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Abstract Variational-hemivariational inequalities refer to the inequality problems
where both convex and nonconvex functions are involved. In this paper, we consider
the numerical solution of a family of stationary variational-hemivariational inequal-
ities by the finite element method. For a variational-hemivariational inequality of
a general form, we prove convergence of numerical solutions. For some particu-
lar variational-hemivariational inequalities, we provide error estimates of numerical
solutions, which are of optimal order for the linear finite element method under appro-
priate solution regularity assumptions. Numerical results are reported on solving a
variational-hemivariational inequality modeling the contact between an elastic body
and a foundation with the linear finite element, illustrating the theoretically predicted
optimal first order convergence and providing their mechanical interpretations.

Mathematics Subject Classification 65N30 · 65N15 · 74M10 · 74M15

1 Introduction

Variational-hemivariational inequalities are inequality problems where both con-
vex and nonconvex functions are involved. They were introduced in the pioneering
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work [19], and were further studied in [18,20]. Interest in variational-hemivariational
inequalities arises in the study of various problems in mechanics and engineering
applications. Their study requires arguments of Convex Analysis, including proper-
ties of the subdifferential of a convex function, and arguments of NonsmoothAnalysis,
including properties of the subdifferential in the sense of Clarke, defined for locally
Lipschitz functions which may be nonconvex.

Recently, a newvariational-hemivariational inequality is studied in [9]. The inequal-
ity involves two nonlinear operators and two nondifferentiable functionals, of which
at least one is convex. Solution existence, uniqueness and data continuous dependence
are shown. Moreover, the finite element method is studied for solving the inequality
problem. For the first time in the literature, an optimal order error estimate is derived
for the linear element solution of a hemivariational inequality under appropriate solu-
tion regularity assumptions. A more general variational-hemivariational inequality
is analyzed in [17]. There, the existence and uniqueness of the solution are proved,
together with a result on the continuous dependence of the solution on the data. The
variational-hemivariational inequalities studied in [9,17] aremotivated by applications
in Contact Mechanics.

The purpose of this paper is to consider numerical approximations of stationary
variational-hemivariational inequality problems by the finite element method, sub-
stantially extending the relevant result found in [9]. We note that in the comprehensive
reference [12] on numerical analysis of hemivariational inequalities, only convergence
of the numerical schemes is discussed and there are no error estimates. Although there
have been various attempts to derive error estimates on numerical methods for solving
hemivariational inequalities, optimal order error estimates were derived in [9] for the
first time in the literature. For the general variational-hemivariational inequality studied
in [17], we show the convergence of the numerical solution. Then, for some particular
variational-hemivariational inequalities, we also derive error estimates, which are of
optimal order for the linear elements. We provide numerical examples to illustrate
the performance of the numerical method, including numerical convergence orders.
One of the numerical examples also serves the purpose of showing the transition from
variational inequalities to hemivariational inequalities.

The rest of the paper is organized as follows. In Sect. 2 we review some preliminary
material needed later on in the study of variational-hemivariational inequalities, and
recall an existence and uniqueness result for the general variational-hemivariational
inequality from [17]. In Sect. 3 we introduce numerical methods for solving various
variational-hemivariational inequalities, prove convergence and derive error estimates
wherever feasible. In Sect. 4 we introduce several contact problems, in which the
material behavior is modeled with a nonlinear elastic constitutive law and the contact
conditions are in a subdifferential form. We list the assumptions on the data and
use the abstract result in [17] to prove the unique weak solvability to the problem. In
addition, we apply our results in Sect. 3 in the numerical analysis of the contact model.
Finally, in Sect. 5 we present numerical simulations which represent an evidence of
our error estimates and convergence results. The simulations illustrate the transition
from the variational to the hemivariational case and give rise to interesting mechanical
interpretations.
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2 Preliminaries

All linear spaces in this paper are real. For a normed space X we denote by ‖ · ‖X

its norm, by X∗ its topological dual, and by 〈·, ·〉X∗×X the duality pairing of X and
X∗. When no confusion may arise, we simply write 〈·, ·〉 instead of 〈·, ·〉X∗×X . Weak
convergence is indicated by the symbol ⇀. For two normed spaces X and Y , L(X, Y )

denotes the space of all linear continuous operators from X to Y .
We recall that an operator A : X → X∗ is pseudomonotone if it is bounded and

un ⇀ u in X together with lim sup 〈Aun, un − u〉X∗×X ≤ 0 imply

〈Au, u − v〉X∗×X ≤ lim inf 〈Aun, un − v〉X∗×X ∀ v ∈ X.

A function ϕ : K ⊂ X → R is lower semicontinuous (l.s.c.), if for any sequence
{xn} ⊂ K and any x ∈ K , xn → x in X implies ϕ(x) ≤ lim inf ϕ(xn). For a convex
function ϕ, the set

˜∂ϕ(x) := {

x∗ ∈ X∗ | ϕ(v) − ϕ(x) ≥ 〈x∗, v − x〉X∗×X ∀ v ∈ X
}

is called the subdifferential of ϕ at x ∈ X . If˜∂ϕ(x) is non-empty, an element x∗ ∈
˜∂ϕ(x) is called a subgradient of ϕ at x .

Letψ : X → R be a locallyLipschitz function. The generalized (Clarke) directional
derivative of ψ at x ∈ X in the direction v ∈ X is defined by

ψ0(x; v) := lim sup
y→x, λ↓0

ψ(y + λv) − ψ(y)

λ
.

The Clarke subdifferential of ψ at x is a subset of the dual space X∗ given by

∂ψ(x) :=
{

ζ ∈ X∗ | ψ0(x; v) ≥ 〈ζ, v〉X∗×X ∀ v ∈ X
}

.

We have the formula ([6]).

ψ0(x; v) = max {〈ζ, v〉 | ζ ∈ ∂ψ(x)} . (2.1)

More details on the properties of the subdifferential mappings can be found in the
books [8,21] in the convex case, and in the books [6,7,16,18] in the Clarke sense.

We turn now to the study of variational-hemivariational inequalities. Let X, Xϕ, X j

be normed spaces, K ⊂ X and Kϕ ⊂ Xϕ . Given operators A : X → X∗, γϕ : X →
Xϕ , γ j : X → X j , and functionals ϕ : Kϕ × Kϕ → R, j : X j → R, we consider the
following problem.

Problem (P) Find an element u ∈ K such that

〈Au, v−u〉+ϕ(γϕu, γϕv)−ϕ(γϕu, γϕu)+ j0(γ j u; γ jv−γ j u) ≥ 〈 f, v−u〉 ∀ v ∈ K .

(2.2)
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In the particular case where ϕ ≡ 0, Problem (P) is reduced to a stationary hemi-
variational inequality. Numerical analysis of the stationary hemivariational inequality
is performed in [10].

For the study of Problem (P), we introduce the following assumptions on the data.

(A1) X is a reflexive Banach space, and K is a closed and convex subset of X with
0 ∈ K .

(A2) Xϕ is a Banach space, Kϕ is a closed and convex subset of Xϕ , Kϕ ⊃ γϕ(K ),
and γϕ ∈ L(X, Xϕ): for a constant cϕ > 0,

‖γϕv‖Xϕ ≤ cϕ‖v‖X ∀ v ∈ X. (2.3)

(A3) X j is a Banach space and γ j ∈ L(X, X j ): for a constant c j > 0,

‖γ jv‖X j ≤ c j‖v‖X ∀ v ∈ X. (2.4)

(A4) A : X → X∗ is pseudomonotone and there exists a constant m A > 0 such that

〈Av1 − Av2, v1 − v2〉 ≥ m A‖v1 − v2‖2X ∀ v1v2 ∈ X. (2.5)

(A5) ϕ : Kϕ × Kϕ → R is such that ϕ(z, ·) : Kϕ → R is convex and l.s.c. on Kϕ

for all z ∈ Kϕ , and there exists a constant αϕ ≥ 0 such that

ϕ(z1, z4) − ϕ(z1, z3) + ϕ(z2, z3) − ϕ(z2, z4)

≤ αϕ‖z1 − z2‖Xϕ‖z3 − z4‖Xϕ ∀ z1, z2, z3, z4 ∈ Kϕ. (2.6)

(A6) j : X j → R is locally Lipschitz, and there are constants c0, c1, α j ≥ 0 such
that

‖ξ‖X∗
j
≤ c0 + c1‖z‖X j ∀ z ∈ X j , ∀ ξ ∈ ∂ j (z), (2.7)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ α j‖z1 − z2‖2X j
∀ z1, z2 ∈ X j . (2.8)

(A7)

αϕc2ϕ + α j c
2
j < m A. (2.9)

(A8)

f ∈ X∗. (2.10)

Note that in the statement of Problem (P) the function ϕ(u, ·) is assumed to be
convex whereas the function j is locally Lipschitz and is, in general, nonconvex. For
this reason, we refer to the inequality (2.2) as a variational-hemivariational inequal-
ity. Moreover, note that Problem (P) contains as particular cases, various problems
considered in the literature. We comment that the spaces Xϕ and X j are introduced
to facilitate error analysis of numerical solutions of Problem (P) in later sections.
For applications in Contact Mechanics, the functionals ϕ(·, ·) and j (·) are integrals
over the contact boundary �3. In such a situation, Xϕ and X j can be chosen to be
L2(�3;Rd) and/or L2(�3).
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The assumption (2.9) is a smallness assumption, which is a variant of a similar
condition in [17], due to the use of the spaces Xϕ and X j in the problem setting. By
slightly modifying the proof in [17], we have the following existence and uniqueness
result.

Theorem 2.1 Under assumption (A1)–(A8), Problem (P) has a unique solution u ∈
K .

Note that for a locally Lipschitz function j : X j → R, the inequality (2.8) is
equivalent to

〈ξ1 − ξ2, z1 − z2〉X∗
j ×X j ≥ −α j‖z1 − z2‖2X j

∀ zi ∈ X j , ∀ ξi ∈ ∂ j (zi ), i = 1, 2,
(2.11)

known as the relaxed monotonicity condition (cf. [16] and the references therein).
In addition, if j : X j → R is a convex function, then (2.8) or (2.11), equivalently,
are satisfied with α j = 0, due to the monotonicity of the (convex) subdifferential.
Since 0 ∈ K , we derive the following relations from (2.5), (2.7) and (2.11), for some
constant c:

〈Av, v〉X∗×X ≥ m A‖v‖2X − c ‖v‖X ∀ v ∈ X, (2.12)

〈ξ, z〉X∗
j ×X j ≥ −α j‖z‖2X j

− c0‖z‖X j ∀ z ∈ X j , ∀ ξ ∈ ∂ j (z). (2.13)

3 Numerical approximations

In this section, we consider numerical schemes for solving Problem (P). We keep
assumptions (A1)–(A8) so that Problem (P) has a unique solution u ∈ K .

Let Xh ⊂ X be a finite dimensional subspace with h > 0 denoting a spatial
discretization parameter. Let K h = Xh ∩ K . Then K h is a closed and convex subset
of Xh and 0 ∈ K h . We consider the following Galerkin approximation of Problem
(P).

Problem (Ph) Find an element uh ∈ K h such that

〈Auh, vh − uh〉 + ϕ(γϕuh, γϕvh) − ϕ(γϕuh, γϕuh) + j0(γ j u
h; γ jv

h − γ j u
h)

≥ 〈 f, vh − uh〉 ∀ vh ∈ K h . (3.1)

The arguments of the proof of Theorem 2.1 can be applied in the setting of the finite
dimensional space Xh , and we know that under assumptions (A1)–(A8), Problem (Ph)
has a unique solution uh ∈ K h .

Proposition 3.1 For some constant M > 0, ‖uh‖X ≤ M ∀ h > 0.

Proof We let vh = 0 in (3.1) to get

〈Auh, uh〉 ≤ ϕ(γϕuh, 0) − ϕ(γϕuh, γϕuh) + j0(γ j u
h;−γ j u

h) + 〈 f, uh〉. (3.2)
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For any z ∈ Kϕ , take z1 = z3 = z and z2 = z4 = 0 in (2.6),

ϕ(z, 0) − ϕ(z, z) ≤ αϕ‖z‖2Xϕ
− ϕ(0, z) + ϕ(0, 0). (3.3)

Use the lower bound ([1, p. 433])

ϕ(0, z) ≥ c3 + c4‖z‖Xϕ ∀ z ∈ Kϕ

for some constants c3 and c4, not necessarily positive. Then from (3.3), we have

ϕ(z, 0) − ϕ(z, z) ≤ αϕ‖z‖2Xϕ
+ c

(‖z‖Xϕ + 1
)

. (3.4)

Write z1 = z and take z2 = 0 in (2.8),

j0(z;−z) ≤ α j‖z‖2X j
− j0(0; z).

Further, use (2.7) to get

j0(z;−z) ≤ α j‖z‖2X j
+ c0‖z‖X j . (3.5)

Use (2.12), (3.4), (3.5), (2.3) and (2.4) in (3.2) to obtain

(

m A − αϕc2ϕ − α j c
2
j

)

‖uh‖2X ≤ c
(

‖uh‖X + 1
)

.

Since m A − αϕc2ϕ − α j c2j > 0, we deduce from the above inequality that ‖uh‖X is
uniformly bounded with respect to h. ��

The uniform boundedness of the numerical solutions will be useful in error analysis
of the numerical method.

The focus of this section is error analysis for the numerical solution defined by
Problem (Ph). We will assume, in addition, the following.

(A9) A : X → X∗ is Lipschitz continuous, i.e. for some constant L A > 0,

‖Au − Av‖X∗ ≤ L A‖u − v‖X ∀ u, v ∈ X. (3.6)

Note that under conditions (3.6) and (2.5), the operator A is pseudomonotone ([26,
Proposition 27.6]).

(A10) For fixed z ∈ Kϕ ,ϕ(z, ·) is Lipschitz continuous: for some function Lϕ : Kϕ →
R+,

|ϕ(z, z1) − ϕ(z, z2)| ≤ Lϕ(z) ‖z1 − z2‖Xϕ ∀ z1, z2 ∈ Kϕ. (3.7)
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Finally, we assume {K h} approximates K in the following sense:

∀ v ∈ K , ∃ vh ∈ K h such that vh → v in X as h → 0. (3.8)

All the additional assumptions are valid for a wide variety of contact conditions, cf.
Sect. 4.

3.1 Convergence

We begin with an application of (2.5) with v1 = u and v2 = uh to obtain, for any
vh ∈ K h ,

m A‖u − uh‖2X ≤ 〈Au − Auh, u − vh〉 + 〈Au, vh − u〉
+ 〈Au, u − uh〉 + 〈Auh, uh − vh〉. (3.9)

From (2.2) with v = uh ∈ K ,

〈Au, u − uh〉 ≤ ϕ(γϕu, γϕuh) − ϕ(γϕu, γϕu)

+ j0(γ j u; γ j u
h − γ j u) − 〈 f, uh − u〉. (3.10)

From (3.1),

〈Auh, uh − vh〉 ≤ ϕ(γϕuh, γϕvh) − ϕ(γϕuh, γϕuh)

+ j0(γ j u
h; γ jv

h − γ j u
h) − 〈 f, vh − uh〉. (3.11)

Using (3.10) and (3.11) in (3.9), we have

m A‖u − uh‖2X ≤ 〈Au − Auh, u − vh〉 + R(vh) + Iϕ(vh) + I j (v
h), (3.12)

where

R(vh) := 〈Au, vh − u〉 + ϕ(γϕu, γϕvh) − ϕ(γϕu, γϕu)

+ j0(γ j u; γ j v
h − γ j u) − 〈 f, vh − u〉, (3.13)

Iϕ(vh) :=ϕ(γϕu, γϕuh) + ϕ(γϕuh , γϕvh) − ϕ(γϕu, γϕvh) − ϕ(γϕuh , γϕuh), (3.14)

I j (v
h) := j0(γ j u; γ j uh − γ j u) + j0(γ j uh; γ j v

h − γ j uh) − j0(γ j u; γ j v
h − γ j u). (3.15)

Notice that for ε > 0 arbitrarily small, there is a constant c depending on ε such that

〈Au − Auh, u − vh〉 ≤ L A‖u − uh‖X‖u − vh‖X

≤ ε ‖u − uh‖2X + c ‖u − vh‖2X .

We further deduce from (3.12) that

(m A − ε) ‖u − uh‖2X ≤ c ‖u − vh‖2X + R(vh) + Iϕ(vh) + I j (v
h). (3.16)
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Let us bound the terms Iϕ(vh) and I j (v
h). By (2.6), we have

Iϕ(vh) ≤ αϕ‖γϕu − γϕuh‖Xϕ‖γϕuh − γϕvh‖Xϕ

≤ αϕc2ϕ
(

‖u − uh‖2X + ‖u − uh‖X‖u − vh‖X

)

.

Thus,
Iϕ(vh) ≤

(

αϕc2ϕ + ε
)

‖u − uh‖2X + c ‖u − vh‖2X (3.17)

for another constant c depending on ε > 0. We will apply the subadditivity of the
generalized directional derivative:

j0(z; z1 + z2) ≤ j0(z; z1) + j0(z; z2) ∀ z, z1, z2 ∈ X j .

Using

j0(γ j u
h; γ jv

h − γ j u
h) ≤ j0(γ j u

h; γ j u − γ j u
h) + j0(γ j u

h; γ jv
h − γ j u),

we have

I j (v
h) ≤

[

j0(γ j u; γ j u
h − γ j u) + j0(γ j u

h; γ j u − γ j u
h)

]

+
[

j0(γ j u
h; γ jv

h − γ j u) − j0(γ j u; γ jv
h − γ j u)

]

. (3.18)

By (2.8),

j0(γ j u; γ j u
h − γ j u) + j0(γ j u

h; γ j u − γ j u
h) ≤ α j‖γ j u − γ j u

h‖2X j
;

by (2.7),

∣

∣

∣ j0(γ j u
h; γ jv

h − γ j u)

∣

∣

∣ ≤
(

c0 + c1‖γ j u
h‖X j

)

‖γ j u − γ jv
h‖X j ,

∣

∣

∣ j0(γ j u; γ jv
h − γ j u)

∣

∣

∣ ≤ (

c0 + c1‖γ j u‖X j

) ‖γ j u − γ jv
h‖X j .

Thus, from (3.18), we have

I j (v
h) ≤ α j‖γ j u − γ j u

h‖2X j
+ c ‖γ j u − γ jv

h‖X j (3.19)

for some constant c > 0 independent of h, where we used the fact that ‖γ j uh‖X j is
uniformly bounded (cf. Proposition 3.1). Combine (3.16), (3.17), and (3.19),

(

m A − αϕc2ϕ − α j c
2
j − 2 ε

)

‖u − uh‖2X
≤ c ‖u − vh‖2X + c ‖γ j u − γ jv

h‖X j + R(vh).
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Since αϕc2ϕ + α j c2j < m A, we can choose ε = (m A − αϕc2ϕ − α j c2j )/4 > 0 and get

‖u − uh‖2X ≤ c
[

‖u − vh‖2X + ‖γ j u − γ jv
h‖X j + R(vh)

]

∀ vh ∈ K h . (3.20)

The residual term (3.13) can be bounded as follows:

∣

∣

∣R(vh)

∣

∣

∣ ≤ [‖Au‖X∗ + Lϕ(γϕu) cϕ + (

c0 + c1‖γ j u‖X j

)

c j + ‖ f ‖X∗
] ‖u − vh‖X .

Thus, from (3.20), we have two constants c1, c2 > 0, depending on the data of the
problem and the solution, such that

‖u − uh‖2X ≤ c1‖u − vh‖2X + c2‖u − vh‖X ∀ vh ∈ K h . (3.21)

By (3.8), we can choose a sequence {vh} ⊂ K h that converges to u. From (3.21), we
then conclude the convergence

‖u − uh‖X → 0 as h → 0.

Note that while (3.21) implies the convergence of the numerical method, it does
not lead to optimal convergence order for error estimation.

3.2 Error estimation for the particular case K = X

In the special case K = X , we have K h = Xh , and the original problem (2.2) and its
approximation (3.1) become

〈Au, v − u〉 + ϕ(γϕu, γϕv) − ϕ(γϕu, γϕu)

+ j0(γ j u; γ jv − γ j u) ≥ 〈 f, v − u〉 ∀ v ∈ X (3.22)

and

〈Auh, vh − uh〉 + ϕ(γϕuh, γϕvh) − ϕ(γϕuh, γϕuh)

+ j0(γ j u
h; γ jv

h − γ j u
h) ≥ 〈 f, vh − uh〉 ∀ vh ∈ Xh . (3.23)

We replace v by 2u − v in (3.22),

〈Au, u − v〉 + ϕ(γϕu, 2γϕu − γϕv) − ϕ(γϕu, γϕu)

+ j0(γ j u; γ j u − γ jv) ≥ 〈 f, u − v〉 ∀ v ∈ X.

Thus,

〈Au, vh − u〉 ≤ ϕ(γϕu, 2γϕu − γϕvh) − ϕ(γϕu, γϕu)

+ j0(γ j u; γ j u − γ jv
h) − 〈 f, u − vh〉 ∀ vh ∈ Xh .

123



572 W. Han et al.

Using this inequality in (3.12), we have

m A‖u − uh‖2X ≤ 〈Au − Auh, u − vh〉 + Ĩϕ(vh) + Ĩ j (v
h), (3.24)

where

Ĩϕ(vh):=Iϕ(vh) + ϕ(γϕu, 2γϕu − γϕvh) + ϕ(γϕu, γϕvh) − 2 ϕ(γϕu, γϕu), (3.25)

Ĩ j (v
h):= j0(γ j u; γ j uh − γ j u) + j0(γ j u; γ j u − γ j v

h) + j0(γ j uh; γ j v
h − γ j uh). (3.26)

Recall that Iϕ(vh) is defined in (3.14) and it is bounded in (3.17). We use (3.7) to find

ϕ(γϕu, 2γϕu − γϕvh) + ϕ(γϕu, γϕvh)

−2 ϕ(γϕu, γϕu) ≤ 2 Lϕ(γϕu) ‖γϕu − γϕvh‖Xϕ .

This implies, combined with (3.17), that

Ĩϕ(vh) ≤
(

αϕc2ϕ + ε
)

‖u−uh‖2X +c ‖u−vh‖2X +2 Lϕ(γϕu) ‖γϕu−γϕvh‖Xϕ . (3.27)

Applying the inequality

j0(γ j u
h; γ jv

h − γ j u
h) ≤ j0(γ j u

h; γ j u − γ j u
h) + j0(γ j u

h; γ jv
h − γ j u),

we have

Ĩ j (v
h) ≤

[

j0(γ j u; γ j u
h − γ j u) + j0(γ j u

h; γ j u − γ j u
h)

]

+
[

j0(γ j u; γ j u − γ jv
h) + j0(γ j u

h; γ jv
h − γ j u)

]

.

This is similar to (3.18) and we have the following analogue of (3.19):

Ĩ j (v
h) ≤ α j c

2
j‖u − uh‖2X + c ‖γ j u − γ jv

h‖X j . (3.28)

Combining (3.24), (3.27) and (3.28), we get

m A‖u − uh‖2X ≤ ‖Au − Auh‖X‖u − vh‖X +
(

αϕc2ϕ + α j c
2
ϕ + ε

)

‖u − uh‖2X
+ c ‖u − vh‖2X + 2 Lϕ(γϕu) ‖γϕu − γϕvh‖Xϕ

+ c ‖γ j u − γ jv
h‖X j .

Using the smallness assumption (2.9) and the Lipschitz condition (3.6), we deduce
from the above inequality that
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‖u − uh‖2X
≤ c

(

‖u − vh‖2X + ‖γϕu − γϕvh‖Xϕ + ‖γ j u − γ jv
h‖X j

)

∀ vh ∈ Xh .

(3.29)

This is a basis for deriving error estimates.

4 Error analysis for contact problems

We illustrate applications of the framework developed in Section 3 on convergence and
error estimation for numerical solutions of a number of static contact problems with
elastic materials. Let  be the reference configuration of the elastic body, assumed
to be an open, bounded, connected set in R

d (d = 2, 3). The boundary � = ∂ is
assumed Lipschitz continuous and is partitioned into three disjoint and measurable
parts �1, �2 and �3 such that meas (�1) > 0. The body is in equilibrium under the
action of a total body force of density f 0 in  and a surface traction of density f 2
on �2, is fixed on �1, and is in contact on �3 with a foundation. Different contact
conditions lead to different contact problems, as discussed below.

We use Sd for the space of second order symmetric tensors on Rd , and use “·” and
‖ · ‖ for the canonical inner product and the Euclidean norm on the spaces Rd and Sd .
We denote by u :  → R

d and σ :  → S
d the displacement field and the stress field,

respectively. In addition, we use ε(u) to denote the linearized strain tensor. Let ν be
the unit outward normal vector, defined a.e. on �. For a vector field v, we use vν :=v ·ν
and vτ :=v − vνν for the normal and tangential components of v on �. Similarly, for
the stress field σ , its normal and tangential components on the boundary are defined
as σν :=(σν) ·ν and σ τ :=σν −σνν, respectively. Then for the contact problems under
consideration, we have the elastic constitutive law

σ = Fε(u) in , (4.1)

the equilibrium equation
Div σ + f 0 = 0 in , (4.2)

the displacement boundary condition

u = 0 on �1, (4.3)

and the traction boundary condition

σν = f 2 on �2. (4.4)

The relations (4.1)–(4.4) will be supplemented by a set of boundary conditions on �3.
Note that in (4.1)–(4.4) and at various places below, we do not indicate explicitly

the dependence of various functions on the spatial variable x ∈  ∪ �. In (4.1),
F :  × S

d → S
d is the elasticity operator and is assumed to have the following

properties:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) there exists LF > 0 such that for all ε1, ε2 ∈ S
d , a.e. x ∈ ,

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖;
(b) there exists mF > 0 such that for all ε1, ε2 ∈ S

d , a.e. x ∈ ,

(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2;
(c) F(·, ε) is measurable on  for all ε ∈ S

d;
(d) F(x, 0) = 0 for a.e. x ∈ .

(4.5)

To study the contact problems, we need some function spaces. For the stress and
strain fields, we use the space Q = L2(;Sd), which is a Hilbert space with the
canonical inner product

(σ , τ )Q :=
∫



σi j (x) τi j (x) dx, σ , τ ∈ Q.

Here and below we use the summation convention upon the repeated index. The
associated norm on the space Q is denoted by ‖ · ‖Q . The displacement fields will be
sought in the space

V =
{

v = (vi ) ∈ H1(;Rd) | v = 0 a.e. on �1

}

or its subset. Since meas (�1) > 0, it is known that V is a Hilbert space with the inner
product

(u, v)V :=
∫



ε(u) · ε(v) dx, u, v ∈ V

and the associated norm ‖ · ‖V . For v ∈ H1(;Rd) we use the same symbol v for the
trace of v on �. By the Sobolev trace theorem we have

‖v‖L2(�3;Rd ) ≤ ‖γ ‖ ‖v‖V ∀ v ∈ V,

‖γ ‖ being the norm of the trace operator γ : V → L2(�3;Rd).
We consider several choices of the boundary conditions on the contact boundary

�3, leading to different contact problems which are examples of Problem (P) or its
special cases.

4.1 Frictional contact with normal compliance and unilateral constraint

The first set of contact boundary conditions is ([17])

uν ≤ g, σν + ξν ≤ 0, (uν − g) (σν + ξν) = 0, ξν ∈ ∂ jν(uν) on �3, (4.6)

‖σ τ‖ ≤ Fb(uν), −σ τ = Fb(uν)
uτ

‖uτ‖ if uτ �= 0 on �3. (4.7)
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Here g > 0, ∂ jν is the Clarke subdifferential of a function jν , and the friction bound
Fb is a non-negatively valued function. The condition (4.6) models the contact with
a foundation made of a rigid body covered by a layer made of elastic material, say
asperities. The relation uν ≤ g restricts the allowed penetration, where g represents
the thickness of the elastic layer. When there is penetration, as long as the normal
displacement does not reach the bound g, the contact is described with a multivalued
normal compliance condition −σν = ξν ∈ ∂ jν(uν). Thus, the unknown ξν may be
interpreted as the opposite of the normal stress on the contact surface. Examples of
normal compliance contact conditions in the subdifferential form −σν ∈ ∂ jν(uν) can
be found in [16]. To conclude, the contact condition (4.6) represents a combination
of the Signorini contact condition (which models the contact with a rigid foundation)
and the normal compliance condition (which models the contact with a deformable
foundation). Details on the normal compliance and Signorini contact conditions can
be found in [11,16,22,24]. The contact is assumed to be frictional and is described
with a version of Coulomb’s law of dry friction, (4.7). The friction bound Fb may
depend on the normal displacement uν , cf. [23] for explanation. We note that when
the friction bound Fb is zero, the contact boundary condition (4.7) reduces to

σ τ = 0 on �3. (4.8)

Thus, the frictionless contact can be viewed as a limiting special case of the general
contact condition (4.7).

On the potential function jν : �3 × R → R, we assume

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) jν(·, r) is measurable on �3 for all r ∈ R and there
exists e ∈ L2(�3) such that jν(·, e(·)) ∈ L1(�3);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ �3;
(c) |∂ jν(x, r)| ≤ c0 + c1|r | for a.e. x ∈ �3,

for all r ∈ R with c0, c1 ≥ 0;
(d) j0ν (x, r1; r2 − r1) + j0ν (x, r2; r1 − r2) ≤ α jν |r1 − r2|2

for a.e. x ∈ �3, all r1, r2 ∈ R with α jν ≥ 0.

(4.9)

On the penetration bound g : �3 → R and the friction bound Fb : �3 ×R → R+, we
assume

g ∈ L2(�3), g(x) ≥ 0 a.e. on �3, (4.10)
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) there exists L Fb > 0 such that
|Fb(x, r1) − Fb(x, r2)| ≤ L Fb |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ �3;

(b) Fb(·, r) is measurable on �3, for all r ∈ R;
(c) Fb(x, r) = 0 for r ≤ 0, Fb(x, r) ≥ 0 for r ≥ 0, a.e. x ∈ �3.

(4.11)

On the densities of body forces and surface tractions we assume

f 0 ∈ L2(;Rd), f 2 ∈ L2(�2;Rd). (4.12)
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Define f ∈ V ∗ by

〈 f , v〉V ∗×V = ( f 0, v)L2(;Rd ) + ( f 2, v)L2(�2;Rd ) ∀ v ∈ V . (4.13)

Corresponding to the constraint uν ≤ g on �3 in (4.6), we introduce a subset of the
space V :

U := {v ∈ V | vν ≤ g on �3} . (4.14)

By a standard approach (cf. [11,16]), the following weak formulation of the first
contact problem can be derived.

Problem (P1). Find a displacement field u ∈ U such that

(F(ε(u)), ε(v − u))Q +
∫

�3

Fb(uν) (‖vτ‖ − ‖uτ‖) d�

+
∫

�3

j0ν (uν; vν − uν) d� ≥ 〈 f , v − u〉V ∗×V ∀ v ∈ U. (4.15)

To apply the theory presented in the previous sections, we let X = V , K = U ,
Xϕ = Kϕ = L2(�3;Rd) with γϕ the trace operator from V to Xϕ , X j = L2(�3) with
γ jv = vν for v ∈ V , and

A : V → V ∗, 〈Au, v〉 =
∫



Fε(u) · ε(v) dx for u, v ∈ V,

ϕ : L2(�3;Rd) × L2(�3;Rd) → R,

ϕ(ξ , η) =
∫

�3

Fb(ξν) ‖ητ‖ d� for ξ , η ∈ L2(�3;Rd),

j : L2(�3) → R, j (ξ) =
∫

�3

jν(ξ) d� for ξ ∈ L2(�3),

f ∈ V ∗, 〈 f , v〉 =
∫



f 0 · v dx +
∫

�3

f 2 · v dx for v ∈ V .

Observe that hypothesis (4.5) implies that the operator A satisfies condition (2.5)
with m A = mF as well as condition (3.6). Moreover, hypothesis (4.11) implies that
ϕ satisfies (2.6) with αϕ = L Fb as well as condition (3.7). Next, hypothesis (4.9)(a)
guarantees that the function j is well defined, and hypotheses (4.9)(b) and (c) imply
that (2.7) holds (cf. [16, Theorem 3.47]). Condition (2.8) is a consequence of the
relation

j0(ξ ; η) ≤
∫

�3

j0ν (x, ξ(x); η(x)) d� ∀ ξ, η ∈ L2(�3),

combined with the hypothesis (4.9)(d) and is satisfied with α j = α jν . Under the
assumption (4.10), it is easy to see that the set (4.14) is a nonempty, closed, convex
set in V . In addition, (2.10) is valid from the definition (4.13) and assumption (4.12).
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Let λ1,V > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫



ε(u)·ε(v) dx = λ

∫

�3

u·v d� ∀ v ∈ V,

and let λ1ν,V > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫



ε(u)·ε(v) dx = λ

∫

�3

uνvνd� ∀ v ∈ V .

Then we may take

cϕ = λ
−1/2
1,V , c j = λ

−1/2
1ν,V .

Applying Theorem 2.1, we know that under the assumptions (4.5), (4.9)–(4.12), and

L Fbλ
−1
1,V + α jν λ

−1
1ν,V < mF , (4.16)

Problem (P1) has a unique solution u ∈ U .
We now consider the finite element method of solving Problem (P1). For simplicity,

assume is a polygonal/polyhedral domain and express the three parts of the boundary,
�k , 1 ≤ k ≤ 3, as unions of closed flat components with disjoint interiors:

�k = ∪ik
i=1�k,i , 1 ≤ k ≤ 3.

Let {T h} be a regular family of partitions of  into triangles/tetrahedrons that are
compatible with the partition of the boundary ∂ into �k,i , 1 ≤ i ≤ ik , 1 ≤ k ≤ 3, in
the sense that if the intersection of one side/face of an element with one set �k,i has a
positive measure with respect to �k,i , then the side/face lies entirely in �k,i . Construct
the linear element space corresponding to T h :

V h =
{

vh ∈ C(;Rd) | vh |T ∈ P1(T )d , T ∈ T h, vh = 0 on �1

}

,

and the related finite element subset U h = V h ∩ U . Assume g is a concave function.
Then

U h =
{

vh ∈ V h | vh
ν ≤ g at node points on �3

}

.

Note that 0 ∈ U h . Define the following numerical method for Problem (P1).
Problem (Ph

1). Find a displacement field uh ∈ U h such that

(F(ε(uh)), ε(vh − uh))Q +
∫

�3

Fb(u
h
ν )

(

‖vh
τ‖ − ‖uh

τ‖
)

d�

+
∫

�3

j0ν (uh
ν ; vh

ν − uh
ν ) d� ≥ 〈 f , vh − uh〉V ∗×V ∀ vh ∈ U h . (4.17)
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For an error analysis, we assume

u ∈ H2(;Rd), σν ∈ L2(�3;Rd). (4.18)

Note that for many application problems, σν ∈ L2(�3;Rd) follows from u ∈
H2(;Rd); e.g., this is the case where the material is linearly elastic with suitably
smooth coefficients, or where the elasticity operator F depends on x smoothly. We
apply (3.20) to derive an error estimate. For this purpose, we need to bound the residual
term defined in (3.13):

R(vh) = (F(ε(u)), ε(vh − u))Q +
∫

�3

Fb(uν)
(

‖vh
τ‖ − ‖uτ‖

)

d�

+
∫

�3

j0ν (uν; vh
ν − uν) d� − 〈 f , vh − u〉V ∗×V .

We follow the procedure found in [11]. Take v = u ± w with w in the subset Ũ of U
defined by

Ũ :=
{

w ∈ C∞(;Rd) | w = 0 on �1 ∪ �3

}

,

and derive from (4.15) that

(F(ε(u)), ε(w))Q = 〈 f ,w〉V ∗×V ∀w ∈ Ũ .

Therefore,

DivF(ε(u)) + f 0 = 0 in , (4.19)

σν = f 2 on �2. (4.20)

Then multiply (4.19) by v − u with v ∈ U , integrate over , and integrate by parts,

∫

∂

σν·(v − u) d� −
∫



F(ε(u))·ε(v − u) dx +
∫



f 0·(v − u) dx = 0,

i.e.,
∫



F(ε(u))·ε(v − u) dx = 〈 f , v − u〉V ∗×V +
∫

�3

σν·(v − u) d�. (4.21)

Thus,

R(vh) =
∫

�3

[

σν·(vh − u) + Fb(uν)
(

‖vh
τ‖ − ‖uτ‖

)

+ j0ν (uν; vh
ν − uν)

]

d�,

and then,
∣

∣

∣R(vh)

∣

∣

∣ ≤ c ‖u − vh‖L2(�3)d . (4.22)
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Finally, from (3.20), we derive the inequality

‖u − uh‖2V ≤ c
(

‖u − vh‖2V + ‖u − vh‖L2(�3)d

)

∀ vh ∈ U h . (4.23)

Under additional solution regularity assumption

u|�3,i ∈ H2(�3,i ;Rd), 1 ≤ i ≤ i3, (4.24)

we have the optimal order error bound

‖u − uh‖V ≤ c h. (4.25)

We comment that similar results hold for the frictionless version of the model, i.e.,
where the friction condition (4.7) is replaced by (4.8). Then the problem is to solve
the inequality (4.15) without the term

∫

�3

Fb(uν) (‖vτ‖ − ‖uτ‖) d�.

The condition (4.16) reduces to

α jν λ
−1
1ν,V < mF .

The inequality (4.23) and the error bound (4.25) still hold for the linear finite element
solution.

4.2 Frictional contact with normal compliance

Instead of (4.6)–(4.7), the following contact boundary conditions were considered in
[9]:

− σν ∈ ∂ jν(uν), ‖σ τ‖ ≤ Fb(uν), −σ τ = Fb(uν)
uτ

‖uτ‖ if uτ �= 0 on �3,

(4.26)
where the potential function jν is assumed to satisfy (4.9), whereas the friction bound
Fb is assumed to satisfy (4.11). Note that in contrast with the contact boundary condi-
tion (4.6) which involves a unilateral constraint on the displacement field, the contact
condition in (4.26) does not involve such a restriction. It can be viewed as a limiting
case of the (4.6) when g → ∞. The weak formulation of the corresponding contact
problem is the following.

Problem (P2). Find a displacement field u ∈ V such that

(F(ε(u)), ε(v − u))Q +
∫

�3

Fb(uν) (‖vτ‖ − ‖uτ‖) d�

+
∫

�3

j0ν (uν; vν − uν) d� ≥ 〈 f , v − u〉V ∗×V ∀ v ∈ V . (4.27)

123



580 W. Han et al.

This problem and its numerical approximations were studied in [9], where the
functional jν was assumed to be Lipschitz continuous. We can apply the theory
developed in Sect. 3 for error analysis of numerical solutions of Problem (P2), with
Xϕ = L2(�3;Rd) and X j = L2(�3), without the need of assuming jν to be Lipschitz
continuous.

4.3 Frictionless contact with normal compliance

The frictionless version of the contact boundary conditions (4.26) are

− σν ∈ ∂ jν(uν), σ τ = 0 on �3. (4.28)

These conditions can be obtained from (4.26) when the friction bound vanishes, i.e.
when Fb ≡ 0. Such a condition represents an idealization of the process, since even
completely lubricated surfaces generate shear resistance to tangential motion. The
weak formulation of the corresponding contact problem is the following.

Problem (P3). Find a displacement field u ∈ V such that

(F(ε(u)), ε(v−u))Q +
∫

�3

j0ν (uν; vν −uν) d� ≥ 〈 f , v−u〉V ∗×V ∀ v ∈ V . (4.29)

Note that, in contrast with the inequality (4.27) which involves both a convex and a
nonconvex function, the inequality (4.29) is governed by a nonconvex function only;
it is an example of a pure hemivariational inequality. In applying the theory of Sect. 3
in the study of this inequality, we choose X j = L2(�3) and there is no Xϕ .

4.4 Frictionless contact with subdifferential boundary conditions and unilateral
constraint

We turn now to a new model of frictionless contact described with two subdiferential
boundary conditions, associated with a unilateral constraint for the normal displace-
ment field. The boundary conditions are formulated as follows:

σν = σ 1
ν + σ 2

ν + σ 3
ν , −σ 1

ν ∈ ˜∂ϕν(uν), −σ 2
ν ∈ ∂ jν(uν),

uν ≤ g, σ 3
ν ≤ 0, σ 3

ν (uν − g) = 0, on�3, (4.30)

σ τ = 0 on�3. (4.31)

Here g is a prescribed bound, ϕν and jν are given functions, and˜∂ϕν , ∂ jν denote the
convex subdifferential of ϕν and the Clarke subdifferential of jν , respectively. A rele-
vant example of the contact condition which can be cast in the general subdifferential
framework (4.30) follows.

Example 4.1 We adopt assumptions (a)–(e) below in which equalities and inequalities
hold on the contact surface �3.
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(a) The foundation is made of a rigid body covered by a layer of soft material, say
asperities. Therefore, the penetration is restricted, i.e.

uν ≤ g, (4.32)

where g > 0 represents the thickness of the soft layer. We consider the nonhomo-
geneous case, i.e., g is allowed to be a function of the spatial variable x ∈ �3.

(b) The normal stress has an additive decomposition of the form

σν = σ D
ν + σ R

ν , (4.33)

where the term σ D
ν describes the reaction of the soft layer and σ R

ν describes the
reaction of the rigid body.

(c) The part σ D
ν has, in turn, an additive decomposition of the form

σ D
ν = σ 1

ν + σ 2
ν , (4.34)

where
− σ 1

ν = qν(uν), −σ 2
ν = pν(uν). (4.35)

Here qν and pν are continuous positive functions, vanishing for a negative argu-
ment.Moreover, qν is an increasing function and pν is allowed to be nonmonotone.
Equalities (4.34), (4.35) show that the function σ D

ν follows a normal compliance
contact condition of the form

− σ D
ν = qν(uν) + pν(uν). (4.36)

(d) The part σ R
ν satisfies the Signorini condition in a form with a gap function, i.e.

σ R
ν ≤ 0, σ R

ν (uν − g) = 0. (4.37)

The contact conditions (4.35) can be expressed in terms of the subdifferential oper-
ators. Introduce functions ϕν : R → R and jν : R → R by

ϕν(r) =
∫ r

0
qν(s) ds, jν(r) =

∫ r

0
pν(s) ds ∀ r ∈ R. (4.38)

Then, as explained in [16,24] we have ˜∂ϕ(r) = {qν(r)}, ∂ν j (r) = {pν(r)} for all
r ∈ R. Thus, (4.35) leads to a subdifferential condition of the form

− σ 1
ν ∈ ˜∂ϕν(uν), −σ 2

ν ∈ ∂ j (uν). (4.39)

Denote σ R
ν = σ 3

ν . Then, gathering relations (4.33), (4.34), (4.39), (4.32) and (4.37)
we obtain that uν and σν satisfy the contact condition (4.30). We conclude that the
contact model based on assumptions (4.32)–(4.37) can be cast in this abstract subdif-
ferential setting, as claimed. ��
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Note that various examples of contact conditions can be considered in the form
(4.30), some of them involving multivalued functions. For this reason, we proceed our
analysis by considering the contact conditions in the general form (4.30). There, the
function jν is assumed to satisfy (4.9) and ϕν : �3 × R → R satisfies the following
conditions:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(a) ϕν(·, r) is measurable on �3 for all r ∈ R and there
exists ẽ ∈ L2(�3) such that ϕν(·, ẽ(·)) ∈ L1(�3).

(b) ϕν(x, ·) is convex on R for a.e. x ∈ �3.

(c) |ϕν(x, r1) − ϕν(x, r2)| ≤ Lϕν (x) |r1 − r2| for all x ∈ �3,

r1, r2 ∈ R, with Lϕν ∈ L2(�3).

(4.40)

By a standard procedure, we derive the following variational formulation of the
problem (4.1)–(4.4), (4.30), (4.31).

Problem (P4). Find a displacement field u ∈ U such that

∫



F(ε(u)) · ε(v − u) dx

+
∫

�3

ϕν(vν) d� −
∫

�3

ϕν(uν) d� +
∫

�3

j0ν (uν; vν − uν) d�

≥
∫



f 0 · (v − u) dx +
∫

�2

f 2 · (v − u) d� ∀ v ∈ U. (4.41)

Corresponding to this problem, the inequality (2.6) holds with αϕ = 0. Assume
now that the smallness condition

α jν λ
−1
1ν,V < mF (4.42)

holds. Then, the unique solvability of Problem (P4) follows from arguments similar
to those used to prove the unique solvability of Problem (P1).

The results in Sect. 3 apply in the study the numerical approximation of the contact
problems (P2)–(P4) as was done for the contact problem (P1) earlier in the section. In
particular, under the solution regularity assumptions (4.18) and (4.24), we have the
optimal order error bound (4.25).

5 Numerical simulations

In this section we report numerical simulation results. We focus on Problems (P1)
and (P2) and, for Problem (P1) we restrict to the frictionless case. The frictional
case of Problem (P1) does not cause additional difficulties, neither theoretically nor
computationally.

The numerical algorithm used here is described in [2–5], and it is based on an
iterative procedure which leads to a sequence of convex programming problems. For
each “convexification” iteration, the value of the normal compliance function is fixed
to a given value depending on the normal displacement solution uν found in the
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previous iteration. Then, the resulting nonsmooth convex iterative problems are solved
by classical numerical methods. Furthermore, the frictional contact conditions are
treated by using a numerical approach based on the combination of the penalized
method and the augmentedLagrangianmethod.Weconsider additional fictitious nodes
for the Lagrangemultiplier in the initialmesh. The construction of these nodes depends
on the contact elements used for the geometrical discretization of the interface �3. In
the examples presented below, the discretization is based on “node-to-rigid” contact
element, which is composed of one node of �3 and one Lagrange multiplier node.
For more details on the discretization step and Computational Contact Mechanics, we
refer the reader to [13–15,25].

5.1 Physical setting and values of parameters

Let  = (0, L) × (0, L) ⊂ R
2 with L > 0 and

�1 = ({0} × [0, L]) ∪ ({L} × [0, L]), �2 = [0, L] × {L}, �3 = [0, L] × {0}.

The domain  represents the cross section of a three-dimensional elastic body sub-
jected to the action of tractions in such a way that the plane stress hypothesis is valid.
The body is clamped on �1 and, therefore, the displacement field vanishes there. Ver-
tical tractions act on �2. No body forces are assumed to act on the body during the
process. The body is in contact with an obstacle on �3. The contact conditions used
correspond both to Problems (P1) and (P2) and will be described below. The material
response is governed by a linear constitutive law defined by the elasticity tensor F
given by

(Fτ )i j = Eκ

(1 + κ)(1 − 2κ)
(τ11 + τ22)δi j + E

1 + κ
τi j , 1 ≤ i, j ≤ 2, ∀ τ ∈ S

2.

Here, E and κ are Young’s modulus and Poisson’s ratio of the material and δi j denotes
the Kronecker delta. For the computation below, we use the following data:

L = 1m, E = 70GPa, κ = 0.3,

f 0 = (0, 0)GPa, f 2 = (0,−4)GPam on �2.

For the numerical simulation we use linear finite elements on uniform triangulations
of the domain . The contact boundary �3 is divided in 1/h parts, h being the spatial
discretization parameter. The numerical solutions presented below correspond to the
case h = 1/64 where the spatial domain is discretized into 16384 elements for a total
number of degrees of freedom equal to 16770. They have been obtained by using a
specific finite element library implemented in Fortran called MODULEF. Details on
this library, could be found to https://www.rocq.inria.fr/modulef/english.html.
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5.2 Numerical simulations for problem (P1)

We consider a particular version of Problem (P1), in which the contact conditions are
given by

uν ≤ g, σν + kν(uν) ≤ 0, (uν − g)(σν + kν(uν)) = 0 on �3, (5.1)

σ τ = 0 on �3. (5.2)

Here kν : R → R is a given function to be described below. These conditions indicate
that the contact is frictionless; it follows a normal compliance condition as far as
the penetration is less than the bound g and, when this bound is reached, it follows
a unilateral constraint. The behavior of the foundation is an elastic-rigid one and
corresponds to an obstacle made of a hard material covered by a layer composed of a
soft material, say asperities, with thickness g, as depicted in Figure 1.

For the numerical simulations we choose g = 0.02m. In addition, we choose

kν(r) = α
(

βr+ + p(r)
)

, r ∈ R, (5.3)

where

p(r) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if r < 0,

r if r ∈ [0, 0.01],
0.02 − r if r ∈ (0.01, 0.02],
r − 0.02 if r > 0.02.

(5.4)

Here and below r+ represents the positive part of r , i.e. r+ = max {r, 0}, α > 0 and
β ≥ 0 are stiffness coefficients of the foundation.

Γ3
Rigid Obstacle

Γ1 Γ1

Γ2

g

Asperities

x

x
1

2

Deformable bodyΩ

Fig. 1 Reference configuration of the two-dimensional body
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Let jν : R → R be the function defined by

jν(r) =
∫ r

0
kν(s) ds ∀ r ∈ R. (5.5)

Then, ∂ jν(r) = {kν(r)} for all r ∈ R which imply that the boundary conditions
(5.1)–(5.2) are of the form (4.6)–(4.7) with Fb = 0.

Obviously, kν is Lipschitz continuous. Moreover, it is easy to see that the function
jν satisfies assumptions (4.9)(a)–(c). Noting that

j0ν (r1; r2) = kν(r1) r2 ∀ r1, r2 ∈ R, (5.6)

the condition (4.9)(d) is equivalent to the inequality

(kν(r1) − kν(r2))(r2 − r1) ≤ α jν(r1 − r2)
2 ∀ r1, r2 ∈ R with some α jν ≥ 0,

and is thus also equivalent to the statement that the functionR � r �→ α jν r+kν(r) ∈ R

is nondecreasing for some α jν ≥ 0. This monotonicity property is obviously satisfied
with α jν = α. It follows from above that condition (4.9)(d) holds, too.

We conclude from above that the choice (5.3)–(5.4) leads to a model of contact
for which the weak formulation is given by the variational-hemivariational inequality
(4.15) which, in our particular case Fb = 0, becomes

u ∈ U,

∫



F(ε(u)) · ε(v − u) dx +
∫

�3

j0ν (uν; vν − uν) d�

≥
∫



f 0 · (v − u) dx +
∫

�3

f 2 · (v − u) dx ∀ v ∈ U. (5.7)

Note also that this inequality has a unique solution, provided that α is small enough.
Moreover, using (5.6) we deduce that the corresponding version of Problem (P1) can
be written, in an equivalent form as follows: find u such that

u ∈ U,

∫



F(ε(u)) · ε(v − u) dx +
∫

�3

kν(uν)(vν − uν) d�

≥
∫



f 0 · (v − u) dx +
∫

�3

f 2 · (v − u) dx ∀ v ∈ U. (5.8)

We examine in what follows the feature of the inequalities (5.7) and (5.8) in relation
to the values of the parameter β.

If β ≥ 1, then kν is a continuous increasing function and, therefore, jν is a convex
function. Moreover, it can be proved that u is a solution of the inequality (5.8) if and
only if
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u ∈ U,

∫



F(ε(u)) · ε(v − u) dx +
∫

�3

[ jν(vν) − jν(vν)] d�

≥
∫



f 0 · (v − u) dx +
∫

�3

f 2 · (v − u) dx ∀ v ∈ U. (5.9)

Since jν is a convex function, the inequality (5.9) is a purely variational inequality.
It follows from here that inequalities (5.7) and (5.8) are, in fact, purely variational
inequalities.

Next, if 0 ≤ β < 1, then kν is not a monotone function and, therefore, jν is not
convex. This implies that in this case inequalities (5.7) and (5.8) are hemivariational
inequalities.

We conclude that our contact model leads to a variational formulation (5.8) whose
intrinsic nature depends on the value of the parameter β. For β ≥ 1, the function kν

is increasing and from (5.1) it follows that we have the case of a monotone normal
compliance contact condition with unilateral constraint. In contrast, for 0 ≤ β < 1
the function kν is not increasing and using (5.1), we have the case of a so-called non-
monotone normal compliance contact condition with unilateral constraint. Our aim
in what follows is to perform simulations in the two cases above and to provide the
corresponding mechanical interpretations.

5.2.1 The monotone case

In Fig. 2 we plot the deformed configuration as well as the interface forces on �3, for
α = 40 while in Fig. 3 we plot that for α = 10. In both cases we take β = 2 which
guarantees that we are in the monotone case.

We observe that all nodes in Fig. 2 are in status of normal compliance, i.e. 0 ≤
uν < 0.02.Moreover, the interface forces increasewith respect to the penetration. This
numerical result correspondswith the theoretic one. Indeed, in this case there is no con-
tact with the rigid foundation, the normal stress reduces to its component provided by
the normal compliance condition and, therefore−σν = kν(uν). Since kν is an increas-
ing function we deduce that the magnitude of σν is increasing with the penetration.

In Fig. 3 part of the nodes are in status of normal compliance (i.e. 0 ≤ uν < 0.02)
and part of them are in unilateral contact (i.e. uν = 0.02). This situation arises since the
stiffness of the deformable foundation considered in Fig. 3 is α = 10 which is lower
than the one used in Fig. 2, where α = 40. As a result, there is a complete flattening
of the asperities in the center of the contact boundary. Moreover, the interface forces
increase with respect to the penetration and this agrees with the theory, since we are in
the monotone case. In addition, we note that the interface forces are more important
on the unilateral contact zone since the component σ 3

ν of the stress is active there.

5.2.2 The nonmonotone case

In Fig. 4 we plot the deformed configuration as well as the interface forces on �3 for
α = 150 and β = 0.5 while in Fig. 5 that for α = 40 and β = 0.5. Here we are in the
nonmonotone case, since β < 1.
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Fig. 2 Problem (P1): deformed
mesh and interface forces for a
normal compliance case for
α = 40 and β = 2

Fig. 3 Problem (P1): deformed
mesh and interface forces for a
normal compliance and
unilateral constraint case for
α = 10 and β = 2

Observe that in Fig. 4 all nodes are in status of normal compliance, i.e. 0 ≤ uν <

0.02. Nevertheless for part of the nodes we have 0 ≤ uν < 0.01 and for the other part
we have 0.01 ≤ uν < 0.02. We note that for 0 ≤ uν < 0.01 the normal forces are
increasing with respect to the penetration and for 0.01 ≤ uν < 0.02 they decrease.
This behaviour represent the softening property of the deformable layer. It arises since
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Fig. 4 Problem (P1): deformed
mesh and interface forces for a
normal compliance case for
α = 150 and β = 0.5

Fig. 5 Problem (P1): deformed
mesh and interface forces for a
normal compliance and
unilateral constraint case for
α = 40 and β = 0.5

there −σν = kν(uν) and kν is an increasing function on [0, 0.01], and it is decreasing
on [0.01, 0.02].

In Fig. 5 for part of the nodes we have 0 ≤ uν ≤ 0.01, for other part we have
0.01 ≤ uν ≤ 0.02 and, finally, for the remainder part we have uν = 0.02. We note
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Fig. 6 Problem (P1): deformed
mesh and interface forces for a
normal compliance and
unilateral constraint case for
α = 40 and β = 0

Table 1 Problem (P1): relative
errors in energy norm for contact
with normal compliance and
unilateral constraint

h 1/4 1/8 1/16 1/32 1/64

Relative error 0.187 0.0891 0.0433 0.0213 0.0105

that for 0 ≤ uν < 0.01 the normal forces are increasing with respect to the penetration
and for 0.01 ≤ uν < 0.02 they decrease. Moreover, the interface forces increase when
uν = 0.02 since, there, the component σ3 of the stress is active.

Finally, in Fig. 6 we present our numerical results in the case α = 40 and β = 0. In
this case, the non-monotonicity reaches its peak and, therefore, the average iterations
number of the “convexification” procedure to solve the problem is larger than that
needed in the previous cases. Note that the value of σν on the contact boundary
decreases when 0.01 ≤ uν ≤ 0.02 and converges to zero for a node located in the
transition area between the normal compliance zone and the unilateral constraint zone.

5.2.3 Numerical solution errors

We report relative numerical solution errors in the energy norm ‖uref −uh‖E/‖uref‖E

in Table 1 and Fig. 7, where the energy norm is defined by

‖v‖E := (F(ε(v)), ε(v))
1/2
Q

which is equivalent to the norm ‖v‖V . Since the true solution u is not available,
we use instead the numerical solution corresponding to a fine discretization of 
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0,0156 0,0313 0,0625 0,125 0,25
h

0,0156

0,0313

0,0625

0,125

0,25

|| u
re

f - 
 u

h
|| E

/||
 u

re
f|| E

Fig. 7 Problem (P1): relative errors in energy norm for contact with normal compliance and unilateral
constraint

with h = 1/256 as the “reference” solution uref in computing the solution errors.
This fine discretization corresponds to a problem with 132,098 degrees of freedom,
131,072 elements and is computed in 2462 CPU time (expressed in seconds) on an
IBM computer equipped with Intel Dual core processors (Model 5148, 2.33 GHz).
The curve of the relative numerical solution errors is asymptotically linear, which is
consistent with the theoretically predicted optimal linear convergence of the numerical
solution established in Sect. 4.

5.3 Numerical simulations for problem (P2)

In this problem, the contact is frictional with normal compliance. The foundation
reacts elastically. A representative numerical simulation result is shown in Fig. 8 for
the problem with the choice

jν(r) =
∫ r

0
kν(s) ds, kν(r) = α(βr+ + p(r)), Fb(r) = μ kν(r)

and α = 150, β = 0, 5, μ = 1. Note that this corresponds to a nonmonotone normal
compliance associatedwith the classical Coulomb’s lawof dry frictionwith the friction
coefficient μ. The normal stress is not aligned along the normal direction due to the
frictional contact.
Numerical solution errors We report relative numerical solution errors in the energy
norm in Table 2 and Fig. 9. Again, we use the numerical solution with h = 1/256 as
the “reference” solution uref in computing the solution errors. This fine discretization
for the “reference” solution uref corresponds to a problem with 132,098 degrees of
freedom, 131,072 elements and is computed in 5700 CPU time (expressed in seconds)
on an IBM computer equipped with Intel Dual core processors (Model 5148, 2.33

123



Numerical analysis of stationary… 591

Fig. 8 Problem (P1): deformed
mesh and interface forces for a
normal compliance case with
friction for α = 150 and
β = 0.5

Table 2 Problem (P2): relative
errors in energy norm for a
normal compliance case with
friction

h 1/4 1/8 1/16 1/32 1/64

Relative error 0.212 0.104 0.0519 0.0261 0.0128

0,0156 0,0313 0,0625 0,125 0,25
h

0,0156

0,0313

0,0625

0,125

0,25

|| u
re

f - 
 u

h
|| E

/||
 u

re
f|| E

Fig. 9 Problem (P2): relative errors in energy norm for frictional contact with normal compliance

GHz). The curve of the relative numerical solution errors is asymptotically linear,
which is consistent with the theoretically predicted optimal linear convergence of the
numerical solution established in Sect. 4.
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