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Abstract

This paper is devoted to numerical analysis of general finite element approximations to stationary variational-

hemivariational inequalities with or without constraints. The focus is on convergence under minimal solution regularity

and error estimation under suitable solution regularity assumptions that cover both internal and external approximations

of the stationary variational-hemivariational inequalities. A framework is developed for general variational-hemivariational

inequalities, including a convergence result and a Céa type inequality. It is illustrated how to derive optimal order error

estimates for linear finite element solutions of sample problems from contact mechanics.
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1. Introduction

Since the early 1980s, hemivariational inequalities have been introduced, analyzed and applied to a variety
of engineering problems involving non-monotone and possibly multi-valued constitutive or interface laws for
deformable bodies. Studies of hemivariational inequalities can be found in the comprehensive references [1–7].
The book by Haslinger et al. [3] is devoted to the finite element approximations of hemivariational inequalities,
where convergence of the numerical methods is discussed. In recent years, efforts have been made to derive
error estimates. In particular, in the work by Han et al. [8], a variational-hemivariational inequality is discussed
theoretically and numerically, and an optimal order error estimate is derived for the linear finite element solution
of a hemivariational or variational-hemivariational inequality under appropriate solution regularity assumptions.
This is the first paper in the literature where an optimal order error estimate has been proven for a finite element
method to solve a hemivariational or variational-hemivariational inequality. In the work by Barboteu et al. [9],
numerical analysis is performed for solving a hyperbolic hemivariational inequality arising in dynamic frictional
contact, and an optimal order error estimate with respect to both the spatial mesh-size and the temporal step-
size is derived for linear finite element solutions of the problem (see also the work by Bartosz [10]). In the work
by Han et al. [11], error analysis is presented for internal numerical approximations of general hemivariational
inequalities, whereas in the work by Han et al. [12], error analysis is given for internal numerical approximations
of more general variational-hemivariational inequalities. In a recent paper [13], convergence and error analysis
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for both internal and external approximations of elliptic hemivariational inequalities are considered. The pur-
pose of this paper is to consider numerical approximations of stationary variational-hemivariational inequality
problems by the finite element method, extending the relevant results reported [8, 11–13].

Variational-hemivariational inequalities are inequality problems where both convex and non-convex func-
tions are involved. Interest in variational-hemivariational inequalities arises in the study of various problems
in mechanics and engineering applications. They were first studied by Naniewicz and Panagiotopoulos [6,7].
Recently, a new variational-hemivariational inequality has been studied, including its numerical approxima-
tions, in the work by Han et al. [8], and a more general variational-hemivariational inequality is analyzed by
Migórski et al. [14]. Solution existence and uniqueness have been proved, together with a result on the con-
tinuous dependence of the solution on the data. The variational-hemivariational inequalities studied by Han et
al. [8] and Migórski et al. [14] are motivated by applications in contact mechanics. For the general variational-
hemivariational inequality studied by Migórski et al. [14], we show the convergence of numerical solutions
by internal or external approximation schemes under a minimal solution regularity condition, and provide Céa
type inequalities which are the starting point for error estimation. Then, for some variational-hemivariational
arising in contact mechanics, we derive the optimal order error estimates for the linear finite element solutions
by applying Céa type inequalities.

Here is a brief description of the remaining sections. In Section 2 we review some basic notions
needed in the study of variational-hemivariational inequalities. In Section 3, we introduce a general
variational-hemivariational inequality. In Section 4 we describe numerical methods for solving the variational-
hemivariational inequalities. The methods are allowed to be internal or external approximations. We prove
convergence of the numerical solutions under the minimal solution regularity available from the existence
and uniqueness result. We then present some preliminary results as the starting point for derivation of error
estimates. Results on variational-hemivariational inequalities automatically reduce to corresponding ones on
hemivariational inequalities, with simplified conditions. In Section 5 we introduce several contact problems and
present sample optimal order error estimates for the linear finite element solutions of the contact problems by
applying the results from Section 4.

2. Basic notions

Only real spaces are used in this paper. For a normed space X , we denote by ‖ · ‖X its norm, by X ∗ its topo-
logical dual, and by 〈·, ·〉X ∗×X the duality pairing of X and X ∗. When no confusion may arise, we simply write
〈·, ·〉 instead of 〈·, ·〉X ∗×X . Weak convergence is indicated by the symbol ⇀. The space of all linear continuous
operators from one normed space X to another normed space Y is denoted by L(X , Y ) .

An operator A : X → X ∗ is said to be pseudomonotone if it is bounded and un ⇀ u in X together with
lim sup 〈Aun, un − u〉X ∗×X ≤ 0 imply

〈Au, u − v〉X ∗×X ≤ lim inf 〈Aun, un − v〉X ∗×X ∀ v ∈ X .

The operator A is said to be radially continuous if the function t 7→ 〈A(u + t v), v〉 is continuous on [0, 1] for any
u, v ∈ X . A function ϕ : K ⊂ X → R is said to be lower semicontinuous (LSC) if for any sequence {xn} ⊂ K
and any x ∈ K, xn → x in X implies ϕ(x) ≤ lim infϕ(xn). For a convex function ϕ, the set

˜∂ϕ(x) :=
{

x∗ ∈ X ∗ | ϕ(v) − ϕ(x) ≥ 〈x∗, v − x〉X ∗×X ∀ v ∈ X
}

is called the subdifferential of ϕ at x ∈ X . If˜∂ϕ(x) is non-empty, any element x∗ ∈ ˜∂ϕ(x) is called a subgradient
of ϕ at x.

Assume ψ : X → R is locally Lipschitz continuous. The generalized (16) directional derivative of ψ at
x ∈ X in the direction v ∈ X is defined by

ψ0(x; v) := lim sup
y→x, λ↓0

ψ(y + λv) − ψ(y)

λ
.

The generalized subdifferential of ψ at x is a subset of the dual space X ∗ given by

∂ψ(x) := { ζ ∈ X ∗ | ψ0(x; v) ≥ 〈ζ , v〉X ∗×X ∀ v ∈ X }.

Details on properties of convex functions can be found in the work by Ekeland and Temam [15], whereas that
of the subdifferential in the Clarke sense can be found in books [4, 6, 16, 17].
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3. A general variational-hemivariational inequality

First, we introduce the problem. Let X , Xϕ , Xj be normed spaces and K ⊂ X . Let there be given operators
A : X → X ∗, γϕ : X → Xϕ , γj : X → Xj, and functionals ϕ : Xϕ × Xϕ → R, j : Xj → R that are assumed to be
locally Lipschitz. We state the variational-hemivariational inequality as follows.

Problem (P). Find an element u ∈ K such that

〈Au, v − u〉 + ϕ(γϕu, γϕv) − ϕ(γϕu, γϕu) (1)

+ j0(γju; γjv − γju) ≥ 〈 f , v − u〉 ∀ v ∈ K.

In the study of Problem (P), we will make the following assumptions.

1. (A1). X is a reflexive Banach space, K ⊂ X is closed and convex with 0 ∈ K.
2. (A2). Xϕ is a Banach space and γϕ ∈ L(X , Xϕ): for a constant cϕ > 0

‖γϕv‖Xϕ ≤ cϕ‖v‖X ∀ v ∈ X . (2)

3. (A3). Xj is a Banach space and γj ∈ L(X , Xj): for a constant cj > 0

‖γjv‖Xj
≤ cj‖v‖X ∀ v ∈ X . (3)

4. (A4). A : X → X ∗ is pseudomonotone, radially continuous, and strictly monotone, i.e. for a constant
mA > 0

〈Av1 − Av2, v1 − v2〉 ≥ mA‖v1 − v2‖
2
X ∀ v1, v2 ∈ X . (4)

5. (A5). With Kϕ := γϕ(K), ϕ : Kϕ × Kϕ → R is such that ϕ(z, ·) : Kϕ → R is convex and LSC for all z ∈ Kϕ ,
and for a constant αϕ ≥ 0

ϕ(z1, z4) − ϕ(z1, z3) + ϕ(z2, z3) − ϕ(z2, z4) (5)

≤ αϕ‖z1 − z2‖Xϕ‖z3 − z4‖Xϕ ∀ z1, z2, z3, z4 ∈ Kϕ .

6. (A6) j : Xj → R is locally Lipschitz, and for some constants c0, c1,αj ≥ 0

‖∂j(z)‖X ∗
j

≤ c0 + c1‖z‖Xj
∀ z ∈ Xj, (6)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ αj‖z1 − z2‖
2
Xj

∀ z1, z2 ∈ Xj. (7)

7. (A7)
αϕc2

ϕ + αjc
2
j < mA. (8)

8. (A8)
f ∈ X ∗. (9)

Since K is a non-empty, closed and convex set in X , the set Kϕ introduced in (A5) is non-empty, closed and
convex in Xϕ . Note that in the statement of Problem (P) the function ϕ(z, ·) is assumed to be convex for any
z ∈ Xϕ whereas the function j is locally Lipschitz and, in general, non-convex. Thus, equation (1) represents
a variational-hemivariational inequality. The spaces Xϕ and Xj are introduced to facilitate error analysis of
numerical solutions of Problem (P). For applications in contact mechanics, the functionals ϕ(·, ·) and j(·) are
integrals over the contact boundary 03. In such a situation, Xϕ and Xj can be chosen to be L2(03)d and/or L2(03).
For a locally Lipschitz function j : Xj → R, the inequality given by equation (7) is equivalent to

〈∂j(z1) − ∂j(z2), z1 − z2〉X ∗
j ×Xj

≥ −αj ‖z1 − z2‖
2
Xj

∀ z1, z2 ∈ Xj, (10)

known as a relaxed monotonicity condition. Note that if j : Xj → R is convex, equation (10) is satisfied with
αj = 0. Since 0 ∈ K, we derive the following relations from equations (4), (6) and (10)

〈Av, v〉X ∗×X ≥ mA‖v‖2
X − c ‖v‖X ∀ v ∈ X , (11)

〈∂j(z), z〉X ∗
j ×Xj

≥ −αj‖z‖2
Xj

− c0‖z‖Xj
∀ z ∈ Xj, (12)
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for some constant c. The smallness assumption given by equation (8) is a variant of a similar condition used by
Migórski et al. [14], so modified as to reflect the use of the spaces Xϕ and Xj in the problem setting. By slightly
modifying the proof in the work by Migórski et al. [14], we have the following existence and uniqueness result.

Theorem 1 Under assumptions (A1) to (A8), Problem (P) has a unique solution u ∈ K.

Problem (P) contains as particular cases, various problems considered in the literature. In general, the inclu-
sion u ∈ K represents a constraint on the solution u. When K = V , we have the special case of an unconstrained
problem

u ∈ V , 〈Au, v − u〉 + ϕ(γϕu, γϕv) − ϕ(γϕu, γϕu) (13)

+ j0(γju; γjv − γju) ≥ 〈 f , v − u〉 ∀ v ∈ V .

When ϕ(γϕu, γϕv) is a function of the argument γϕv only, the two problems given by equations (1) and (13) have
the forms

u ∈ K, 〈Au, v − u〉 + ϕ(γϕv) − ϕ(γϕu) + j0(γju; γjv − γju) ≥ 〈 f , v − u〉 ∀ v ∈ K,

u ∈ V , 〈Au, v − u〉 + ϕ(γϕv) − ϕ(γϕu) + j0(γju; γjv − γju) ≥ 〈 f , v − u〉 ∀ v ∈ V ,

respectively. In the case where j ≡ 0, the above problems become variational inequalities and they have been
studied extensively in the literature. When ϕ ≡ 0, we have a “pure” hemivariational inequality from equation
(1).

Problem (P)’. Find an element u ∈ K such that

〈Au, v − u〉 + j0(γju; γjv − γju) ≥ 〈 f , v − u〉 ∀ v ∈ K. (14)

Under the assumptions (A1), (A3), (A4) and (A6) to (A8) (with αϕ = 0 in equation (8)), Problem (P)’ has a unique
solution. Internal approximation methods for solving Problem (P)’ are studied in the work by Han et al. [11],
whereas internal approximation methods for solving Problem (P) are studied in the work by Han et al. [12]. The
focus of this paper is to provide numerical analysis of Problem (P) that also covers external approximations.
In the work by Han [13], numerical analysis of both internal and external approximations is conducted on the
particular case of Problem (P)’. In this paper, we extend the results of Han [13] to the more general problem of
variational-hemivariational inequalities.

The following result is similar to Minty’s lemma for variational inequalities (cf. [18, pp. 435]), and it is
useful in convergence analysis of numerical solutions.

Theorem 2 Assume K ⊂ X is convex, A : X → X ∗ is monotone and radially continuous, and for all z ∈ Kϕ ,
ϕ(z, ·) is convex on Kϕ . Then u ∈ K is a solution of Problem (P) if and only if it satisfies

〈Av, v − u〉 + ϕ(γϕu, γϕv) − ϕ(γϕu, γϕu) (15)

+ j0(γju; γjv − γju) ≥ 〈 f , v − u〉 ∀ v ∈ K.

Proof. By the monotonicity of A, the following inequality holds

〈Av, v − u〉 ≥ 〈Au, v − u〉 ∀ u, v ∈ X . (16)

It is then obvious that a solution of Problem (P) satisfies equation (15).
Now assume u ∈ K satisfies equation (15). Since K is convex, for any v ∈ K and any t ∈ [0, 1], we can

replace v by u + t (v − u) in equation (15) to obtain

t 〈A (u + t (v − u)) , v − u〉 + ϕ(γϕu, γϕu + t (γϕv − γϕu)) − ϕ(γϕu, γϕu) (17)

+ t j0(γju; γjv − γju) ≥ t〈 f , v − u〉.

Note that
ϕ(γϕu, γϕu + t (γϕv − γϕu)) ≤ t ϕ(γϕu, γϕv) + (1 − t)ϕ(γϕu, γϕu).

We deduce from equation (17) that for t ∈ (0, 1)

〈A (u + t (v − u)) , v − u〉 + ϕ(γϕu, γϕv) − ϕ(γϕu, γϕu) + j0(γju; γjv − γju)

≥ 〈 f , v − u〉.

Letting t → 0+ in the above inequality, we recover the inequality given by equation (1). �
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4. Numerical approximations

We then turn to numerical methods for solving Problem (P). We keep assumptions (A1) to (A8) so that Problem
(P) has a unique solution u ∈ K.

Let X h ⊂ X be a finite dimensional subspace with h > 0 being a spatial discretization parameter. Let Kh

be a closed and convex subset of X h and 0 ∈ Kh. Since Kh is not necessarily a subset of K, the function ϕ may
not be defined on γϕ(Kh) × γϕ(Kh). Thus, we introduce an assumption which does not present any restriction in
applications.

(A9) ϕ(·, ·) is the restriction of a function ϕ0(·, ·) : Xϕ × Xϕ → R to Kϕ × Kϕ , and ϕ0(z, ·) is convex and LSC
for all z ∈ Xϕ . Moreover, equation (5) extends to Xϕ , with a possibly different constant αϕ

ϕ0(z1, z4) − ϕ0(z1, z3) + ϕ0(z2, z3) − ϕ0(z2, z4) (18)

≤ αϕ‖z1 − z2‖Xϕ‖z3 − z4‖Xϕ ∀ z1, z2, z3, z4 ∈ Xϕ .

Then, the Galerkin approximation of Problem (P) is the following.

Problem (Ph). Find an element uh ∈ Kh such that

〈Auh, vh − uh〉 + ϕ0(γϕuh, γϕvh) − ϕ0(γϕuh, γϕuh) (19)

+ j0(γju
h; γjv

h − γju
h) ≥ 〈 f , vh − uh〉 ∀ vh ∈ Kh.

The approximation is external if Kh 6⊂ K, and is internal if Kh ⊂ K. The internal approximation with the choice
Kh = X h ∩ K is considered in the work by Han et al. [12], and that for Problem (P)’ is considered in the work
by Han et al. [11].

We can apply the arguments of the proof of Theorem 1 in the setting of the finite dimensional space X h, and
to conclude that under assumptions (A1) to (A9), Problem (Ph) has a unique solution uh ∈ Kh. In the convergence
analysis of the numerical solutions, the following uniform boundedness property will be useful.

Proposition 1 For some constant M > 0, ‖uh‖X ≤ M ∀ h > 0.

Proof. We let vh = 0 in equation (19) to get

〈Auh, uh〉 ≤ ϕ0(γϕuh, 0) − ϕ0(γϕuh, γϕuh) + j0(γju
h; −γju

h) + 〈 f , uh〉. (20)

For any z ∈ Kϕ , take z1 = z3 = z and z2 = z4 = 0 in equation (5)

ϕ0(z, 0) − ϕ0(z, z) ≤ αϕ‖z‖2
Xϕ

− ϕ0(0, z) + ϕ0(0, 0). (21)

Use the lower bound [18, pp. 433]

ϕ(0, z) ≥ c3 + c4‖z‖Xϕ ∀ z ∈ Xϕ

for some constants c3 and c4, not necessarily positive. Then from equation (21), we have

ϕ0(z, 0) − ϕ0(z, z) ≤ αϕ‖z‖2
Xϕ

+ c
(

‖z‖Xϕ + 1
)

. (22)

Write z1 = z and take z2 = 0 in equation (7)

j0(z; −z) ≤ αj‖z‖2
Xj

− j0(0; z).

Further, use equation (6) to get
j0(z; −z) ≤ αj‖z‖2

Xj
+ c0‖z‖Xj

. (23)

Use equations (11), (22), (23), (2) and (3) in equation (20) to obtain

(

mA − αϕc2
ϕ − αjc

2
j

)

‖uh‖2
X ≤ c

(

‖uh‖X + 1
)

.
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Since mA −αϕc2
ϕ−αjc

2
j > 0, we deduce from the above inequality that ‖uh‖X is uniformly bounded with respect

to h. �

The rest of this section is devoted to convergence and error analysis for the numerical solution of Problem
(Ph). We list below some additional conditions to be assumed later on:

1. (A10). γϕ : X → Xϕ and γj : X → Xj are compact operators.
2. (A11). ϕ0(·, ·) is continuous with respect to its second argument.
3. (A12). {Kh}h approximates K in the following sense

vh ∈ Kh and vh ⇀ v in X imply v ∈ K; (24)

∀ v ∈ K, ∃ vh ∈ Kh such that vh → v in X as h → 0. (25)

4. (A13). The operator A : X → X ∗ is Lipschitz continuous, i.e. for some constant LA > 0

‖Au − Av‖X ∗ ≤ LA‖u − v‖X ∀ u, v ∈ X . (26)

We comment that the conditions given by equations (26) and (4) combined imply that the operator A is pseu-
domonotone [19, Proposition 27.6]. In applications to contact mechanics (cf. Section 5), γϕ and γj are trace

operators from an H1(�)-based space to L2(03)-based spaces, the assumption (A10) is automatically valid, and
the assumptions (A11) and (A13) are usually trivially satisfied. Moreover, the assumption (A12) holds true for
common choices of Kh based on finite elements [20].

4.1. Convergence

In this subsection, we prove the convergence of the numerical solutions under the minimal solution regularity
u ∈ K available from Theorem 1.

Theorem 3 Assume (A1) to (A12). Then

uh → u in X as h → 0. (27)

Proof. The proof consists of two steps. First we show weak convergence of the numerical solutions. According
to Theorem 2, the solution uh ∈ Kh of Problem (Ph) is characterized by the inequality

〈Avh, vh − uh〉 + ϕ0(γϕuh, γϕvh) − ϕ0(γϕuh, γϕuh) (28)

+ j0(γju
h; γjv

h − γju
h) ≥ 〈 f , vh − uh〉 ∀ vh ∈ Kh.

Note that {uh} is bounded in X by Proposition 1. Since X is reflexive and the operators γϕ : X → Xϕ and

γj : X → Xj are compact, there exists a subsequence {uh′
} ⊂ {uh} and an element w ∈ X such that

uh′

⇀ w in X , γϕuh′

→ γϕw in Xϕ , γju
h′

→ γjw in Xj.

By the assumption given by equation (24), we know that w ∈ K.

Fix an arbitrary element v ∈ K. By the assumption given by equation (25), we can find a sequence vh′
∈ Kh′

such that vh′
→ v in X as h′ → 0. Then, as h′ → 0

Avh′

→ Av, 〈Avh′

, vh′

− uh′

〉 → 〈Av, v − w〉,

j0(γjw; γjv − γjw) ≥ lim sup j0(γju
h′

; γjv
h′

− γju
h′

),

〈 f , vh′

− uh′

〉 → 〈 f , v − w〉.

From equation (18) with z1 = γϕw, z2 = z4 = γϕuh′
and z3 = γϕvh′

, we have

ϕ0(γϕuh′

, γϕvh′

) − ϕ0(γϕuh′

, γϕuh′

) ≤ ϕ0(γϕw, γϕvh′

) − ϕ0(γϕw, γϕuh′

) (29)

+ αϕ‖γϕw − γϕuh′

‖Xϕ‖γϕvh′

− γϕuh′

‖Xϕ .
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Use this inequality in equation (28) with h = h′

〈Avh′

, vh′

− uh′

〉 + ϕ0(γϕw, γϕvh′

) − ϕ0(γϕw, γϕuh′

) (30)

+ αϕ‖γϕw − γϕuh′

‖Xϕ‖γϕvh′

− γϕuh′

‖Xϕ

+ j0(γju
h′

; γjv
h′

− γju
h′

) ≥ 〈 f , vh′

− uh′

〉.

Note that ‖γϕvh′
− γϕuh′

‖Xϕ is bounded whereas ‖γϕw − γϕuh′
‖Xϕ → 0. Thus, taking the upper limit in equation

(30) as h′ → 0, we find

〈Av, v − w〉 + ϕ0(γϕw, γϕv) − ϕ0(γϕw, γϕw) + j0(γjw; γjv − γjw) ≥ 〈 f , v − w〉.

This inequality holds for any v ∈ K. Applying Theorem 2, we see that w is actually the solution u of Problem

(P). So uh′
⇀ u in X . Since the limit u does not depend on the subsequence {uh′

}, the entire family of numerical
solutions converges weakly to u, i.e. equation (27) holds.

Next, we show the strong convergence uh → u in X as h → 0. By the assumption given by equation (25),
there exists a sequence {uh}, uh ∈ Kh, such that uh → u in X as h → 0. Applying equation (4)

mA‖u − uh‖2
X ≤ 〈Au − Auh, u − uh〉.

So

mA‖u − uh‖2
X ≤ 〈Au, u − uh〉 − 〈Auh, uh − uh〉 − 〈Auh, u − uh〉.

From equation (19), we have

−〈Auh, uh − uh〉 ≤ ϕ0(γϕuh, γϕuh) − ϕ0(γϕuh, γϕuh)

+ j0(γju
h; γju

h − γju
h) − 〈 f , uh − uh〉.

Similar to equation (29), we have

ϕ0(γϕuh, γϕuh) − ϕ0(γϕuh, γϕuh) ≤ ϕ0(γϕu, γϕuh) − ϕ0(γϕu, γϕuh)

+ αϕ‖γϕu − γϕuh‖Xϕ‖γϕuh − γϕuh‖Xϕ .

Combining the above three inequalities, we have

mA‖u − uh‖2
X ≤ 〈Au, u − uh〉 − 〈Auh, u − uh〉 (31)

+ ϕ0(γϕu, γϕuh) − ϕ0(γϕu, γϕuh)

+ αϕ‖γϕu − γϕuh‖Xϕ‖γϕuh − γϕuh‖Xϕ

+ j0(γju
h; γju

h − γju
h) − 〈 f , uh − uh〉.

Recall assumption (A11). Then, as h → 0

ϕ0(γϕu, γϕuh) → ϕ0(γϕu, γϕu),

ϕ0(γϕu, γϕuh) → ϕ0(γϕu, γϕu).

Also notice that ‖uh − uh‖X → 0 and ‖γϕu − γϕuh‖Xϕ → 0. Consequently, from equation (31)

lim sup
h→0

‖u − uh‖2
X ≤ 0.

This implies the strong convergence uh → u in X . �
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4.2. Error estimation

We now turn to the derivation of error estimates. In this subsection, we assume (A1) to (A9) and (A13). Let v ∈ K
and vh ∈ Kh be arbitrary. By equation (4) with v1 = u and v2 = uh

mA‖u − uh‖2
X ≤ 〈Au − Auh, u − uh〉,

which is rewritten as

mA‖u − uh‖2
X ≤ 〈Au − Auh, u − vh〉 + 〈Au, vh − u〉 + 〈Au, v − uh〉 (32)

+ 〈Au, u − v〉 + 〈Auh, uh − vh〉.

Applying equation (1)

〈Au, u − v〉 ≤ ϕ0(γϕu, γϕv) − ϕ0(γϕu, γϕu)

+ j0(γju; γjv − γju) − 〈 f , v − u〉.

Applying equation (19)

〈Auh, uh − vh〉 ≤ ϕ0(γϕuh, γϕvh) − ϕ0(γϕuh, γϕuh)

+ j0(γju
h; γjv

h − γju
h) − 〈 f , vh − uh〉.

Using these inequalities in equation (32), after some rearrangement of the terms, we have

mA‖u − uh‖2
X ≤ 〈Au − Auh, u − vh〉 + Ru(vh, u) + Ru(v, uh) + Iϕ(vh) + Ij(v, vh), (33)

where

Ru(v, w) := 〈Au, v − w〉 + ϕ0(γϕu, γϕv) − ϕ0(γϕu, γϕw) (34)

+ j0(γju; γjv − γjw) − 〈 f , v − w〉,

Iϕ(vh) := ϕ0(γϕu, γϕuh) + ϕ0(γϕuh, γϕvh) (35)

− ϕ0(γϕu, γϕvh) − ϕ0(γϕuh, γϕuh),

Ij(v, vh) := j0(γju; γjv − γju) + j0(γju
h; γjv

h − γju
h) (36)

− j0(γju; γjv
h − γju) − j0(γju; γjv − γju

h).

Let us bound the first and the last two terms on the right-hand side of equation (33). First

〈Au − Auh, u − vh〉 ≤ LA‖u − uh‖X ‖u − vh‖X .

Thus, for any ε > 0 arbitrarily small

〈Au − Auh, u − vh〉 ≤ ε ‖u − uh‖2
X + c ‖u − vh‖2

X (37)

for some constant c depending on ε. By equation (18), we have

Iϕ(vh) ≤ αϕ‖γϕu − γϕuh‖Xϕ‖γϕuh − γϕvh‖Xϕ

≤ αϕc2
ϕ

(

‖u − uh‖2
X + ‖u − uh‖X ‖u − vh‖X

)

.

Thus
Iϕ(vh) ≤

(

αϕc2
ϕ + ε

)

‖u − uh‖2
X + c ‖u − vh‖2

X (38)

for another constant c depending on ε > 0. Applying the subadditivity of the generalized directional derivative

j0(z; z1 + z2) ≤ j0(z; z1) + j0(z; z2) ∀ z, z1, z2 ∈ Xj,
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we have

j0(γju; γjv − γju) ≤ j0(γju; γjv − γju
h) + j0(γju; γju

h − γju),

j0(γju
h; γjv

h − γju
h) ≤ j0(γju

h; γjv
h − γju) + j0(γju

h; γju − γju
h).

Thus

Ij(v, vh) ≤ j0(γju
h; γjv

h − γju) − j0(γju; γjv
h − γju)

+ j0(γju; γju
h − γju) + j0(γju

h; γju − γju
h).

By equation (7)

j0(γju; γju
h − γju) + j0(γju

h; γju − γju
h) ≤ αj‖γju − γju

h‖2
Xj

.

Moreover

∣

∣ j0(γju
h; γjv

h − γju)
∣

∣ ≤
(

c0 + c1‖γju
h‖Xj

)

‖γjv
h − γju‖Xj

,
∣

∣ j0(γju; γjv
h − γju)

∣

∣ ≤
(

c0 + c1‖γju‖Xj

)

‖γjv
h − γju‖Xj

.

Combining the above four inequalities and using the fact that ‖γju
h‖Xj

is uniformly bounded (cf. Proposition 1),
we find that

Ij(v, vh) ≤ αj‖γju − γju
h‖2

Xj
+ c ‖γju − γjv

h‖Xj
(39)

for some constant c > 0 independent of h. Using equations (37), (38) and (39) in equation (33), we have

(

mA − αϕc2
ϕ − αjc

2
j − 2 ε

)

‖u − uh‖2
X ≤ c ‖u − vh‖2

X + c ‖γju − γjv
h‖Xj

+ Ru(vh, u) + Ru(v, uh).

Recall the smallness assumption, αϕc2
ϕ + αjc

2
j < mA. We then choose ε = (mA − αϕc2

ϕ − αjc
2
j )/4 > 0 and get

the inequality

‖u − uh‖2
X ≤ c inf

vh∈Kh

[

‖u − vh‖2
X + ‖γju − γjv

h‖Xj
+ Ru(vh, u)

]

+ c inf
v∈K

Ru(v, uh).

We summarize the result in the form of a theorem.

Theorem 4 Assume (A1) to (A9) and (A13). Then for the solution u of Problem (P) and the solution uh of Problem
(Ph), we have the Céa type inequality

‖u − uh‖X ≤ c inf
vh∈Kh

[

‖u − vh‖X + ‖γju − γjv
h‖

1/2
Xj

+ Ru(vh, u)1/2
]

(40)

+ c inf
v∈K

Ru(v, uh)1/2.

We remark that in the literature on error analysis of numerical solutions of variational inequalities, it is standard
that the Céa type inequalities involve square root of approximation error of the solution in certain norms due to
the inequality form of the problems; cf. [21–23].

To proceed further, we need to bound the residual term given by equation (34) and this depends on the
problem to be solved. We illustrate this point in Section 5 in the context of a contact problem.

In the special case where K = X , we have Kh = X h. Then the approximation is always internal. The error
analysis in the work by Han et al. [12] applies, and we have the following Céa type inequality

‖u − uh‖2
X ≤ c inf

vh∈X h

(

‖u − vh‖2
X + ‖γϕu − γϕvh‖Xϕ + ‖γju − γjv

h‖Xj

)

. (41)
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5. Error analysis for sample contact problems

In this section, we show how to derive error estimates for numerical solutions of several static contact problems
by applying the theoretical results developed in Section 4. The physical setting of a contact problem is as
follows: the reference configuration of an elastic body is an open, bounded, connected set � ⊂ R

d (d = 2 or 3
in applications) with a Lipschitz boundary 0 = ∂� partitioned into three disjoint and measurable parts 01, 02

and 03 such that meas (01) > 0. The body is in equilibrium under the action of a volume force of density f 0 in
� and a surface traction of density f 2 on 02; it is fixed on 01 and is in contact on 03 with a foundation.

Let us introduce some notation useful in the description of the contact problems. We use the symbol S
d to

denote the space of second order symmetric tensors on R
d, and “·” and “‖·‖” denote the canonical inner product

and norm on the spaces R
d and S

d. We use u : � → R
d for the displacement, ε(u) :=

(

∇u + (∇u)T
)

/2 for the

linearized strain tensor, and σ : � → S
d for the stress field. Let ν be the unit outward normal vector, which is

defined a.e. on 0. For a vector field v, vν := v · ν and vτ := v − vνν are the normal and tangential components
of v on 0. For the stress field σ , σν := (σν) · ν and σ τ := σν − σνν are its normal and tangential components
on the boundary. For the stress and strain fields, we will use the Hilbert space Q = L2(�; S

d) with the canonical
inner product

(σ , τ )Q :=

∫

�

σij(x) τij(x) dx, σ , τ ∈ Q.

The displacement will be sought in the space

V =
{

v = (vi) ∈ H1(�; R
d) | v = 0 a.e. on 01

}

or its subset. Since meas (01) > 0, by Korn’s inequality, V is a Hilbert space with the inner product

(u, v)V :=

∫

�

ε(u) · ε(v) dx, u, v ∈ V .

We will use the same symbol v for the trace of a function v ∈ H1(�; R
d) on 0.

5.1. A normal compliance frictional contact problem with a unilateral constraint

The equations and conditions for this contact problem are

σ = Fε(u) in �, (42)

Div σ + f 0 = 0 in �, (43)

u = 0 on 01, (44)

σν = f 2 on 02, (45)

supplemented by the following contact conditions [14]

uν ≤ g, σν + ξν ≤ 0, (uν − g) (σν + ξν) = 0, ξν ∈ ∂jν(uν) on 03, (46)

‖σ τ‖ ≤ Fb(uν), −σ τ = Fb(uν)
uτ

‖uτ‖
if uτ 6= 0 on 03. (47)

In these equations and conditions, equation (42) is the elastic constitutive law, equation (43) represents the
equilibrium equation, equation (44) is the displacement boundary condition and equation (45) describes the
traction boundary condition. In equation (42), F : � × S

d → S
d is the elasticity operator and is assumed to

have the following properties:



























(a) there exists LF > 0 such that for all ε1, ε2 ∈ S
d, a.e. x ∈ �,

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖;

(b) there exists mF > 0 such that for all ε1, ε2 ∈ S
d, a.e. x ∈ �,

(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖
2;

(c) F(·, ε) is measurable on � for all ε ∈ S
d;

(d) F(x, 0) = 0 for a.e. x ∈ �.

(48)
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On the densities of the body force and the surface traction, we assume

f 0 ∈ L2(�; R
d), f 2 ∈ L2(02; R

d). (49)

Define f ∈ V ∗ by

〈f , v〉V∗×V = (f 0, v)L2(�;Rd) + (f 2, v)L2(02;Rd) ∀ v ∈ V . (50)

In the normal contact condition given by equation (46), the relation uν ≤ g restricts the allowed penetration,
where g represents the thickness of the elastic layer. We assume g : 03 → R satisfies

g ∈ L2(03), g(x) ≥ 0 a.e. on 03. (51)

The contact condition given by equation (46) represents a combination of the Signorini contact condition for
contact with a rigid foundation and the normal compliance condition for contact with a deformable foundation.
Details on the normal compliance and Signorini contact conditions can be found in previous works [4, 22, 24].
The tangential contact condition given by equation (47) describes a version of Coulomb’s law of dry friction.
The friction bound Fb may depend on the normal displacement uν [25]. We assume the potential function
jν : 03 × R → R and the friction bound Fb : 03 × R → R+ have the properties:































(a) jν(·, r) is measurable on 03 for all r ∈ R and there

exists e ∈ L2(03) such that jν(·, e(·)) ∈ L1(03);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ 03;

(c) |∂jν(x, r)| ≤ c0 + c1|r| for a.e. x ∈ 03 ∀ r ∈ R with c0, c1 ≥ 0;

(d) j0
ν(x, r1; r2 − r1) + j0

ν(x, r2; r1 − r2) ≤ αjν |r1 − r2|
2

for a.e. x ∈ 03, all r1, r2 ∈ R with αjν ≥ 0.

(52)











(a) there exists LFb
> 0 such that

|Fb(x, r1) − Fb(x, r2)| ≤ LFb
|r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ 03;

(b) Fb(·, r) is measurable on 03, for all r ∈ R;
(c) Fb(x, r) = 0 for r ≤ 0, Fb(x, r) ≥ 0 for r ≥ 0, a.e. x ∈ 03.

(53)

The displacement will be sought from the following subset of the space V

U := {v ∈ V | vν ≤ g on 03} .

By a standard approach (cf. [4, 22]), the following weak formulation of the first contact problem can be derived.

Problem (P1). Find a displacement field u ∈ U such that

(F(ε(u)), ε(v − u))Q +

∫

03

Fb(uν) (‖vτ‖ − ‖uτ‖) d0 (54)

+

∫

03

j0
ν(uν ; vν − uν) d0 ≥ 〈f , v − u〉V∗×V ∀ v ∈ U .

We can apply the results of the previous section in the numerical analysis of Problem (P1). Let X = V , K = U ,
Xϕ = L2(03)d with γϕ the trace operator from V to Xϕ , Xj = L2(03) with γjv = vν for v ∈ V . Then, αϕ = LFb

and αj = αjν . Applying Theorem 1, we know that Problem (P1) has a unique solution u ∈ U under the stated
assumptions, and equation (8) takes the form

LFb
λ−1

1,V + αjνλ
−1
1ν,V < mF , (55)

where λ1,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V ,

∫

�

ε(u)·ε(v) dx = λ

∫

03

u·v d0 ∀ v ∈ V ,
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and λ1ν,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V ,

∫

�

ε(u)·ε(v) dx = λ

∫

03

uνvνd0 ∀ v ∈ V .

Let us use the finite element method to solve Problem (P1). For brevity, assume � is a polygonal/polyhedral
domain and express the three parts of the boundary, 0k , 1 ≤ k ≤ 3, as unions of closed flat components with
disjoint interiors

0k = ∪
ik
i=10k,i, 1 ≤ k ≤ 3.

Let {T h} be a regular family of partitions of � into triangles/tetrahedrons that are compatible with the partition
of the boundary ∂� into 0k,i, 1 ≤ i ≤ ik , 1 ≤ k ≤ 3, in the sense that if the intersection of one side/face of
an element with one set 0k,i has a positive measure with respect to 0k,i, then the side/face lies entirely in 0k,i.

Construct the linear element space corresponding to T h

V h =
{

vh ∈ C(�)d | vh|T ∈ P1(T)d, T ∈ T
h, vh = 0 on 01

}

,

and the related finite element subset

Uh =
{

vh ∈ V h | vh
ν ≤ g at node points on 03

}

.

Note that 0 ∈ Uh and in general Uh 6⊂ U unless g is concave. Then the finite element method for Problem (P1)
is the following.

Problem (Ph
1). Find a displacement field uh ∈ Uh such that

(F(ε(uh)), ε(vh − uh))Q +

∫

03

Fb(uh
ν)

(

‖vh
τ‖ − ‖uh

τ‖
)

d0 (56)

+

∫

03

j0
ν(u

h
ν ; vh

ν − uh
ν) d0 ≥ 〈f , vh − uh〉V∗×V ∀ vh ∈ Uh.

For error analysis, we begin with a simplified version of the Céa type inequality derived from equation (40) in
the abstract framework.

Theorem 5 Assume the solution regularity

u ∈ H2(�)d, σν ∈ L2(03)d. (57)

Then for the solution u ∈ U of Problem (P1) and the solution uh ∈ Uh of Problem (Ph
1), we have the Céa type

inequality

‖u − uh‖V ≤ c inf
vh∈Uh

(

‖u − vh‖V + ‖u − vh‖
1/2

L2(03)d

)

+ c inf
v∈U

‖v − uh‖
1/2

L2(03)d . (58)

Proof. For the contact problem (P), the residual term defined in equation (34) is

Ru(v, w) = (F(ε(u)), ε(v − w))Q +

∫

03

Fb(uν) (‖vτ‖ − ‖wτ‖) d0

+

∫

03

j0
ν(uν ; vν − wν) d0 − 〈f , v − w〉V∗×V .

We follow a procedure described in detail in the work by Han and Sofonea [22], so as to bound the residual. We

let v = u ± w in equation (54), where the arbitrary function w ∈ U is such that w ∈ C∞(�)d and w = 0 on
01 ∪ 03. Then we have the identity

(F(ε(u)), ε(w))Q = 〈f , w〉V∗×V .
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From this identity we can deduce that

DivF(ε(u)) + f 0 = 0 in �, (59)

σν = f 2 on 02. (60)

We multiply the equation (59) by v − w with v, w ∈ V , integrate over �, and perform an integration by parts to
obtain

∫

∂�

σν·(v − w) d0 −

∫

�

F(ε(u))·ε(v − w) dx +

∫

�

f 0·(v − w) dx = 0.

Using the homogeneous Dirichlet boundary condition of v − w on 01 and the traction boundary condition given
by equation (60) on 02, we further have

(F(ε(u)), ε(v − w))Q = 〈f , v − w〉V∗×V +

∫

03

σν·(v − w) d0. (61)

Therefore

Ru(v, w) =

∫

03

[

σν·(v − w) + Fb(uν) (‖vτ‖ − ‖wτ‖) + j0
ν(uν ; vν − wν)

]

d0.

Then
|Ru(v, w)| ≤ c ‖v − w‖L2(03)d . (62)

Now the inequality given by equation (58) follows from equation (40). �

Regarding the solution regularity equation (57), we comment that for many application problems, σν ∈
L2(03)d follows from u ∈ H2(�)d. Next, we present one sample error estimate.

Theorem 6 Assume the solution regularity equation (57). Additionally, assume 03 is a flat component of the
boundary ∂� and

u|03
∈ H2(03; R

d), g|03
∈ H2(03). (63)

Then for the solution u ∈ U of Problem (P1) and the solution uh ∈ Uh of Problem (Ph
1), we have the optimal

order error bound
‖u − uh‖V ≤ c h. (64)

Proof. We apply equation (58). The first part on the right side of equation (58) is bounded by

c
(

‖u −5hu‖V + ‖u −5hu‖
1/2

L2(03)d

)

,

where5hu ∈ Uh is the finite element interpolant of u. By the standard finite element interpolation error bounds
[18, 26, 27], we have

‖u −5hu‖V ≤ c h ‖u‖H2(�)d ,

‖u −5hu‖L2(03)d ≤ c h2‖u‖H2(03)d .

The second part on the right side of equation (58) is treated as in the work by Han [13] and is omitted here.
Putting these bounds together, we get the error estimate given by equation (64). �

5.2. A frictional contact problem with normal compliance

For this contact problem, the equations and conditions given by equations (42) to (45) are supplemented by the
following contact conditions [8]

−σν ∈ ∂jν(uν), ‖σ τ‖ ≤ Fb(uν), −σ τ = Fb(uν)
uτ

‖uτ‖
if uτ 6= 0 on 03. (65)

The potential function jν is assumed to satisfy equation (52), whereas the friction bound Fb is assumed to satisfy
equation (53).
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The contact condition in equation (65) does not involve the unilateral constraint and it can be viewed as a
limiting case of the condition given by equation (46) as g → ∞. The weak formulation of the corresponding
contact problem is the following.

Problem (P2). Find a displacement field u ∈ V such that

(F(ε(u)), ε(v − u))Q +

∫

03

Fb(uν) (‖vτ‖ − ‖uτ‖) d0

+

∫

03

j0
ν(uν ; vν − uν) d0 ≥ 〈f , v − u〉V∗×V ∀ v ∈ V .

Since Problem (P2) is posed over a space, error analysis of numerical methods for Problem (P2) is simpler than
that for Problem (P1). In particular, the counterpart of equation (58) in Theorem 5 reduces to

‖u − uh‖V ≤ c inf
vh∈Vh

(

‖u − vh‖V + ‖u − vh‖
1/2

L2(03)d

)

. (66)

Then, under the solution regularity assumptions, equation (57) and

u|03,i
∈ H2(03,i; R

d), g|03,i
∈ H2(03,i), 1 ≤ i ≤ i3,

the optimal order error bound equation (64) holds for the linear finite element solutions of Problem (P2) and
the proof is simpler in the sense that it follows directly from equation (66) and the standard finite element
interpolation error estimates.

5.3. A unilateral contact problem with a frictionless subdifferential boundary condition

Here, the equations and conditions given by equations (42) to (45) are supplemented by the following contact
conditions

σν = σ 1
ν + σ 2

ν + σ 3
ν , −σ 1

ν ∈ ˜∂ϕν(uν), − σ 2
ν ∈ ∂jν(uν), (67)

uν ≤ g, σ 3
ν ≤ 0, σ 3

ν (uν − g) = 0, on 03,

σ τ = 0 on 03. (68)

We refer the reader to the work by Han et al. [12] for a mechanical interpretation of the condition given by
equation (67). Assume jν : 03 × R → R satisfies equation (52), and assume ϕν : 03 × R → R satisfies the
following conditions:







(a) ϕν(·, r) is measurable on 03 for all r ∈ R and there

exists ẽ ∈ L2(03) such that ϕν(·, ẽ(·)) ∈ L1(03);

(b) ϕν(x, ·) is convex on R for a.e. x ∈ 03.

(69)

The weak formulation of the corresponding contact problem is the following.

Problem (P3). Find a displacement field u ∈ U such that
∫

�

F(ε(u)) · ε(v − u) dx +

∫

03

[ϕν(vν) − ϕν(uν)] d0 +

∫

03

j0
ν(uν ; vν − uν) d0

≥ 〈f , v − u〉V∗×V ∀ v ∈ U .

Error analysis of numerical methods for Problem (P3) can be done similar to that of Problem (P1). The
counterpart of equation (58) in Theorem 5 is

‖u − uh‖V ≤ c inf
vh∈Uh

(

‖u − vh‖V + ‖uν − vh
ν‖

1/2

L2(03)

)

+ c inf
v∈U

‖v − uh‖
1/2

L2(03)d .

Then, under the assumptions stated in Theorem 6, the optimal order error bound equation (64) holds also for
the linear finite element solutions of Problem (P3).
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