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A Revisit of Elliptic Variational-Hemivariational
Inequalities

Weimin Han

Department of Mathematics & Program in Applied Mathematical and Computational Sciences
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ABSTRACT
In this paper, we provide an alternative approach to establish
the solution existence and uniqueness for elliptic variational-
hemivariational inequalities. The new approach is based on
elementary results from functional analysis, and thus removes
the need of the notion of pseudomonotonicity and the
dependence on surjectivity results for pseudomonotone oper-
ators. This makes the theory of elliptic variational-hemivaria-
tional inequalities more accessible to applied mathematicians
and engineers. In addition, equivalent minimization principles
are further explored for particular elliptic variational-hemivaria-
tional inequalities. Representative examples from contact
mechanics are discussed to illustrate application of the theor-
etical results.
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1. Introduction

Hemivariational inequalities are useful in modeling and studying problems
in physical sciences and engineering that involve non-smooth, non-mono-
tone and multi-valued relations among different physical quantities.
Research on hemivariational inequalities started in early 1980s (cf. [1]), and
has attracted much attention in the research community, especially in the
recent years. The mathematical theory of hemivariational inequalities can
be found in some research monographs, e.g. [2–7], and in many journal
articles. In applications, numerical methods have to be used to solve hemi-
variational inequalities. An early comprehensive reference on the numerical
solution of hemivariational inequalities is [8] where convergence of finite
element solutions and solution algorithms are discussed. More recently,
optimal order error bounds have been derived for finite element solutions
of various kinds of hemivariational inequalities, including elliptic ones, evo-
lutionary ones, history-dependent ones, cf. [9–14] and a summarizing
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account in [15]. Other numerical methods can be also applied to solve
hemivariational inequalities, e.g., the virtual element method is applied in
[16] for the numerical solution of hemivariational inequalities in contact
mechanics, where an optimal order error bound for the virtual element sol-
utions is derived.
In [17], a well-posedness result is proved for a general elliptic vari-

ational-hemivariational inequality, cf. also [7, Section 5.4]. Let V be a
reflexive Banach space with the norm jj � jjV : Denote by V� the dual space
of V, and by h�, �i the duality pairing between V� and V. Let K be a non-
empty closed convex subset of V, A : V ! V�, ~U : K � K ! R, W : X !
R, and f 2 V�: The problem is of the form

u 2 K, hAu, v�ui þ ~Uðu, vÞ�~Uðu, uÞ þW0ðu; v�uÞ � hf , v�ui 8 v 2 K:

(1.1)

For the unique solvability analysis of this problem, it is assumed that (a)
the operator A : V ! V� is pseudomonotone and strongly monotone with
a constant mA > 0; (b) ~U : K � K ! R is convex and l.s.c. with respect to
its second argument, and for some constant aU>0,

~Uðu1, v2Þ�~Uðu1, v1Þ þ ~Uðu2, v1Þ�~Uðu2, v2Þ
� a~U jju1�u2jj jjv1�v2jj 8 u1, u2, v1, v2 2 K;

(c) W : V ! R is locally Lipschitz and there are constants aW, c0, c1 � 0
such that

W0ðv1; v2�v1Þ þW0ðv2; v1�v2Þ � aWjjv1�v2jj2V 8 v1, v2 2 V

and

jjgjjV� � c0 þ c1jjvjjV 8 v 2 V, 8 g 2 @WðvÞ: (1.2)

Here, W0 and @W denote generalized directional derivative and generalized
subdifferential in the sense of Clarke (cf. Section 2 for a brief review).
Then if the smallness condition a~U þ aW<mA holds, for any f 2 V�, the
problem (1.1) has a unique solution. The proof of the statement relies on
properties of pseudomonotone operators, on Banach fixed-point theorem,
and more importantly, on abstract surjectivity results of pseudomono-
tone operators.
In this paper, we revisit the problem (1.1) from a new approach, and

prove the existence of a unique solution of the problem through arguments
applying only elementary results from functional analysis. Moreover,
equivalent minimization principles are provided for particular elliptic vari-
ational-hemivariational inequalities where the functional ~U has only one
independent variable. We achieve these goals at the expense of slightly
stronger assumptions on the problem data from the theoretical point of
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view; nevertheless, the slightly stronger assumptions do not represent a ser-
ious restriction of the unique solvability results for applications. On the
operator A, instead of the pseudomonotonicity, we will assume it is
Lipschitz continuous. On the functional ~U, with application problems in
mind, we consider nonsmooth convex functionals of the form

~Uðu, vÞ ¼ Uðu, vÞ þ IKðvÞ,
where U : V � V ! R is convex and l.s.c. with respect to its second argu-
ment, and IK is the indicator function of the convex set K. Then (1.1)
becomes

u 2 K, hAu, v�ui þ Uðu, vÞ�Uðu, uÞ þW0ðu; v�uÞ � hf , v�ui 8 v 2 K:

(1.3)

Note that a real-valued l.s.c. convex function on the Banach space V is con-
tinuous ([18, Corollary 2.5, p. 13]). As is known from convex analysis, local
Lipschitz continuity of a convex functional is guaranteed from its bounded-
ness on a non-empty open set; for a precise statement, cf. Lemma 2.2. So
we will assume the convex function Uðu, �Þ to be bounded above on a non-
empty open set of V, for any u 2 V:
We note that the new feature stated in the previous paragraph makes the

theory more accessible to applied mathematicians and engineers. Moreover,
the availability of equivalent minimization principles for particular elliptic
variational-hemivariational inequalities justifies the use of optimization
tools in solving discrete systems of the inequalities.
The organization of the rest of the paper is as follows. In Section 2, basic

notions and results are recalled on convex subdifferentials, the generalized
directional derivative and subdifferential (or generalized gradient) in the
sense of Clarke, and on their properties. The starting point of the new
approach for the solution existence and uniqueness is an equivalent mini-
mization principle for a particular elliptic variational-hemivariational
inequality, which is shown in [19] and is presented in an improved form in
this paper. Thus, in Section 3, we use the result on the minimization prin-
ciple to establish the solution existence and uniqueness of the particular
elliptic variational-hemivariational inequality. Then we proceed to prove
the solution existence and uniqueness of general elliptic variational-hemi-
variational inequalities. In Section 4, the results in Section 3 are rephrased
for elliptic variational-hemivariational inequalities in forms more conveni-
ent to use in applications or when their numerical approximation is con-
cerned. Finally in Section 5, we discuss some representative examples from
contact mechanics to illustrate applications of the solution existence and
uniqueness results established in earlier sections.
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2. Preliminaries

In this section, we recall some basic notions and results from convex ana-
lysis and nonsmooth analysis.
Let V be a normed space. Let U : V ! R [ fþ1g be a proper, convex

and l.s.c. (lower semicontinuous) functional. Then the (convex) subdiffer-
ential of U at u 2 V is

@UðuÞ :¼ n 2 V�jUðvÞ � UðuÞ � hn, v� ui 8 v 2 V
� �

:

If @UðuÞ is non-empty, then any element n 2 @UðuÞ is called a subgradient
of U at u. A general discussion of convex functionals, the convex subdiffer-
ential and its properties can be found in [18].
A proper, l.s.c. convex functional is bounded below by an affine func-

tional (cf. [20, Lemma 11.3.5] or [21, Prop. 5.2.25]).

Lemma 2.1. Let V be a normed space and let U : V ! R [ fþ1g be
proper, convex and l.s.c. Then there exist a continuous linear functional ‘U 2
V� and a constant c 2 R such that

UðvÞ � ‘UðvÞ þ c 8 v 2 V:

Consequently, there exist two constants �c0 and �c1, not necessarily non-nega-
tive, such that

UðvÞ � �c0 þ �c1jjvjjV 8 v 2 V: (2.1)

Regarding the continuity of convex functions, we record a result that can
be derived from [18, Corollary 2.4, p. 12].

Lemma 2.2. Let V be a normed space and let U : V ! R be convex. Then U
is locally Lipschitz continuous on V if and only if U is bounded above on a
non-empty open set in V.

We will need the notions of the generalized directional derivative and
subdifferential (or generalized gradient) in the sense of Clarke ([22, 23]) to
define hemivariational inequalities or variational-hemivariational inequal-
ities. Let W : V ! R be locally Lipschitz continuous. Then the generalized
(Clarke) directional derivative of W at u 2 V in the direction v 2 V is
defined by

W0ðu; vÞ :¼ lim sup
w!u, k#0

Wðwþ kvÞ�WðwÞ
k

,

and the subdifferential (or generalized gradient) of W at u 2 V is
defined by

@WðuÞ :¼ g 2 V�jW0ðu; vÞ � hg, vi 8 v 2 V
� �

:

374 W. HAN



Basic properties of the generalized directional derivative and the general-
ized gradient are recorded in the next two propositions (cf. [23, 24]).

Proposition 2.3. Assume that W : V ! R is a locally Lipschitz function.
Then the following statements are valid.

(i) W0ðu; k vÞ ¼ k W0ðu; vÞ 8 k � 0, u, v 2 V:
(ii) W0ðu; v1 þ v2Þ � W0ðu; v1Þ þW0ðu; v2Þ 8 v1, v2 2 V:
(iii) W0ðu; vÞ ¼ max hg, vijg 2 @WðuÞ� � 8 u, v 2 V:
(iv) If un ! u and vn ! v in V, then lim supW0ðun; vnÞ � W0ðu; vÞ:
(v) For every u 2 V, @WðuÞ is nonempty, convex, and weakly� compact

in V�:
(vi) If un ! u in V, gn 2 @WðunÞ, and gn ! g weakly� in V�,

then g 2 @WðuÞ:
(vii) If W : V ! R is convex, then the Clark subdifferential @WðuÞ at any

u 2 V coincides with the convex subdifferential @WðuÞ:
Because of Proposition 2.3 (vii), we use the same symbol @ for the sub-

differential both in the sense of Clarke and in convex analysis.

Proposition 2.4. Let W,W1,W2 : V ! R be locally Lipschitz functions. Then:
(i) (scalar multiples)

@ðk WÞðuÞ ¼ k @WðuÞ 8 k 2 R, u 2 V: (2.2)

(ii) (sum rules)

@ðW1 þW2ÞðuÞ � @W1ðuÞ þ @W2ðuÞ 8 u 2 V, (2.3)

equivalently,

ðW1 þW2Þ0ðu; vÞ � W0
1ðu; vÞ þW0

2ðu; vÞ 8 u, v 2 V: (2.4)

We also recall the following Lebourg mean value theorem (cf. [24,
Proposition 1.3.14]).

Theorem 2.5. Let u, v 2 V, and suppose W is locally Lipschitz on an open
set of V containing the closed line-segment ð1� kÞ uþ k vj0 � k � 1

� �
.

Then there exists f 2 @Wðð1�kÞ uþ k vÞ for some k 2 ð0, 1Þ such that

WðvÞ�WðuÞ ¼ hf, v�ui:

A function U : V ! R is said to be strongly convex on V with a constant
a>0 if

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 375



Uðk uþ ð1�kÞ vÞ � k UðuÞ þ ð1�kÞ UðvÞ�a k ð1�kÞ jju�vjj2V
8 u, v 2 V, 8 k 2 0, 1½ 	:

Obviously, strong convexity of a functional implies its strict convexity. The
next result is a corollary of [25, Proposition 3.1], which provides a suffi-
cient and necessary condition on strong convexity of a locally Lipschitz
continuous function through the strong monotonicity of its subdifferential
in the sense of Clarke.

Lemma 2.6. Let V be a real Banach space. A locally Lipschitz continuous
function U is strongly convex on V with a constant a>0 if and only if @U is
strongly monotone on V with a constant 2a, i.e.,

hn�g, u�vi � 2a jju�vjj2V 8 u, v 2 V, n 2 @UðuÞ, g 2 @UðvÞ:

From now on, we will assume V to be a real Hilbert space. As a corollary
of Lemmas 2.1 and 2.6, we have the next result; its proof is given in [19].

Proposition 2.7. Let V be a real Hilbert space, and let U : V ! R be locally
Lipschitz continuous and strongly convex with a constant a>0. Then there
exist two constants �c0 and �c1 such that

UðvÞ � a jjvjj2V þ �c0 þ �c1jjvjjV 8 v 2 V: (2.5)

Consequently, Uð�Þ is coercive on V.

In this paper, studies of solution existence and uniqueness for elliptic
variational-hemivariational inequalities start with minimization principles
for particular ones; the minimization principles are of independent interest.
For this purpose, we need the notion of a potential operator which is
recalled here: an operator A : V ! V� is called a potential operator if there
exists a Gâteaux differentiable functional FA : V ! R such that A ¼ F0A:
The functional FA is called a potential of A. If A is hemicontinuous, then A
is a potential operator if and only ifð1

0
hAðt uÞ, ui � hAðt vÞ, vi½ 	dt ¼

ð1
0
hAðvþ t ðu�vÞÞ, u�vi dt 8 u, v 2 V:

If A is Gâteaux differentiable and the mapping ðt, sÞ7!hA0ðv1 þ t v2 þ
s v3Þ v4, v5i is continuous on ½0, 1	 � ½0, 1	 for all vi 2 V, 1 � i � 5, then A
is potential if and only if

hA0ðuÞ v,wi ¼ hA0ðuÞ w, vi 8 u, v,w 2 V: (2.6)

If A is a potential operator, its potential can be computed from the
formula
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FAðvÞ ¼
ð1
0
hAðt vÞ, vi dt; (2.7)

any other potential of A differs from FA by a constant.
For the special case of a linear operator, A 2 LðV,V�Þ is a potential

operator if and only if it is symmetric:

hAv1, v2i ¼ hAv2, v1i 8 v1, v2 2 V: (2.8)

Moreover, a potential functional can be chosen to be

FAðvÞ ¼ 1
2
hAv, vi, v 2 V:

For a detailed discussion on potential operators, the reader is referred to
[26, Section 41.3].
Throughout the paper, we will use c to denote a generic positive constant

whose value may change from one place to another but it is independent
of other quantities of concern.

3. Results on elliptic variational-hemivariational inequalities

We start with a unique solvability result for a particular elliptic variational-
hemivariational inequality that allows an equivalent minimization principle.
Then we extend the result to more general elliptic variational-hemivaria-
tional inequalities by fixed-point arguments.
An operator A : V ! V� is said to be strongly monotone with a constant

mA>0 if

hAv1�Av2, v1�v2i � mAjjv1�v2jj2V 8 v1, v2 2 V: (3.1)

3.1. Result 1

Consider a particular elliptic variational-hemivariational inequality:

Problem 3.1. Find u 2 K such that

hAu, v�ui þ UðvÞ�UðuÞ þW0ðu; v�uÞ � hf , v�ui 8 v 2 K: (3.2)

We introduce conditions on the problem data.
H(K) V is a real Hilbert space, K is a non-empty, closed and convex set

in V.
H(A) A : V ! V� is Lipschitz continuous and strongly monotone with a

constant mA>0:
HðUÞ1 U : V ! R is convex and bounded above on a non-empty open

set in V.
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HðWÞ W : V ! R is locally Lipschitz continuous, and for a constant
aW � 0,

W0ðv1; v2�v1Þ þW0ðv2; v1�v2Þ � aWjjv1�v2jj2V 8 v1, v2 2 V: (3.3)

H(f) f 2 V�:
The subscript 1 in HðUÞ1 reminds the reader that this is a condition for

the case where U has one independent variable. Applying Lemma 2.2, we
know that HðUÞ1 implies that U : V ! R is convex and locally Lipschitz
continuous. We note that (3.3) is equivalent to the following inequality,
known as the relaxed monotonicity condition (cf. [7, p. 124]):

hg1�g2, v1�v2i � �aWjjv1�v2jj2V 8 v1, v2 2 V, g1 2 @Wðv1Þ, g2 2 @Wðv2Þ:
(3.4)

Note that in HðWÞ, we do not assume a linear growth condition on the
generalized gradient @Wð�Þ of the form

jj@WðvÞjjV� � c0 þ c1jjvjjV 8 v 2 V (3.5)

for some non-negative constants c0, c1, which is assumed in other referen-
ces on Problem 3.1 (cf. [17] or [7, Section 5.4]).
In the case where A : V ! V� is a potential operator, we can further

consider a corresponding minimization problem. We will always denote by
FA a potential of the potential operator A.

Problem 3.2. Find u 2 K such that

u ¼ argmin
v2K

EðvÞ (3.6)

where

EðvÞ ¼ FAðvÞ þ UðvÞ þWðvÞ�hf , vi, v 2 V: (3.7)

Theorem 3.3. Assume H(K), H(A), HðUÞ1,HðWÞ, H(f), and aW<mA.
Moreover, assume A : V ! V� is a potential operator with the potential
FAð�Þ. Then Problem 3.2 has a unique solution u 2 K:

This result is proved by applying a standard result in convex optimiza-
tion, cf. e.g. [20, Theorem 3.3.12]. It can be shown that Eð�Þ is locally
Lipschitz and strongly convex on V; in particular, the strong convexity of
Eð�Þ implies the coercivity of Eð�Þ on V (cf. Proposition 2.7). A detailed
argument can be found in [19], and is omitted here. Note that in [19], the
unnecessary condition (3.5) was not explicitly ruled out. In the literature, a
condition such as aW<mA is called a smallness condition.
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Regarding Problem 3.1, under the additional assumption that A is a
potential operator, we have the following solution existence and unique-
ness result.

Theorem 3.4. Assume H(K), H(A), HðUÞ1,HðWÞ, H(f), aW<mA, and A :

V ! V� is a potential operator with the potential FAð�Þ. Then Problem 3.1
has a unique solution, which is also the unique solution of Problem 3.2.

Proof. Under the stated assumptions, by Theorem 3.3, Problem 3.2 has a
unique solution u 2 K: This solution is characterized by the relation

0 2 @ EðuÞ þ IKðuÞð Þ � @EðuÞ þ @IKðuÞ:
For the generalized subdifferential of Eð�Þ, we repeatedly apply the summa-
tion rule (2.3), and note that for a locally Lipschitz continuous convex
functional, the Clark subdifferential and the convex subdifferential coincide.
As a result, we have

@EðvÞ � Avþ @UðvÞ þ @WðvÞ�f 8 v 2 V: (3.8)

Hence, the solution u 2 K of Problem 3.2 satisfies (3.2), i.e., it is also a
solution of Problem 3.1.
Uniqueness of the solution of Problem 3.1 follows by a standard argu-

ment, with the use of the smallness condition aW<mA: Since a similar
argument will be used in the proof of Theorem 3.5 below, we omit the
detail here. w

3.2. Result 2

We continue to consider Problem 3.1, but now without assuming A : V !
V� to be potential.

Theorem 3.5. Assume H(K), H(A), HðUÞ1,HðWÞ, H(f), and aW<mA. Then
Problem 3.1 has a unique solution.

Proof. We apply a fixed-point argument to prove the existence. For any
h>0, Problem 3.1 is equivalent to

u 2 K, ðu, v�uÞ þ h UðvÞ � UðuÞ þW0ðu; v� uÞ
� �

� ðu, v�uÞ�h hAu, v�ui þ h hf , v�ui 8 v 2 K:
(3.9)

For an arbitrary w 2 K, consider the auxiliary problem

u 2 K, ðu, v�uÞ þ h UðvÞ � UðuÞ þW0ðu; v� uÞ
� �

� ðw, v�uÞ�h hAw, v�ui þ h hf , v�ui 8 v 2 K:
(3.10)

Since the inner product induces a potential operator, by Theorem 3.4, for
h<1=aW, the problem (3.10) has a unique solution u 2 K: This allows us
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to define a mapping Ph : K ! K by the formula PhðwÞ ¼ u: Let us show
that Ph is a contraction for h>0 sufficiently small. For this purpose, let
w1,w2 2 K be arbitrary and denote u1 ¼ Phðw1Þ and u2 ¼ Phðw2Þ: Take
v ¼ u2 in the inequality (3.10) defining u1 to get

ðu1, u2�u1Þ þ h Uðu2Þ � Uðu1Þ þW0ðu1; u2 � u1Þ
� �

� ðw1, u2�u1Þ�h hAw1, u2�u1i þ h hf , u2�u1i,
and take v ¼ u1 in the inequality (3.10) defining u2 to get

ðu2, u1�u2Þ þ h Uðu1Þ � Uðu2Þ þW0ðu2; u1 � u2Þ
� �

� ðw2, u1�u2Þ�h hAw2, u1�u2i þ h hf , u1�u2i:
Add the two inequalities,

jju1�u2jj2V � ðw1�w2, u1�u2Þ�h hAw1�Aw2, u1�u2i
þ h W0ðu1; u2 � u1Þ þW0ðu2; u1 � u2Þ

� �
:

Thus, applying the condition (3.3),

1� h aWð Þ ju1�u2jj2V � ðw1�w2, u1�u2Þ�h hAw1�Aw2, u1�u2i:
�� (3.11)

Let J : V� ! V be the Riesz mapping. Then

hAw1�Aw2, u1�u2i ¼ ðJ ðAw1�Aw2Þ, u1�u2Þ,
and we can rewrite (3.11) as

1� h aWð Þ ju1�u2jj2V � ðw1 � w2Þ � h J ðAw1 � Aw2Þ, u1 � u2ð Þ:��
Hence,

1� h aWð Þ ju1�u2jjV � jjðw1�w2Þ�h J ðAw1�Aw2ÞjjV :
�� (3.12)

Now

jjðw1�w2Þ�h J ðAw1�Aw2Þjj2V ¼ jjw1�w2jj2V�2 h J ðAw1 � Aw2Þ,w1 � w2ð Þ
þ h2jjJ ðAw1�Aw2Þjj2V :

Denote by LA the Lipschitz constant of the operator A. Then

jjJ ðAw1�Aw2Þjj2V ¼ jjAw1�Aw2jj2V� � L2Ajjw1�w2jj2V :
Since A is assumed to be strongly monotone with the constant mA, by (3.1),

J ðAw1 � Aw2Þ,w1 � w2ð Þ ¼ hAw1�Aw2,w1�w2i � mAjjw1�w2jj2V :
So

jjðw1�w2Þ�h J ðAw1�Aw2Þjj2V � 1� 2 h mA þ h2L2A
� �jjw1�w2jj2V :
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Therefore, we derive from (3.12) that

jju1�u2jj2V � 1�2 h mA þ h2L2A
1� h aWð Þ2 jjw1�w2jj2V : (3.13)

Note that

1�2 h mA þ h2L2A
1� h aWð Þ2 <1 (3.14)

if and only if

L2A � a2W
� �

h<2 mA � aWð Þ: (3.15)

If LA � aW, then (3.15) is valid for any 0<h<1=aW: If LA>aW, then (3.15)
is valid for 0<h<minf1=aW, 2 ðmA�aWÞ=ðL2A�a2WÞg: So in any case, for
h>0 sufficiently small, (3.14) holds and the operator Ph : K ! K is a con-
traction. By the Banach fixed-point theorem, Ph has a unique fixed-point
u 2 K : Phu ¼ u: It is easy to see that u satisfies (3.9), or equivalently (3.2).
This completes the existence part of the proof.
For uniqueness, assume there are two solutions u1, u2 2 K to Problem

3.1. Take v ¼ u2 in (3.2) for the solution u1, take v ¼ u1 in (3.2) for the
solution u2, and add the two resulting inequalities to obtain

hAu1�Au2, u1�u2i � W0ðu1; u2�u1Þ þW0ðu2; u1�u2Þ:
Then, applying the conditions (3.1) and (3.3),

mAjju1�u2jj2V � aWjju1�u2jj2V :
Recall the smallness condition aW<mA: We conclude from the above
inequality that u1 ¼ u2, i.e., a solution of Problem 3.1 must be unique. w

3.3. Result 3

In this subsection, we consider a more general elliptic variational-hemivar-
iational inequality.

Problem 3.6. Find u 2 K such that

hAu, v�ui þ Uðu, vÞ�Uðu, uÞ þW0ðu; v�uÞ � hf , v�ui 8 v 2 K: (3.16)

We modify HðUÞ1 to HðUÞ2; the subscript 2 in HðUÞ2 reminds the
reader that this is a condition for the case where U has two independ-
ent variables.
HðUÞ2 U : V � V ! R; for any u 2 V,Uðu, �Þ : V ! R is convex and

bounded above on a non-empty open set; and there exists a constant aU �
0 such that
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Uðu1, v2Þ�Uðu1, v1Þ þ Uðu2, v1Þ�Uðu2, v2Þ
� aUjju1�u2jj jjv1�v2jj 8 u1, u2, v1, v2 2 V: (3.17)

Theorem 3.7. Assume H(K), H(A), HðUÞ2,HðWÞ, H(f), and aU þ aW<mA.
Then Problem 3.6 has a unique solution.

Proof. Once more, we use a fixed-point argument to prove the existence.
By Theorem 3.5, under the stated assumptions, for any w 2 K, the follow-
ing auxiliary problem has a unique solution: find u 2 K such that

hAu, v�ui þ Uðw, vÞ�Uðw, uÞ þW0ðu; v�uÞ � hf , v�ui 8 v 2 K: (3.18)

This defines a mapping P : K ! K by the formula P(w) ¼ u. Let us
show that this mapping is contractive. For this purpose, let w1,w2 2 K be
arbitrary, and denote u1 ¼ Pðw1Þ, u2 ¼ Pðw2Þ: Then,

hAu1, u2�u1i þ Uðw1, u2Þ�Uðw1, u1Þ þW0ðu1; u2�u1Þ � hf , u2�u1i,
hAu2, u1�u2i þ Uðw2, u1Þ�Uðw2, u2Þ þW0ðu2; u1�u2Þ � hf , u1�u2i:

Add the two inequalities,

hAu1�Au2, u1�u2i � Uðw1, u2Þ�Uðw1, u1Þ þ Uðw2, u1Þ�Uðw2, u2Þ
þW0ðu1; u2�u1Þ þW0ðu2; u1�u2Þ: (3.19)

Apply the conditions (3.1), (3.3) and (3.17) in (3.19),

mAjju1�u2jj2V � aUjjw1�w2jjV jju1�u2jjV þ aWjju1�u2jj2V ,
or

jju1�u2jjV � aU
mA � aW

jjw1�w2jjV :

Note that the condition aU þ aW<mA implies aU=ðmA�aWÞ<1: Thus, the
mapping P : K ! K is contractive. By the Banach fixed-point theorem,
there is a unique fixed-point u 2 K of the mapping P: u ¼ PðuÞ: It is easy
to see that u is a solution of Problem 3.6.
For uniqueness, let u1, u2 2 K be two solutions of Problem 3.6. Then

similar to (3.19), we have

hAu1�Au2, u1�u2i � Uðu1, u2Þ�Uðu1, u1Þ þ Uðu2, u1Þ�Uðu2, u2Þ
þW0ðu1; u2�u1Þ þW0ðu2; u1�u2Þ:

Then

mAjju1�u2jj2V � aU þ aWð Þ ju1�u2jj2V :
��

Since aU þ aW<mA, we deduce that u1�u2 ¼ 0, i.e., a solution to Problem
3.6 is unique. w
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4. Some variants

In this section, we provide some variants of the theoretical results shown
in the previous section.
On occasions, especially in numerical analysis of the inequalities, it is

more convenient to view the functions U and W as defined over spaces VU

and VW that are different from V. These spaces are connected through lin-
ear operators cU : V ! VU and cW : V ! VW: Thus, instead of Problem
3.1, we consider its following variant (cf. [10]).

Problem 4.1. Find u 2 K such that

hAu, v�ui þ UðcUvÞ�UðcUuÞ þW0ðcWu; cWv�cWuÞ � hf , v�ui 8 v 2 K:

(4.1)

In case A is a potential operator with the potential FAð�Þ, it is possible to
introduce a corresponding minimization problem.

Problem 4.2. Find u 2 K such that

u ¼ argmin
v2K

EðvÞ (4.2)

where

EðvÞ ¼ FAðvÞ þ UðcUvÞ þWðcWvÞ�hf , vi: (4.3)

We keep the assumptions H(K), H(A), and modify HðUÞ1,HðWÞ as fol-
lows. We use a prime for conditions on U and W when they are viewed as
functionals over spaces VU and VW:
HðUÞ01 VU is a real Banach space; cU 2 LðV;VUÞ; U : VU ! R is convex

and bounded above on a non-empty open set.
HðWÞ0 VW is a real Banach space; cW 2 LðV;VWÞ; W : VW ! R is locally

Lipschitz continuous, and for a non-negative constant aW,

W0ðv1; v2�v1Þ þW0ðv2; v1�v2Þ � aWjjv1�v2jj2VW
8 v1, v2 2 VW: (4.4)

We denote by jjcUjj and jjcWjj the operator norms of cU 2 LðV;VUÞ and
cW 2 LðV;VWÞ: By applying Theorem 3.5 and Theorem 3.4, we have the
next result regarding Problem 4.1.

Theorem 4.3. Assume H(K), H(A), HðUÞ01,HðWÞ0, H(f) and aWjjcWjj2<mA.
Then Problem 4.1 has a unique solution. If in addition, A is a potential
operator, then Problem 4.2 has a unique solution, which is also the unique
solution of Problem 4.1.

Then we consider a variant of the more general elliptic variational-hemi-
variational inequality, Problem 3.6 ([10]).
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Problem 4.4. Find u 2 K such that

hAu, v�ui þ UðcUu, cUvÞ�UðcUu, cUuÞ þW0ðcWu; cWv�cWuÞ
� hf , v�ui 8 v 2 K: (4.5)

We need to modify the condition on the functional U:
HðUÞ02 VU is a real Banach space; cU 2 LðV;VUÞ; U : VU � VU ! R; for

any u 2 VU,Uðu, �Þ : VU ! R is convex and bounded above on a non-
empty open set; and there exists a constant aU � 0 such that

Uðu1, v2Þ�Uðu1, v1Þ þ Uðu2, v1Þ�Uðu2, v2Þ
� aUjju1�u2jjVU

jjv1�v2jjVU
8 u1, u2, v1, v2 2 VU: (4.6)

We can apply Theorem 3.7 to get a unique solvability result for
Problem 4.4.

Theorem 4.5. Assume H(K), H(A), HðUÞ02,HðWÞ0, H(f), and
aUjjcUjj2 þ aWjjcWjj2<mA. Then Problem 4.4 has a unique solution.

Now we consider variational-hemivariational inequalities where the
superpotential W is defined as the integral of a function w. In most applica-
tions, a hemivariational inequality describes a physical problem on a spatial
domain in a finite-dimensional Euclidean space R

d: Denote by D the
domain or its sub-domain, or its boundary or part of the boundary. Let ID
stand for the integration over D. Instead of the space VW, we will need a
space Vw and a linear operator cw from V to Vw: Assume elements from
the space Vw are R

m-valued functions, for some positive integer m. In
applications in contact mechanics, the operator cw is either the normal
component trace operator or the tangential component trace operator. In
the former case, m¼ 1, whereas in the latter case, m¼ d. Then related to
Problem 3.1, we introduce the next problem.

Problem 4.6. Find u 2 K such that

hAu, v�ui þ UðvÞ�UðuÞ þ IDðw0ðcwu; cwv�cwuÞÞ � hf , v�ui 8 v 2 K:

(4.7)

When A is a potential operator with the potential FAð�Þ, we can intro-
duce a corresponding minimization problem.

Problem 4.7. Find u 2 K such that

u ¼ argmin
v2K

EðvÞ (4.8)

where
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EðvÞ ¼ FAðvÞ þ UðvÞ þ IDðwðcwvÞÞ�hf , vi: (4.9)

We allow the function w to depend on the spatial variable x 2 D, and
then wð�Þ is a short-hand notation for wðx, �Þ: In the study of Problem 4.6
and Problem 4.7, we will replace the assumption HðWÞ0 by HðwÞ0:
HðwÞ0 cw 2 LðV; LpðD;RmÞÞ for a constant p � 2; w : D� R

m ! R;
wð�, vÞ is measurable on D for all v 2 R

m; wðx, �Þ is locally Lipschitz
continuous on R

m for a.e. x 2 D; and for some non-negative constants c
and aw,

j@wð�, vÞj � c 1þ jvjp�1
R

m

	 

8 v 2 R

m, a:e: on D, (4.10)

w0ðv1; v2�v1Þ þ w0ðv2; v1�v2Þ � awjv1�v2j2Rm 8 v1, v2 2 R
m, a:e: on D:

(4.11)

Note that in HðwÞ0, we do not assume a linear growth condition on the
Clark subdifferential @wð�, vÞ :

j@wðvÞj
R

m � c 1þ jvj
R

m

� � 8 v 2 R
m, a:e: in D

as would be necessary in the existing literature. Instead, we assume a less
restrictive condition (4.10) (recall that p � 2). Applying Theorem 2.5, it
can be shown from (4.10) that

jwð�, vÞj � c 1þ jvjp
R

m

	 

8 v 2 R

m, a:e: on D: (4.12)

Denote by cD>0 the smallest constant in the inequality

IDðjcwvj2RmÞ � c2Djjvjj2V 8 v 2 V: (4.13)

With the above preparation, we derive from Theorem 3.5 the next result.

Theorem 4.8. Assume H(K), H(A), HðUÞ1,HðwÞ0, H(f), and awc2D<mA.
Then Problem 4.6 has a unique solution. If in addition, A : V ! V� is a
potential operator with the potential FAð�Þ, then Problem 4.7 has a unique
solution which is also the unique solution of Problem 4.6.

Proof. Introduce an auxiliary functional

WðvÞ ¼ IDðwðcwvÞÞ, v 2 V:

By an argument similar to the one used in proving Theorem 3.47 in [3], it
can be proved that under the assumption HðwÞ0, the functional Wð�Þ is
well defined and is locally Lipschitz continuous over V, and

W0ðu; vÞ � IDðw0ðcwu; cwvÞÞ 8 u, v 2 V: (4.14)
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For v1, v2 2 V, by using (4.11) and (4.13),

W0ðv1;v2�v1ÞþW0ðv2;v1�v2Þ� IDðw0ðcwv1;cwv2�cwv1Þþw0ðcwv2;cwv1�cwv2ÞÞ
� IDðawjcwðv1�v2Þj2RmÞ
� awc

2
Djjv1�v2jj2V ,

i.e., (3.3) is satisfied with aW¼ awc2D: Hence, we can apply Theorem 3.5 to
conclude that the auxiliary problem

u2K, hAu,v�uiþUðvÞ�UðuÞþW0ðu;v�uÞ� hf ,v�ui 8v2K

has a unique solution u2K: Thanks to (4.14), this solution u is a solution
of Problem 4.6. Uniqueness of the solution of Problem 4.6 is proved similar
to that in the proof of Theorem 3.5. Moreover, in case A is a potential
operator, it is meaningful to consider Problem 4.7 which also has u2K as
its unique solution. w

Consider a problem more general than Problem 4.6.

Problem 4.9. Find u 2 K such that

hAu,v�uiþUðu,vÞ�Uðu,uÞþ IDðw0ðcwu;cwv�cwuÞÞ� hf ,v�ui 8 v2K:

(4.15)

Based on Theorem 3.7 and the argument leading to Theorem 4.8, we
have the next result.

Theorem 4.10. Assume H(K), H(A), HðUÞ2,HðwÞ0, H(f), and
aU þ awc2D<mA. Then Problem 4.9 has a unique solution.

Finally, we consider the particular case of hemivariational inequalities,
i.e., the case where U 
 0: Corresponding to Problem 3.1 and Problem 3.2,
we have

Problem 4.11. Find u 2 K such that

hAu, v�ui þW0ðu; v�uÞ � hf , v�ui 8 v 2 K: (4.16)

Problem 4.12. Find u 2 K such that

u ¼ argmin
v2K

EðvÞ (4.17)

where

EðvÞ ¼ FAðvÞ þWðvÞ�hf , vi: (4.18)

As a corollary of Theorem 3.5 and Theorem 3.4, we have the next result
concerning Problem 4.11 and Problem 4.12.
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Theorem 4.13. Assume H(K), H(A), HðWÞ, H(f), and aW<mA. Then
Problem 4.11 has a unique solution. If in addition, A : V ! V� is a poten-
tial operator with the potential FAð�Þ, then Problem 4.12 has a unique solu-
tion which is also the unique solution of Problem 4.11.

As another particular case, consider Problem 4.6 and Problem 4.7
with U¼ 0.

Problem 4.14. Find u 2 K such that

hAu, v�ui þ IDðw0ðcwu; cwv�cwuÞÞ � hf , v�ui 8 v 2 K: (4.19)

Problem 4.15. Find u 2 K such that

u ¼ argmin
v2K

EðvÞ (4.20)

where

EðvÞ ¼ FAðvÞ þ IDðwðcwvÞÞ�hf , vi: (4.21)

The following result is a special case of Theorem 4.8.

Theorem 4.16. Assume H(K), H(A), HðwÞ0, H(f), and awc2D<mA. Then
Problem 4.14 has a unique solution. If in addition, A : V ! V� is a poten-
tial operator with the potential FAð�Þ, then Problem 4.15 has a unique solu-
tion which is also the unique solution of Problem 4.14.

Note that we can get similar results for further special cases where
K¼V. Since it is trivial to deduce results for such further special cases, we
omit the detail.

5. Applications in contact mechanics

We illustrate applications of the theoretical results developed in previous
sections on some static contact problems between an elastic material and a
foundation. Let X represent the reference configuration of the elastic body,
assumed to be open, bounded and connected in R

d (d � 3) with a
Lipschitz continuous boundary C ¼ @X: Then the unit outward normal
vector m is defined a.e. on C.
The displacement is Rd-valued, whereas the stress and strain tensors take

values in the space S
d of second order symmetric tensors on R

d: Over the
spaces R

d and S
d, we use “�” and “j�j” for the canonical inner products

and the induced norms. The linearized strain tensor associated with a dis-
placement field u is denoted by eðuÞ: For a vector field v, we use v� :¼
v � m and vs :¼ v�v�m for the normal and tangential components of v on C.
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Similarly, for the stress field r, its normal and tangential components on
the boundary are defined as r� :¼ ðrmÞ � m and rs :¼ rm�r�m, respectively.
Let f 0 be the density of the total body force acting on X. Then the equi-

librium equation of the body is

Div rþ f 0 ¼ 0 in X: (5.1)

To describe boundary conditions for the contact problems, we partition the
boundary C into three disjoint and measurable parts C1,C2 and C3 such
that meas ðC1Þ>0 and meas ðC3Þ>0: We assume the body is fixed on C1,
is subject to the action of a surface traction of density f 2 on C2, and is in
potential contact on C3 with the rigid foundation. Thus, the homogeneous
displacement boundary condition is specified on C1:

u ¼ 0 on C1, (5.2)

and the traction boundary condition is specified on C2 :

rm ¼ f 2 on C2: (5.3)

Different contact conditions on C3 will lead to different hemivariational
inequalities.
To study the contact problems, we will use the space

V ¼ v 2 H1ðX;RdÞjv ¼ 0 a:e: on C1

� �
(5.4)

and its subspace/subset for the displacement fields. Since meas ðC1Þ>0,
Korn’s inequality (cf. [27]) implies that V is a Hilbert space with the inner
product

ðu, vÞV :¼
ð
X
eðuÞ � eðvÞ dx, u, v 2 V,

and the associated norm jj � jjV is equivalent to the standard
H1ðX;RdÞ-norm over V. For v 2 V, we use the same symbol v for its trace
on C. We use Q ¼ L2ðX;SdÞ as the space for the stress and strain fields;
this is a Hilbert space with the canonical inner product

ðr, sÞQ :¼
ð
X
rijðxÞ sijðxÞ dx

and the associated norm jj � jjQ: From Sobolev embedding theorems and
trace theorems, we have

H1ðXÞ � LqðC3Þ 8 q<1, if d ¼ 2

and

H1ðXÞ � L4ðC3Þ if d ¼ 3:
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Let

p 2 2,1Þ if d ¼ 2, p ¼ 4 if d ¼ 3:
�

(5.5)

Then V � LpðC3;R
dÞ:

We assume on the densities of body forces and surface tractions that

f 0 2 L2ðX;RdÞ, f 2 2 L2ðC2;R
dÞ (5.6)

and define f 2 V� by the formula

hf , viV��V ¼ ðf 0, vÞL2ðX;RdÞ þ ðf 2, vÞL2ðC2;R
dÞ 8 v 2 V: (5.7)

The elastic constitutive law is of the form

r ¼ FðeðuÞÞ in X: (5.8)

Here FðeðuÞÞ is a short-hand notation for Fðx, eðuÞÞ, i.e., we allow the
non-homogeneity of the material. The elasticity operator F : X� S

d ! S
d

is assumed to have the following properties:

ðaÞ there exists LF>0 such that for all e1, e2 2 S
d, a :e: x 2 X,

jFðx, e1Þ�Fðx, e2Þj � LF je1�e2j;
ðbÞ there exists mF>0 such that for all e1, e2 2 S

d, a:e: x 2 X,
ðFðx, e1Þ�Fðx, e2ÞÞ � ðe1�e2Þ � mF je1�e2j2;

ðcÞ Fð�, eÞis measurable on X, for any e 2 S
d;

ðdÞ Fðx, 0Þ ¼ 0 a:e:x 2 X:

8>>>>>>><
>>>>>>>:

(5.9)

Define an operator A : V ! V� by

hAðuÞ, vi ¼ ðFðeðuÞÞ, eðvÞÞQ, u, v 2 V: (5.10)

Recall from (2.6) that the operator A is potential if and only if

hA0ðuÞv,wi ¼ hA0ðuÞw, vi 8 u, v,w 2 V: (5.11)

As an example of a potential operator A defined by (5.10), consider a
nonlinear Hencky material. The stress-strain relation is (cf. [28])

r ¼ k0ðtr eðuÞÞ I þ /ðjeDðuÞj2Þ eDðuÞ,
where k0>0 is a material coefficient, I is the identity tensor of the second order,
/ : R ! R is a constitutive function, and eDðuÞ ¼ eðuÞ�ð1=dÞ tr eðuÞ I is the
deviatoric part of the strain tensor. So the elasticity operator is

FðeÞ ¼ k0ðtr eÞ I þ /ðjeDj2Þ eD: (5.12)

The function / is assumed to be piecewise continuously differentiable, and
there exist positive constants c1, c2, d1 and d2, such that for n � 0,
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/ðnÞ � d1,

�c1 � /0ðnÞ � 0,

c2 � /ðnÞ þ 2 /0ðnÞ n � d2:

Then for the operator A defined in (5.10), it can be shown that

hA0ðuÞv,wi ¼
ð
X
½k0tr eðvÞ tr eðwÞ þ /ðjeDðuÞj2Þ eDðvÞ � eDðwÞ

þ 2 /0ðjeDðuÞj2Þ eDðuÞ � eDðvÞ
� �

eDðuÞ � eDðwÞ
� �

	dx:
Thus (5.11) is satisfied and the operator A is potential. By (2.7),

FAðvÞ ¼ k0
2

ð
X
tr eðvÞj j2dxþ 1

2

ð
X
jeDðvÞj2

ð1
0
/ðt2jeDðvÞj2Þ dt dx:

As another example of a potential operator A defined by (5.10), consider
a linearly elastic material. The elastic constitutive law is

r ¼ CeðuÞ in X, (5.13)

where C : X� S
d ! S

d is the elasticity operator. As usual in the literature,
we assume C ¼ ðCijklÞ1�i, j, k, l�d is symmetric, bounded, and pointwise stable:

Cijkl ¼ Cjikl ¼ Cklij, 1 � i, j, k, l � d, (5.14)

Cijkl 2 L1ðXÞ, 1 � i, j, k, l � d, (5.15)

ðC�Þ � � � mCj�j2, mC>0, 8 � 2 S
d: (5.16)

It is easy to see that the operator A defined in (5.10) corresponding to
(5.13) is potential, and

FAðvÞ ¼ 1
2

ðCeðvÞ, eðvÞÞQ:
We now turn to discussions of three contact problems.

Example 5.1. We first consider a frictional contact problem with normal
compliance ([7, 11]). The contact boundary conditions are

�r� 2 @w�ðu�Þ, jrsj � Fbðu�Þ, �rs ¼ Fbðu�Þ us
jusj if us 6¼ 0, on C3:

(5.17)

For the friction bound Fb : C3 � R ! Rþ, assume

ðaÞ there exists LFb>0 such that for all z1, z2 2 R, a:e: x 2 C3,
jFbðx, z1Þ�Fbðx, z2Þj � LFb jz1�z2j;

ðbÞ Fbð�, zÞ is measurable on C3, for all z 2 R;
ðcÞ Fbðx, zÞ � 0 for z 2 R and Fbðx, 0Þ ¼ 0, a:e: x 2 C3:

8>><
>>:

(5.18)
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For the potential function w� : C3 � R ! R, assume

ðaÞ w�ð�, zÞ is measurable on C3 for all z 2 Rand w�ð�, 0Þ 2 L1ðC3Þ;
ðbÞ w�ðx, �Þ is locally Lipschitz on R for a:e: x 2 C3;
ðcÞ j@w�ðx, zÞj � c 1þ jzjp�1

� �
for all z 2 R, a:e:x 2 C3;

ðdÞ w0
�ðx, z1; z2�z1Þ þ w0

�ðx, z2; z1�z2Þ � aw�
jz1�z2j2

for a:e: x 2 C3, all z1, z2 2 R with aw�
� 0:

8>>>>><
>>>>>:

(5.19)

Note that the commonly required linear growth condition j@w�ðx, zÞj �
cð1þ jzjÞ for a.e. x 2 C3, 8 z 2 R, is relaxed to (5.19)(c) for p specified in
(5.5). Let cwv ¼ v� for v 2 V; then cw 2 LðV, LpðC3ÞÞ: By applying
Theorem 2.5, we can derive the bound

jw�ðx, zÞj � c 1þ jzjp� � 8 z 2 R, a:e: x 2 C3:

Therefore, the superpotential
Ð
C3
w�ðv�Þ da is well-defined for v 2 V:

The weak formulation of the contact problem (5.8), (5.1)–(5.3) and
(5.17) is a variational-hemivariational inequality: find a displacement field
u 2 V such that

ðFðeðuÞÞ, eðvÞ�eðuÞÞQ þ Ð
C3
Fbðu�Þ jvsj � jusjð Þda

þ Ð
C3
w0
�ðu�; v��u�Þ da � hf , v�uiV��V 8 v 2 V:

(5.20)

Let k0>0 is the smallest eigenvalue of the eigenvalue problem

u 2 V,
ð
X
eðuÞ � eðvÞ dx ¼ k

ð
X
u � v da 8 v 2 V:

By Theorem 4.10, the problem (5.20) has a unique solution u 2 V under
the assumptions (5.9), (5.18), (5.19) and the smallness condition
LFb þ aw�

<k0mF : w

Example 5.2. In this example, we consider a bilateral frictional contact
problem between an elastic body and a rigid foundation (e.g. [12]). The
contact boundary conditions are

u� ¼ 0, �rs 2 @wsðusÞ on C3: (5.21)

The feature of bilateral contact is reflected by the condition u� ¼ 0: We assume
the potential function ws : C3 � R

d ! R has the following properties.

ðaÞ wsð�, zÞ is measurable on C3 for all z 2 R
d and wsð�, 0Þ 2 L1ðC3Þ;

ðbÞ wsðx, �Þ is locally Lipschitz on R
d for a:e: x 2 C3;

ðcÞ j@wsðx, zÞj � c 1þ jzjp�1
� �

forall z 2 R
d, a:e: x 2 C3;

ðdÞ w0
sðx, z1; z2�z1Þ þ w0

sðx, z2; z1�z2Þ � aws
jz1�z2j2

for a:e: x 2 C3, all z1, z2 2 R
d with aws

� 0:

8>>>>><
>>>>>:

(5.22)
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Note that the commonly required condition (e.g. [12])

j@wsðx, zÞj � c 1þ jzjð Þfor a:e: x 2 C3, 8 z 2 R
d

is replaced by the less restrictive condition (5.22)(c), where the exponent p
is specified in (5.5).
With V from (5.4), we define the subspace

V1 ¼ v 2 Vjv� ¼ 0 on C3f g: (5.23)

Let cws
: V ! LpðC3;R

dÞ be the tangential component trace operator:
cws

v ¼ vs for v 2 V: Then cws
2 LðV; LpðC3;R

dÞÞ: Let cs ¼ k�1=2
1 where

k1>0 is the smallest eigenvalue of the eigenvalue problem

u 2 V1,
ð
X
eðuÞ � eðvÞ dx ¼ k

ð
C3

us � vsda 8 v 2 V1:

Then

jjvsjjL2ðC3;R
dÞ � csjjvjjV 8 v 2 V1: (5.24)

The weak formulation of the contact problem defined by (5.8),
(5.1)–(5.3) and (5.21) is to find a displacement field u 2 V1 such that

ðF eðuÞ, eðvÞÞQ þ
ð
C3

w0
sðus; vsÞ da � hf , viV��V 8 v 2 V1: (5.25)

By Theorem 4.16, this problem has a unique solution under the stated
assumptions on the problem data and aws

<k1mF :
When (5.11) is satisfied, the problem (5.25) admits an equivalent mini-

mization principle:

EðuÞ � EðvÞ 8 v 2 V1,

where the energy functional is defined by the formula

EðvÞ ¼ FAðvÞ þ
ð
C3

wsðvsÞ da�hf , viV��V :

In particular, in the case (5.13) for a linearly elastic material, the energy
functional is

EðvÞ ¼ 1
2

ðCeðuÞ, eðvÞÞQ þ
ð
C3

wsðvsÞ da�hf , viV��V :

This completes the second example. w

Example 5.3. Consider a static frictionless unilateral contact problem
between an elastic body and a rigid foundation ([12]). On the contact
boundary C3, we assume the contact is frictionless:

rs ¼ 0 on C3, (5.26)
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and satisfies the unilateral relations

u� � g, r� þ n� � 0, ðu��gÞðr� þ n�Þ ¼ 0, n� 2 @w�ðu�Þ on C3: (5.27)

The relations (5.27) model a frictionless contact with a foundation made of
a rigid body covered by a layer made of elastic material. Penetration is
restricted by the relation u� � g, where g is non-negative valued and it rep-
resents the thickness of the elastic layer. When there is penetration and the
normal displacement does not reach the bound g, the contact is described
by a multi-valued normal compliance condition: �r� ¼ n� 2 @w�ðu�Þ: We
assume the potential function w� : C3 � R ! R has the properties stated
in (5.19).
With V from (5.4), we define the set

K ¼ v 2 Vjv� � g on C3
� �

: (5.28)

We define cw to be the normal component trace operator as in Example
5.1. Let c� ¼ k�1=2

2 where k2>0 is the smallest eigenvalue of the eigenvalue
problem

u 2 V,
ð
X
eðuÞ � eðvÞ dx ¼ k

ð
C3

u�v�da 8 v 2 V:

Then

jjv�jjL2ðC3Þ � c�jjvjjV 8 v 2 V: (5.29)

The weak formulation of the contact problem defined by (5.8),
(5.1)–(5.3), (5.26) and (5.27) is to find a displacement field u 2 K such that

ðF eðuÞ, eðv�uÞÞQ þ
ð
C3

w0ðu�; v��u�Þ da � hf , v�uiV��V 8 v 2 K:

(5.30)

By Theorem 4.16, this hemivariational inequality has a unique solution
under the stated assumptions on the problem data and aw<k2mF :
When (5.11) is satisfied, the problem (5.30) admits an equivalent mini-

mization principle:

EðuÞ � EðvÞ 8 v 2 V1,

where the energy functional is defined by the formula

EðvÞ ¼ FAðvÞ þ
ð
C3

wðv�Þ da�hf , viV��V :

In particular, in the case (5.13) for a linearly elastic material, the energy
functional is
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EðvÞ ¼ 1
2

ðCeðuÞ, eðvÞÞQ þ
ð
C3

wðv�Þ da�hf , viV��V :

This concludes the third example. w
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