Taylor & Francis
Taylor & Francis Group

Numerical Functional Analysis and Optimization

@ Taylor & Francis

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/Infa20

A Revisit of Elliptic Variational-Hemivariational
Inequalities

Weimin Han

To cite this article: Weimin Han (2021) A Reuvisit of Elliptic Variational-Hemivariational
Inequalities, Numerical Functional Analysis and Optimization, 42:4, 371-395, DOI:
10.1080/01630563.2021.1881541

To link to this article: https://doi.org/10.1080/01630563.2021.1881541

@ Published online: 15 Feb 2021.

\]
CA/ Submit your article to this journal

||I| Article views: 20

A
& View related articles &'

PN

(!) View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=Infa20


https://www.tandfonline.com/action/journalInformation?journalCode=lnfa20
https://www.tandfonline.com/loi/lnfa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01630563.2021.1881541
https://doi.org/10.1080/01630563.2021.1881541
https://www.tandfonline.com/action/authorSubmission?journalCode=lnfa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lnfa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01630563.2021.1881541
https://www.tandfonline.com/doi/mlt/10.1080/01630563.2021.1881541
http://crossmark.crossref.org/dialog/?doi=10.1080/01630563.2021.1881541&domain=pdf&date_stamp=2021-02-15
http://crossmark.crossref.org/dialog/?doi=10.1080/01630563.2021.1881541&domain=pdf&date_stamp=2021-02-15

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
2021, VOL. 42, NO. 4, 371-395
https://doi.org/10.1080/01630563.2021.1881541

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates‘

A Reuvisit of Elliptic Variational-Hemivariational
Inequalities

Weimin Han

Department of Mathematics & Program in Applied Mathematical and Computational Sciences
(AMCS), University of lowa, lowa City, lowa, USA

ABSTRACT

In this paper, we provide an alternative approach to establish
the solution existence and uniqueness for elliptic variational-
hemivariational inequalities. The new approach is based on
elementary results from functional analysis, and thus removes
the need of the notion of pseudomonotonicity and the
dependence on surjectivity results for pseudomonotone oper-
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ators. This makes the theory of elliptic variational-hemivaria-
tional inequalities more accessible to applied mathematicians
and engineers. In addition, equivalent minimization principles
are further explored for particular elliptic variational-hemivaria-
tional inequalities. Representative examples from contact
mechanics are discussed to illustrate application of the theor-
etical results.
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1. Introduction

Hemivariational inequalities are useful in modeling and studying problems
in physical sciences and engineering that involve non-smooth, non-mono-
tone and multi-valued relations among different physical quantities.
Research on hemivariational inequalities started in early 1980s (cf. [1]), and
has attracted much attention in the research community, especially in the
recent years. The mathematical theory of hemivariational inequalities can
be found in some research monographs, e.g. [2-7], and in many journal
articles. In applications, numerical methods have to be used to solve hemi-
variational inequalities. An early comprehensive reference on the numerical
solution of hemivariational inequalities is [8] where convergence of finite
element solutions and solution algorithms are discussed. More recently,
optimal order error bounds have been derived for finite element solutions
of various kinds of hemivariational inequalities, including elliptic ones, evo-
lutionary ones, history-dependent ones, cf. [9-14] and a summarizing
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account in [15]. Other numerical methods can be also applied to solve
hemivariational inequalities, e.g., the virtual element method is applied in
[16] for the numerical solution of hemivariational inequalities in contact
mechanics, where an optimal order error bound for the virtual element sol-
utions is derived.

In [17], a well-posedness result is proved for a general elliptic vari-
ational-hemivariational inequality, cf. also [7, Section 5.4]. Let V be a
reflexive Banach space with the norm || - ||;,. Denote by V* the dual space
of V, and by (:,-) the duality pairing between V* and V. Let K be a non-
empty closed convex subset of V, A:V — V*,®0:KxK—R, ¥:X—
R, and f € V*. The problem is of the form

uc K, (Au,v—u)+®(u,v)—®(u,u) + ¥ (u;v—u) > (f,v—u) VYveEK.
(1.1)

For the unique solvability analysis of this problem, it is assumed that (a)
the operator A : V — V* is pseudomonotone and strongly monotone with
a constant my > 0; (b) ®: K x K — R is convex and Ls.c. with respect to
its second argument, and for some constant o >0,

(i)(ubVZ)_(i)(ula vi) + (i)(uz, Vl)—(i)(uz,vz)
< O‘d)””l—”zn ||V1—V2|| YV uy, Uy, v1,v2 € K;

() ¥:V —R is locally Lipschitz and there are constants oy, cp,c; > 0
such that

YO (vi;va—v1) + WO (va;vi—v2) < aw|lvi—mally Vv v €V
and
nlly- <co+allvlly VveV,Vned¥y). (1.2)

Here, P° and O denote generalized directional derivative and generalized
subdifferential in the sense of Clarke (cf. Section 2 for a brief review).
Then if the smallness condition og + ay<my, holds, for any f € V*, the
problem (1.1) has a unique solution. The proof of the statement relies on
properties of pseudomonotone operators, on Banach fixed-point theorem,
and more importantly, on abstract surjectivity results of pseudomono-
tone operators.

In this paper, we revisit the problem (1.1) from a new approach, and
prove the existence of a unique solution of the problem through arguments
applying only elementary results from functional analysis. Moreover,
equivalent minimization principles are provided for particular elliptic vari-
ational-hemivariational inequalities where the functional ® has only one
independent variable. We achieve these goals at the expense of slightly
stronger assumptions on the problem data from the theoretical point of
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view; nevertheless, the slightly stronger assumptions do not represent a ser-
ious restriction of the unique solvability results for applications. On the
operator A, instead of the pseudomonotonicity, we will assume it is
Lipschitz continuous. On the functional ®, with application problems in
mind, we consider nonsmooth convex functionals of the form

D (u,v) = D(u,v) + Ix(v),
where @ : V x V — R is convex and Ls.c. with respect to its second argu-
ment, and Ix is the indicator function of the convex set K. Then (1.1)
becomes

uck, (Auv—u)+ ®(u,v)—®(u,u) +¥(u;v—u) > (f,v—u) VveKk.
(1.3)

Note that a real-valued Ls.c. convex function on the Banach space V is con-
tinuous ([18, Corollary 2.5, p. 13]). As is known from convex analysis, local
Lipschitz continuity of a convex functional is guaranteed from its bounded-
ness on a non-empty open set; for a precise statement, cf. Lemma 2.2. So
we will assume the convex function ®(u,-) to be bounded above on a non-
empty open set of V, for any u € V.

We note that the new feature stated in the previous paragraph makes the
theory more accessible to applied mathematicians and engineers. Moreover,
the availability of equivalent minimization principles for particular elliptic
variational-hemivariational inequalities justifies the use of optimization
tools in solving discrete systems of the inequalities.

The organization of the rest of the paper is as follows. In Section 2, basic
notions and results are recalled on convex subdifferentials, the generalized
directional derivative and subdifferential (or generalized gradient) in the
sense of Clarke, and on their properties. The starting point of the new
approach for the solution existence and uniqueness is an equivalent mini-
mization principle for a particular elliptic variational-hemivariational
inequality, which is shown in [19] and is presented in an improved form in
this paper. Thus, in Section 3, we use the result on the minimization prin-
ciple to establish the solution existence and uniqueness of the particular
elliptic variational-hemivariational inequality. Then we proceed to prove
the solution existence and uniqueness of general elliptic variational-hemi-
variational inequalities. In Section 4, the results in Section 3 are rephrased
for elliptic variational-hemivariational inequalities in forms more conveni-
ent to use in applications or when their numerical approximation is con-
cerned. Finally in Section 5, we discuss some representative examples from
contact mechanics to illustrate applications of the solution existence and
uniqueness results established in earlier sections.
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2. Preliminaries

In this section, we recall some basic notions and results from convex ana-
lysis and nonsmooth analysis.

Let V be a normed space. Let ® : V — R U {+oc} be a proper, convex
and Ls.c. (lower semicontinuous) functional. Then the (convex) subdiffer-
ential of ® at u € V is

OD(u) = {& € VI|D(v) — O(u) > (&,v—u) Vv e V}.

If O®(u) is non-empty, then any element ¢ € 0®(u) is called a subgradient
of ® at u. A general discussion of convex functionals, the convex subdiffer-
ential and its properties can be found in [18].

A proper, ls.c. convex functional is bounded below by an affine func-
tional (cf. [20, Lemma 11.3.5] or [21, Prop. 5.2.25]).

Lemma 2.1. Let V be a normed space and let ®:V — RU{+oo} be
proper, convex and Ls.c. Then there exist a continuous linear functional lg €
V* and a constant ¢ € R such that

O(v) > lo(v)+c VveV.

Consequently, there exist two constants ¢, and c,, not necessarily non-nega-
tive, such that

O(v) >+ ey, Vvev. 2.1)

Regarding the continuity of convex functions, we record a result that can
be derived from [18, Corollary 2.4, p. 12].

Lemma 2.2. Let V be a normed space and let ® : V — R be convex. Then ®
is locally Lipschitz continuous on V if and only if ® is bounded above on a
non-empty open set in V.

We will need the notions of the generalized directional derivative and
subdifferential (or generalized gradient) in the sense of Clarke ([22, 23]) to
define hemivariational inequalities or variational-hemivariational inequal-
ities. Let ¥ : V — R be locally Lipschitz continuous. Then the generalized
(Clarke) directional derivative of W at u € V in the direction v € V is
defined by

Y(w+ iv)—¥(w)
] ;

WO(u; v) := lim sup

w—ty 210

and the subdifferential (or generalized gradient) of W at ueV is
defined by

O (u) == {n € V¥ (u;v) > (g,v) Vv e V}.



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 375

Basic properties of the generalized directional derivative and the general-
ized gradient are recorded in the next two propositions (cf. [23, 24]).

Proposition 2.3. Assume that ¥ : V — R is a locally Lipschitz function.
Then the following statements are valid.

Q) Y(u;iv)=i¥'(wv)Vi>0uveV.
(i) WYOu;vi +v2) <P >wvy) +Pou;v,) ¥ v, € V.
(il)  WO(u;v) = max{(n,v)[n € OF¥(u)} V u,v € V.
(iv) Ifu, — uand v, — v in V, then lim sup WO (s v) < WO (usv).
(v)  For every u € V,0¥(u) is nonempty, convex, and weakly* compact
in V*.
Vi) If uy—u in V, n,€0¥Y(u,), and n,—n weakly* in V¥,
then n € 0¥ (u).
(vii) If¥:V — R is convex, then the Clark subdifferential OW¥(u) at any
u € V coincides with the convex subdifferential 0P (u).

Because of Proposition 2.3 (vii), we use the same symbol O for the sub-
differential both in the sense of Clarke and in convex analysis.

Proposition 2.4. Let ¥, ¥,,¥, : V — R be locally Lipschitz functions. Then:
(i) (scalar multiples)

OAW)(u)=20¥u) VAieR, ueVv. (2.2)
(ii) (sum rules)
(W1 + ¥2)(u) C 0¥ (u) +0¥2(u) VueV, (2.3)
equivalently,

(P) + o) (5v) < WO(u5v) + W(u;v) YuveV. (2.4)

We also recall the following Lebourg mean value theorem (cf. [24,
Proposition 1.3.14]).

Theorem 2.5. Let u,v € V, and suppose V¥ is locally Lipschitz on an open
set of V containing the closed line-segment {(1— 1) u+ A v[0 <A <1}
Then there exists { € OW((1—1) u+ A v) for some . € (0,1) such that

Y(v)—W¥(u) = ({,v—u).

A function ® : V — R is said to be strongly convex on V with a constant
o>0 if
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D u+ (1-2) v) <4 Ou) + (1-2) O(v)—a 2 (1-12) |ju—v||3
Vu,ve V,VYiel0o1].

Obviously, strong convexity of a functional implies its strict convexity. The
next result is a corollary of [25, Proposition 3.1], which provides a suffi-
cient and necessary condition on strong convexity of a locally Lipschitz
continuous function through the strong monotonicity of its subdifferential
in the sense of Clarke.

Lemma 2.6. Let V be a real Banach space. A locally Lipschitz continuous
function @ is strongly convex on V with a constant «>0 if and only if OD is
strongly monotone on V with a constant 20, i.e.,

(E=nyu—v) > 20 |[u—v|]} Yu,veV,EcaD(u),n € ob(v).

From now on, we will assume V to be a real Hilbert space. As a corollary
of Lemmas 2.1 and 2.6, we have the next result; its proof is given in [19].

Proposition 2.7. Let V be a real Hilbert space, and let ® : V — R be locally
Lipschitz continuous and strongly convex with a constant «>0. Then there
exist two constants ¢o and ¢, such that

O(v) > a V][, + e +allvlly, VveV. (2.5)
Consequently, ®(-) is coercive on V.

In this paper, studies of solution existence and uniqueness for elliptic
variational-hemivariational inequalities start with minimization principles
for particular ones; the minimization principles are of independent interest.
For this purpose, we need the notion of a potential operator which is
recalled here: an operator A : V — V* is called a potential operator if there
exists a Gateaux differentiable functional F4 : V — R such that A = F).
The functional F, is called a potential of A. If A is hemicontinuous, then A
is a potential operator if and only if

1

Jo [(A(t u),u) — (A(t v),v)]dt = Jo (Av+t (u—v)),u—v) dt Yu,veV.

If A is Gateaux differentiable and the mapping (t,s)—(A'(vi +t v, +
s v3) v4,v5) is continuous on [0,1] x [0,1] for all v; € V,1 <i <5, then A
is potential if and only if

(A'(u) v,w) = (A'(u) w,v) Yuv,weV. (2.6)

If A is a potential operator, its potential can be computed from the
formula
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1
Fa(v) = J (At v),v) dt: (27)
0
any other potential of A differs from F, by a constant.

For the special case of a linear operator, A € L(V,V*) is a potential
operator if and only if it is symmetric:

(Avi,vp) = (Ava,vy) Y v, v € V. (2.8)

Moreover, a potential functional can be chosen to be
1
Fa(v) = 3 (Av,v), veV.

For a detailed discussion on potential operators, the reader is referred to
[26, Section 41.3].

Throughout the paper, we will use ¢ to denote a generic positive constant
whose value may change from one place to another but it is independent
of other quantities of concern.

3. Results on elliptic variational-hemivariational inequalities

We start with a unique solvability result for a particular elliptic variational-
hemivariational inequality that allows an equivalent minimization principle.
Then we extend the result to more general elliptic variational-hemivaria-
tional inequalities by fixed-point arguments.

An operator A : V — V* is said to be strongly monotone with a constant
my >0 if

(Avi—Avy, vi—vy) > mAHvl—vzH%, Vv,v, € V. (3.1)

3.1. Result 1
Consider a particular elliptic variational-hemivariational inequality:

Problem 3.1. Find u € K such that
(Au, v—u) + O(v)—D®(u) + VYO (u; v—u) > (f,v—u) V veK. (3.2)

We introduce conditions on the problem data.

H(K) V is a real Hilbert space, K is a non-empty, closed and convex set
in V.

H(A) A:V — V* is Lipschitz continuous and strongly monotone with a
constant miy >0.

H(®), ®:V — R is convex and bounded above on a non-empty open
set in V.



378 @ W. HAN

H(WY) ¥:V — R is locally Lipschitz continuous, and for a constant
oy 2 0,

‘I’O(vl;vz—vl) +‘P°(v2;v1—v2) < O(\p||V1—V2||%/ Vv, v, € V. (3.3)

H(f) f e V"

The subscript 1 in H(®), reminds the reader that this is a condition for
the case where ® has one independent variable. Applying Lemma 2.2, we
know that H(®), implies that ®: V — R is convex and locally Lipschitz
continuous. We note that (3.3) is equivalent to the following inequality,
known as the relaxed monotonicity condition (cf. [7, p. 124]):

(N =1y vi—v2) > —o||[vi—2|[;,  Vvi,v € Vo € 0¥ (1), 0, € 0¥ (n2).
(3.4)

Note that in H(V), we do not assume a linear growth condition on the
generalized gradient 9'¥'(-) of the form

0¥ (V)]

v <c+allvl, VveV (3.5)

for some non-negative constants co, ¢;, which is assumed in other referen-
ces on Problem 3.1 (cf. [17] or [7, Section 5.4]).

In the case where A:V — V* is a potential operator, we can further
consider a corresponding minimization problem. We will always denote by
F, a potential of the potential operator A.

Problem 3.2. Find u € K such that

u = argmin E(v) (3.6)
vek
where
E(v) =Fs(v) + ®(v) + P(v)—(f,v), veV. (3.7)

Theorem 3.3. Assume H(K), H(A), H(®),H(Y), H(), and ogp<my.
Moreover, assume A :V — V* is a potential operator with the potential
F4(:). Then Problem 3.2 has a unique solution u € K.

This result is proved by applying a standard result in convex optimiza-
tion, cf. e.g. [20, Theorem 3.3.12]. It can be shown that E(-) is locally
Lipschitz and strongly convex on V; in particular, the strong convexity of
E(-) implies the coercivity of E(-) on V (cf. Proposition 2.7). A detailed
argument can be found in [19], and is omitted here. Note that in [19], the
unnecessary condition (3.5) was not explicitly ruled out. In the literature, a
condition such as onp<my, is called a smallness condition.
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Regarding Problem 3.1, under the additional assumption that A is a
potential operator, we have the following solution existence and unique-
ness result.

Theorem 3.4. Assume H(K), H(A), H(®),,H(Y), H(), ow<mga, and A:
V — V* is a potential operator with the potential F4(-). Then Problem 3.1
has a unique solution, which is also the unique solution of Problem 3.2.

Proof. Under the stated assumptions, by Theorem 3.3, Problem 3.2 has a
unique solution u € K. This solution is characterized by the relation

0 € A(E(u) + Ix (1)) C OE(u) + Ok (u).

For the generalized subdifferential of E(-), we repeatedly apply the summa-
tion rule (2.3), and note that for a locally Lipschitz continuous convex
functional, the Clark subdifferential and the convex subdifferential coincide.
As a result, we have

OE(v) C Av+ 00(v) + 0¥ (v)—f Y veV. (3.8)

Hence, the solution u € K of Problem 3.2 satisfies (3.2), i.e., it is also a
solution of Problem 3.1.

Uniqueness of the solution of Problem 3.1 follows by a standard argu-
ment, with the use of the smallness condition onp<my,. Since a similar
argument will be used in the proof of Theorem 3.5 below, we omit the
detail here. O

3.2. Result 2

We continue to consider Problem 3.1, but now without assuming A : V —
V* to be potential.

Theorem 3.5. Assume H(K), H(A), H(®),,H(Y), H(f), and owp<my. Then
Problem 3.1 has a unique solution.

Proof. We apply a fixed-point argument to prove the existence. For any
0>0, Problem 3.1 is equivalent to

u€ K, (uv—u)+0[®0) —du)+¥(uwv—u))

> (u,v—u)—0 (Au,v—u) + 0 (f,v—u) VveK. (39)
For an arbitrary w € K, consider the auxiliary problem
ueK, (uv—u)+0[®)—0u)+¥(uv—u)] (3.10)

> (w,v—u)—0 (Aw,v—u) + 0 (f,v—u) V veK.

Since the inner product induces a potential operator, by Theorem 3.4, for
0<1/oy, the problem (3.10) has a unique solution u € K. This allows us
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to define a mapping Py : K — K by the formula Py(w) = u. Let us show
that Py is a contraction for 0>0 sufficiently small. For this purpose, let
wy, wy € K be arbitrary and denote u; = Py(w;) and u, = Py(w,). Take
v = u, in the inequality (3.10) defining u; to get

(Ml, uz—ul) + 0[(1)(1/{2) — (D(ul) + ‘Po(ul; U — l/ll)]
> (Wi, up—uy)—0 (Awy, up—uy) + 0 (f,uy—uy),

and take v = u; in the inequality (3.10) defining u, to get

(uz, Ml—U2) + 0[(1)(141) — (D(le) + \Po(uz; uy — Uz)]
> (Wz, ul—uz)—e <AW2, Ml—ll2> + 0 <f, ul—u2>.

Add the two inequalities,
Hul—qu%, < (wr—wa, up—up)—0 (Awy—Aw,, u1—uy)
+ 9[‘1’0(141; uy — uy) + VPO (up; uy — uz)}.

Thus, applying the condition (3.3),

(1-06 ocxp)Hul—qu%, < (wi—wp, u1—up)—0 (Awi—Awy, u;—uy).  (3.11)
Let J : V* — V be the Riesz mapping. Then

(Aw1—Awy, uy—up) = (T (Aw1—Aw,), u1—u),
and we can rewrite (3.11) as
(1-0 och)Hul—qu%, < ((wp —wa) — 0 T(Awy — Awy), uy — uy).
Hence,
(1= 0 ay)|jur—ualy < |[(Wi—w2)—0 T(Awi—Aw)||. (3.12)
Now
[(w1=w2) =0 T (Awi—Awy)|[5, = [[wi—wa|[3=2 0 (T (Aws — Aws), w1 — w»)
0T (Awi—Aws) 3

Denote by L, the Lipschitz constant of the operator A. Then
1T (Awi—=Aw,)[[3, = [[Awi—Aw,|[5. < L [jwi—wa|[5.
Since A is assumed to be strongly monotone with the constant my, by (3.1),
(T (Awy — Awy), w1 — wy) = (Aw—Awy, wi—w;) > mA||w1—w2\ﬁ,.
So
[[(wi=w2) =0 T (Awi=Aw,)[[y < (1 =2 0 my + OL3)||wi—wa][5.
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Therefore, we derive from (3.12) that
1-2 0 my + 0°L3

||ty —wo| 5, < (120 ap) |[wi—w, |3 (3.13)
Note that
1_19 IZA;)B;L’% <1 (3.14)
— U oy
if and only if
(Li — ocfl,)9<2(mA — o). (3.15)

If Ly < oy, then (3.15) is valid for any 0<0<1/og. If Ly>og, then (3.15)
is valid for 0<f<min{1/og,2 (ma—oy)/(L5—0%)}. So in any case, for
0>0 sufficiently small, (3.14) holds and the operator Py : K — K is a con-
traction. By the Banach fixed-point theorem, Py has a unique fixed-point
u € K : Pou = u. It is easy to see that u satisfies (3.9), or equivalently (3.2).
This completes the existence part of the proof.

For uniqueness, assume there are two solutions u;,u, € K to Problem
3.1. Take v = u, in (3.2) for the solution u;, take v = u; in (3.2) for the
solution u,, and add the two resulting inequalities to obtain

<Au1—Au2, ul—u2> S ‘Po(ul; le—u1> + lPO(Uz; ul—uz).
Then, applying the conditions (3.1) and (3.3),
2 2
ma |l —us [y < opl[ur—usl]y.

Recall the smallness condition ay<m,. We conclude from the above
inequality that u; = u,, i.e., a solution of Problem 3.1 must be unique. [

3.3. Result 3

In this subsection, we consider a more general elliptic variational-hemivar-
iational inequality.

Problem 3.6. Find u € K such that
(Au,v—u) + O(u, v)—D(u, u) + P (u;v—u) > (f,v—u) Vv K. (3.16)

We modify H(®), to H(®),; the subscript 2 in H(®), reminds the
reader that this is a condition for the case where ® has two independ-
ent variables.

H®), ®:VxV —=R; for any u€ V,®(u,-): V—R is convex and
bounded above on a non-empty open set; and there exists a constant ag >
0 such that
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O(uy, v2)—D(uy, vi) + O(up, v1)—D(uz, v2)

<ag|luy—w|| |[vi—w2|| ¥ ur,uzvi,va € V. (3.17)

Theorem 3.7. Assume H(K), H(A), H(®),, H(\Y), H(f), and oq + oy <my.
Then Problem 3.6 has a unique solution.

Proof. Once more, we use a fixed-point argument to prove the existence.
By Theorem 3.5, under the stated assumptions, for any w € K, the follow-
ing auxiliary problem has a unique solution: find u € K such that

(Au,v—u) + O(w,v)—O(w, u) +¥P°(u;v—u) > (f,v—u) V vecK. (3.18)

This defines a mapping P: K — K by the formula P(w) = u. Let us
show that this mapping is contractive. For this purpose, let w;, w, € K be
arbitrary, and denote u; = P(w;), u; = P(w;). Then,

<Au1: Mz—lh) + q)(Wl, uz)—q)(Wb M1) + ‘I’O(Ul; Mz—ul)
(Aug, uy—up) + ©(wy, uy)—D(wa, uy) + ‘I’O(uz; U—uy)

“2_u1>,
ul—M2>.

> (f,
> (f,
Add the two inequalities,

(Aur—Auy, ui—ty) < O(wy, up)—DO(wy, uy) + ©(wy, ug)—DP(wy, uy)

+ WO (uy; uy—uy) + PO (up; g —u2). (3.19)

Apply the conditions (3.1), (3.3) and (3.17) in (3.19),

2
Vo

mAHul—qu%/ < ag||wi—wa||y||[ur—ua |y + oo ||ur —us]

or
2
1 —wally < —— |[wi—m2l|y.

Note that the condition ag + cp<my, implies og/(ma—oy)<l. Thus, the
mapping P: K — K is contractive. By the Banach fixed-point theorem,
there is a unique fixed-point u € K of the mapping P: u = P(u). It is easy
to see that u is a solution of Problem 3.6.

For uniqueness, let u;,u, € K be two solutions of Problem 3.6. Then
similar to (3.19), we have

(Aur—Auy, uy—u) < O(uy, up)—D(uy, uy) + O(uz, ur) —DP(u, uy)
+ WO (up; uy—uy) + WO (ug; g —u2).

Then
2 2
ma | —1ia] [, < (ot + o0w) | [ur —142] |-

Since og + oy <my, we deduce that u;—u, = 0, i.e., a solution to Problem
3.6 is unique. O



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 383

4. Some variants

In this section, we provide some variants of the theoretical results shown
in the previous section.

On occasions, especially in numerical analysis of the inequalities, it is
more convenient to view the functions ® and V¥ as defined over spaces Vg
and Vy that are different from V. These spaces are connected through lin-
ear operators yq : V — Vg and yy : V — V. Thus, instead of Problem
3.1, we consider its following variant (cf. [10]).

Problem 4.1. Find u € K such that

(Au, v—u) + D(ppv)—P(you) + P (yyus pgv—rypu) > (f,v—u) V veK.
(4.1)

In case A is a potential operator with the potential F4(-), it is possible to
introduce a corresponding minimization problem.

Problem 4.2. Find u € K such that
u = argmin E(v) (4.2)

veK

where
E(v) = F4(v) + ®(yov) + Y (pgv)—(f,v). (4.3)

We keep the assumptions H(K), H(A), and modify H(®),,H('¥) as fol-
lows. We use a prime for conditions on ® and ¥ when they are viewed as
functionals over spaces Vg and V.

H(®)| Vg is a real Banach space; yq € L£(V; Vg); @ : Vo — R is convex
and bounded above on a non-empty open set.

H(¥) Vy is a real Banach space; gy € L(V; Vip); W : Vg — R is locally
Lipschitz continuous, and for a non-negative constant oy,

‘Po(vl;vz—vl) + \Po(vz;vl—vz) < OC'{JH‘VI—VzH%/W YV v, vy € V. (4.4)

We denote by ||7¢|| and ||py|| the operator norms of yq € L(V; V) and
»y € L(V; Vg). By applying Theorem 3.5 and Theorem 3.4, we have the
next result regarding Problem 4.1.

Theorem 4.3. Assume H(K), H(A), H(®)|, H(¥), H(f) and ow||py||*<ma.
Then Problem 4.1 has a unique solution. If in addition, A is a potential
operator, then Problem 4.2 has a unique solution, which is also the unique
solution of Problem 4.1.

Then we consider a variant of the more general elliptic variational-hemi-
variational inequality, Problem 3.6 ([10]).
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Problem 4.4. Find u € K such that
(Au, v—u) + D(pptts 7ov) —P(vous You) + VO (yeu; ppv—ryu)
> (f,v—u) VveK. (4.5)

We need to modify the condition on the functional ®.

H(®), Vg is a real Banach space; yq € L(V; Vg); @ : Vg x Vg — R; for
any u € Vg, ®(u,-) : Vo — R is convex and bounded above on a non-
empty open set; and there exists a constant agp > 0 such that

O(uy,v2)—D(uy, v1) + P(uz, v1)— D (12, v2)

< ol —wl|y, [lvi—=vally, Vu,uzvi,va € Vo (4.6)

We can apply Theorem 3.7 to get a unique solvability result for
Problem 4.4.

Theorem 4.5. Assume H(K), H(A), H(®),,H(Y), H(f), and
ao|[70||> + ow|[pw||*<ma. Then Problem 4.4 has a unique solution.

Now we consider variational-hemivariational inequalities where the
superpotential ¥ is defined as the integral of a function . In most applica-
tions, a hemivariational inequality describes a physical problem on a spatial
domain in a finite-dimensional Euclidean space RY. Denote by A the
domain or its sub-domain, or its boundary or part of the boundary. Let I
stand for the integration over A. Instead of the space Vg, we will need a
space Vy, and a linear operator y, from V to V,. Assume elements from
the space V, are R™-valued functions, for some positive integer m. In
applications in contact mechanics, the operator 7, is either the normal
component trace operator or the tangential component trace operator. In
the former case, m =1, whereas in the latter case, m =d. Then related to
Problem 3.1, we introduce the next problem.

Problem 4.6. Find u € K such that
(Au,v—u) + O(v)—D(u) + IA(lpO(yl/,u; yl/,v—yl/,u)) > (f,v—u) VveK.
(4.7)

When A is a potential operator with the potential F4(-), we can intro-
duce a corresponding minimization problem.

Problem 4.7. Find u € K such that
u = argmin E(v) (4.8)

veK

where
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E(v) = Fa(v) + ©(v) + Ia(¥ (7yv)) = {f, v)- (4.9)

We allow the function { to depend on the spatial variable x € A, and
then (-) is a short-hand notation for ¥(x,-). In the study of Problem 4.6
and Problem 4.7, we will replace the assumption H(‘¥)" by H(y)".

H() 7y, € L(V;LP(A;R™)) for a constant p>2; ¢ : AxR" — R;
Y(-,v) is measurable on A for all v &€ R™; y(x,-) is locally Lipschitz
continuous on R™ for a.e. x € A; and for some non-negative constants ¢
and oy,

Oy (-, v)| < c<1 + |v|‘ﬁ1@1) V v eR" ae. on A, (4.10)
1//0(1/1;1/2—1/1) + wo(vz;vl—vz) < ocl/,|v1—v2|]§m YV v, v, € R ae. on A.
(4.11)

Note that in H(y)', we do not assume a linear growth condition on the
Clark subdifferential Oy (-, v):

Y (V)| < c(1+ |Vgn) V veR™ae. in A

as would be necessary in the existing literature. Instead, we assume a less
restrictive condition (4.10) (recall that p > 2). Applying Theorem 2.5, it
can be shown from (4.10) that

(- v)| < c(l + \v]pm> VvV veR"ae. onA. (4.12)

Denote by co>0 the smallest constant in the inequality
In(|pyvlen) < Glvl[y, Vvev. (4.13)
With the above preparation, we derive from Theorem 3.5 the next result.

Theorem 4.8. Assume H(K), H(A), H(®),H(Y), H(f), and ayi<ma.
Then Problem 4.6 has a unique solution. If in addition, A:V — V* is a
potential operator with the potential F(-), then Problem 4.7 has a unique
solution which is also the unique solution of Problem 4.6.

Proof. Introduce an auxiliary functional
W) =Ia(¥(yyv), vev.

By an argument similar to the one used in proving Theorem 3.47 in [3], it
can be proved that under the assumption H(y)’, the functional P(-) is
well defined and is locally Lipschitz continuous over V, and

WO(u;v) < IA(wo(yl/,u;ywv)) YV uvelV. (4.14)
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For v;,v, € V, by using (4.11) and (4.13),
PO (vi;va—v1) + PO (vaivi—v2) STA(W° (7 vis vpva—ryv1) 00 (g vai vy vi—yy )
< I (o lyy (V1=v2) |gen)
<oycallvi—vall3s
i.e, (3.3) is satisfied with oy =ayci. Hence, we can apply Theorem 3.5 to
conclude that the auxiliary problem
uek, (Au,v—u)+®@(v)—0(u)+¥°(u;v—u) > (f,v—u) VveK

has a unique solution u € K. Thanks to (4.14), this solution u is a solution
of Problem 4.6. Uniqueness of the solution of Problem 4.6 is proved similar
to that in the proof of Theorem 3.5. Moreover, in case A is a potential
operator, it is meaningful to consider Problem 4.7 which also has u € K as
its unique solution. O

Consider a problem more general than Problem 4.6.
Problem 4.9. Find u € K such that
(Au,v—u) + D(u,v)—D(u,u) +IA(¢0(V¢u;y¢,v—ywu)) > (f,v—u) V veKk.
(4.15)

Based on Theorem 3.7 and the argument leading to Theorem 4.8, we
have the next result.

Theorem 4.10. Assume H(K), H(A), H(®),,HW), H(), and
oA + oclpci<mA. Then Problem 4.9 has a unique solution.

Finally, we consider the particular case of hemivariational inequalities,
i.e., the case where ® = 0. Corresponding to Problem 3.1 and Problem 3.2,
we have

Problem 4.11. Find u € K such that
(Au,v—u) + ¥ (u; v—u) > (f,v—u) V vEK. (4.16)

Problem 4.12. Find u € K such that

u = argmin E(v) (4.17)
veK
where
E(v) = Fa(v) + Y (v)—={f,v). (4.18)

As a corollary of Theorem 3.5 and Theorem 3.4, we have the next result
concerning Problem 4.11 and Problem 4.12.
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Theorem 4.13. Assume H(K), H(A), H(WY), H(f), and ay<my. Then
Problem 4.11 has a unique solution. If in addition, A:V — V* is a poten-
tial operator with the potential F4(-), then Problem 4.12 has a unique solu-
tion which is also the unique solution of Problem 4.11.

As another particular case, consider Problem 4.6 and Problem 4.7
with @ =0.

Problem 4.14. Find u € K such that

(Au, v—u) + IA(!,DO(yl/,u;yl/,v—yl/,u)) > (f,v—u) VYV vek. (4.19)

Problem 4.15. Find u € K such that
u = argmin E(v) (4.20)

veK

where

E(v) = Fa(v) + Ia(Y(yyv))—(f>v)- (4.21)

The following result is a special case of Theorem 4.8.

Theorem 4.16. Assume H(K), H(A), H(y), H(f), and ayca<mga. Then
Problem 4.14 has a unique solution. If in addition, A:V — V* is a poten-
tial operator with the potential F4(-), then Problem 4.15 has a unique solu-
tion which is also the unique solution of Problem 4.14.

Note that we can get similar results for further special cases where
K=1V. Since it is trivial to deduce results for such further special cases, we
omit the detail.

5. Applications in contact mechanics

We illustrate applications of the theoretical results developed in previous
sections on some static contact problems between an elastic material and a
foundation. Let Q represent the reference configuration of the elastic body,
assumed to be open, bounded and connected in R (d<3) with a
Lipschitz continuous boundary I' = 0Q. Then the unit outward normal
vector v is defined a.e. on I

The displacement is R?-valued, whereas the stress and strain tensors take
values in the space S of second order symmetric tensors on R?. Over the
spaces RY and S%, we use “” and ” for the canonical inner products
and the induced norms. The linearized strain tensor associated with a dis-
placement field u is denoted by &(u). For a vector field v, we use v, :=
v-v and v, := v—v,v for the normal and tangential components of v on I".

<«
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Similarly, for the stress field o, its normal and tangential components on
the boundary are defined as g, := (av) - v and 6, := 6v—0,v, respectively.

Let f, be the density of the total body force acting on Q. Then the equi-
librium equation of the body is

Dive+f,=0 in Q. (5.1)

To describe boundary conditions for the contact problems, we partition the
boundary I' into three disjoint and measurable parts I';,I; and I's such
that meas (I';)>0 and meas (I'5)>0. We assume the body is fixed on I'y,
is subject to the action of a surface traction of density f, on I';, and is in
potential contact on I'; with the rigid foundation. Thus, the homogeneous
displacement boundary condition is specified on I';:

u=0 onl}y, (5.2)
and the traction boundary condition is specified on I';:
ov=f, onl),. (5.3)
Different contact conditions on I's will lead to different hemivariational
inequalities.
To study the contact problems, we will use the space

V={ve H(QRY)|v=0ae on I} (5.4)

and its subspace/subset for the displacement fields. Since meas (I";)>0,
Korn’s inequality (cf. [27]) implies that V is a Hilbert space with the inner
product

(wv), = Jgs(u) -g(v) dx, uveV,

and the associated norm ||-||, is equivalent to the standard
H'(Q;R?)-norm over V. For v € V, we use the same symbol v for its trace
on I'. We use Q =L*(Q;S%) as the space for the stress and strain fields;
this is a Hilbert space with the canonical inner product

(6.7)q = Laij(x) Tij(x) dx

and the associated norm || |[,. From Sobolev embedding theorems and
trace theorems, we have

H'(Q) C LI(T;3) V g<oo, if d =2
and

H'Y(Q) C LY(T;) if d = 3.
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Let
pe200)ifd=2 p=4ifd=3. (5.5)

Then V C LP(T'3; RY).
We assume on the densities of body forces and surface tractions that

f, € X RY), f, € I*(Ty;RY) (5.6)
and define f € V* by the formula
FV)vy = FoV)eary + FoV)emey YveV. (5.7)
The elastic constitutive law is of the form
6 = F(¢(u)) in Q. (5.8)

Here F(&(u)) is a short-hand notation for F(x,¢&(u)), i.e., we allow the
non-homogeneity of the material. The elasticity operator F : Q x S¢ — S¢
is assumed to have the following properties:

(a) there exists Ly>0 such that for all &,¢, € S%a.e xcQ,
| F(x,81)—F(x,8)| < Lr|er—&l;
(b) there exists mz>0 such that for all &, & € S? ae. xcQ,

(5.9)
(F(x,8)—F(x,8)) - (81—8&) > mzlei—e|;
(c) F(-,&)is measurable on Q, for any & € S*;
(d) F(x,0) =0 a.ex € Q.
Define an operator A : V — V* by
(A(u),v) = (F(e(u)).e(v)) g wvev. (5.10)
Recall from (2.6) that the operator A is potential if and only if
(A'(u)v,w) = (A'(u)w,v) YV uv,weV. (5.11)

As an example of a potential operator A defined by (5.10), consider a
nonlinear Hencky material. The stress-strain relation is (cf. [28])

o = koltr &(u) I+ §(|2(w)]?) #(u)

where ky>0 is a material coefficient, I is the identity tensor of the second order,
¢ : R — R is a constitutive function, and &”(u) = &(u)—(1/d) tr &(u) I is the
deviatoric part of the strain tensor. So the elasticity operator is

Fle) = ko(tr &) I+ ¢(|eP*) &°. (5.12)

The function ¢ is assumed to be piecewise continuously differentiable, and
there exist positive constants c;, ¢,, d; and d,, such that for £ > 0,
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$(&) <d,
—a < ¢'(¢) <o,
o< Q&) +2 ¢'¢) E<d,.

Then for the operator A defined in (5.10), it can be shown that
(A'(u)v,w) = J [kotr £(v) tr &(w) + ¢(|eP(w)]?) L(v) - £P(w)
Q

+2 ¢ ([e()") (& (u) - &°(v) (" (u) - &”(w)) ] bx.
Thus (5.11) is satisfied and the operator A is potential. By (2.7),

Fa(v) = %Lz\tr a(v)|2dx+%JQ|sD(v)|2 Jo (2| (v)[?) dt dx.

As another example of a potential operator A defined by (5.10), consider
a linearly elastic material. The elastic constitutive law is
6 =C¢(u) inQ, (5.13)
where C: Q x S? — S is the elasticity operator. As usual in the literature,
we assume C = (Cii); ; 1 1<, is Symmetric, bounded, and pointwise stable:
Cijm = G = Cuijp 1 < iyjik, 1 < d, (5.14)
Cin € L¥(Q), 1<ijkl<d, (5.15)

(Ce) - € > mclel’, me>0,V e € S°. (5.16)

It is easy to see that the operator A defined in (5.10) corresponding to
(5.13) is potential, and

1
Fao(v) = 5 ((Cs(v),s(v))Q.
We now turn to discussions of three contact problems.

Example 5.1. We first consider a frictional contact problem with normal

compliance ([7, 11]). The contact boundary conditions are
u
" ifu, 420, on ;.

—0, €0, (u,), 6| < Fp(uy), —o.=Fyp(u,) ]

(5.17)

For the friction bound F, : I'; x R — R, assume

(a) there exists Lp,>0 such that for all z;,z; € R, a.e. x €T3,
|[Fp(%,21) —Fp(%, 22)| < Lp,|z1—2];

(b) Fy(+,z) is measurable on I3, for all z € R;

(c) Fp(x,2z) >0 for z € R and F,(x,0) = 0,a.e. x € I';.

(5.18)
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For the potential function i/, : I's x R — R, assume
(a) ¥, (-, z) is measurable on I'; for all z € Rand v, (-,0) € L'(T3);
(b) ¥, (x,-) is locally Lipschitz on R for a.e. x € I's;
(c) |a¢ (x,2)| < c(1 +|z|P— ) for all z € R,a.e.x € I
(d) Yo (% z1520—21) + Y2 (%205 21—22) < oy |21 —2a|
for a.e. x € I's, all z;,z, € R with oy, > 0.

(5.19)

Note that the commonly required linear growth condition |0V, (x,z)| <
c(1+ |z|) for a.e. x € I3,V z € R, is relaxed to (5.19)(c) for p specified in
(5.5). Let yyv=vw, for veV; then y, € L(V,LP(I3)). By applying
Theorem 2.5, we can derive the bound
W, (x%2) <c(1+|2f) VzeR,ae xcTs.

Therefore, the superpotential [, (v,) da is well-defined for v € V.

The weak formulation of the contact problem (5.8), (5.1)-(5.3) and
(5.17) is a variational-hemivariational inequality: find a displacement field
u € V such that

(f(s(u)>,8(")— (#))q + Jr, Fo(w)(|ve] — |uc])da

+.[1" ul/avu uy) da > (f v— u>V*><V VyevV. (520)

Let 4p>0 is the smallest eigenvalue of the eigenvalue problem

uecv, Js(u)-s(v) dx:i‘[u-vda VveV.
Q Q
By Theorem 4.10, the problem (5.20) has a unique solution u# € V under
the assumptions (5.9), (5.18), (5.19) and the smallness condition
LF:, + OCI/,I,<)u0m]:. O

Example 5.2. In this example, we consider a bilateral frictional contact
problem between an elastic body and a rigid foundation (e.g. [12]). The

contact boundary conditions are
u,=0, —o6,€0y, (u;) onlj. (5.21)

The feature of bilateral contact is reflected by the condition u,, = 0. We assume
the potential function v/, : I's x RY — R has the following properties.

(a) Y,(z) is measurable on I's for all z € RY and (-, 0) € L'(T3);
(b) ¥, (x,-) is locally Lipschitz on RY for a.e. x € I's;
(c) \wa(x 2)| < c(1+ |z ")forall z € R% a.e. x € T's;
(d) Yo(x,21520—21) + Yo (% 225 21—22) < oy |21z
for a.e. x € '3, all 21,2, € RY with oy, > 0.

(5.22)
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Note that the commonly required condition (e.g. [12])
|0y (x,2)| < c(1 + |z|)for a.e. x € T3,V z € RY

is replaced by the less restrictive condition (5.22)(c), where the exponent p
is specified in (5.5).
With V from (5.4), we define the subspace

Vi={veVly,=0on I3} (5.23)
Let 7y, : V — L\(I'5; R%) be the tangential component trace operator:

Yp,v =" for v€ V. Then y, € L(V; P(T5;RY). Let ¢, = A /2" \where
Z1>0 is the smallest eigenvalue of the eigenvalue problem

uecv, J e(u) - &(v) x—AJ u,-v.da Vvev,.
Q I's

Then
||V1—HL2(1—3;Rd) <clvlly, VYwveV. (5.24)

The weak formulation of the contact problem defined by (5.8),
(5.1)-(5.3) and (5.21) is to find a displacement field u € V; such that

(fs(u),s(v))Q—i—J Wo(usv) da> (Fv)y., Y veV. (5.25)
Iy

By Theorem 4.16, this problem has a unique solution under the stated
assumptions on the problem data and oy <A;myr.

When (5.11) is satisfied, the problem (5.25) admits an equivalent mini-
mization principle:

E(u) < E(V) Vve Vv,
where the energy functional is defined by the formula
B) = Fa(s) + | elve) da={F:0) e

In particular, in the case (5.13) for a linearly elastic material, the energy
functional is

1
B) =5 (Calw)s0)g+ | pelve) da={fv)yey.
This completes the second example. O

Example 5.3. Consider a static frictionless unilateral contact problem
between an elastic body and a rigid foundation ([12]). On the contact
boundary I'5, we assume the contact is frictionless:

6.=0 onlj, (5.26)
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and satisfies the unilateral relations
u, <go,+¢&, <0, (u,—g)(o, +¢,)=0¢,,€0,(u,) onls (527)

The relations (5.27) model a frictionless contact with a foundation made of
a rigid body covered by a layer made of elastic material. Penetration is
restricted by the relation u, < g, where g is non-negative valued and it rep-
resents the thickness of the elastic layer. When there is penetration and the
normal displacement does not reach the bound g, the contact is described
by a multi-valued normal compliance condition: —a, = &, € O, (u,). We
assume the potential function i/, : I's x R — R has the properties stated
in (5.19).
With V from (5.4), we define the set

K= {v € Vly, <gon F3}. (5.28)
We define y, to be the normal component trace operator as in Example

51. Let ¢, =4, /2 \Where 2,>0 is the smallest eigenvalue of the eigenvalue
problem

ucv, J g(u) - g(v) dx = /IJ uv,da YvelV.
Q I,
Then
Vullpzry) < allvlly Vvev. (5.29)

The weak formulation of the contact problem defined by (5.8),
(5.1)-(5.3), (5.26) and (5.27) is to find a displacement field # € K such that

(Fe(u).e(v—u)), + Jr VO (u;vo—u,) da > (f.v—u),.., VY veK.

(5.30)
By Theorem 4.16, this hemivariational inequality has a unique solution
under the stated assumptions on the problem data and oy <Amyr.
When (5.11) is satisfied, the problem (5.30) admits an equivalent mini-
mization principle:
E(u) <E(v) VveV,
where the energy functional is defined by the formula

E(v) = Fa(v) +j W) da—(f. )y ey

I's

In particular, in the case (5.13) for a linearly elastic material, the energy
functional is
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(Ce(u). 2(v))q +j W) da—(f. ).y

I3

N =

E(v) =

This concludes the third example. O
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