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Abstract
This paper presents a general convergence theory of penalty based numerical methods
for elliptic constrained inequality problems, including variational inequalities, hemi-
variational inequalities, and variational–hemivariational inequalities. The constraint
is relaxed by a penalty formulation and is re-stored as the penalty parameter tends
to zero. The main theoretical result of the paper is the convergence of the penalty
based numerical solutions to the solution of the constrained inequality problem as
the mesh-size and the penalty parameter approach zero independently. The conver-
gence of the penalty based numerical methods is first established for a general elliptic
variational–hemivariational inequality with constraints, and then for hemivariational
inequalities and variational inequalities as special cases. Applications to problems in
contact mechanics are described.

Mathematics Subject Classification 65N30 · 65N15 · 74M10 · 74M15

1 Introduction

Penalty methods are an effective approach in the numerical solution of problems with
constraints. In a penalty method, the constraint of the original problem is allowed to
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be violated but the violation is penalized. The constraint is restored in the limit when a
small penalty parameter goes to zero. Penalty methods have been applied to a variety
of constrained problems of importance, e.g., penaltymethods for the incompressibility
constraint in incompressible fluid flow problems (e.g., [8]), in contact problems (e.g.,
[2,4,6,19,21]), or in the context of general variational inequalities (e.g., [10]). In most
related references, convergence of the penalty based numerical method is carried out
either at the continuous level or for an arbitrary but fixed finite dimensional approxi-
mation of the original constrained problem. More precisely, denote by ε > 0 the small
penalty parameter, by h > 0 the mesh-size for the finite dimensional approximation;
and let u, uε , uh , and uhε be the solution of the original constrained problem, the solu-
tion of the penalized problem at the continuous level, the numerical solution of the
original constrained problem, and the numerical solution of the penalized problem,
respectively. Then a typical convergence result found in the literature for the penalty
methods is of the type uε → u as ε → 0, or for h fixed, uhε → uh as ε → 0. In
this paper, we will establish the convergence result uhε → u as h, ε → 0 and we
will achieve this for families of constrained inequality problems, including variational
inequalities and hemivariational inequalities.

Hemivariational inequalities were introduced in early 1980s by Panagiotopoulos
in the context of applications in engineering problems involving non-monotone and
possibly multi-valued constitutive or interface laws for deformable bodies. Studies of
hemivariational inequalities can be found in several comprehensive references, e.g.,
[24,25], andmore recently, [22]. The book [18] is devoted to the finite element approxi-
mation of hemivariational inequalities, where convergence of the numericalmethods is
discussed. In the recent years, there have been efforts to derive error estimates. In the lit-
erature, the paper [13] provides the first optimal order error estimate for the linear finite
elementmethod in solving hemivariational or variational–hemivariational inequalities.
The idea of the derivation technique in [13] was adopted in several papers by various
authors for deriving optimal order error estimates for the linear finite element method
of a few individual hemivariational or variational–hemivariational inequalities. More
recently, we have developed general frameworks of convergence theory and error
estimation for hemivariational or variational–hemivariational inequalities: for internal
numerical approximations of general hemivariational and variational–hemivariational
inequalities in [16,17], and for both internal and external numerical approximations of
general hemivariational and variational–hemivariational inequalities in [12]. In these
recent papers, convergence is shown for numerical solutions by internal or exter-
nal approximation schemes under minimal solution regularity condition, Céa type
inequalities are derived that serve as the starting point for error estimation, for hemi-
variational and variational–hemivariational inequalities arising in contact mechanics,
optimal order error estimates for the linear finite element solutions are derived.

In [23], well-posedness of a family of variational–hemivariational inequalities
was established. In addition, a penalty formulation for the constrained variational–
hemivariational inequalities was introduced and convergence of the penalty solutions
is shown when the penalty parameter tends to zero. The penalty method has also
been used in the study of history-dependent variational or variational–hemivariational
inequalities, in [27,28], respectively, where convergence of the penalty method is
shown as the penalty parameter goes to zero. In [14], a penalty based numerical
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method is introduced and studied for sample hemivariational inequalities in uni-
lateral contact mechanics. In this paper, we substantially extend the result in [14]
to cover penalty based numerical methods for solving general constrained inequal-
ity problems, including variational inequalities, hemivariational inequalities and
variational–hemivariational inequalities, prove convergence of the numerical solu-
tions as both the meshsize and the penalty parameter tend to zero.

The rest of the paper is organized as follows. In Sect. 2we review some basic notions
needed in the study of variational–hemivariational inequalities. In Sect. 3, we intro-
duce a general variational–hemivariational inequality. In Sect. 4we describe numerical
methods based on penalty formulation for solving the constrained variational–
hemivariational inequalities, and show convergence of the penalty based numerical
methods in Sect. 5. Results on variational–hemivariational inequalities automati-
cally reduce to corresponding ones on purely hemivariational inequalities and purely
variational inequalities, respectively, with simplified conditions. We include some
comments in Sect. 6 on the convergence of the penalty based numerical methods for
such inequalities. In Sect. 7 we illustrate the application of the results from previous
sections in the study of the penalty based numerical methods for two mathematical
models describing unilateral contact of an elastic body with an obstacle. We end this
paper with some concluding statements and remarks.

2 Preliminaries

We introduce some basic notions and results in this section. All the spaces used in this
paper are real. For a normed space X , we denote by ‖ · ‖X its norm, by X∗ its dual
space, and by 〈·, ·〉X∗×X the duality pairing of X∗ and X . When no confusion may
arise, we simply write 〈·, ·〉 instead of 〈·, ·〉X∗×X . Weak convergence is indicated by
the symbol ⇀. The space of all linear continuous operators from one normed space
X to another normed space Y is denoted by L(X ,Y ).

An operator A : X → X∗ is said to be pseudomonotone if it is bounded and un⇀u
in X together with lim supn→∞ 〈Aun, un − u〉X∗×X ≤ 0 imply

〈Au, u − v〉X∗×X ≤ lim inf
n→∞ 〈Aun, un − v〉X∗×X ∀ v ∈ X .

The operator A is said to be demicontinuous if un → u in X implies Aun⇀Au in
X∗. A function ϕ : X → R is said to be lower semicontinuous (l.s.c.) if xn → x in X
implies ϕ(x) ≤ lim infn→∞ ϕ(xn). For a convex function ϕ, the set

∂cϕ(x) := {
x∗ ∈ X∗ | ϕ(v) − ϕ(x) ≥ 〈x∗, v − x〉X∗×X ∀ v ∈ X

}

is known as the subdifferential (in the sense of convex analysis) ofϕ at x ∈ X . Elements
in ∂ϕ(x) are called subgradients of ϕ at x . Properties of convex functions can be found
in [7]. A continuity result on convex functions is as follows (cf. [7, p. 13]).

Lemma 2.1 A l.s.c. convex function ϕ : X → R on a Banach space X is continuous.
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Another result on convex functions that we will use is a lower bound of a convex
function by a continuous affine functional (cf. [1, Lemma 11.3.5], [5, Prop. 5.2.25]).

Lemma 2.2 Let Z be a normed space, Z∗ its dual, and let ϕ : Z → R be convex and
l.s.c. Then there exist a continuous linear functional �ϕ ∈ Z∗ and a constant c ∈ R

such that

ϕ(z) ≥ �ϕ(z) + c ∀ z ∈ Z .

Consequently, there exist two constants c and c̃ such that

ϕ(z) ≥ c + c̃ ‖z‖Z ∀ z ∈ Z . (2.1)

Assume ψ : X → R is locally Lipschitz continuous. The generalized (Clarke)
directional derivative of ψ at x ∈ X in the direction v ∈ X is defined by

ψ0(x; v) := lim sup
y→x, ε↓0

ψ(y + εv) − ψ(y)

ε
.

The generalized subdifferential of ψ at x is a subset of the dual space X∗ given by

∂ψ(x) := {ζ ∈ X∗ | ψ0(x; v) ≥ 〈ζ, v〉X∗×X ∀ v ∈ X}.

Details on properties of the subdifferential in the Clarke sense can be found in the
books [3,5,22,24].

On several occasions, we will apply the modified Cauchy inequality: for any δ > 0,
there exists a constant c depending only on δ such that

a b ≤ δ a2 + c b2 ∀ a, b ∈ R. (2.2)

In fact, we may simply take c = 1/(4 δ) in (2.2).

3 A general constrained variational–hemivariational inequality

The constrained variational–hemivariational inequality problem was studied in [23].
Here, we follow the presentation in [12] to describe the problem. Let X , Xϕ, X j be
normed spaces and K � X . Let there be given operators A : X → X∗, γϕ : X → Xϕ ,
γ j : X → X j , and functionals ϕ : Xϕ × Xϕ → R, j : X j → R, j being locally
Lipschitz. The variational–hemivariational inequality we will consider is stated as
follows.
Problem (P) Find an element u ∈ K such that

〈Au, v − u〉 + ϕ(γϕu, γϕv) − ϕ(γϕu, γϕu)

+ j0(γ j u; γ jv − γ j u) ≥ 〈 f , v − u〉 ∀ v ∈ K . (3.1)

We will make use of the following conditions.
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(A1) X is a reflexive Banach space, K � X is non-empty, closed and convex.
(A2) Xϕ is a Banach space and γϕ ∈ L(X , Xϕ) with a continuity constant cϕ > 0:

‖γϕv‖Xϕ ≤ cϕ‖v‖X ∀ v ∈ X . (3.2)

(A3) X j is a Banach space and γ j ∈ L(X , X j ) with a continuity constant c j > 0:

‖γ jv‖X j ≤ c j‖v‖X ∀ v ∈ X . (3.3)

(A4) A : X → X∗ is pseudomonotone and strongly monotone with a constant
mA > 0:

〈Av1 − Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2X ∀ v1, v2 ∈ X . (3.4)

(A5) ϕ : Xϕ × Xϕ → R is such that ϕ(z, ·) : Xϕ → R is convex and l.s.c. for all
z ∈ Xϕ , and for a constant αϕ ≥ 0,

ϕ(z1, z4) − ϕ(z1, z3) + ϕ(z2, z3) − ϕ(z2, z4)

≤ αϕ‖z1 − z2‖Xϕ‖z3 − z4‖Xϕ ∀ z1, z2, z3, z4 ∈ Xϕ. (3.5)

(A6) j : X j → R is locally Lipschitz, and for some constants c0, c1, α j ≥ 0,

‖∂ j(z)‖X∗
j
≤ c0 + c1‖z‖X j ∀ z ∈ X j , (3.6)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ α j‖z1 − z2‖2X j
∀ z1, z2 ∈ X j . (3.7)

(A7)

αϕc
2
ϕ + α j c

2
j < mA. (3.8)

(A8)

f ∈ X∗. (3.9)

The inequality (3.1) represents a variational–hemivariational inequality since the
function ϕ(z, ·) is assumed to be convex for any z ∈ Xϕ and the function j is assumed
locally Lipschitz and generally nonconvex. Note that we assume K is a proper subset
of X , and so the corresponding inequality (3.1) is termed a constrained variational–
hemivariational inequality. The spaces Xϕ and X j were introduced to facilitate error
analysis of numerical solutions of Problem (P). This is useful also for the convergence
analysis of the penalty based numerical method in this paper. For applications in
contact mechanics, the functionals ϕ(·, ·) and j(·) are integrals over the potential
contact surface, denoted below by �3, which is assumed to be a measurable part of the
boundary of a regular domain in R

d (d = 2, 3). In such a situation, Xϕ and X j can be
chosen to be L2(�3)

d and/or L2(�3). Moreover, γϕ : X → Xϕ and γ j : X → X j are
linear, continuous and compact operators.
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As was noted in [12], by slightly modifying the proof in [23] (see also [26,
Remark 13]), the following existence and uniqueness result can be proved.

Theorem 3.1 Under assumptions (A1)–(A8), Problem (P) has a unique solution u ∈
K.

We keep assumptions (A1)–(A8) throughout the paper so that a unique solution
u ∈ K is guaranteed for Problem (P).

4 Numerical approximations

We now introduce a penalty based numerical method of Problem (P). We say that
P : X → X∗ is a penalty operator for the set K if P is bounded, demicontinuous,
monotone, andKer(P) = K . Note that a penalty operator thus defined is pseudomono-
tone, following [29, Prop. 27.6]. We denote by ε > 0 the penalty parameter. The
penalty formulation of Problem (P) is as follows.
Problem (Pε) Find an element uε ∈ X such that

〈Auε, v − uε〉 + 1

ε
〈Puε, v − uε〉 + ϕ(γϕuε, γϕv) − ϕ(γϕuε, γϕuε)

+ j0(γ j uε; γ jv − γ j uε) ≥ 〈 f , v − uε〉 ∀ v ∈ X .

For the particular case where ϕ does not depend on its first argument, it is shown in
[23] that Problem (Pε) has a unique solution uε ∈ X and that uε → u in X as ε → 0.
In this paper, we consider numerical methods for solving Problem (P) based on the
penalty formulation.

Let Xh ⊂ X be a finite dimensional subspace with h > 0 being a spatial discretiza-
tion parameter. In practice, Xh is usually constructed as a finite element space. We
need an assumption on the approximability of elements of K by elements in Xh .

(A9) For any v ∈ X , there exists vh ∈ Xh such that

lim
h→0

‖vh − v‖X = 0.

For any v ∈ K , there exists vh ∈ Xh ∩ K such that

lim
h→0

‖vh − v‖X = 0. (4.1)

Then the numerical method for solving Problem (P) based on penalty formulation
is the following.
Problem (Phε ) Find an element uhε ∈ Xh such that

〈Auhε , vh − uhε 〉 + 1

ε
〈Puhε , vh − uhε 〉 + ϕ(γϕu

h
ε , γϕvh) − ϕ(γϕu

h
ε , γϕu

h
ε )

+ j0(γ j u
h
ε ; γ jv

h − γ j u
h
ε ) ≥ 〈 f , vh − uhε 〉 ∀ vh ∈ Xh . (4.2)
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We can apply the arguments of the proof of Theorem 3.1 in the setting of the finite
dimensional space Xh to conclude that under assumptions (A1)–(A8), Problem (Phε )
has a unique solution uhε ∈ Xh . The main goal of the paper is to show convergence of
uhε to the solution u ∈ K of Problem (P) as h and ε simultaneously and independently
approach zero. As a preparation for the convergence analysis of the numerical method
in Sect. 5, we first prove a uniform boundedness property for the numerical solutions
{uhε }h,ε>0. Since K is non-empty, we choose and fix an element u0 from K . By
assumption (A9), there exists uh0 ∈ Xh ∩ K such that

lim
h→0

‖uh0 − u0‖X = 0. (4.3)

We will need the following uniform boundedness property of the numerical solu-
tions.

Proposition 4.1 There exists a constant M > 0 such that ‖uhε‖X ≤ M ∀ h, ε > 0.

Proof By the strong monotonicity of A, we have

mA‖uhε − uh0‖2X ≤ 〈Auhε , uhε − uh0〉 − 〈Auh0, uhε − uh0〉.

Applying (4.2) with vh = uh0, we further have

mA‖uhε − uh0‖2X ≤ 1

ε
〈Puhε , uh0 − uhε 〉 + ϕ(γϕu

h
ε , γϕu

h
0) − ϕ(γϕu

h
ε , γϕu

h
ε )

+ j0(γ j u
h
ε ; γ j u

h
0 − γ j u

h
ε ) − 〈 f , uh0 − uhε 〉 − 〈Auh0, uhε − uh0〉.

(4.4)

Let us bound various terms on the right side of (4.4). First, since uh0 ∈ K , Puh0 = 0,
and by the monotonicity of P , we have

1

ε
〈Puhε , uh0 − uhε 〉 = −1

ε
〈Puhε − Puh0, u

h
ε − uh0〉 ≤ 0. (4.5)

In (3.5) we take z1 = z3 = γϕuhε , z2 = γϕu0 and z4 = γϕuh0 to get

ϕ(γϕu
h
ε , γϕu

h
0) − ϕ(γϕu

h
ε , γϕu

h
ε ) ≤ αϕ‖γϕ(uhε − u0)‖Xϕ‖γϕ(uhε − uh0)‖Xϕ

+ ϕ(γϕu0, γϕu
h
0) − ϕ(γϕu0, γϕu

h
ε ). (4.6)

Now,

‖γϕ(uhε − u0)‖Xϕ‖γϕ(uhε − uh0)‖Xϕ ≤ c2ϕ
(
‖uhε − uh0‖2X + ‖uh0 − u0‖X‖uhε − uh0‖X

)
.

By the modified Cauchy inequality, for any δ > 0, there is a constant c depending on
δ such that

αϕc
2
ϕ‖uh0 − u0‖X‖uhε − uh0‖X ≤ δ ‖uhε − uh0‖2X + c ‖uh0 − u0‖2X .
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By (A5), ϕ(γϕu0, ·) : X → R is convex and l.s.c. So from (2.1), for some constants c
and c̃,

ϕ(γϕu0, z) ≥ c + c̃ ‖z‖Xϕ ∀ z ∈ Xϕ,

and then

−ϕ(γϕu0, γϕu
h
ε ) ≤ −c − c̃ ‖γϕu

h
ε‖Xϕ .

By the continuity from Lemma 2.1,

ϕ(γϕu0, γϕu
h
0) → ϕ(γϕu0, γϕu0)

and so {ϕ(γϕu0, γϕuh0)}h>0 is uniformly bounded with respect to h. Summarizing the
above relations with standard manipulations, we have

ϕ(γϕu
h
ε , γϕu

h
0)−ϕ(γϕu

h
ε , γϕu

h
ε ) ≤

(
αϕc

2
ϕ+δ

)
‖uhε − uh0‖2X +c

(
1 + ‖uhε −uh0‖X

)
.

(4.7)

Write

j0(γ j u
h
ε ; γ j u

h
0 − γ j u

h
ε ) =

[
j0(γ j u

h
ε ; γ j u

h
0 − γ j u

h
ε ) + j0(γ j u

h
0; γ j u

h
ε − γ j u

h
0)

]

− j0(γ j u
h
0; γ j u

h
ε − γ j u

h
0).

Use the condition (3.7),

j0(γ j u
h
ε ; γ j u

h
0 − γ j u

h
ε ) + j0(γ j u

h
0; γ j u

h
ε − γ j u

h
0) ≤ α j c

2
j‖uhε − uh0‖2X .

Use the condition (3.6),

− j0(γ j u
h
0; γ j u

h
ε − γ j u

h
0) ≤

(
c0 + c1c j‖uh0‖X

)
c j‖uhε − uh0‖X .

Thus,

j0(γ j u
h
ε ; γ j u

h
0 − γ j u

h
ε ) ≤ α j c

2
j‖uhε − uh0‖2X + c

(
1 + ‖uhε − uh0‖X

)
. (4.8)

Easily,

− 〈 f , uh0 − uhε 〉 ≤ ‖ f ‖X∗‖uhε − uh0‖X . (4.9)

By the assumption, A : X → X∗ is pseumonotone; hence it is bounded. Then,
since uh0⇀u0, it follows that {‖Auh0‖X∗}h>0 is uniformly bounded with respect to h.
Thus,

− 〈Auh0, uhε − uh0〉 ≤ c ‖uhε − uh0‖X . (4.10)
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Using (4.5)–(4.10) in (4.4), we find that

(
mA − αϕc

2
ϕ − α j c

2
j − δ

)
‖uhε − uh0‖2X ≤ c

(
1 + ‖uhε − uh0‖X

)
.

Therefore, choosing δ > 0 sufficiently small, we find that {‖uhε − uh0‖X }h,ε>0, and
then also {‖uhε‖X }h,ε>0, is uniformly bounded with respect to h and ε. ��

We list an additional condition to be used later on:
(A10) γϕ : X → Xϕ and γ j : X → X j are compact operators.
We comment that in applications to contact mechanics (cf. Sect. 7), γϕ and γ j are

trace operators from an H1()-based space to L2(�3)-based spaces and, therefore,
the assumption (A10) is automatically valid.

5 Convergence of the numerical method

We now prove the convergence of the numerical solution of Problem (Phε ) to that of
Problem (P) as the penalty parameter ε and the meshsize h tend to zero.

Theorem 5.1 Assume (A1)–(A10). Then,

uhε → u in X as h, ε → 0. (5.1)

Proof By Proposition 4.1, {uhε }h,ε>0 is bounded in X . Since X is a reflexive Banach
space, and the operators γϕ : X → Xϕ and γ j : X → X j are compact, we can find a
sequence of {uhε }h,ε>0, still denoted by {uhε }, and an element w ∈ X such that

uhε⇀w in X , γϕu
h
ε → γϕw in Xϕ, γ j u

h
ε → γ jw in X j . (5.2)

Let us show that w ∈ K . By (4.2), for any vh ∈ Xh ,

1

ε
〈Puhε , uhε − vh〉 ≤ 〈Auhε , vh − uhε 〉 + ϕ(γϕu

h
ε , γϕvh) − ϕ(γϕu

h
ε , γϕu

h
ε )

+ j0(γ j u
h
ε ; γ jv

h − γ j u
h
ε ) − 〈 f , vh − uhε 〉.

Similar to (4.6), we have

ϕ(γϕu
h
ε , γϕvh) − ϕ(γϕu

h
ε , γϕu

h
ε ) ≤ αϕc

2
ϕ‖uhε − vh‖2Xϕ

+ϕ(γϕvh, γϕvh) − ϕ(γϕvh, γϕu
h
ε ).

Also, by (2.1), we have two constants c and c̃, dependent on vh but independent of uhε
such that

−ϕ(γϕvh, γϕu
h
ε ) ≤ −c − c̃ ‖uhε‖X .
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Hence, for any fixed vh ∈ Xh , there is a constant c(vh), dependent on vh but indepen-
dent of ε, such that

1

ε
〈Puhε , uhε − vh〉 ≤ c(vh).

Then, we deduce that

lim sup
ε→0

〈Puhε , uhε − vh〉 ≤ 0 ∀ vh ∈ Xh . (5.3)

By assumption (A9), for any v ∈ X , there exists vh ∈ Xh such that vh → v in X .
Since {‖Puhε‖X∗}h,ε>0 is uniformly bounded, we derive from (5.3) that

lim sup
h,ε→0

〈Puhε , uhε − v〉 ≤ 0 ∀ v ∈ X .

Now that P is pseudomonotone and uhε⇀w, implying

〈Pw,w − v〉 ≤ lim inf
h,ε→0

〈Puhε , uhε − v〉 ∀ v ∈ X .

Combine the last two inequalities to get

〈Pw,w − v〉 ≤ 0 ∀ v ∈ X .

From this relation, we conclude that

〈Pw, v〉 = 0 ∀ v ∈ X ,

and hence,

w ∈ Ker(P) = K .

Let us then prove that the weak limit w is the solution of Problem (P). Let wh ∈
K ∩ Xh be such that

‖wh − w‖X → 0 as h → 0.

In (4.2), we take vh = wh to get

〈Auhε , uhε − wh〉 ≤ 1

ε
〈Puhε , wh − uhε 〉 + ϕ(γϕu

h
ε , γϕwh) − ϕ(γϕu

h
ε , γϕu

h
ε )

+ j0(γ j u
h
ε ; γ jw

h − γ j u
h
ε ) − 〈 f , wh − uhε 〉.

123



Convergence analysis of penalty based numerical methods… 927

Since Pwh = 0 and P is monotone,

1

ε
〈Puhε , wh − uhε 〉 = −1

ε
〈Pwh − Puhε , w

h − uhε 〉 ≤ 0.

Hence,

〈Auhε , uhε − wh〉 ≤ ϕ(γϕu
h
ε , γϕwh) − ϕ(γϕu

h
ε , γϕu

h
ε )

+ j0(γ j u
h
ε ; γ jw

h − γ j u
h
ε ) − 〈 f , wh − uhε 〉. (5.4)

Similar to (4.6),

ϕ(γϕu
h
ε , γϕwh) − ϕ(γϕu

h
ε , γϕu

h
ε ) ≤ αϕ‖γϕ(uhε − w)‖Xϕ‖γϕ(uhε − wh)‖Xϕ

+ ϕ(γϕw, γϕwh) − ϕ(γϕw, γϕu
h
ε ).

For the terms on the right side of the above inequality, ‖γϕ(uhε −w)‖Xϕ → 0, ‖γϕ(uhε −
wh)‖Xϕ → 0 following the inequality

‖γϕ(uhε − wh)‖Xϕ ≤ ‖γϕ(uhε − w)‖Xϕ + ‖γϕ(w − wh)‖Xϕ ,

and since ϕ is continuous with respect to its second argument,

ϕ(γϕw, γϕwh) − ϕ(γϕw, γϕu
h
ε ) → 0.

Thus,

lim sup
h,ε→0

[
ϕ(γϕu

h
ε , γϕwh) − ϕ(γϕu

h
ε , γϕu

h
ε )

]
≤ 0.

Write

j0(γ j u
h
ε ; γ jw

h − γ j u
h
ε ) =

[
j0(γ j u

h
ε ; γ jw

h − γ j u
h
ε ) + j0(γ jw

h; γ j u
h
ε − γ jw

h)
]

− j0(γ jw
h; γ j u

h
ε − γ jw

h).

Then,

j0(γ j u
h
ε ; γ jw

h − γ j u
h
ε ) ≤ α j‖γ j (u

h
ε − wh)‖2X j

+
(
c0 + c1‖γ jw

h‖X j

)
‖γ j (u

h
ε − wh)‖X j ,

and since ‖γ j (uhε − wh)‖X j → 0, we have

lim sup
h,ε→0

j0(γ j u
h
ε ; γ jw

h − γ j u
h
ε ) ≤ 0.
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Hence, from (5.4), we derive

lim sup
h,ε→0

〈Auhε , uhε − wh〉 ≤ 0.

This implies

lim sup
h,ε→0

〈Auhε , uhε − w〉 ≤ 0.

By the pseudomonotonicity of A,

〈Aw,w − v〉 ≤ lim inf
h,ε→0

〈Auhε , uhε − v〉 ∀ v ∈ X . (5.5)

Now fix an arbitrary element vh
′ ∈ Xh′ ∩ K . We take the upper limit as h → 0 and

ε → 0 along a subsequence of the spaces Xh ⊃ Xh′
in (4.2) to obtain

lim sup
h,ε→0

〈Auhε , uhε − vh
′ 〉 ≤ ϕ(γϕw, γϕvh

′
) − ϕ(γϕw, γϕw)

+ j0(γ jw; γ jv
h′ − γ jw) − 〈 f , vh′ − w〉. (5.6)

In the derivation of (5.6), we used the inequality

ϕ(γϕu
h
ε , γϕvh

′
) − ϕ(γϕu

h
ε , γϕu

h
ε ) ≤ αϕ‖γϕ(uhε − w)‖Xϕ‖γϕ(vh

′ − uhε )‖Xϕ

+ ϕ(γϕw, γϕvh
′
) − ϕ(γϕw, γϕu

h
ε ),

the convergence ‖γϕ(uhε − w)‖Xϕ → 0, the boundedness of ‖γϕ(vh
′ − uhε )‖Xϕ , the

continuity of ϕ(γϕw, ·) on Xϕ , and the upper continuity of j0(·; ·) with respect to its
two arguments. Combine (5.5) and (5.6),

〈Aw,w − vh
′ 〉 ≤ ϕ(γϕw, γϕvh

′
) − ϕ(γϕw, γϕw)

+ j0(γ jw; γ jv
h′ − γ jw) − 〈 f , vh′ − w〉.

Since vh
′ ∈ Xh′ ∩ K is arbitrary, we use the density of {Xh′ ∩ K }h′ in K to obtain

〈Aw,w − v〉 ≤ ϕ(γϕw, γϕv) − ϕ(γϕw, γϕw)

+ j0(γ jw; γ jv − γ jw) − 〈 f , v − w〉 ∀ v ∈ K . (5.7)

There, w = u is the unique solution of Problem (P).
Since the limitw = u is unique, we have the weak convergence of the entire family,

i.e.,

uhε⇀u in X as h, ε → 0. (5.8)
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Finally, let us prove the strong convergence. We take vh
′ = wh′

in (5.6),

lim sup
h,ε→0

〈Auhε , uhε − wh′ 〉 ≤ ϕ(γϕw, γϕwh′
) − ϕ(γϕw, γϕw)

+ j0(γ jw; γ jw
h′ − γ jw) − 〈 f , wh′ − w〉.

Then let h′ → 0 and recall that w = u to get

lim sup
h,ε→0

〈Auhε , uhε − u〉 ≤ 0. (5.9)

Apply (3.4),

mA‖uhε − u‖2X ≤ 〈Auhε , uhε − u〉 − 〈Au, uhε − u〉.

By (5.9) and (5.8), we conclude from the above inequality that

mA‖uhε − u‖2X → 0 as h, ε → 0,

i.e., we have the strong convergence uhε → u in X as h, ε → 0. ��

6 Two relevant particular cases

In this section we consider two relevant particular cases of our results presented in the
previous sections. They concern the case of a constrained hemivariational inequality
(obtained when ϕ ≡ 0) as well as the case of a constrained variational inequality
(obtained when j ≡ 0).

When ϕ ≡ 0 in Problem (P), we have a pure hemivariational inequality from (3.1):

Problem (P)′ Find an element u ∈ K such that

〈Au, v − u〉 + j0(γ j u; γ jv − γ j u) ≥ 〈 f , v − u〉 ∀ v ∈ K . (6.1)

We need to modify (A7) and (A10) for this particular case.
(A7)

′

α j c
2
j < mA. (6.2)

(A10)
′ γ j : X → X j is compact.

Under the assumptions (A1), (A3), (A4), (A6), (A7)
′ and (A8), Problem (P)′ has a

unique solution.
With the finite dimensional space Xh and subset Kh ⊂ Xh as at the beginning of

Sect. 4, we can introduce a penalty based numerical method for Problem (P)′.

123



930 W. Han, M. Sofonea

Problem (Phε )′ Find an element uhε ∈ Xh such that

〈Auhε , vh − uhε 〉+
1

ε
〈Puhε , vh − uhε 〉 + j0(γ j u

h
ε ; γ jv

h − γ j u
h
ε )

≥ 〈 f , vh − uhε 〉 ∀ vh ∈ Xh . (6.3)

This problem has a unique solution under the assumptions (A1), (A3), (A4), (A6),
(A7)

′ and (A8).
By Theorem 5.1, we have the following convergence result for the penalty based

numerical method.

Corollary 6.1 Assume (A1), (A3), (A4), (A6), (A7)
′, (A8), (A9) and (A10)

′. Then,

uhε → u in X as h, ε → 0. (6.4)

When j ≡ 0 in Problem (P), we have a variational inequality from (3.1):

Problem (P)′′ Find an element u ∈ K such that

〈Au, v − u〉 + ϕ(γϕu, γϕv) − ϕ(γϕu, γϕu) ≥ 〈 f , v − u〉 ∀ v ∈ K . (6.5)

We modify (A7) and (A10) for this particular case as follows.
(A7)

′′

αϕc
2
ϕ < mA. (6.6)

(A10)
′′ γϕ : X → Xϕ is compact.

Under the assumptions (A1), (A2), (A4), (A5), (A7)
′′ and (A8), Problem (P)′′ has

a unique solution.
With the finite dimensional space Xh and subset Kh ⊂ Xh as at the beginning of

Sect. 4, we can introduce a penalty based numerical method for Problem (P)′′.

Problem (Phε )′′ Find an element uhε ∈ Xh such that

〈Auhε , vh − uhε 〉 + 1

ε
〈Puhε , vh − uhε 〉 + ϕ(γϕu

h
ε , γϕvh)

−ϕ(γϕu
h
ε , γϕu

h
ε ) ≥ 〈 f , vh − uhε 〉 ∀ vh ∈ Xh . (6.7)

This problem has a unique solution under the assumptions (A1), (A2), (A4), (A5),
(A7)

′′ and (A8).
By Theorem 5.1, we have the following convergence result for the penalty based

numerical method.

Corollary 6.2 Assume (A1), (A2), (A4), (A5), (A7)
′′, (A8), (A9) and (A10)

′′. Then,

uhε → u in X as h, ε → 0. (6.8)
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7 Applications in sample contact problems

In this section, we illustrate applications of the convergence results established in
the previous sections in the numerical solution of two static contact problems with
constraints. The physical setting of a static contact problem, described with details
in [15,22,26] is as follows: the reference configuration of an elastic body is an open,
bounded, connected set ⊂ R

d (d = 2 or 3 in applications)with a Lipschitz boundary
� = ∂ partitioned into disjoint, measurable parts �1, �2 and �3. The body is in
equilibrium under the action of a volume force of density f 0 in  and a surface
traction of density f 2 on �2; it is fixed on �1 and is in contact on �3 with one or two
obstacles. We assume meas (�1) > 0.

For the description of the contact problems, we use the symbol S
d to denote the

space of second order symmetric tensors on R
d , and “·” and “‖ · ‖” will represent

the canonical inner product and norm on the spaces R
d and S

d . We use u :  → R
d

for the displacement field and σ :  → S
d for the stress field. Moreover, ε(u) :=(∇u + (∇u)T

)
/2 will represent the linearized strain tensor. Let ν be the unit outward

normal vector, which is defined a.e. on �. For a vector field v, vν := v · ν and
vτ := v − vνν are the normal and tangential components of v on �. For the stress
field σ , σν := (σν) · ν and σ τ := σν − σνν are its normal and tangential components
on the boundary.

The two contact problems we consider in this section have the following equations
and boundary conditions in common:

σ = Fε(u) in , (7.1)

Div σ + f 0 = 0 in , (7.2)

u = 0 on �1, (7.3)

σν = f 2 on �2. (7.4)

Equation (7.1) is the elastic constitutive lawwhereF is the elasticity operator, Eq. (7.2)
represents the equilibrium equation, Eq. (7.3) is the displacement boundary condition,
and (7.4) describes the traction boundary condition.

We use the space

V =
{
v = (vi ) ∈ H1(; R

d) | v = 0 a.e. on �1

}

or its subset for the displacement. Since meas (�1) > 0, by Korn’s inequality, V is a
Hilbert space with the inner product

(u, v)V :=
∫



ε(u) · ε(v) dx, u, v ∈ V .

We denote the trace of a function v ∈ H1(; R
d) on � by the same symbol v. We

use the space Q = L2(; S
d) for the stress and strain fields and we recall that Q is a

Hilbert space with the canonical inner product
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(σ , τ )Q :=
∫



σi j (x) τi j (x) dx, σ , τ ∈ Q.

We assume that the elasticity operator F :  × S
d → S

d has the following proper-
ties.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) there exists LF > 0 such that for all ε1, ε2 ∈ S
d , a.e. x ∈ ,

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖;
(b) there exists mF > 0 such that for all ε1, ε2 ∈ S

d , a.e. x ∈ ,

(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2;
(c) F(·, ε) is measurable on  for all ε ∈ S

d;
(d) F(x, 0) = 0 for a.e. x ∈ .

(7.5)

On the densities of the body force and the surface traction, we assume

f 0 ∈ L2(; R
d), f 2 ∈ L2(�2; R

d). (7.6)

This regularity allows us to define the element f ∈ V ∗ by equality

〈 f , v〉V ∗×V = ( f 0, v)L2(;Rd ) + ( f 2, v)L2(�2;Rd ), v ∈ V . (7.7)

Wenowcomplete themodel (7.1)–(7.4)with specific contact conditions and friction
laws.

A unilateral frictional contact problem In the first contact problem, we consider
the case where the contact boundary �3 consists of two disjoint measurable pieces,
�3,1 and �3,2. On �3,1 the body is in contact with a perfectly rigid obstacle and we
assume that the friction forces are negligible. Therefore, we model the contact with
the frictionless Signorini unilateral contact condition, i.e.,

uν ≤ 0, σν ≤ 0, σνuν = 0, σ τ = 0 on �3,1. (7.8)

On�3,2 the body is in persistent contact with a piston or a device, in such away that the
magnitude of the normal stress is limited by a given bound, denoted F .Moreover,when
normal displacements occur, the reaction of the device is opposite to the displacement.
In addition, the contact is frictional and ismodeledwith a nonmonotone subdifferential
boundary condition. These assumptions lead to the following boundary condition:

|σν | ≤ F, −σν = F
uν

‖uν‖ if uν �= 0, −σ τ ∈ ∂ jτ (uτ ) on �3,2. (7.9)

Here ∂ jτ is the Clarke subdifferential of a locally Lipschitz continuous potential
functional jτ . We comment that the friction condition − σ τ ∈ ∂ jτ (uτ ) in (7.9)
contains as particular cases various friction laws used in the literature. For instance,
taking jτ (ξ) = Fb‖ξ‖, ξ ∈ R

d , with Fb ≥ 0, we obtain the the Coulomb’s law of dry
friction in which Fb represents the friction bound.
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We assume that the bound F and the potential function jτ : �3,2 × R
d → R have

the following properties.

F ∈ L2(�3,2), F(x) ≥ 0 a.e. x ∈ �3,2. (7.10)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

jτ : �3,2 × R
d → R is such that

(a) jτ (·, ξ) is measurable on �3,2 for all ξ ∈ R
d ,

(b) jτ (x, ·) is locally Lipschitz on R
d for a.e. x ∈ �3,2,

(c) ‖∂ jτ (x, ξ)‖ ≤ c0τ + c1τ‖ξ‖ for all ξ ∈ R
d , a.e. x ∈ �3,2

with c0τ , c1τ ≥ 0,
(d) j0τ (x, ξ1; ξ2 − ξ1) + j0ν (x, ξ2; ξ1 − ξ2) ≤ α jτ ‖ξ1 − ξ2‖2
for a.e. x ∈ �3,2, all ξ1, ξ2 ∈ R

d with α jτ ≥ 0.

(7.11)

An example of the function jτ : �3,2 × R
d → R is

jτ (x, ξ) = Fb
((
a(x) − 1

)
e−‖ξ‖ + a(x) ‖ξ‖

)
, ξ ∈ R

d , a.e. x ∈ �3,2,

(7.12)

where a ∈ L∞(�3,2), 0 ≤ a(x) < 1 for a.e. x ∈ �3,2 and Fb ≥ 0. Its generalized
subdifferential is given by the formula

∂ jτ (x, ξ) =
⎧
⎨

⎩

B(0, Fb) if ξ = 0,
(
(1 − a(x)) e−‖ξ‖ + a(x)

) ξ

‖ξ‖ if ξ �= 0

for all ξ ∈ R
d , a.e. x ∈ �3,2, where

B(0, Fb) = { ξ ∈ R
d | ‖ξ‖ ≤ Fb }

denotes a closed ball in R
d . The function jτ (x, ·) is nonconvex and ‖∂ jτ (x, ξ)‖ ≤ Fb

for all ξ ∈ R
d , a.e. x ∈ �3,2. It satisfies hypotheses (7.11) with constants c0τ = Fb,

c1τ = 0 and α jτ = Fb. In the particular case a ≡ 1, jτ (ξ) = Fb‖ξ‖ is a function
associated with the Coulomb’s law of dry friction. For more examples and comments
on the friction condition in (7.9), see [22,26].

Then, the set of admissible displacement functions for the contact problem (7.1)–
(7.4), (7.8), (7.9) is

U0 := {
v ∈ V | vν ≤ 0 on �3,1

}
, (7.13)

and the weak formulation of the problem is the following.
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Problem (P1) Find a displacement field u ∈ U0 such that

∫



F(ε(u)) · ε(v − u) dx +
∫

�3,2

F (|vν | − |uν |) ds

+
∫

�3,2

j0τ (uτ ; vτ − uτ ) ds ≥ 〈 f , v − u〉V ∗×V ∀ v ∈ U0. (7.14)

Let X = V , K = U0, Xϕ = L2(�3,2) with γϕ the trace operator from V to Xϕ ,
X j = L2(�3,2)

d with γ jv = vτ for v ∈ V . Define

j(γ jv) =
∫

�3,2

jτ (vτ ) ds, v ∈ V .

Then, αϕ = 0 and α j = α jτ . The smallness condition (3.8) takes the form

α jτ c
2
j < mF , (7.15)

where c j represents the norm of the trace operator γ j . Applying Theorem 3.1, we
know that under the stated assumptions and (7.15), there is a unique element u ∈ U0
satisfying

∫



F(ε(u)) · ε(v − u) dx +
∫

�3,2

F (|vν | − |uν |) ds

+ j0(γ ju; γ jv − γ ju) ≥ 〈 f , v − u〉V ∗×V ∀ v ∈ U0. (7.16)

Since [22, Theorem 3.47]

j0(γ ju; γ jv − γ ju) ≤
∫

�3,2

j0τ (uτ ; vτ − uτ ) ds,

u ∈ U0 is also a solution of Problem (P1). The uniqueness of a solution of Problem (P1)
can be verified directly by a standard approach. Thus, under the stated assumptions
and (7.15), Problem (P1) has a unique solution u ∈ U0 .

Introduce an operator P by

〈Pu, v〉 =
∫

�3

(uν)+vνds, u, v ∈ V . (7.17)

Here and below, r+ denotes the positive part of r . It is easy to verify that P : V → V ∗
is a penalty operator for the set U0. Therefore, the penalized formulation of Problem
(P1) is to find uε ∈ V such that
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∫



F(ε(uε)) · ε(v − uε) dx+ 1

ε

∫

�3,2

(uε,ν)+(vν − uε,ν) ds+
∫

�3,2

F
(|vν |−|uε,ν |

)
ds

+
∫

�3,2

j0τ (uε,τ ; vτ − uε,τ ) ds ≥ 〈 f , v − uε〉V ∗×V ∀ v ∈ V . (7.18)

Let us use the finite element method for the numerical solution of Problem (P1).
For brevity, assume  is a polygonal/polyhedral domain and express each part of
the boundary, where a different type of boundary condition is specified, as unions
of closed flat components (i.e., unions of line segments if d = 2 and unions of
polygons if d = 3) with disjoint interior. Let {T h} be a regular family of partitions
of  into triangles/tetrahedrons such that if the intersection of one side/face of an
element with one closed flat component has a relative positive measure, then the
side/face lies entirely in that closed flat component. Construct the linear element space
corresponding to T h :

V h =
{
vh ∈ C()d | vh |T ∈ P1(T )d , T ∈ T h, vh = 0 on �1

}
.

Then the penalty based numerical method for Problem (P1) is as follows.

Problem (Ph1,ε) Find a displacement field uhε ∈ V h such that

∫



F(ε(uhε )) · ε(vh − uhε ) dx + 1

ε

∫

�3,1

(uhε,ν )+(vhν − uhε,ν ) ds +
∫

�3,2

F
(
|vhν | − |uhε,ν |

)
ds

+
∫

�3,2

j0τ (uhε,τ ; vhτ − uhε,τ ) ds ≥ 〈 f , vh − uhε 〉V ∗×V ∀ vh ∈ V h . (7.19)

The argument used in proving Theorem 5.1 is valid with j0(·; ·) replaced by∫
�3,2

j0τ (·; ·) ds. Thus, for the numerical solution uhε of Problem (Ph1,ε), we ascertain
the convergence:

uhε → u in V , as h, ε → 0. (7.20)

Indeed, it is routine to verify the conditions (A1)–(A8) and (A10) of Theorem 5.1
for Problem (P1) and Problem (Ph1,ε). Therefore, we restrict ourselves to examine the
condition (A9). For this, we note from [20] and the explanations in [15, Section 7.1]
that C∞()3 ∩ U0 is dense in U0. Thus, for any v ∈ U0, we can first find a function
ṽ ∈ C∞()3 ∩ U0 that is sufficiently close to v in the norm of V ; then by the finite
element interpolation theory, we can approximate ṽ sufficiently closely by a finite
element function vh ∈ V h ∩ U0 when the mesh-size h is small enough. Therefore,
any function inU0 can be approximated by a sequence of finite element functions that
belong to U0.

We note that in the special case where �3,2 = ∅ or jτ vanishes, Problem (P1) is
simplified to a variational inequality. The penalty based numerical method Problem
(Ph1,ε) is similarly simplified and we have the convergence result (7.20) with simplified
conditions, e.g., the condition (7.15) is no longer needed. Actually, in this case we are
in a position to apply Corollary 6.2.
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A unilateral normal compliance frictional contact problem In the second contact prob-
lem, the boundary conditions on the contact surface are (cf. [23])

uν ≤ g, σν + ξν ≤ 0, (uν − g) (σν + ξν) = 0, ξν ∈ ∂ jν(uν) on �3, (7.21)

‖σ τ‖ ≤ Fb(uν), −σ τ = Fb(uν)
uτ

‖uτ‖ if uτ �= 0 on �3. (7.22)

In condition (7.21), inequality uν ≤ g restricts the allowed penetration and jν is a
given potential function. The contact condition (7.21) represents a combination of the
Signorini contact condition for contact with a rigid foundation and the normal com-
pliance condition for contact with a deformable foundation. It models the contact with
an obstacle made of a rigid body covered with a soft layer of deformable material of
thickness g. Details and various mechanical interpretations can be found, e.g., in [26].
Here we merely mention that this kind of conditions is relevant from physical point of
view, since in practice there are no perfectly rigid bodies. Thus, small penetration could
occur, due to the interpenetration of the body’s and foundation’s asperities. The tan-
gential contact condition (7.22) represents a version of Coulomb’s law of dry friction.
Here Fb denotes the friction bound, assumed to depend on the normal displacement
uν . We now consider the following hypothesis on the thickness g : �3 → R, the
potential function jν : �3 × R → R and the friction bound Fb : �3 × R → R+.

g ∈ L2(�3), g(x) ≥ 0 a.e. on �3. (7.23)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) jν(·, r) is measurable on �3 for all r ∈ R and there
exists e ∈ L2(�3) such that jν(·, e(·)) ∈ L1(�3);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ �3;
(c) |∂ jν(x, r)| ≤ c0 + c1|r | for a.e. x ∈ �3 ∀ r ∈ R with c0, c1 ≥ 0;
(d) j0ν (x, r1; r2 − r1) + j0ν (x, r2; r1 − r2) ≤ α jν |r1 − r2|2

for a.e. x ∈ �3, all r1, r2 ∈ R with α jν ≥ 0.

(7.24)

⎧
⎪⎪⎨

⎪⎪⎩

(a) There exists LFb > 0 such that
|Fb(x, r1) − Fb(x, r2)| ≤ LFb |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ �3;

(b) Fb(·, r) is measurable on �3, for all r ∈ R;
(c) Fb(x, r) = 0 for r ≤ 0, Fb(x, r) ≥ 0 for r ≥ 0, a.e. x ∈ �3.

(7.25)

Then, the set of admissible displacement functions for the contact problem (7.1)–(7.4),
(7.21), (7.22) is

U := {v ∈ V | vν ≤ g on �3} .

The weak formulation of this problem is the following.

Problem (P2) Find a displacement field u ∈ U such that

∫



F(ε(u)) · ε(v − u) dx +
∫

�3

Fb(uν) (‖vτ‖ − ‖uτ‖) ds

+
∫

�3

j0ν (uν; vν − uν) ds ≥ 〈 f , v − u〉V ∗×V ∀ v ∈ U . (7.26)
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Let X = V , K = U , Xϕ = L2(�3)
d with γϕ the trace operator from V to Xϕ ,

X j = L2(�3) with γ jv = vν for v ∈ V . Then, αϕ = LFb and α j = α jν . Similar to
the analysis of Problem (P1), we can apply Theorem 3.1 and know that Problem (P2)
has a unique solution u ∈ U under the stated assumptions, and (3.8) takes the form

LFbλ
−1
1,V + α jν λ

−1
1ν,V < mF , (7.27)

where λ1,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V ,

∫



ε(u)·ε(v) dx = λ

∫

�3

u·v ds ∀ v ∈ V ,

and λ1ν,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V ,

∫



ε(u)·ε(v) dx = λ

∫

�3

uνvνds ∀ v ∈ V .

Introduce an operator P by

〈P(u), v〉 =
∫

�3

(uν − g)+vνds, u, v ∈ V . (7.28)

It is easy to verify that P : V → V ∗ is a penalty operator for the setU . Therefore, the
penalized formulation of Problem (P2) consists to find uε ∈ V such that

∫



F(ε(uε)) · ε(v − uε) dx

+1

ε

∫

�3

(uε,ν − g)+(vν − uε,ν) ds +
∫

�3

Fb(uε,ν)
(‖vτ‖ − ‖uε,τ‖

)
ds

+
∫

�3

j0ν (uε,ν; vν − uε,ν) ds ≥ 〈 f , v − uε〉V ∗×V ∀ v ∈ V . (7.29)

We use the finite element setting already used in Problem (Ph1,ε). Then, the penalty
based numerical method for Problem (P2) is as follows.

Problem (Ph2,ε) Find a displacement field uhε ∈ V h such that

∫



F(ε(uhε )) · ε(vh − uhε ) dx

+1

ε

∫

�3

(uhε,ν − g)+(vhν − uhε,ν) ds +
∫

�3

Fb(u
h
ν )

(
‖vhτ‖ − ‖uhε,τ‖

)
ds

+
∫

�3

j0ν (uhε,ν; vhν − uhε,ν) ds ≥ 〈 f , vh − uhε 〉V ∗×V ∀ vh ∈ V h . (7.30)
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Similar to the convergence discussion of the numerical method Problem (Ph1,ε),
again we need to examine the condition (A9):

∀ v ∈ U , ∃ vh ∈ V h ∩U s.t. lim
h→0

‖vh − v‖V = 0. (7.31)

As is noted in [14], if C∞()d ∩ U is dense in U and the function g is concave (in
many applications, g is constant), then (7.31) is valid. We assume this is the case.
Then we have the convergence of the numerical method defined by Problem (Ph2,ε):

uhε → u in V , as h, ε → 0. (7.32)

In the special case where jν is monotone, we have the convergence result for the
penalty based numerical method of a constrained variational inequality.

8 Conclusion

The goal of this paper is to provide a general convergence analysis of penalty based
numerical methods for solving constrained variational or hemivariational inequalities.
The main theoretical result is the convergence of the penalty based numerical solu-
tions to the solution of the constrained inequality problem as the mesh-size and the
penalty parameter approach zero independently, under the minimal solution regularity
available from the solution existence result. The convergence result is first presented
for a general variational–hemivariational inequality, and is then stated for a general
hemivariational inequality and for a general variational inequality.

This paper does not discuss about a proper choice of the penalty parameter, nor the
convergence order of the penalty based finite element solutions. Such a discussion can
be made when the penalty parameter is related to the finite element mesh-size, under
some solution regularity assumption that is usually not available from the literature.
A few references exist that explore the convergence order of penalty based numerical
methods when the penalty parameter is related to the discretization mesh-size. E.g.,
penalty based finite element methods were studied in [4] for variational inequalities
from unilateral contact problems, and it was found that best results on the convergence
orderwould be possiblewhen the penalty parameter is proportional to thefinite element
mesh-size, again under certain solution regularity assumptions. In implementation of
the penalty based numerical methods, care must be exerted on a proper choice of the
penalty parameter since the discrete problems become ever more ill-conditioned as
the penalty parameter gets smaller (cf. [9]). Numerical examples on the performance
of the penalty based finite element methods for constrained variational inequalities
from contact mechanics can be found in [21].

In this paper, the background discretizationmethod is the Galerkinmethod, or more
specifically, the finite element method. It is possible to apply other numerical methods
for the discretization of the inequality problems, combined with the penalty approach.
E.g., penalty based boundary element methods have been developed to solve con-
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strained variational inequalities and hemivariational inequalities, cf. a comprehensive
reference [11].
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