
Nonlinear Analysis: Real World Applications 54 (2020) 103114

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Minimization principles for elliptic hemivariational inequalities

Weimin Han
Department of Mathematics & Program in Applied Mathematical and Computational Sciences (AMCS),
University of Iowa, Iowa City, IA 52242-1410, USA

a r t i c l e i n f o

Article history:
Received 9 November 2019
Received in revised form 10 February
2020
Accepted 12 February 2020
Available online 24 February 2020

Keywords:
Hemivariational inequality
Variational–hemivariational
inequality
Minimization principle

a b s t r a c t

In this paper, we explore conditions under which certain elliptic hemivariational
inequalities permit equivalent minimization principles. It is shown that for an
elliptic variational–hemivariational inequality, under the usual assumptions that
guarantee the solution existence and uniqueness, if an additional condition is satis-
fied, the solution of the variational–hemivariational inequality is also the minimizer
of a corresponding energy functional. Then, two variants of the equivalence result
are given, that are more convenient to use for applications in contact mechanics
and in numerical analysis of the variational–hemivariational inequality. When the
convex terms are dropped, the results on the elliptic variational–hemivariational
inequalities are reduced to that on “pure” elliptic hemivariational inequalities.
Finally, two representative examples from contact mechanics are discussed to
illustrate application of the theoretical results.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneering work of Panagiotopoulos in early 1980s (cf. [1]), hemivariational inequalities have
been shown to be a powerful mathematical tool in modeling and studying application problems where
non-smooth, non-monotone and multi-valued relations among different physical quantities are involved.
Throughout the years, a rich collection of references has emerged on hemivariational inequalities. The
mathematical theory of hemivariational inequalities is documented in detail in some research monographs
(e.g., [2–7]) and in many journal articles. Since no closed-form solution formula can be expected for a
hemivariational inequality arising in applications, numerical methods are needed to solve hemivariational
inequalities. An early comprehensive reference on the numerical solution of hemivariational inequalities is [8]
where convergence of finite element solutions and solution algorithms are discussed. Starting with [9], a series
of recent papers are devoted to derivation of optimal order error bounds for finite element solutions of various
hemivariational inequalities, e.g. [10–15]. The reference [16] provides an optimal order error bound for virtual
element solutions of hemivariational inequalities in contact mechanics.

Because non-convex terms are present, in general, a hemivariational inequality represents a substation-
arity condition and not an optimality condition (cf. [2]). Nevertheless, non-smooth optimization methods

E-mail address: weimin-han@uiowa.edu.

https://doi.org/10.1016/j.nonrwa.2020.103114
1468-1218/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.nonrwa.2020.103114
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nonrwa.2020.103114&domain=pdf
mailto:weimin-han@uiowa.edu
https://doi.org/10.1016/j.nonrwa.2020.103114


2 W. Han / Nonlinear Analysis: Real World Applications 54 (2020) 103114

have been applied to find substationary points of discrete potential functions of a hemivariational inequality
(cf. [17,18]). In [19], a hemivariational inequality is studied numerically approximated through an interme-
diate optimization problem. The aim of this paper is to explore the possibility of existence of equivalent
minimization problems for some elliptic hemivariational inequalities. Existence of equivalent minimization
principles justifies the use of optimization techniques to solve hemivariational inequalities. In this paper,
a hemivariational inequality refers to an inequality problem involving the Clarke generalized directional
derivative or generalized subdifferential of a locally Lipschitz continuous functional that is generally not
convex. When both nonsmooth convex and nonconvex functionals are present in the formulation, the
hemivariational inequality is also called a variational–hemivariational inequality in the literature. In the case
where no nonsmooth convex functionals are present in the formulation, we have a “pure” hemivariational
inequality.

The organization of the rest of the paper is as follows. In Section 2, basic notions and results are recalled on
convex subdifferentials, the generalized directional derivative and generalized subdifferential in the sense of
Clarke, and on their properties. In Section 3, under certain conditions, the solution of an elliptic variational–
hemivariational inequality is shown to be the minimizer of a minimization problem. In Section 4, the
equivalence result in Section 3 is rephrased for elliptic variational–hemivariational inequalities in forms more
convenient to use in applications or when their numerical approximation is concerned. When the nonsmooth
convex functionals are dropped, the results for elliptic variational–hemivariational inequalities are reduced to
those for “pure” elliptic hemivariational inequalities, and we state one such representative result in Section 4.
Finally in Section 5, we discuss two representative examples from contact mechanics to illustrate application
of the theoretical results.

2. Preliminaries

Study of hemivariational inequalities makes use of the generalized directional derivative and generalized
subdifferential in the sense of Clarke [20,21] that we recall here. Let V be a real Banach space, and let
Ψ : V → R be locally Lipschitz continuous. Then the generalized (Clarke) directional derivative of Ψ at
u ∈ V in the direction v ∈ V is

Ψ0(u; v) := lim sup
w→u, λ↓0

Ψ(w + λv) − Ψ(w)
λ

.

The generalized subdifferential of Ψ at u ∈ V is

∂Ψ(u) :=
{
η ∈ V ∗ | Ψ0(u; v) ≥ ⟨η, v⟩ ∀ v ∈ V

}
.

For variational–hemivariational inequalities, we also need the notion of convex subdifferential. Let
Φ : V → R ∪ {+∞} be proper, convex and l.s.c. (lower semicontinuous). Then the (convex) subdifferential
of Φ at u ∈ V is

∂Φ(u) := {ξ ∈ V ∗ | Φ(v) − Φ(u) ≥ ⟨ξ, v − u⟩ ∀ v ∈ V } .

If ∂Φ(u) is non-empty, then any element ξ ∈ ∂Φ(u) is called a subgradient of Φ at u.
Basic properties of the generalized directional derivative and the generalized gradient are recorded in the

next two propositions (cf. [21,22]).

Proposition 2.1. Assume that Ψ : V → R is a locally Lipschitz function. Then the following statements are
valid.

(i) For every u ∈ V , the function V ∋ v ↦→ Ψ0(u; v) ∈ R is positively homogeneous and subadditive,
i.e., Ψ0(u;λ v) = λΨ0(u; v) for all λ ≥ 0, v ∈ V , and Ψ0(u; v1 + v2) ≤ Ψ0(u; v1) + Ψ0(u; v2) for all v1,
v2 ∈ V , respectively.



W. Han / Nonlinear Analysis: Real World Applications 54 (2020) 103114 3

(ii) For every v ∈ V , we have Ψ0(u; v) = max {⟨η, v⟩ | η ∈ ∂Ψ(u)}.
(iii) The function V × V ∋ (u, v) ↦→ Ψ0(u; v) ∈ R is upper semi-continuous, i.e., for all u, v ∈ V ,

{un}, {vn} ⊂ V such that un → u and vn → v in V , we have lim supΨ0(un; vn) ≤ Ψ0(u; v).
(iv) For every u ∈ V , the generalized gradient ∂Ψ(u) is a nonempty, convex, and weakly ∗ compact subset

of V ∗.
(v) The graph of the generalized gradient ∂Ψ is closed in V ×V ∗

w∗ topology, i.e., if {un} ⊂ V and {ηn} ⊂ V ∗

are sequences such that ηn ∈ ∂Ψ(un) and un → u in V , ηn → η weakly∗ in V ∗, then η ∈ ∂Ψ(u).
(vi) If Ψ : V → R is convex, then the subdifferential ∂Ψ(u) in the sense of Clarke at any u ∈ V coincides

with the convex subdifferential ∂Ψ(u).

Because of Proposition 2.1(vi), we use the same symbol ∂ for the subdifferential both in the sense of
Clarke and in convex analysis.

Proposition 2.2. Let Ψ ,Ψ1,Ψ2 : V → R be locally Lipschitz functions. Then:

(i) (scalar multiples) The equality ∂(λΨ)(u) = λ∂Ψ(u) holds, for all λ ∈ R and all u ∈ V .
(ii) (sum rules) The inclusion

∂(Ψ1 + Ψ2)(u) ⊆ ∂Ψ1(u) + ∂Ψ2(u) ∀u ∈ V (2.1)

holds, or equivalently,

(Ψ1 + Ψ2)0(u; v) ≤ Ψ0
1 (u; v) + Ψ0

2 (u; v) ∀u, v ∈ V. (2.2)

Also needed is a lower bound result for a convex function (cf. [23, Lemma 11.3.5] or [24, Prop. 5.2.25]).

Lemma 2.3. Let V be a normed space and let Φ : V → R ∪ {+∞} be proper, convex and l.s.c. Then there
exist a continuous linear functional ℓΦ ∈ V ∗ and a constant c ∈ R such that

Φ(v) ≥ ℓΦ(v) + c ∀ v ∈ V.

Consequently, there exist two constants c0 and c1 such that

Φ(v) ≥ c0 + c1∥v∥V ∀ v ∈ V. (2.3)

We quote a result for a sufficient and necessary condition on strong convexity of a locally Lipschitz
continuous function, characterized by the strong monotonicity of its generalized subdifferential in the sense
of Clarke.

Lemma 2.4. Let V be a real Banach space, K be a non-empty convex set in V , and g : K → R be locally
Lipschitz continuous. Then g is strongly convex on K with a constant α > 0, i.e.,

g(λu+ (1 − λ) v) ≤ λ g(u) + (1 − λ) g(v) − αλ (1 − λ) ∥u− v∥2
V ∀u, v ∈ K, ∀λ ∈ [0, 1],

if and only if ∂g is strongly monotone on K with a constant 2α, i.e.,

⟨ξ − η, u− v⟩ ≥ 2α ∥u− v∥2
V ∀u, v ∈ K, ξ ∈ ∂g(u), η ∈ ∂g(v).

This result is stated in [25, Proposition 3.1] for K open, a condition that can be removed.
From now on, we will assume V to be a real Hilbert space. As a corollary of Lemmas 2.3 and 2.4, we have

the next result.
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Proposition 2.5. Let V be a real Hilbert space, K be a non-empty closed convex set in V , and g : K → R
be a locally Lipschitz continuous and strongly convex functional on K with a constant α > 0. Then there exist
two constants c0 and c1 such that

g(v) ≥ α ∥v∥2
V + c0 + c1∥v∥V ∀ v ∈ K. (2.4)

Consequently, g(·) is coercive on K.

Proof. It is easy to see that g : K → R is strongly convex on K with a constant α > 0 if and only if the
functional g(v) − α ∥v∥2

V is convex on K. Consider the extended functional

Φ(v) =
{
g(v) − α ∥v∥2

V , v ∈ K,
+∞, v ∈ V \K,

which is proper, convex and l.s.c. By Lemma 2.3, we have two constants c0 and c1 such that (2.3) is valid.
Therefore, (2.4) holds. Since α > 0, the coercivity of g(·) on K follows from (2.4). ■

Note that strong convexity of a functional implies its strict convexity.
Finally, recall that (cf. [26, Section 41.3]) an operator A : V → V ∗ is called a potential operator if there

exists a Gâteaux differentiable functional FA : V → R such that A = F ′
A; the functional FA is called a

potential of A. It can be shown that if A is hemicontinuous, then A is a potential operator if and only if

FA(u) − FA(v) =
∫ 1

0
⟨A(v + t (u− v)), u− v⟩ dt ∀u, v ∈ V,

where
FA(v) =

∫ 1

0
⟨A(t v), v⟩ dt. (2.5)

In this case, (2.5) defines a potential of A, and any other potential of A differs from FA by a constant. In
addition, if A is Gâteaux differentiable and the mapping

(t, s) ↦→ ⟨A′(v1 + t v2 + s v3) v4, v5⟩

is continuous on [0, 1] × [0, 1] for all vi ∈ V , 1 ≤ i ≤ 5, then A is potential if and only if

⟨A′(u) v, w⟩ = ⟨A′(u)w, v⟩ ∀u, v, w ∈ V.

In particular, A ∈ L(V, V ∗) is a potential operator if and only if it is symmetric:

⟨Av1, v2⟩ = ⟨Av2, v1⟩ ∀ v1, v2 ∈ V. (2.6)

Moreover, under the symmetry condition (2.6), a potential functional is

FA(v) = 1
2 ⟨Av, v⟩, v ∈ V.

Throughout the paper, we will use c to denote a generic positive constant whose value may change from
one place to another but it is independent of other quantities of concern.

3. Minimization principle for a variational–hemivariational inequality

Consider the elliptic variational–hemivariational inequality:

Problem 3.1. Find u ∈ K such that

⟨Au, v − u⟩ + Φ(v) − Φ(u) + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (3.1)
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In the study of Problem 3.1, we introduce the following assumptions on the problem data.
H(K) V is a real Hilbert space, K is a non-empty, closed and convex set in V .
H(A) A : V → V ∗ is Lipschitz continuous and strongly monotone:

⟨Av1 −Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥2
V ∀ v1, v2 ∈ V. (3.2)

H(Φ) Φ : V → R is convex and continuous.
H(Ψ) Ψ : V → R is locally Lipschitz continuous, and there exist non-negative constants c0, c1, αΨ such that

∥∂Ψ(v)∥V ∗ ≤ c0 + c1∥v∥V ∀ v ∈ V, (3.3)
Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤ αΨ∥v1 − v2∥2

V ∀ v1, v2 ∈ V. (3.4)

H(f) f ∈ V ∗.
Here (3.3) is understood in the sense that

∥η∥V ∗ ≤ c0 + c1∥v∥V ∀ v ∈ V, ∀ η ∈ ∂Ψ(v).

It is known that under the assumptions H(K), H(A), H(Φ), H(Ψ), H(f) and the smallness condition

αΨ < mA, (3.5)

Problem 3.1 has a unique solution. This result, in a somewhat different form, was first proved in [27]; see
also [13].

Remark 3.2. The assumptions on the data are stated in a form more accessible and more convenient to
verify in applications, although from the theoretical view-point, they are somewhat stronger than necessary.
In references on solution existence and uniqueness studies, e.g. [27], the operator A is assumed to be
pseudomonotone and strongly monotone, whereas Φ : V → R ∪ {+∞} is assumed to be proper, convex
and l.s.c. We note that the assumption H(A) is easy to verify and it implies that the operator A is
pseudomonotone and strongly monotone. With application problems in mind, we consider nonsmooth convex
functionals of the form Φ + IK where Φ : V → R is convex and l.s.c., and IK is the indicator function of
the convex set K. Note that a l.s.c. convex function Φ : V → R on the Hilbert space V is continuous [28].
Hence, we introduce the assumption H(Φ).

We also comment that in the well-posedness theory for variational–hemivariational inequalities such as
Problem 3.1, it is common to assume that V is a reflexive Banach space. In this paper, however, we explore
existence of minimization principles for variational–hemivariational inequalities and assume V is a Hilbert
space.

We note that (3.4) is equivalent to the following (cf. [7, p. 124]):

⟨η1 − η2, v1 − v2⟩ ≥ −αΨ∥v1 − v2∥2
V ∀ v1, v2 ∈ V, η1 ∈ ∂Ψ(v1), η2 ∈ ∂Ψ(v2). (3.6)

Let us explore conditions under which Problem 3.1 has an equivalent minimization principle. For this
purpose, we further assume A : V → V ∗ to be a potential operator with a potential FA.

Problem 3.3. Find u ∈ K such that
u = argmin

v∈K
E(v) (3.7)

where
E(v) = FA(v) + Φ(v) + Ψ(v) − ⟨f, v⟩, v ∈ V. (3.8)
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We first present some properties on the energy functional E(·).

Proposition 3.4. Assume H(K), H(A), H(Φ), H(Ψ), H(f), (3.5), and assume A : V → V ∗ is a potential
operator with the potential FA(·) defined in (2.5). Then E(·) is locally Lipschitz and strongly convex on V .
Moreover, E(·) is coercive on K.

Proof. Since each term on the right side of (3.8) in defining E(·) is locally Lipschitz on V , so is E(·). For
the generalized subdifferential of E(·), we repeatedly apply the summation rule (2.1), and note that for a
locally Lipschitz continuous convex functional, the generalized subdifferential and the convex subdifferential
coincide. As a result, we have

∂E(v) ⊂ Av + ∂Φ(v) + ∂Ψ(v) − f ∀ v ∈ V. (3.9)

For the strong convexity of E(·), by Lemma 2.4, it is sufficient to prove the strong monotonicity of ∂E(·).
For any v1, v2 ∈ V , let ζi ∈ ∂E(vi), i = 1, 2. Write

ζi = Avi + ξi + ηi − f, ξi ∈ ∂Φ(vi), ηi ∈ ∂Ψ(vi).

Then we have

⟨ζ1 − ζ2, v1 − v2⟩ = ⟨Av1 −Av2, v1 − v2⟩ + ⟨ξ1 − ξ2, v1 − v2⟩ + ⟨η1 − η2, v1 − v2⟩
≥ mA∥v1 − v2∥2

V + 0 − αΨ∥v1 − v2∥2
V

= (mA − αΨ ) ∥v1 − v2∥2
V .

By (3.5), mA − αΨ > 0. Hence, ∂E(·) is strongly monotone and thus E(·) is strongly convex on V .
Applying Proposition 2.5, we know that E(·) is coercive on K. ■

Now we are ready to present the main result of the section, on the equivalence between Problems 3.1 and
3.3.

Theorem 3.5. Assume H(K), H(A), H(Φ), H(Ψ), H(f), (3.5), and assume that A : V → V ∗ is a potential
operator with the potential FA(·). Then Problem 3.3 has a unique solution which is also the unique solution
of Problem 3.1.

Proof. By Proposition 3.4, E(·) is continuous, strictly convex and coercive on K. Therefore, Problem 3.3
has a unique solution u ∈ K (cf. [23, §3.3.2]). This solution is characterized by the condition

0 ∈ ∂ (E(u) + IK(u)) ⊂ ∂E(u) + ∂IK(u),

where IK(·) is the indicator function of the set K. By (3.9), this condition is equivalent to (3.1), i.e., u is a
solution of Problem 3.1. Since Problem 3.1 admits a unique solution, we conclude that Problem 3.3 has a
unique solution which is also the unique solution of Problem 3.1. ■

4. Some variants

We provide some variants of the theoretical results shown in the previous section.
First, instead of Problem 3.1, we consider its following variant (cf. [11]).

Problem 4.1. Find u ∈ K such that

⟨Au, v − u⟩ + Φ(γΦv) − Φ(γΦu) + Ψ0(γΨu; γΨv − γΨu) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.1)
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The corresponding minimization problem is

Problem 4.2. Find u ∈ K such that
u = argmin

v∈K
E(v) (4.2)

where
E(v) = FA(v) + Φ(γΦv) + Ψ(γΨv) − ⟨f, v⟩. (4.3)

We keep the assumptions H(K), H(A), and modify H(Φ), H(Ψ) as follows.
H(Φ)′ VΦ is a real Banach space, γΦ ∈ L(V ;VΦ), Φ : VΦ → R is convex and continuous.
H(Ψ)′ VΨ is a real Banach space, γΨ ∈ L(V ;VΨ ), Ψ : VΨ → R is locally Lipschitz continuous, and there
exist constants c0, c1, αΨ such that

∥∂Ψ(v)∥V ∗
Ψ

≤ c0 + c1∥v∥VΨ ∀ v ∈ VΨ , (4.4)
Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤ αΨ∥v1 − v2∥2

VΨ
∀ v1, v2 ∈ VΨ . (4.5)

An analogue of Theorem 3.5 is the following.

Theorem 4.3. Assume H(K), H(A), H(Φ)′, H(Ψ)′, and H(f). In addition assume that A : V → V ∗ is a
potential operator with the potential FA(·) and

αΨ∥γΨ∥2 < mA. (4.6)

Then Problem 4.2 has a unique solution which is also the unique solution of Problem 4.1.

Now consider another variant of Problem 3.1. In most applications, a hemivariational inequality describes
a physical problem on a spatial domain in a finite-dimensional Euclidean space. Denote by ∆ the domain or
its sub-domain, or its boundary or part of the boundary. Let I∆ stand for the integration over ∆. Instead
of the space VΨ , we will need a space Vψ and a linear operator γψ from V to Vψ. Assume elements from the
space Vψ are Rm-valued functions, for some positive integer m.

Problem 4.4. Find u ∈ K such that

⟨Au, v − u⟩ + Φ(v) − Φ(u) + I∆(ψ0(γψu; γψv − γψu)) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.7)

The corresponding minimization problem is

Problem 4.5. Find u ∈ K such that
u = argmin

v∈K
E(v) (4.8)

where
E(v) = FA(v) + Φ(v) + I∆(ψ(γψv)) − ⟨f, v⟩. (4.9)

In the study of Problems 4.4 and 4.5, we will replace the assumption H(Ψ) by H(ψ):
H(ψ) Vψ is a real Banach space; γψ ∈ L(V ;Vψ); ψ : ∆×Rm → R; ψ(·, v) is measurable on ∆ for all v ∈ Rm;
ψ(·, v(·)) ∈ L1(∆) for all v ∈ Vψ; ψ(x, ·) is locally Lipschitz continuous on Rm for a.e. x ∈ ∆, and there exist
non-negative constants c̃0, c̃1, αψ such that

|∂ψ(v)|Rm ≤ c̃0 + c̃1|v|Rm ∀ v ∈ Rm, (4.10)
ψ0(v1; v2 − v1) + ψ0(v2; v1 − v2) ≤ αψ|v1 − v2|2Rm ∀ v1, v2 ∈ Rm. (4.11)

Denote by c∆ > 0 the smallest constant in the inequality

I∆(|γψv|2Rm) ≤ c2
∆∥v∥2

V ∀ v ∈ V. (4.12)
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Define the functional
Ψ(v) = I∆(ψ(γψv)), v ∈ V.

Then ([6, Section 3.3])
Ψ0(u; v) ≤ I∆(ψ0(γψu; γψv)) ∀u, v ∈ V. (4.13)

Thus, for u, v ∈ V , by using (4.10) and (4.12), we have

Ψ0(u; v) ≤ I∆((c̃0 + c̃1|γψu|Rm) |γψv|Rm)

≤
(
c̃0

√
|∆| + c̃1∥γψu∥L2(∆)

)
∥γψv∥L2(∆)

≤
(
c̃0c∆

√
|∆| + c̃1c

2
∆∥u∥V

)
∥v∥V ,

i.e., (3.3) is satisfied with c0 = c̃0c∆
√

|∆|, c1 = c̃1c
2
∆. Similarly, for v1, v2 ∈ V , by using (4.11) and (4.12),

Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤ I∆(ψ0(γψv1; γψv2 − γψv1) + ψ0(γψv2; γψv1 − γψv2))
≤ I∆(αψ|γψ(v1 − v2)|2Rm)
≤ αψc

2
∆∥v1 − v2∥2

V ,

i.e., (3.4) is satisfied with αΨ = αψc
2
∆.

With the above preparations, we derive from Theorem 3.5 the next result.

Theorem 4.6. Assume H(K), H(A), H(Φ), H(ψ), H(f), A : V → V ∗ is a potential operator with the
potential FA(·), and αψc2

∆ < mA. Then Problems 4.4 and 4.5 are equivalent in the sense that they have the
same unique solution.

We now consider the particular case of hemivariational inequalities, i.e., the case where Φ ≡ 0.
Corresponding to Problems 3.1 and 3.3, we consider the problems:

Problem 4.7. Find u ∈ K such that

⟨Au, v − u⟩ + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.14)

Problem 4.8. Find u ∈ K such that
u = argmin

v∈K
E(v) (4.15)

where
E(v) = FA(v) + Ψ(v) − ⟨f, v⟩. (4.16)

The counterpart of Theorem 3.5 is the next result.

Theorem 4.9. Assume H(K), H(A), H(Ψ), H(f), (3.5), and that A : V → V ∗ is a potential operator with
the potential FA(·). Then Problem 4.8 has a unique solution which is also the unique solution of Problem 4.7.

As another particular case, consider Problems 4.4 and 4.5 with Φ = 0.

Problem 4.10. Find u ∈ K such that

⟨Au, v − u⟩ + I∆(ψ0(γψu; γψv − γψu)) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.17)
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Problem 4.11. Find u ∈ K such that
u = argmin

v∈K
E(v) (4.18)

where
E(v) = FA(v) + I∆(ψ(γψv)) − ⟨f, v⟩. (4.19)

Then from Theorem 4.6, we have the following equivalence result.

Theorem 4.12. Assume H(K), H(A), H(ψ), H(f), αψc2
∆ < mA, and that A : V → V ∗ is a potential

operator with the potential FA(·). Then Problems 4.10 and 4.11 are equivalent in the sense that they have the
same unique solution.

Note that we can get similar results for further special cases where K = V . Since it is trivial to deduce
results for such further special cases, we omit the detail.

5. Applications in contact mechanics

We illustrate application of the theoretical results developed in previous sections on two representative
contact problems between a linear elastic body and a rigid foundation in this section. The contact problems
are studied in e.g. [29]. Let Ω represent the reference configuration of the elastic body. We assume Ω is
open, bounded and connected in Rd (d ≤ 3) with a Lipschitz continuous boundary Γ = ∂Ω . Then the unit
outward normal vector ν is defined a.e. on Γ .

The displacement is a vector in Rd, whereas the stress and strain tensors belong to the space Sd of second
order symmetric tensors on Rd. Over the spaces Rd and Sd, we use “·” and “| · |” for the canonical inner
products and the induced norms. The linearized strain tensor associated with a displacement field u is
denoted by ε(u). For a vector field v, we use vν := v · ν and vτ := v − vνν for the normal and tangential
components of v on Γ . Similarly, for the stress field σ, its normal and tangential components on the boundary
are defined as σν := (σν) · ν and στ := σν − σνν, respectively.

Let C : Ω × Sd → Sd be the elasticity operator of the elastic body. As usual in the literature, we assume
C = (Cijkl)1≤i,j,k,l≤d is symmetric, bounded, and pointwise stable:

Cijkl = Cjikl = Cklij , 1 ≤ i, j, k, l ≤ d, (5.1)
Cijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d, (5.2)
(Cϵ) · ϵ ≥ mC|ϵ|2, mC > 0, ∀ ϵ ∈ Sd. (5.3)

Then the elastic constitutive law is
σ = Cε(u) in Ω . (5.4)

To describe boundary conditions for the contact problem, we partition the boundary Γ into three disjoint
and measurable parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0 and meas (Γ3) > 0. We assume the body is fixed
on Γ1, is in equilibrium under the action of a total body force of density f0 in Ω and a surface traction of
density f2 on Γ2, and is in potential contact on Γ3 with the rigid foundation. Then the equilibrium equation
of the body is

Div σ + f0 = 0 in Ω . (5.5)

The homogeneous displacement boundary condition is specified on Γ1:

u = 0 on Γ1, (5.6)
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and the traction boundary condition is specified on Γ2:

σν = f2 on Γ2. (5.7)

Different contact conditions on Γ3 will lead to different hemivariational inequalities.
To study the contact problems, we will use the space

V =
{

v ∈ H1(Ω ;Rd) | v = 0 a.e. on Γ1
}

(5.8)

and its subspace/subset for the displacement fields. Since meas (Γ1) > 0, Korn’s inequality (cf. [30]) implies
that V is a Hilbert space with the inner product

(u, v)V :=
∫
Ω

ε(u) · ε(v) dx, u, v ∈ V,

and the associated norm ∥ · ∥V is equivalent to the standard H1(Ω ;Rd)-norm over V . For v ∈ V , we use the
same symbol v for its trace on Γ . We use Q = L2(Ω ;Sd) as the space for the stress and strain fields; this is
a Hilbert space with the canonical inner product

(σ, τ )Q :=
∫
Ω

σij(x) τij(x) dx

and the associated norm ∥ · ∥Q.
We assume on the densities of body forces and surface tractions that

f0 ∈ L2(Ω ;Rd), f2 ∈ L2(Γ2;Rd) (5.9)

and define f ∈ V ∗ by the formula

⟨f , v⟩V ∗×V = (f0, v)L2(Ω ;Rd) + (f2, v)L2(Γ2;Rd) ∀ v ∈ V. (5.10)

Example 5.1. In the first example, we consider a bilateral contact problem with friction. The contact
boundary conditions are

uν = 0, −στ ∈ ∂ψτ (uτ ) on Γ3. (5.11)

The feature of bilateral contact is reflected by the condition uν = 0. We assume the potential function
ψτ : Γ3 × Rd → R has the following properties.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) ψτ (·, z) is measurable on Γ3 for all z ∈ Rd and ψτ (·,0) ∈ L1(Γ3);
(b) ψτ (x, ·) is locally Lipschitz on Rd for a.e. x ∈ Γ3;
(c) |∂ψτ (x, z)| ≤ c̄0 + c̄1∥z∥ for a.e. x ∈ Γ3,

for all z ∈ Rd with c̄0, c̄1 ≥ 0;
(d) ψ0

τ (x, z1; z2 − z1) + ψ0
τ (x, z2; z1 − z2) ≤ αψτ ∥z1 − z2∥2

for a.e. x ∈ Γ3, all z1, z2 ∈ Rd with αψτ ≥ 0.

(5.12)

With V from (5.8), we define the subspace

V1 = {v ∈ V | vν = 0 on Γ3} . (5.13)

We take Vψ = L2(Γ3;Rd), m = d, and let γψ : V → Vψ be the tangential component trace operator: γψv = vτ
for v ∈ V . Then γψ ∈ L(V ;Vψ). Let cψ = λ

−1/2
1 where λ1 > 0 is the smallest eigenvalue of the eigenvalue

problem
u ∈ V1,

∫
Ω

ε(u)·ε(v) dx = λ

∫
Γ3

uτ ·vτda ∀ v ∈ V1.
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Then
∥vτ∥L2(Γ3;Rd) ≤ cψ∥v∥V ∀ v ∈ V1. (5.14)

The weak formulation of the contact problem defined by (5.5)–(5.7) and (5.11) is the following (note that
V1 is a subspace).

Problem 5.2. Find a displacement field u ∈ V1 such that

(Cε(u), ε(v))Q +
∫
Γ3

ψ0(uτ ; vτ ) da ≥ ⟨f , v⟩V ∗×V ∀ v ∈ V1. (5.15)

Problem 5.2 has a unique solution under the stated assumptions on the problem data and

αψτ < λ1mC.

Let us apply Theorem 4.12 and first we examine the assumptions of the theorem. The set V1 defined by
(5.13) obviously satisfies H(K). The operator A : V → V ∗ defined by

⟨Au, v⟩ = (Cε(u), ε(v))Q

satisfies H(A). Moreover, A is symmetric, thanks to (5.1)–(5.3). So A : V → V ∗ is a potential operator with
the potential

FA(v) = 1
2 (Cε(v), ε(v))Q, v ∈ V.

The assumption H(ψ) follows from (5.12), and H(f) is valid due to (5.9). Note that mA = mC, and αψτ

is given in (5.12)(d). Moreover, c∆ = cψ = λ
−1/2
1 . Therefore, under the stated conditions, Problem 5.2 is

equivalent to the minimization problem:

Problem 5.3. Find a displacement field u ∈ V1 such that

E(u) ≤ E(v) ∀ v ∈ V1,

where the energy functional is

E(v) = 1
2 (Cε(u), ε(v))Q +

∫
Γ3

ψ(vτ ) da− ⟨f , v⟩V ∗×V .

This completes the first example. □

Example 5.4. Consider a static frictionless unilateral contact problem between a linear elastic body and
a rigid foundation. On the contact boundary Γ3, we assume the contact is frictionless:

στ = 0 on Γ3, (5.16)

and satisfies the unilateral relations

uν ≤ g, σν + ξν ≤ 0, (uν − g)(σν + ξν) = 0, ξν ∈ ∂ψ(uν) on Γ3. (5.17)

The relations (5.17) model a frictionless contact with a foundation made of a rigid body covered by a layer
made of elastic material. Penetration is restricted by the relation uν ≤ g, where g is non-negative valued
and it represents the thickness of the elastic layer. When there is penetration and the normal displacement
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does not reach the bound g, the contact is described by a multi-valued normal compliance condition:
−σν = ξν ∈ ∂ψ(uν). We assume the potential function ψ : Γ3 × R → R has the following properties:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) ψ(·, z) is measurable on Γ3 for all z ∈ R and ψ(·, 0) ∈ L1(Γ3);
(b) ψ(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;
(c) |∂ψ(x, z)| ≤ c̄0 + c̄1|z| for a.e. x ∈ Γ3,

for all z ∈ R with c̄0, c̄1 ≥ 0;
(d) ψ0(x, z1; z2 − z1) + ψ0(x, z2; z1 − z2) ≤ αψ|z1 − z2|2

for a.e. x ∈ Γ3, all z1, z2 ∈ R with αψ ≥ 0.

(5.18)

With V from (5.8), we define the set

K = {v ∈ V | vν ≤ g on Γ3} . (5.19)

We take Vψ = L2(Γ3), m = 1, and let γψ : V → Vψ be the normal component trace operator: γψv = vν
for v ∈ V . Then γψ ∈ L(V ;Vψ). Let cψ = λ

−1/2
2 where λ2 > 0 is the smallest eigenvalue of the eigenvalue

problem
u ∈ V,

∫
Ω

ε(u)·ε(v) dx = λ

∫
Γ3

uνvνda ∀ v ∈ V.

Then
∥vν∥L2(Γ3) ≤ cψ∥v∥V ∀ v ∈ V. (5.20)

The weak formulation of the contact problem defined by (5.5)–(5.7), (5.16) and (5.17) is the following
(cf. [29]).

Problem 5.5. Find a displacement field u ∈ K such that

(Cε(u), ε(v − u))Q +
∫
Γ3

ψ0(uν ; vν − uν) da ≥ ⟨f , v − u⟩V ∗×V ∀ v ∈ K. (5.21)

Problem 5.5 has a unique solution under the stated assumptions on the problem data and

αψ < λ2mC.

Let us apply Theorem 4.12 and first we examine the assumptions of the theorem. The set K defined by
(5.19) obviously satisfies H(K). The operator A : V → V ∗ defined by

⟨Au, v⟩ = (Cε(u), ε(v))Q

satisfies H(A) and is symmetric, thanks to (5.1)–(5.3). The assumption H(ψ) follows from (5.18), and H(f)
is valid due to (5.9). Note that mA = mC, and αψ is given in (5.18)(d). Moreover, c∆ = cψ = λ

−1/2
2 .

Therefore, under the stated conditions, Problem 5.5 is equivalent to the minimization problem:

Problem 5.6. Find a displacement field u ∈ K such that

E(u) ≤ E(v) ∀ v ∈ K,

where the energy functional is

E(v) = 1
2 (Cε(u), ε(v))Q +

∫
Γ3

ψ(vν) da− ⟨f , v⟩V ∗×V .

This concludes the second example. □
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