

[
j0(γun; γun − γvh) + j0(γun; γu

hk
n − γun) + j0(γuhkn ; γvh − γuhkn )

]
dΓ . (4.11)

We now bound each of the terms defined in equations (4.9)–(4.11). First, write

‖Snu − Sk
nu

hk‖V � ‖Snu − Sk
nu‖V + ‖Sk

nu − Shk
n uhk‖V .

We will assume the regularities

q ∈ C2(�+ × �+; L(V )), u ∈ W 2,∞(�+;V ). (4.12)
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Then following [19], we have

‖Snu − Sk
nu‖V � c k2‖u‖W 2,∞(0,T ;V ),

‖Sk
nu − Sk

nu
hk‖V � c k

n∑
j=0

‖uj − uhkj ‖.

So

|IS,n| � c

⎛
⎝k2‖u‖W 2,∞(0,T ;V ) + k

n∑
j=0

∥∥uj − uhkj
∥∥
V

⎞
⎠ ∥∥uhkn − vh

∥∥
V
. (4.13)

The term IR,n of equation (4.10) is bounded as follows:

|IR,n| � cLϕ‖vh − un‖L2(Γ ). (4.14)

To bound Ij,n of equation (4.11), we first write

j0
(
γuhkn ; γvh − γuhkn

)
� j0

(
γuhkn ; γvh − γun

)
+ j0

(
γuhkn ; γun − γuhkn

)
.

Note that, by equation (2.7) (d), we have

j0
(
γun; γu

hk
n − γun

)
+ j0

(
γuhkn ; γun − γuhkn

)
� β ‖γ‖2

∥∥un − uhkn
∥∥2

V
.

We assume additionally that j(x, ·) is locally Lipschitz on �s for a.e. x ∈ Γ , with a

Lipschitz constant Lj > 0 independent of x. Then,

j0
(
γuhkn ; γvh − γun

)
� Lj‖vh − un‖L2(Γ ),

j0(γun; γun − γvh) � Lj‖vh − un‖L2(Γ ).

Therefore,

|Ij,n| � β ‖γ‖2‖un − uhkn ‖2
V + c ‖un − vh‖L2(Γ ). (4.15)

In addition to equation (2.3), we further assume that A : V → V ∗ is Lipschitz continuous.

Then from equations (2.3) (b), (4.8), (4.13)–(4.15), we have the inequality

mA‖un − uhkn ‖2
V � c ‖un − uhkn ‖V‖un − vh‖V + β ‖γ‖2‖un − uhkn ‖2

V + c ‖un − vh‖L2(Γ )

+ c

⎛
⎝k2‖u‖W 2,∞(0,T ;V ) + k

n∑
j=0

‖uj − uhkj ‖V

⎞
⎠ ‖uhkn − vh‖V .

Here and below, c represents a constant independent of h, k whose value may change

from place to place. Using the smallness assumption (2.9), the above inequality yields

‖un − uhkn ‖V � c
(

‖un − vh‖V + ‖un − vh‖1/2

L2(Γ )

+ k2‖u‖W 2,∞(0,T ;V ) + k

n∑
j=0

∥∥uj − uhkj
∥∥
V

)
, 0 � n � N. (4.16)
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We recall a discrete Gronwall’s inequality ( [15]). Let {en}Nn=0 and {gn}Nn=0 be two

sequences of non-negative numbers with

en � c1gn + c2k

n∑
j=0

ej , 0 � n � N,

where c1 and c2 are constants. Then for some constant c3, we have

max
0�n�N

en � c3 max
0�n�N

gn.

Applying the discrete Gronwall’s inequality, we conclude from equation (4.16) that

max
0�n�N

∥∥un − uhkn
∥∥
V

� c max
0�n�N

inf
vh∈Vh

(
‖un − vh‖V + ‖un − vh‖1/2

L2(Γ )

)
+ c k2‖u‖W 2,∞(0,T ;V ). (4.17)

Summarizing the above arguments, we have the following result.

Theorem 3 Assume the conditions stated in Theorem 1. Moreover, assume A : V → V ∗

is Lipschitz continuous, j(x, ·) is locally Lipschitz on �s for a.e. x ∈ Γ with a Lipschitz

constant independent of x, and consider the particular cases (4.1) and (4.4). Then under the

regularity assumptions (4.12), we have the error bound (4.17).

The error bound (4.17) leads to convergence order error estimates, as will be seen in

Section 6.

5 A frictional contact problem

A large number of quasistatic contact problems with elastic, viscoelastic or viscoplastic

materials lead to a variational–hemivariational inequality of the form (2.2) in which the

unknown is either the displacement or the velocity field. For a variety of such inequalities,

the results in Sections 3 and 4 can be applied. We illustrate this point here on a viscoelastic

contact problem. To this end, we need some specific notation that we present in what

follows.

Given d ∈ �, we use the symbol �d for the space of second-order symmetric tensors

on �d or, equivalently, the space of symmetric matrices of order d. The canonical inner

products and the corresponding norms on �d and �d are given by

u · v = uivi, ‖v‖ = (v · v)1/2 for all u = (ui), v = (vi) ∈ �d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for all σ = (σij), τ = (τij) ∈ �d,

respectively. Everywhere below Ω will represents a regular domain of �d (d = 2, 3) with

boundary ∂Ω partitioned into three disjoint measurable parts Γ1, Γ2 and Γ3, such that the

measure of Γ1, denoted m(Γ1), is positive. We use the notation x = (xi) for a typical point

in Ω ∪ ∂Ω and we denote by ν = (νi) the outward unit normal at ∂Ω. Here and below,

the indices i, j, k, l run between 1 and d and, unless stated otherwise, the summation
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convention over repeated indices is used. An index following a comma indicates a partial

derivative with respect to the corresponding component of the spatial variable x. We

denote by u = (ui), σ = (σij), and ε(u) = (εij(u)) the displacement vector, the stress tensor,

and linearized strain tensor, respectively. Sometimes we do not indicate explicitly the

dependence of the variables on the spatial variable x. Recall that the components of the

linearized strain tensor ε(u) are given by

εij(u) =
1

2
(ui,j + uj,i),

where ui,j = ∂ui/∂xj . For a vector field, we use the notation vν and vτ for the normal and

tangential components of v on ∂Ω given by vν = v · ν and vτ = v − vνν . The normal and

tangential components of the stress field σ on the boundary are defined by σν = (σν) · ν

and στ = σν − σνν , respectively.

The physical setting is the following. A viscoelastic body occupies, in its reference

configuration, a regular domain Ω. The body is clamped on Γ1 and so the displacement

field vanishes there. Time-dependent surface tractions of density f2 act on Γ2 and time-

dependent volume forces of density f0 act in Ω. The body is in permanent contact on

Γ3 with a device, say a piston. The contact is modelled with a nonmonotone normal

compliance condition associated with a total slip-dependent version of Coulomb’s law of

dry friction. We are interested in the equilibrium process of the mechanical state of the

body, in the time interval of interest �+. Then, the mathematical model of the contact

problem is stated as follows.

Problem 4 Find a displacement field u : Ω × �+ → �d and a stress field σ : Ω × �+ → �d

such that

σ(t) = Aε(u(t)) +

∫ t

0

B(t − s)ε(u(s)) ds in Ω, (5.1)

Div σ(t) + f0(t) = 0 in Ω, (5.2)

u(t) = 0 on Γ1, (5.3)

σ(t)ν = f2(t) on Γ2, (5.4)

−σν(t) ∈ ∂jν(uν(t)) on Γ3, (5.5)

‖στ(t)‖ � Fb

( ∫ t

0

‖uτ(s)‖ ds
)
,

−στ = Fb

( ∫ t

0

‖uτ(s)‖ ds
) uτ(t)

‖uτ(t)‖
if uτ(t) � 0 on Γ3. (5.6)

for all t ∈ �+.

We now present a short description of the equations and conditions in Problem 4 and

we refer the reader to [15, 24, 32] for more details and mechanical interpretation. Equation

(5.1) is the constitutive law for viscoelastic materials in which A represents the elasticity

operator and B is the relaxation tensor. Equation (5.2) is the equilibrium equation for the
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quasistatic contact process. On Γ1, we have the clamped boundary condition (5.3) and, on

Γ2, the surface traction boundary condition (5.4). Relation (5.5) is the contact condition

in which ∂jν denotes the Clarke subdifferential of a given function jν , and equation (5.6)

represents a version of Coulomb’s law of dry friction in which Fb is a given positive

function, the friction bound.

Note that the friction bound is assumed to depend on the quantity

S(x, t) =

∫ t

0

‖uτ(x, s)‖ ds,

which represents the total slip (or, alternatively, the accumulated slip) at the point x ∈ Γ3

over the time period [0, t]. Considering such a dependence is reasonable from the physical

point of view, since it incorporates the changes on the contact surface resulting from

sliding. Indeed, when slip arises the asperities of the contact surface are flattening and,

therefore, the friction bound evolves and, usually, it decreases. Moreover, considering such

a dependence makes the frictional contact model more interesting from a mathematical

point of view.

In the study of Problem 4, we use standard notation for Lebesgue and Sobolev spaces.

For all v ∈ H1(Ω; �d) we still denote by v the trace of v on ∂Ω and, recall, we use the

notation vν and vτ for its normal and tangential traces. In addition, we introduce spaces

V and H defined by

V = { v = (vi) ∈ H1(Ω; �d) | v = 0 a.e. on Γ1 },

H = { τ = (τij) ∈ L2(Ω; �d) | τij = τji, 1 � i, j � d }.

The space H is a real Hilbert space with the canonical inner product given by

(σ, τ )H =

∫
Ω

σij(x) τij(x) dx,

and the associated norm ‖ · ‖H. Since m(Γ1) > 0, it is well known that V is a real Hilbert

space with the inner product

(u, v)V = (ε(u), ε(v))H, u, v ∈ V , (5.7)

and the associated norm ‖ · ‖V . Moreover, by the Sobolev trace theorem we have

‖v‖L2(Γ3;�d) � ‖γ‖ ‖v‖V for all v ∈ V . (5.8)

Here and below, ‖γ‖ represents the norm of the trace operator γ : V → L2(Γ3; �d).

Finally, we denote by Q∞ the space of fourth-order tensor fields given by

Q∞ = { E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 � i, j, k, l � d }.

We note that Q∞ is a real Banach space with the norm

‖E‖Q∞ =
∑

0�i,j,k,l�d

‖Eijkl‖L∞(Ω).
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Moreover, a simple calculation shows that

‖Eτ‖H � ‖E‖Q∞ ‖τ‖H for all E ∈ Q∞, τ ∈ H. (5.9)

To derive a variational formulation of Problem 4, we list assumptions on the problem

data. First, we assume that the elasticity operator A and the relaxation tensor B satisfy

the following conditions.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : Ω × �d → �d is such that

(a) there exists LA > 0 such that

‖A(x, ε1) − A(x, ε2)‖ � LA‖ε1 − ε2‖
for all ε1, ε2 ∈ �d, a.e. x ∈ Ω.

(b) there exists mA > 0 such that

(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) � mA ‖ε1 − ε2‖2

for all ε1, ε2 ∈ �d, a.e. x ∈ Ω.

(c) the mapping x �→ A(x, ε) is measurable on Ω,

for all ε ∈ �d.

(d) A(x, 0) = 0 a.e. x ∈ Ω.

(5.10)

B ∈ C(�+; Q∞). (5.11)

The potential function jν and the friction bound Fb satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jν : Γ3 × � → � is such that

(a) jν(·, r) is measurable on Γ3 for all r ∈ � and there

exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(Γ3).

(b) jν(x, ·) is locally Lipschitz on � for a.e. x ∈ Γ3.

(c) |∂jν(x, r)| � c0 + c1 |r| for a.e. x ∈ Γ3,

for all r ∈ � with c0, c1 � 0.

(d) j0
ν (x, r1; r2 − r1) + j0

ν (x, r2; r1 − r2) � β |r1 − r2|2
for a.e. x ∈ Γ3, all r1, r2 ∈ � with β � 0.

(5.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fb : Γ3 × � → �+ is such that

(a) there exists LFb
> 0 such that

|Fb(x, r1) − Fb(x, r2)| � LFb
|r1 − r2|

for all r1, r2 ∈ �, a.e. x ∈ Γ3.

(b) the mapping x �→ Fb(x, r) is measurable on Γ3,

for any r ∈ �.

(c) Fb(x, 0) = 0 a.e. x ∈ Γ3.

(5.13)

Finally, we assume that the densities of body forces and surface tractions have the

regularity

f0 ∈ C(�+;L2(Ω; �d)), f2 ∈ C(�+;L2(Γ2; �d)). (5.14)

We now turn to the variational formulation of Problem 4. Let v ∈ V and t ∈ �+. We

perform integrations by parts, decompose the resulting surface integral on three integrals
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on Γ1, Γ2 and Γ3 and then we use the boundary conditions (5.3), (5.4) and the equation

(5.2) to obtain∫
Ω

σ(t) · (ε(v) − ε(u(t))) dx =

∫
Ω

f0(t) · (v − u(t)) dx +

∫
Γ2

f2(t) · (v − u(t)) dΓ

+

∫
Γ3

σ(t)ν · (v − u(t)) dΓ . (5.15)

Next, we use equations (5.5), (5.6) and the definition of the subdifferential to find that

Fb

( ∫ t

0

‖uτ(s)‖ ds
) (

‖vτ(t)‖ − ‖uτ(t)‖
)

+j0
ν (uν(t); vν − uν(t)) + σ(t)ν · (v − u(t)) � 0 a.e. on Γ3,

which implies that

∫
Γ3

Fb

(∫ t

0

‖uτ(s)‖ ds
) (

‖vτ(t)‖ − ‖uτ(t)‖
)
dΓ

+

∫
Γ3

j0
ν (uν(t); vν − uν(t)) dΓ +

∫
Γ3

σ(t)ν · (v − u(t)) dΓ � 0. (5.16)

Consider the function f : �+ → V ∗ given by

〈f(t), v〉V ∗×V = (f0(t), v)L2(Ω;�d) + (f2(t), γv)L2(Γ2;�d) (5.17)

for all v ∈ V and all t ∈ �+. Then, combining equations (5.15)–(5.17), we find that

(σ(t), ε(v) − ε(u(t)))H +

∫
Γ3

F
(∫ t

0

‖uτ(s)‖ ds
) (

‖vτ(t)‖ − ‖uτ(t)‖
)
dΓ

+

∫
Γ3

j0
ν (uν(t); vν − uν(t)) dΓ � 〈f(t), v − u(t)〉V ∗×V . (5.18)

We now use the constitutive law (5.1) and inequality (5.18) to obtain the following

variational formulation of Problem 4, in terms of displacement.

Problem 5 Find a displacement field u : �+ → V such that

(Aε(u(t)), ε(v) − ε(u(t)))H +
( ∫ t

0

B(t − s)ε(u(s)) ds, ε(v) − ε(u(t))
)

H

+

∫
Γ3

Fb

( ∫ t

0

‖uτ(s)‖ ds
) (

‖vτ‖ − ‖uτ(t)‖
)
dΓ

+

∫
Γ3

j0
ν (uν(t); vν − uν(t)) dΓ � 〈f(t), v − u(t)〉V ∗×V , (5.19)

for all v ∈ V and all t ∈ �+.
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Analysis of Problem 5, including its unique solvability and its numerical approximation

will be presented in the next section.

6 Analysis of the contact problem

We start with the following existence and uniqueness result in which, recall, ‖γ‖ represents

the norm of the trace operator γ : V → L2(Γ3; �d).

Theorem 6 Assume the hypotheses (5.10)–(5.14) and the smallness condition

β ‖γ‖2 < mA. (6.1)

If one of the following hypotheses

mA > c1

√
2 ‖γ‖2, (6.2)

j0
ν (x, r; −r) � d (1 + |r|) for all r ∈ �, a.e. x ∈ Γ3 with d � 0, (6.3)

is satisfied, then Problem 5 has a unique solution u ∈ C(�+;V ).

Proof We apply Theorem 1 with Γ = Γ3 ⊂ ∂Ω and s = d. To this end, we consider the

operators A : V → V ∗, S : C(�+;V ) → C(�+;V ∗) and R : C(�+;V ) → C(�+;L2(Γ3))

defined by

〈Au, v〉V ∗×V = (Aε(u), ε(v))H for all u, v ∈ V , (6.4)

〈(Su)(t), v〉V ∗×V =
( ∫ t

0

B(t − s)ε(u(s)) ds, ε(v)
)

H
(6.5)

for all u ∈ C(�+;V ), v ∈ V , t ∈ �+,

(Ru)(t) = Fb

( ∫ t

0

‖uτ(s)‖ ds
)

for all u ∈ C(�+;V ), t ∈ �+, (6.6)

respectively. Also, we consider the functions ϕ : Γ3 × �d → � and j : Γ3 × �d → � given

by

ϕ(x, ξ) = ‖ξτ‖ for all ξ ∈ �d, a.e. x ∈ Γ3, (6.7)

j(x, ξ) = jν(x, ξν) for all ξ ∈ �d, a.e. x ∈ Γ3. (6.8)

We will check that the hypotheses (2.3)–(2.8) are satisfied. First, from equation (5.10)(b),

we get

〈Av1 − Av2, v1 − v2〉V ∗×V � mA ‖v1 − v2‖2
V (6.9)

for all v1, v2 ∈ V . Hence A is strongly monotone, i.e., it satisfies condition (2.3)(b) with

mA = mA. Moreover, using equation (5.10)(a), we easily establish the Lipschitz continuity

of A, i.e.,

‖Au − Av‖V ∗ � LF‖u − v‖V for all u, v ∈ V .

On the other hand, from the assumption (5.10)(d), it is clear that A0V = 0V ∗ which

means that ‖Au‖V ∗ � LA‖u‖V for all u ∈ V . We conclude from this that A is bounded,
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monotone and hemicontinuous and, therefore, A is pseudomonotone. Finally, equation

(6.9) combined with equality A0V = 0V ∗ shows that

〈Av, v〉V ∗×V � mF‖v‖2
V for all v ∈ V .

We conclude from above that A satisfies condition (2.3)(a) with α = mF.

Let u1, u2 ∈ C(�+, V ), n ∈ � and t ∈ [0, n]. Then, using equations (6.5), (5.9) and (5.11),

we have

〈(Su1)(t) − (Su2)(t), v〉V ∗×V

=
(∫ t

0

B(t − s)
(
ε(u1(s)) − ε(u2(s))

)
ds, ε(v)

)
H

�
∥∥∥∫ t

0

B(t − s)(ε(u1(s)) − ε(u2(s))) ds
∥∥∥

H
‖ε(v)‖H

�

∫ t

0

‖B(t − s)ε(u1(s) − u2(s))‖H ds ‖v‖V

� max
s∈[0,n]

‖B(s)‖Q∞

( ∫ t

0

‖u1(s) − u2(s)‖V ds
)

‖v‖V

for all v ∈ V , which implies that

‖(Su1)(t) − (Su2)(t)‖V ∗ � max
s∈[0,n]

‖B(s)‖Q∞

∫ t

0

‖u1(r) − u2(r)‖V dr. (6.10)

We conclude from this that the operator S : C(�+;V ) → C(�+;V ∗) given by (6.5)

satisfies the hypothesis (2.4). Next, using equation (5.13) and the properties of the integral

we obtain

‖(Ru1)(t) − (Ru2)(t)‖L2(Γ3)

=
∥∥∥Fb

( ∫ t

0

‖u1τ(s)‖ ds
)

− Fb

( ∫ t

0

‖u2τ(s)‖ ds
)∥∥∥

L2(Γ3)

=
(∫

Γ3

∣∣∣Fb

( ∫ t

0

‖u1τ(s)‖ ds
)

− Fb

( ∫ t

0

‖u2τ(s)‖ ds
)∣∣∣2

dΓ
)1/2

� LFb

( ∫
Γ3

∣∣∣ ∫ t

0

(‖u1τ(s)‖ − ‖u2τ(s)‖) ds
∣∣∣2

dΓ
)1/2

= LFb

∥∥∥ ∫ t

0

(‖u1τ(s)‖ − ‖u2τ(s)‖) ds
∥∥∥
L2(Γ3)

� LFb

∫ t

0

‖u1τ(s) − u2τ(s)‖L2(Γ3;�d) ds

� LFb

∫ t

0

‖u1(s) − u2(s)‖L2(Γ3;�d) ds.
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Therefore, using the trace inequality (5.8) we obtain

‖(Ru1)(t) − (Ru2)(t)‖L2(Γ3) � LFb
‖γ‖

∫ t

0

‖u1(s) − u2(s)‖V ds. (6.11)

Inequality (6.11) shows that the operator R : C(�+;V ) → C(�+;L2(Γ3)) satisfies the

hypothesis (2.5)(a). Moreover, using the definition (6.6) and assumption (5.13), it follows

that R satisfies equation (2.5)(b), too.

Subsequently, we observe that the function ϕ : Γ3 × �d → � defined by equation (6.7)

satisfies condition (2.6). In addition, it can be immediately seen that for the function j

given by equation (6.8), the conditions (2.7)(a) and (b) follow from equations (5.12)(a) and

(b), respectively. The properties (2.7)(c) and (d) are now the consequences of the relations

∂j(x, ξ) ⊂ ∂jν(x, ξν) · ν , j0(x, ξ; η) � j0
ν (x, ξν; ην) for all ξ, η ∈ �d, a.e. x ∈ Γ3,

combined with the hypothesis (5.12)(c) and (d). Hence, we infer that equation (2.7) holds

with c0 = c0, c1 = c1 and β = β. Note also that the condition (2.8) is satisfied, due to the

definition (5.17) and the regularity hypotheses (5.14). Finally, the conditions (2.9) follow

from conditions (6.1) and (2.10), equation (2.11) represent consequences of equations (6.2)

and (6.3), respectively.

We conclude from above that we are in a position to use Theorem 1. Therefore, we

deduce the existence of a unique function u ∈ C(�+;V ) such that

〈Au(t), v − u(t)〉V ∗×V + 〈(Su)(t), v − u(t)〉V ∗×V

+

∫
Γ3

(Ru)(t)(ϕ(γv) − ϕ(γu(t))) dΓ +

∫
Γ3

j0(γu(t); γv − γu(t)) dΓ

� 〈f(t), v − u(t)〉V ∗×V , (6.12)

for all v ∈ V and all t ∈ �+. Theorem 6 is now a consequence of inequality (6.12) and

notation (6.4)–(6.8).

We note that Theorem 6 provides the unique solvability of Problem 5 under the

condition (6.1). Even if this condition is restrictive from physical point of view, we observe

that it is automatically satisfied if jν is a convex function. Indeed, in this case assumption

(5.12)(d) holds with β = 0. Moreover, we recall that smallness assumptions of the from

equation (6.1) are widely used in the analysis of static and quasistatic frictional contact

problems, as explained in [32].

A couple of functions (u, σ) which satisfies equations (5.1) and (5.19) is called a weak

solution to Problem 4. We conclude that, under the assumptions of Theorem 6, Problem 4

has a unique weak solution. Moreover, the regularity of the weak solution is u ∈ C(�+;V )

and σ ∈ C(�+; H).

We now use Theorem 2 to study the dependence of the solution with respect to

perturbations of the data. Various cases could be considered but, for simplicity, we

restrict ourselves to proving the continuous dependence of the solution with respect to the

relaxation tensor B and the friction bound Fb. Therefore, we assume in what follows that

equations (5.10)–(5.14), (6.1) and (6.2) hold and we denote by u the solution of Problem 5
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obtained in Theorem 6. For each ρ > 0, let Bρ and Fbρ represent perturbations of B and

Fb respectively, which satisfy conditions (5.11) and (5.13), respectively. And, we denote by

LFbρ
the Lipschitz constant of the function Fbρ , see equation (5.13). With these data, we

consider the following perturbation of Problem 5.

Problem 7 Find a displacement field uρ : �+ → V such that

(Aε(uρ(t)), ε(v) − ε(uρ(t)))H +
(∫ t

0

Bρ(t − s)ε(uρ(s)) ds, ε(v) − ε(uρ(t))
)

H

+

∫
Γ3

Fbρ

( ∫ t

0

‖uρτ(s)‖ ds
) (

‖vτ‖ − ‖uρτ(t)‖
)
dΓ

+

∫
Γ3

j0
ν (uρν(t); vν − uρν(t)) dΓ � 〈f(t), v − u(t)〉V ∗×V (6.13)

for all v ∈ V and all t ∈ �+.

Here and below, uρν and uρτ represent the normal and the tangential components of

the function uρ, respectively. It follows from Theorem 6 that, for each ρ > 0, Problem 7

has a unique solution uρ with the regularity uρ ∈ C(�+;V ). Consider now the following

assumptions:

Bρ → B in C(�+; Q∞) as ρ → 0. (6.14)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

There exists F : (0,∞) → �+, δ � 0 and L0 � 0 such that

(a) |Fbρ (x, r) − Fb(x, r)| � F(ρ)(|r| + δ)

for all r ∈ �, a.e. x ∈ Γ3, for all ρ > 0.

(b) F(ρ) → 0 as ρ → 0.

(c) Lbρ � L0 for all ρ > 0.

(6.15)

We have the following convergence result.

Theorem 8 Assume hypotheses of Theorem 6, and, in addition, that equations (6.1), and

(6.2) or (6.3) hold. Let Bρ and Fbρ satisfy equations (5.11), (5.13), (6.14) and (6.15). Then

the solution uρ of Problem 7 converges to the solution u of Problem 5, i.e.,

uρ → u in C(�+;V ) as ρ → 0. (6.16)

Proof We apply Theorem 2. To this end, besides the operators (6.5) and (6.6), for each

ρ > 0 we consider the operators Sρ : C(�+;V ) → C(�+;V ∗) and Rρ : C(�+;V ) →
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C(�+;L2(Γ3)) defined by

〈(Sρu)(t), v〉V ∗×V =
(∫ t

0

Bρ(t − s)ε(u(s)) ds, ε(v)
)

H
(6.17)

for all u ∈ C(�+;V ), v ∈ V , t ∈ �+,

(Rρu)(t) = Fbρ

( ∫ t

0

‖uτ(s)‖ ds
)

for all u ∈ C(�+;V ), t ∈ �+. (6.18)

Let n ∈ � and ρ > 0. Then, using arguments similar to those used to prove the

inequality (6.10) we deduce that

‖(Sρu)(t) − (Su)(t)‖V ∗ � max
s∈[0,n]

‖Bρ(s) − B(s)‖Q∞

∫ t

0

‖u(r)‖V dr, (6.19)

for all u ∈ C(�+;V ), t ∈ [0, n]. Hence, we deduce that condition (3.3)(a) holds with

Gn(u) =

∫ n

0

‖u(r)‖V dr and gn(ρ) = max
s∈[0,n]

‖Bρ(s) − B(s)‖Q∞ .

In addition, assumption (6.14) combined with equation (2.1) shows that gn(ρ) → 0 as

ρ → 0 which implies that equation (3.3)(b) holds, too.

Next, let u ∈ C(�+;V ), n ∈ � and t ∈ [0, n]. Using equation (6.15) and the properties

of the integral we obtain

‖(Rρu)(t) − (Ru)(t)‖L2(Γ3)

=
∥∥∥Fbρ

( ∫ t

0

‖uτ(s)‖ ds
)

− Fb

(∫ t

0

‖uτ(s)‖ ds
)∥∥∥

L2(Γ3)

=
( ∫

Γ3

∣∣∣Fbρ

(∫ t

0

‖uτ(s)‖ ds
)

− Fb

(∫ t

0

‖uτ(s)‖ ds
)∣∣∣2

dΓ
)1/2

� F(ρ)
∥∥∥∫ t

0

‖uτ(s)‖ ds + δ
∥∥∥
L2(Γ3)

� F(ρ)
(∫ t

0

‖uτ(s)‖L2(Γ3;�d) + δ
√

m(Γ3)
)

� F(ρ)
(

‖γ‖
∫ t

0

‖u(s)‖V + δ
√

m(Γ3)
)
.

Hence, it follows that equation (3.4)(a) holds with

Hn(u) = ‖γ‖
∫ n

0

‖u(s)‖V ds + δ
√

m(Γ3) and hn(ρ) = F(ρ).

Therefore assumption (6.15)(b) shows that hn(ρ) → 0 as ρ → 0 which implies that equation

(3.4)(b) holds, too.
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Finally, we note that the proof of inequalities (6.10) and (6.11) show that the operators

Sρ and Rρ satisfy conditions (2.4) and (2.5) with

sρn = max
s∈[0,n]

‖Bρ(s)‖Q∞ and rρn = LFbρ
‖γ‖,

respectively. We now use assumptions (6.14) and (6.15)(c) to see the sequences (sρn)ρ and

(rρn)ρ are bounded and, therefore, conditions (3.6) and (3.7) hold.

Theorem 8 is now a consequence of Theorem 2, which concludes the proof. �

Turning now to the numerical approximation of the contact Problem 5, as in Section 4,

we again focus on the case where Fb(x, r) = F0(x) is a non-negative L2(Γ3) valued function.

We solve the problem on [0, T ] × Ω for some T > 0 and use the uniform partition for

the time interval [0, T ] as in Section 4. For the spatial discretization, we assume that Ω is

a polygonal domain and introduce a regular family of triangular finite element partitions

{Th}h>0 of Ω that are compatible with the boundary decomposition ∂Ω = Γ1 ∪ Γ2 ∪ Γ3

in the sense that a side of an element lies on the boundary ∂Ω, then the side lies entirely

on Γ1, or Γ2, or Γ3. The parameter h is the mesh size of Th. For each partition Th, we

then use the linear element space Vh to approximate V : a generic function vh in Vh is a

continuous, piecewise linear function that vanishes at the nodes on Γ1.

The numerical scheme is to find a discrete displacement field uhk := {uhk
n }Nn=0 ⊂ Vh such

that

(
Aε

(
uhk
n

)
, ε(vh) − ε

(
uhkn

))
H +

⎛
⎝k

n∑′

j=0

B(tn − tj)ε
(
uhkj

)
, ε(vh) − ε

(
uhk
n

)⎞⎠
H

+

∫
Γ3

F0

(∥∥vhτ
∥∥ −

∥∥uhk
n,τ

∥∥)
dΓ +

∫
Γ3

j0
ν

(
uhkn,ν; v

h
ν − uhkn,ν

)
dΓ

� 〈fn, v
h − uhkn 〉V ∗×V for all vh ∈ Vh, 0 � n � N. (6.20)

Then under the assumptions stated in Theorem 6, where equation (5.14) is replaced by the

condition that Fb(x, r) = F0(x) is a non-negative L2(Γ3) valued function, there is a unique

discrete displacement field satisfying equation (6.20). For error estimation, in equation

(5.12) (b), we assume the local Lipschitz constant for jν(x, ·) is independent of x. Then

with the solution regularity assumption

u ∈ W 2,∞(�+;V ), (6.21)

we have the following slight variant of the error bound (4.17):

max
0�n�N

‖un − uhk
n ‖V � c max

0�n�N
inf

vh∈Vh

(
‖un − vh‖V + ‖un,τ − vhτ‖

1/2

L2(Γ ;�d)

)
+ c k2‖u‖W 2,∞(0,T ;V ). (6.22)

In addition to equation (6.21), we further assume

u ∈ C(�+;H2(Ω; �d)), uτ ∈ C(�+; H̃2(Γ3; �d)). (6.23)
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Here the space H̃2(Γ3; �d) is defined as follows. Let Γ3 be represented as Γ3 = ∪1�i�IΓ3,i

with each Γ3,i a closed subset of an affine hyperplane in �d. Then v ∈ H̃2(Γ3; �d) means

v ∈ H2(Γ3,i), 1 � i � I . Under the solution regularity assumption (6.23), we apply the

standard finite element interpolation theory ([1, 5]) to get

max
0�n�N

inf
vh∈Vh

(
‖un − vh‖V + ‖un,τ − vhτ‖1/2

L2(Γ ;�d)

)
� c h,

where the constant c depends only on the seminorms of u in C([0, T ];H2(Ω; �d)) and

of uτ in C([0, T ];H2(Γ3,i; �d)), 1 � i � I . Then by equation (6.22), we have the optimal

order error estimate

max
0�n�N

‖un − uhk
n ‖V � c

(
h + k2

)
, (6.24)

i.e., the method is of first-order in spatial mesh size and of second-order in the time step.

7 Conclusion

This paper provides results in the study of a new class of variational–hemivariational

inequalities with history-dependent operators, motivated by the development of the math-

ematical theory of contact mechanics. This concerns the continuous dependence of the

solution with respect to the data and analysis of a discrete numerical scheme, in which the

time variable is discretized by finite difference and the spatial variable by finite elements.

Our results can be applied in the study of a large class of nonlinear boundary value prob-

lems. For a concrete example, we present a new model of quasistatic frictional contact

with viscoelastic materials, which leads to a history-dependent variational–hemivariational

inequality for the displacement field. We apply the abstract results in the study of this

contact problem. Several open problems related to the contents of this manuscript remain

to be investigated and resolved in the future. The first one would be to consider evol-

utionary versions of the inequality (2.2) in which the derivatives of the unknown u are

involved. This would open a way to the study of dynamic contact problems. Note also

that the solution of the inequality (2.2) is defined on the positive real line. Therefore, it

would be of interest to study its asymptotic behaviour as t → ∞.
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