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This is the first in a series of papers on minimal-energy splines. The paper is devoted to plane minimal- 
energy splines with angle constraints. We first consider minimal-energy spline segments, then general 
minimal-energy spline curves. We formulate problems for minimal-energy spline segments and curves, 
prove the existence of solutions, justify the Lagrange multiplier rules, and obtain some nice properties (e.g., 
the infinite smoothness). Finally, we report our computational experience on minimalenergy splines. 

1. Introduction 

According to Bernoulli-Euler theory [S], the differential equation of a bent elastica 
describing the resistance of the elastica to bending can be obtained by minimizing the 
strain energy of the elastica-which is proportional to the integral of the square of the 
curvature taken along the elastica. We shall call a curve a minimal-energy spline, 
if the curve considered to be a bent elastica minimizes the strain energy. When the 
deformation of an elastica is small, one may drop the high-order term for the 
curvature, and obtain the celebrated cubic spline. 

We emphasize the role played by the length in defining a minimal-energy spline. We 
quote the following .statement from Birkhoff and de Boor [l] (K denoting the 
curvature): curiously, an absolute minimum to Sx2ds does not exist except in the 
trivial case of a straight line; this is because one can construct large loops joining given 
endpoints with given endslopes, of length 2ar and curvature K = O( 1 / r ) ,  for arbitrar- 
ily large r-hence with JK’ ds less than any preassigned positive number. 

The minimal-energy spline has been considered by others under different names. In 
Lee and Forsythe [7], many interesting relations are obtained far non-linear spline 
curves through a formal calculus of variations. Malcolm [9] implements an algorithm 
for computing non-linear spline functions. Jerome [6 ] ,  and Fisher and Jerome [3] 
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provide the mathematical basis for non-linear spline curves. In particular, in [6 ] ,  the 
existence of a non-linear spline curve is proved, which has never been done before. 
In [3], the Lagrange multiplier relations and C” regularity for a non-linear spline 
curve are proved. In Golomb and Jerome [S], using the Lagrange multiplier relations, 
extremal interpolations are defined and studied in much detail. 

Our minimal-energy splines in this paper are different from those in papers listed 
above in two respects. We have angle constraints at end points, and a prescribed 
length for the spline. These constraints make the constraint set of a minimal-energy 
spline problem more rigid than those considered before. Hence, we use new tools to 
get theoretical results. We focus our attention on constrained minimization problems 
for the study of minimal-energy splines. This will allow us to generalize naturally the 
results in this paper to other kinds of minimal-energy splines with different constraint 
settings, in particular, the boundary conditions considered in the papers listed above 
will be special cases in our forthcoming papers. Another advantage is that we are able 
to obtain efficient algorithms to compute minimal-energy splines numerically. 

Our plan: in this series of papers, we try to supply minimal-energy splines with 
various constraints with a profound mathematical basis, find nice properties of the 
splines, and report our computational experience on splines. In the first paper of the 
series, we study the plane minimal-energy splines with angle constraints thoroughly. 
In the forthcoming papers, we shall study plane minimal-energy splines with other 
kinds of boundary conditions and space minimal-energy spline curves. 

This paper is organized as follows. In section 2, we study plane minimal-energy 
spline segments with angle constraints. In section 3, we study general plane minimal- 
energy splines with angle constraints. In section4, we state some results on the 
computation of minimal-energy splines with angle constraints, and provide the graphs 
of some minimal-energy splines. 

2. Minimal-energy spline segments 

2.1. Formulation of the problem and the existence of a solution 

First, we form the problem for a minimal-energy spline segment. 
Given two points P, = (xl, y , ) ,  P2 = (x2, y 2 )  on the plane, al, a,€ R, and a 

positive number 1, we are interested in finding a curve that is of length 1, connects PI 
and P2,  has direction angles aI at PI, a2 at P2,  such that the curve minimizes the 
energy: J-1 + K ( S ) 2  ds, (2.1) 

where K ( S )  is the curvature of the curve. 
In the following, we use f ’  as the derivative of a function f(s) with respect to 

the arc-length parameter s. Since on an arc-length parametrized curve 

x’(s)2 + y’(s)2 = 1, (2.2) 

xys) = cose(s), (2.3) 

y ’ (s )  = sinO(s). (2.4) 

{(x(s),,Y(s))lo ,< s ,< 1 1 9  

there is a function O(s) such that on the curve: 
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Obviously, 0(s) may be interpreted as the tangent direction angle of the curve at the 
point (x(s), y ( s ) ) .  We obtain (x(s), y ( s ) )  through: 

y( S) = y, + J sin 0( s) ds, 
0 

and the curvature through: 

= eys). (2.7) 
Thus, we give the following definition. 

Definition 2.1. A plane curue ((x*(s), y * ( s ) )  10 < s < I }  is said to be a minimal-energy 
spline segment of length I ,  passing through P, = (x,, y, )  with direction angle a,, and 
P, = (x,, y,) with direction angle a,, if 

x*(s) = X, + cosO*(s)ds, j: 
y * ( s )  = y ,  + j: sinO*(s)ds, 

where O*EH(Pl, P,; a,, a,; I )  is such that: 

E ( 8 * )  = inf{E(0)~8~H(Pl,P2;a,,a,;l)} 
with the energy: 

(2.10) 

(2.1 1)  

and the constraint set: 

H(P,, P2; a,, a,; 1 )  = OEH1(O, l)l0(0) = a,, 0(1) = a,, 

cosO(s)ds = x, - xl, sinB(s)ds = y, - y ,  ] . (2.12) 

i c J: 
Remark. In [5], the representation (2.8,2.9) is called a normal representation. 

the constraint set. 

Lemma 2.2. H(P,, P,; a,, a,; I )  # 0 if either of the following holds: 

Let us state some conditions on the input data to guarantee the non-emptiness of 

1 ,  > (x2 - XI), + ( Y ,  - Y,)2, (2.13) 

1 ,  = (x, - x,), + ( y ,  - y,),, a, = a, and sina, = (y, - yl)/l,cosal = (x2 - x , ) / l .  

ProoL AssumeH(Pl,P,;al,a2;I)# 0.  

inequality : 

(2.14) 

Since the distance between P, and P2 is J [ ( x ,  - x,), + ( y ,  - y,), ] ,  we have the 

(2.15) 1 ,  2 (x, - x,), + ( y ,  - y,),. 
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If 1' = (x, - xl)' + (y,  - y,)', then H(P,, P,; a,, a,; 1) contains exactly one ele- 
ment 8 = a,, thus we must have: 

(2.16) x2 - x1 '2 - Y , ,  cosal = ___ 
1 '  

al = a, and sina, = ____ 
1 

Therefore either (2.13) or (2.14) holds. 
Conversely, if (2.14) holds, then 8 = a l  is an element of H(Pl, P,; a,, a,; 1). Now 

assume (2.13), let us show H(Pl, P,; a l ,  a,; 1) # 0.  We take a curve 
{(X(s), j ( s ) ) ,  0 < s < r)}, with 

j ( s )  = y, + s: sin&(s)ds, 
- 

i ( l )  = x2, 

B is of class c', &o) = a] ,  B(i )  = a,, 

i< 1. 

j ( r )  = y,, 

Let s0€(O,  r). We define a function 8(s) on [0, I] as follows: 

ecs, 0 < s < so, 

&so) + 4a(s - s o ) / ( l  - ij, 
@so) + 411 - 4 4 s  - s0)/(i - i), so + ( I  - r)/2 < G so + I - I ,  
e(s - 1 + r), so + I - i G  G 1. 

so < s < so + ( I  - m 2 ,  
- 1 e(s) = 

Then 8eH1(0, I ) ,  8(0) = e(0) = al, 8(I)  = G(r) = a,. 
Note that 

We have 

cos 8( s) ds 

cos 8( s) ds 

1: cos O( s) ds = cos 8( s) ds + 

+ s  so + ( I  -512  s' s a + i - i  

so+l-r 

1: 

= j: cos&)ds + 

cos 8( s) ds + 

cos@s - 1 + Ods .l+ 1-7 
= 1: cos&)ds + 

r 
= I0 cosB(s)ds 

- 
= X(1) - x1 

= x, - X I .  
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Similarly, 1; sinO(s)ds = y ,  - y , .  

Hence B E H ( P , ,  Pz; a,, a,; I), that is H(P1, P2;  a l ,  a,; I )  # 0 .  0 
From now on, we assume (2.13) or (2.14), thus the constraint set is non-empty. We 

are going to give an existence result of a minimal-energy spline segment. 

Theorem 2.3. Under the assumptions (2.13) or (2.1.4), there is a 8* E H ( P , ,  P,; a l ,  a,; I ) ,  
such that 

(2.17) E ( 6 * )  = inf{E(0)16EH(P1, P,; al, a,; I ) } .  

Pro05 Denote E = inf(E(B)(BEH(P,, Pz; al, a,; I)). Then there is a sequence 
{ e n }  c H(Pl, P2; a t ,  a,; I), such that E ( 6 , )  + E. Thus, { 8;) is a bounded sequence in 
L2(0,  I). Since 

e,(s) = a1 + J: e w s ,  

we have 

l l ~ n l I L Z ( O , ~ )  G C(la1l + l l % l l ~ . z ~ ~ , ~ ~ ) ,  
that is { O n }  is a bounded sequence in L2(0, I). Therefore, { O n )  is a bounded sequence 
in H ’ ( 0 ,  I). So we can find a subsequence {On,}  c { O n }  and 8* ~ H l ( 0 ,  I), such that: 

(2.18) 

(2.19) 

en, -+ O *  weakly in H (0, I), 
On, -+ O *  in C( [0, I]). 

We shall prove 

~ * E H ( P , , P , ; ~ ~ , ~ ~ ; I )  

E ( 6 * )  = E. 

First we prove (2.20). 
Since 

and 

= ‘1, ‘#Ik(’) = ‘2, 

cosO,,(s)ds = X, - XI, sinB,,(s)ds = y, - yl, 1: 
by (2.19), we have 

8*(0) = lim 8,,(0) = a t ,  
k+ m 

6*(I)  = lim 8,,,(I) = a,, 

fd cos6*(s)ds = lim cosO,,(s)ds = x2 - xl, 

k+ m 

k + m  f 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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j;sinB*(s)ds = lim sinO,,(s)ds = y ,  - y, .  
k-a, c 

Thus, B*EH(P, ,  P2;  a t ,  a,; 1). 
Now we prove (2.21). We write: 

r i  
+O*'(s)[O*'(s)- e;,(s)]ds+O as k +  CO. Jo 

By Schwarz's inequality, 

Thus, let k + 03 in (2.26), we obtain 

E ( 8 * )  G lim E(8, , )  = E. 
k-+m 

On the other hand, since 8* E H ( P , ,  Pz;  a,, a,; I ) ,  we must have 

q e * )  3 E .  

Therefore, E ( B * )  = E. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

In general, a solution 8* of (2.10) is not unique, hence a minimal-energy spline 
segment is not unique. For example, let P,  = (0, 0), P, = ( 1 ,  0), a, = a, = 0, 1 > 1. If 
8*(s) is a solution of (2.10), then the function - O*(s) is a solution of(2.10) as well and 
8* # - 8*. What kind of assumption on the input data will make a solution of (2.10) 
unique is an open question. 

2.2. Lagrange multipliers 

ation problem (2.10). 
In this section, we justify the Lagrange multiplier rule for the constrained minimiz- 

Definition 2.4. If X ,  Y are Banach spaces, a mapping ti : D( G )  s X + Y is called a 
submersion at uo E D( G )  i f :  

(i) G is continuously Frechet-differentiable in a neighbourhood of uo. 
(ii) G' (uo) :  X + Y is surjectioe, i.e. R(G'(u , ) )  = Y. 

(iii) The null space N(G'(u , ) )  splits X, i.e. there exists a continuous projection 
operator of X on N(G' (uo) ) .  

We shall use the following theorem of Ljusternik ([lo]): 

Theorem 2.5. Let X, Y be two Banach spaces, U c X an open set, F :  U -, R, G :  U -, Y. 
Consider the constrained-minimum problem: 

Find U ~ E M  = ( u ~ U l G ( u )  = 01, such thatF(u,) = inf(F(u)(ueM).  (2.31) 
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Assume: 

(i) F is Frechet-differentiable at uo. 
(ii) G is a submersion at uo. 

Then: 
(1) Necessary condition: i fuo is  a solution o f t h e  problem(3.1), then there exists a 

A E Y* such that: 

F'(u0)k - A(G'(u0)k) = 0, V k E X .  

(2)  SufJicient condition: uo is a local strict minimum point of (3.1), if 
(a)  F and G are n-times continuously Frechet-diflerentiable in a neighbourhood of 

(b)  there exist c > 0 and A E  Y* such that: 
uo, with an even integer n 2 2; 

F(')(u,)k' - A(G(' ) (uO)kr)  = 0, r = 1 ,  . . . , n - 1, 

F(")(u,)h" - A(G(")(uo)h")  2 cllhll", 

for all k E X ,  h E X  such that G'(uo)h = 0. 

To apply Theorem 2.5 to prove the existence of Lagrange multipliers for the 
problem (2.10), we make the change of variable: 

o(s )  = 6(s) - L ( s )  
where 

Then, o ~ f i ( P , ,  P,; 0,O; I )  iff & H ( P , ,  P,; a,, a,; l ) ,  where: 

H(Pl, P,; 0,O; I )  = COS[W(S) + L(s)]ds = X, - x,, 

1; sin[o(s) + L(s)] ds = y ,  - y ,  

(2.32) 

(2.33) 

and, the minimization problem (2.10) is equivalent to the following. 
Find o* E H ( P , ,  P,; 0,O; l ) ,  such that 

F ( w * )  = inf{F(o)(oEH(P1,P2;0,0;1)} (2.34) 

f l  
where 

F ( w )  = E ( o  + L )  = ~ [ w ' ( s )  + L ' ( s ) ] ~ ~ s .  
J O  

Now, we take U = X = HA(0, I ) ,  with the inner product 

(44 $1 = 4'$'ds; sd 
Y = R2, with the usual Euclidean inner product, 

(2.35) 

Then the constraint set H ( P , ,  P , ; O , O ; l )  = ( o ~ X l G ( o )  = 0 ) .  
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Lemma 2.6. F is Frechet-diflerentiable at any w E X. 

Proof: From the definition of a Frechet-differentiation, we have: 

( F ’ ( w ) ,  $) = [o ’ (s )  + L’(s)]$’(s)d~, V$EX. 1: 
Thus, F is Frechet-differentiable at o. 

Lemma 2.7. G is a submersion at any w E H ( P , ,  P2; 0,O; I ) .  

Proof. 

(9 

(ii) 
Thus, G is continuously Frechet-differentiable on X. 
Since w ~ f i ( P , ,  P,; 0,O; I ) ,  o + L is not a constant. By the continuity of o, 
there exist some 6 > 0, s,, s2 ~(0, I), such that I, = (s, - 6 ,  s1 + 6 )  c (0, i), 
I ,  = (s2 - 6,  s2 + 6 )  c (0, I ) ,  I ,  n I ,  = 0,  and: 

sin[w(t,) + L(t,)] sin[o(t,) + L(t3)1 
cosCo(tz) + Ut2)I 

Define: 

#o, Vtlyt2EI1, Vt,,t,EI2* 
cosCo(t4) + L(t4)I 

Then ql, q 2 € X .  

By the mean-value theorem, there exist t , ,  c,EI,, t , ,  t , ~ l , ,  such that: 

j:qlsin[w(s) + L(s)]ds = q,(s)sin[w(s) + L(s)]ds 

fd qlcos[w(s) + L(s)]ds = q,(s)cos[o(s) + L(s)]ds 

6, 
6, 
6, 

= Jsin[w(t,) + L(t,)], 

= JcosCo(t2) + L(t2)], 

j: q2sin[o(s) + L(s)]ds = q,(s)sin[w(s) + L(s)]ds 

rt r 
= Jsin[w(t,) + L(t3)], 

J ~ ~ C O S [ O ( S )  + L(s)]ds = J q2(s)cos[o(s) + L(s)]ds 
0 I2 

= Jcos[w(t,) + L(t4)], 

where J = JI,ql(s)ds = J,2q2(s)ds = 6 .  
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Since 

- Jsin[w(t,) + L(tl)] 
Jcos[w(t,) + L(t,)] 

- sin[o(t,) + L(tl)] sinCw(t,) + L(t3)] 
- - J 2 /  

we have 

- Jsin[o(t,) + L(t,)] 
Jcos[w(t4) + L(t4)] 

l fO CosCdtt) + Uf2)I cosCm(t4) + Ut4)I  

span { ( G ‘ ( 4 ,  ‘11 ) 7  ( G’(w),  92) 1 = y- 
Therefore, R ( G ‘ ( w ) )  = Y. 

tinuous projection operator of X on N ( G ’ ( w ) ) .  
(iii) Since N ( G ‘ ( o ) )  = { V E X (  ( G ’ ( o ) ,  q )  = 0} is closed in X, there exists a con- 

Hence, G is a submersion at any W E  H ( P l ,  Pz; 0,O; I). 
Thus, for the problem (2.34), the assumptions of Theorem 2.5 hold. 

Theorem 2.8. l f o *  is a solution ofthe problem (2.34), then there exist A1, At E R, such 
that 

f l  
{(o*‘ + L’)$’ - [E.,sin(o* + L )  + I,cos(o* + L)]$}ds = 0, Jo 

V$ E ffm 1)  

or, in the sense of distribution, 

w*” + I,sin(w* + L )  + A,cos(w* + L )  = 0. 

Conuersely, if w * E fi( PI, P2 ; 0,O; 1) satisfies (2.36), and 

J(Z + < ( n / 0 2  
then w* is a local strict minimum point of the problem (2.34). 

Lemma 2.9. For any $ E HA(0, l), 

To prove the theorem, we need the following: 

Proox We expand JI in a sine series: 

’ nn 
J I ( ~ )  - f ansin T s ,  

n = l  

then 

By Parseval’s equality, we have: 

(2.36) 

(2.37) 

(2.38) 
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Thus 

0 

Note that Y* = Iwz. From the necessary condition part of Theorem 2.5, we have the 
Proof of Theorem 2.8. We apply Theorem 2.5 to the problem (2.34). 

existence of a 

A = ( - ;:jE Y*, 

such that 

(w* '  + L')$'ds - ( - A,, A,) [ - sin(w* + L)] $ds, (sd 
[:COS(W* + L ) $ d s  = 0, V$EX, >' 

that is (2.36) holds. 
Now assume o* E H ~ ( O ,  I) satisfies (2.36) with Al, A, verifying (2.37). We apply the 

sufficient condition part (for n = 2) of Theorem 2.5. F, G are twice continuously 
Frechet-differentiable at any w E X, with 

Then, for any $EX, 
F"(o*)$~ - A ( G " ( w * ) $ ~ )  

=l:$ '2ds-(-%l,A,)  (J: [ - ~ o s ( w * + L ) ] $ ~ d s ,  

>' j: [ - sin(o* + L)]$'ds 

= 1: $"ds + 1: [ - A1cos(w* + L) + A,sin(w* + L)]t,h2ds 

By Theorem 2.5, w* is a local strict minimum point of the problem (2.36). 0 

Back to the original problem (2. lo), recalling the variable change (2.32) we made, 
from Theorem 2.8, we obtain: 
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Theorem 2.10. I f  O *  is a solution of the problem (2.10), then there exist A l ,  A2e Iw, such 
that: 

(2.39) jl L O * ' $ ' -  (A,sinO* + A,cosO*)$]ds = 0, V $ E H A ( O , ~ )  

or, in the sense of distribution, 

O*"  + A,sinO* + A,cosO* = 0. 

Conversely, i f O *  €H(P1,  P2;  a l ,  a,; 1 )  satisjes (2.39), and 

then O *  is a local strict minimum point of the problem (2.10). 

2.3. Some basic properties of a minimal-energy spline segment 

In this section we study the smoothness, geometric invariance and curvature 
relationship of minimal-energy spline segments. 

23.1. The smoothness. The smoothness of a minimal-energy spline segment is deter- 
mined by the smoothness of a minimizer O*. We show that O*EC"([O, l]), so a 
minimal-energy spline segment is infinitely smooth. 

Lemma 2.11. Let OE H ' (0 ,  1 )  be a weak solution of the problem: 

We need the following result, which is a special case of Theorem 8.13 in [4]. 

- O"(s) = f(s) in (0, I ) ,  O(0) = a l ,  O ( l )  = a2. (2.40) 
I f f E H ' ( 0 ,  I ) ,  k 3 0, then 

O E H k + 2 ( 0 ,  11, and I I O I I H k + z ( o . l )  ( I l ~ l l ~ ~ ( 0 . 1 )  + Ilf I l H k ( o , I )  + la11 + 1a21). 

Let us apply the lemma to a minimizer O *  of problem (2.10). 
By Theorem 2.10, O * E H ' ( O ,  1 )  is a weak solution of (2.40) with 

f(s) = A,sinO*(s) + A,cosO*(s). 

Now O * E H ' ( O , I )  implies f E H ' ( O , l ) ,  thus by Lemma2.11, O * E H ~ ( O , I ) .  By 
Sobolev's imbedding theorem, O *  E C2(  [0, L]). Hence, O *  satisfies the equation 
pointwisely : 

(2.41) 

Since the right-hand side is a C2([0, 13)  function, we obtain from(2.41) that 
O *  E C 4 (  [0,1]). Once more using (2.41), we have O *  E C6([0, I ] ) .  We continue this 
procedure, and arrive at  the conclusion: O*EC"([O, I ] ) .  

23.2. Translational and rotational invariance. From the first set of input data 
{(xl, y l ) ,  (xz, y 2 ) ;  a l ,  a,; 1 }  and the second set of input data {(&, j 1 ) , ( i 2 ,  j 2 ) ;  
8 , ,8 , ;  1 }, we formulate the following two problems. 

- e*''(s) = A,sinO*(s) + I,cos~*(s). 

(a) Find 06 H, such that 

J ( O )  = inf,,,eHJ($) = 
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1; sin+(s)ds = y2 - y ,  . {icos$(s)ds = x2 - xl, I 
Then define a curve {(x(s), y(s ) ) lO  < s < I} through: 

x(s) = x1 + cosB(s)ds, y(s) = y ,  + 1; sinO(s)ds. 1: 
(b) Find g ~ f i ,  such that 

I 

J(6) = inf;e;J($) = I. &$’(s)2ds 

with 

$EH1(0,1))$(0) = & , $ ( I )  = d , ,  

sin$(s)ds = j 2  - j 1  . I 1; cos$(s)ds = i2 - gl, 

(2.42) 

(2.43) 

Then define a curve { (i(  s), j (  s)) 10 < s < I }  through: 

i ( s )  = il + [:cos&s)ds, j ( s )  = j 1  + [: sin8(s)ds. 

Now assume the following relations between the two sets of input data: 

( ;;) = ( cos sin 4) ( ::> + ( ::> , 
- sin 4 cos 4 

cos 4 sin 4 (;I) = ( - sin 4 cos 4) (::> + (::>. 
G1 = a1 + 4, 
G2 = a2 + 4, 

Obviously, if 8 E H is a solution of (a), then 8 = 8 + 4 E is a solution of (b), and 
vice versa. Thus we may take 6(s) = O(s) + 4,O < s < 1. Therefore: 

i ( s )  = i1 + 1; cos [8(s) + 41 ds, 

j ( s )  = j 1  + J’: sin [ e ( s )  + 41 d ~ ,  

that is 
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23.3. Curvature relationships. By (2.41), a minimizer 8* of problem (2.10) satisfies 

8*“ + A l  sin 8* + 1, cos 8* = 0. (2.44) 

Note that K = 8*‘, x’ = cos 8*, and y’ = sin O*. Integrating (2.44), we obtain the 

(2.45) 

linear curvature relation: 

K = - J l y  - A 2 X  - c 
where C is a constant. 

Differentiating (2.44), we get 

8*”’ + ~ , ( C O S  8*)8*’ - &(sin 8*)8*’ = 0. (2.46) 

Multiplying (2.44) by 8*‘ and integrating, we have 

id*‘’ - 1, cos 8* + 1, sin 8* = K (2.47) 

where K is a constant. 
Eliminating A 1  and A 2  from (2.46) and (2.47), we obtain 

(2.48) 

(2.49) 

This relation was obtained by Birkhoff, Burchard and Thomas [2] under a certain 
assumption. 

3. Minimal-energy splines 

3.1. Formulation of the problem and the existence of a solution 

Given N + 1 points Pi = (x i ,  y i ) ,  i = 0, 1,. . . , N ,  ao, a N E  R, and N positive numbers 
li, i = 1 , .  . . , N, we try to find a curve connecting Po, PI , .  . . , PN, being of length li 
between P i -  and Pi (i = 1 , .  . . , N), having direction angles a. at Po and aN at PN, 
such that the energy function: 1; +ic(s)’ds 

is minimized, where K ( S )  is the curvature of the curve, 
N 

i =  1 
1 = 1 l i .  

Let us denote: 

(3.1) 

Definition 3.1. A plane curue { (x*(s ) ,  y* (s ) )JO < s < I }  is said to  be a minimal-energy 
spline of length I ,  passing through P with length li between P i -  and Pi(i = 1,. . . , N ) ,  
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having direction angles a, at Po and a, at P,, if: 

x*(s) = X, + cos B*(s)ds, J: 
y*(s)  = yo + 1; sin 8*(s)ds, 

where 8* EH(P; a,, a,; 1) is such that: 

(3.3) 

E ( 8 * )  = inf {E(O)lOdf(P; a,, a,; I))  (3.4) 
with the energy function: 

E ( 8 )  = +@(s)*ds, J: (3.5) 

and the constraint set: 

cosO(s)ds = xi - xi-  1, 

Li-  I 

8EH1(0, /)lO(O) = a,, O(1)  = a,, 

sinO(s)ds = yi - y i - l ,  i = 1, .  . . , N 

As for the question when the constraint set is non-empty, we have 

Lemma 3.2. Assume: 

I' > (xi - xi-1)2 + ( y i  - Y , - ~ ) * ,  i = 1,. . . , N ,  

then H(P; a,, a,; I) # 0 .  
(3.7) 

Proof: We take N - 1 real numbers a l , .  . ., a,-l. By Lemma 2.2, under the 
assumption (3.7), for each i, there is a function 8,(s) on [L,-  L , ] ,  such that: 

ei E H ' (L ,  - 1,  (3.8) 
Oi(Liv1) = a,- 8,(Li)  = ai, (3.9) 

Li 
sin Oi(s)ds = yi - y i - l .  (3.10) 1:- I 

5" 

~ 0 ~ 8 i ( s ) d s  = xi - ~ i - 1 ,  JL,-, 

St:- I 

Now we define a function on [0,1] 

O(s) = O,(s), if ~ E [ L , - ~ ,  L,] ,  i = 1,. . . , N. 
By conditions (3.8, 3.9), we then have 8 E H (0, I ) .  By (3. lo), we obtain: 

sinO(s)ds = y, - y i - l .  
Li-  1 

0 

With a few obvious modifications of the proof of Theorem 2.3, we have the existence 

cosO(s)ds = xi - ~ i - 1 ,  

Hence, 8 E H(P; a,, a,; I). 

of a minimal-energy spline: 

Theorem 3.3. Under the assumption (3.7), there is a 8* EH(P; ao, a,; I), such that 

E(O*) = inf{E(O))OEH(P; a,, a,; I)}. (3.11) 
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In the remaining part of this section, we assume (3.7) holds. 

3.2. Lagrange multipliers 

constrained minimization problem (3.4). Again, we make the change of variable: 
Now let us use Theorem 2.5 to justify the Lagrange multiplier rule for the 

w(s)  = e(s) - ~ ( s )  (3.12) 
where 

S 
(3.13) 

Then, 8EH(P; ao, a,; 1) iff WEH(P; 0,O; I), where: 

H ( P  0,o; I) = w E HA(0, I )  COS[W(S) + L(s)]ds = xi - I lLl r Li - 1 1 sin[w(s) + L(s)]  ds = yi - yi - l ,  i = 1 , .  . . , N . (3.14) 

And, the constrained minimization problem (3.4) is equivalent to the following. 
Find w* E I?( P; 0,O; I), such that 

~ ( w * )  = inf { ~ ( w ) l  w E H(P; 0, 0; l ) }  (3.15) 

where 
ri 

F(w) = E(CO + L) = ~ [ O ’ ( S )  + L‘(s)]’ds. 
J O  

(3.16) 

We set 
U = X = HA(0, I ) ,  with the inner product (4, +) = 

Y = R Z N ,  with the usual scalar product in R 2 N ;  

G (0) = (G 1 . . - G,  (0)’ )T9 

, i =  1 ,..., N .  
Jz-, COS[O(S) + L(s)]  ds - (xi - x i -  1 )  

Jz-,sin[o(s) + L(s)]ds - ( y i  - y i - l )  
Gi(w) = 

Then the constraint set H (  P; 0,O; 1) = { w E XI G ( w )  = O}. Let us verify the assump- 

F is Frechet-differentiable at any O E X .  Indeed, we have 

( F ’ ( o ) ,  +) = 1; [w ’ (s )  + L’(s)]+’(s)ds, V + E X .  

tions of Theorem 2.5 for the problem (3.15). 

G is a submersion at any w ~ f i ( P ;  0,O; I), for: 

(i) G is continuously Frechet-differentiable on X, with 

(G‘(4), $) = ( ( G i ( 4 ) 9  +Y, * * * 9 (GL(4), $>T)T, 
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(ii) Recall the assumption (3.7). If o E I?(P; 0,O; I), then o + L is not a constant on 
[Li - l ,  L,] ,  for each i. By the continuity of o, for each i, there is a 
ai > 0, s ~ , ~ ,  = ( s ~ , ~  - hi, si,l + Si) c ( L i - l ,  Li) ,  Li), such that 

0,  and: c ~ . c \  I T  * \ .  

Define two functions in X: 

1 

Then q l ,  qr EX. 

theorem, there exist ti, 1, ti. E Zi, 1, t i ,  3 ,  t i ,4  E Ii, 2 ,  such that: 
Note that I,,,, ~ ~ , ~ ( s ) d s  = J,,,* ~ ~ , ~ ( s ) d s  = ai > 0. By the mean-value 

det((Gf(o), q i , 1 ) ,  ( G : ( o ) ,  ~ i . 2 ) )  

Noting that: ( G ; ,  ‘ t i , ,  ) = (GJ, q i , 2 )  = 0 for j # i, we then have: 

span { ( G ’ ( 4 ,  Vi, 1 >, (G‘(w), ~ i . 2  ), i = 1, . . . , N }  = Y. 
Hence, R ( G ’ ( o ) )  = Y. 

uous projection operator of X on N ( G ’ ( o ) ) .  
(iii) Since N ( G ’ ( o ) )  = ( q ~ X l ( G ’ ( o ) ,  q )  = 0) is closed in X, there exists a contin- 

Therefore, we can apply Theorem 2.5 to the problem (3.15) and obtain the exist- 
ence of 

such that 



COS[(W* + L)J1ITds 
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(3.17) 

that is 

[(a*' + L')$'ds - [A,, I sin (o* + L)JI 
i =  I 

+ A,, 2 cos (w* + L)$] ds = 0, VJ/ E X .  1 (3.18) 

Back to the original problem (3.4), we then have: 

Theorem 3.4. If 8* is a solution of the problem (3.4), then there exist 2N real numbers 
A i S l ,  A i ,2 ,  i = 1,. . . , N, such that 

(Aisl  sin 8* + Ai+,cos8*)JIds = 0, V$EH~(O, 1). 

(3.19) 

From (3.19), we see that on each subinterval (Li-  1 ,  Li),  8* satisfies the equation: 

8*" + A,, sin 8* + Ai, cos 8* = 0, (3.20) 

in the sense of distribution. 

3.3. Smoothness of a minimal-energy spline 

We study the smoothness of a minimal-energy spline. Since 8*EH1(0, I ) ,  8* is 
continuous on [0, I]. Since 8* solves (3.20) on (Li- 1 ,  Li),  by the same argument as that 
in section 2, we have 8* €Cm([Li- L,] ) ,  i = 1,. . . , N. In (3.19), let us take J1 as 
follows: 

{ b", - L,l/h, if Is - Lil < h, 
$i.h(S) = otherwise, 

and let h -, 0 + , we then have: 

8*'(Li+)  = O*'(L,-), i = 1,. . . , N - 1, 

that is 8* is continuously differentiable. In conclusion, we have 
N 

i =  1 
O*~c'([O,l])n n C ~ ( [ L , - , , L ~ ] ) .  (3.21) 

A trivial consequence of the smoothness (3.21) is that 8* is a classical solution of the 
equation (3.20) on (Li- 1 ,  Li) ,  i = 1 , .  . . , N .  

4. Computation of minimal-energy splines 

One may derive various algorithms to compute minimal-energy splines with angle 
constraints on the basis of Definition 2.1 for spline segments and Definition 3.1 for 
spline curves. We state a simple algorithm to solve the constrained minimization 
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problem (2.10). 

1 6 i < N; and the discrete constraint set: 
Let N be a positive integer. Denote h = I/N, si = ih, 0 < i < N ;  Zi = [si-  ,, s i ] ,  

0, WMo) = a,, = a,, 
Oh is a polynomial of degree one, on l i ,  1 < i < N ,  Hh(Pi,Pz;ai,az;O= 

N h  
i = , 2  C - [sin Oh(si- ,) + sin 8 , ( s i ) ]  = y ,  - y ,  (4.1 ) 

Then we use the following problem to approximate the problem (2.10): 

find 8: E ffh(P1, P,; a l ,  a,; I) such that 

W,*) = inf(E(e,)~8hEHh(Pl,Pz;al,a,; I ) } .  (4.2) 
Under the assumption (2.13), we have the following statements concerning the 

(a) There exists h, > 0, such that for all he(0, h,] ,  H, , (P, ,  P,; a,, a,; I) # @, and 

(b) Each sequence {8$} contains a subsequence which converges to 8* in H 1  (0, I )  

A similar algorithm and the same convergence results can be stated for the 
constrained minimization problem (3.4). The proof of these results will be published 
elsewhere. 

Numerical results for two families of minimal-energy spline segments and two 
families of minimal-energy splines follow. 

We compute a family of fixed-length closed minimal-energy spline segments with 
the constraint sets H ( P , ,  P,; a,, a,; I ) ,  where P ,  = P,  = (0, 0), a, = 0, a, E [n, 2111, 
and I = K. The 1 1  closed minimal-energy spline segments of Table 1 are shown in 
Figure 1.  The solid curve corresponds to the case a, = 1 . 5 ~  When a, = 2n, the closed 
minimal-energy spline is a circle. 

approximate problem (4.2). 

(4.2) has a solution 0:. 

and in Co([O, I]), for a solution 8* of the problem (2.10). 

Table 1. Closed minimal-energy spline segments 

p ,  p2 a1 a2 Length Energy 

(0,O) (0,O) 0.0 1.on 
(0,O) (0.0) 0.0 l.ln 
(0,O) (0,O) 0.0 1.2n 
(0,O) (0,O) 0.0 1.3~ 
(40) (0,O) 0.0 1.4n 
(40) (0,O) 0.0 1.5n 
(0,O) (0,O) 0.0 1.6n 
(0,O) (0,O) 0.0 1.7~ 
(40) (0,O) 0.0 1.8n 
(40) (0,O) 0.0 1.9n 
(0,O) (0,O) 0.0 2.0n 

n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
A 

5.8340 
5.2961 
4.8933 
4.6254 
4.49 1 1 
4.488 1 
4.6129 
4.861 1 
5.2269 
5.7035 
6.2832 
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PI = (O,O), P2 = (O,O), a,  = 0, a,E[n, 2n], length = R 

Fig. 1. Closed minimal-energy spline segments 

Table 2. Open minimal-energy spline segments 

Pl p2 a1 a2 Length Energy 

0.7% 
0.80n 
0.85n 
0.9on 
0.95n 
1.00n 
1.39~ 
1.5ox 
2.00n 
2.50n 
3.00n 

3.8612 
2.7186 
2.1572 
1.8504 
1.6743 
1.5708 
1.4354 
1.4347 
1.3899 
1.2994 
1.1996 

Table 3. Closed minimal-energy spline 

10, -1) (1,O) (0, 1) (- 1,O) (0, -1) 0.0 
:o, -1) (1,O) (0,l) (- 1,O) (0, -1) 0.0 
:o,-l) (1,O) (0,l) (-1,O) (0,-1) 0.0 
:o, -1) (1,O) (0,l) ( -  1,O) (0, -1) 0.0 
:o, -1) (1,O) (0,l) (- 1,O) (0, -1) 0.0 
:o, -1) (1,O) (0,l) ( -  1,O) (0, -1) 0.0 

aq 

2n 1.4994 
2n 1.5351 
2n 1.5708 
21[ 1.7491 
2n 1.8921 
2n 2.2134 

I, = I ,  = 1, = l4 Energy 

4.4507 
3.4301 
3.1416 
4.7859 
6.7961 
10.521 

We also compute a family of open minimal-energy spline segments with the 
constraint sets H(P,, P,; a,, a,; I ) ,  where P,  = ( -  1,0), P2 = (1,0), a1 = 4 2 ,  a, = -n/2 
and I E  [0.75~,3.0n]. The 11 open minimal-energy spline segments of Table 2 are 
shown in Figure 2. The solid curve corresponds to the case I = 1 . 3 9 ~ .  When I = Z, the 
open minimal-energy spline is a semi-circle. 
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Pt=(- l ,O),Pz=(l ,O),a,  = 0 . 5 n , a z =  -0.5n,length~[O.fSn,3~] 

Fig. 2. Open minimal-energy spline segments 

Po = (0, -11, P, = ( l ,O) ,  P2 = (0, I), P3 = (-1,O). P* = (0, -1) 
a, = 0, aq = 2x, lengthe[l.9ln, 2 .82~1 

Fig. 3. Closed minimal-energy spline 

Now, we compute a family of five-point closed minimal-energy splines with the 
constraint sets H ( P , ,  P I ,  Pz, P3,  P4; ao, a,; I ) ,  where Po = P, = (0, - l), P, = (1,0), 
Pz = (0, l), P3 = (- l ,O),  a. = 0, a, = 2n and I = 4s, ~ ~ ( 1 . 4 9 9 4 ,  1.5351, 0 5 ,  1.7493, 
1.8921, 2.2134}. The six closed minimal-energy splines of Table 3 are shown in 
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- _ . - -  

Po = (- 1, O), P,  = (0, 1). P2 = (1,O) 
a, = 0.5x, a2 = -O.Sn, length~[1.91x, 3.59~1 

Fig. 4. Open minimal-energy spline 

Table 4. Open minimal-energy spline 

Figure 3. The solid curve corresponds to the case 1 = 5.9976. When 1 = 2n, the closed 
minimal-energy spline is a circle. 

Finally, we compute a family of three-point open minimal-energy splines with the 
constraint sets H ( P o ,  PI, P,; al, a,; l ) ,  where Po = (- 1,0), PI = (0, l), P, = (1,0), 
a. = 4 2 ,  a, = - 4 2 ,  and 1 = 2s, ~ ~ ( 1 . 4 9 9 4 ,  O h ,  1.7493, 1.9278,2.1063,2.8203}. The 
six open minimal-energy splines of Table 4 are shown in Figure 4. The solid curve 
corresponds to the case I = 2.9988. When 1 = n, the open minimal-energy spline is a 
semi-circle. 
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