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Abstract. The quasi-static problem of elastoplasticity with combined kinematic-isotropic hard-

ening is formulated as a time-dependent variational inequality (VI) of the mixed kind; that is, it is
an inequality involving a nondifferentiable functional and is imposed on a subset of a space. This VI
differs from the standard parabolic VI in that time derivatives of the unknown variable occur in all
of its terms. The problem is shown to possess a unique solution.

We consider two types of approximations to the VI corresponding to the quasi-static problem
of elastoplasticity: semidiscrete approximations, in which only the spatial domain is discretized, by
finite elements; and fully discrete approximations, in which the spatial domain is again discretized
by finite elements, and the temporal domain is discretized and the time-derivative appearing in the
VI is approximated in an appropriate way.

Estimates of the errors inherent in the above two types of approximations, in suitable Sobolev
norms, are obtained for the quasi-static problem of elastoplasticity; in particular, these estimates
express rates of convergence of successive finite element approximations to the solution of the varia-
tional inequality in terms of element size h and, where appropriate, of the time step size k.

A major difficulty in solving the problems is caused by the presence of the nondifferentiable
terms. We consider some regularization techniques for overcoming the difficulty. Besides the usual
convergence estimates, we also provide a posteriori error estimates which enable us to estimate the
error by using only the solution of a regularized problem.
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method, backward Euler scheme, Crank–Nicolson scheme, convergence, error estimates, regulariza-
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1. Introduction. The aim of this work is to provide a qualitative and numerical
analysis of a problem arising in the description of quasi-static behavior of elastoplastic
bodies. The quasi-static (as opposed to simply static or steady) nature of the problem
is due to the fact that plastic behavior can only be correctly described in terms of
rates of change of certain variables (such as plastic strain); thus these contribute to
the presence of rate quantities, and the problem is not therefore merely a boundary-
value problem. On the other hand, processes are assumed to occur sufficiently slowly
so that inertial effects may be ignored. Thus acceleration does not appear in the
problem. The quasi-static problem, while an approximation, is an important special
case both mathematically and from a practical point of view, as is confirmed by the
large number of papers on both of these aspects.

In abstract form, the problem is formulated as a time-dependent variational in-
equality (VI) of the mixed kind (see section 3). It is nonstandard, and differs from
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144 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

the standard parabolic VI (see (1.1) below) in that rate quantities occur in all of its
terms. A similar VI arises in the study of elastic bodies which are subject to frictional
contact (see [1, 6, 24, 25], for example).

The literature on VIs and their numerical approximation includes investigations
of VIs arising in plasticity (see, for example, the works by Glowinski, Lions, and
Trémolières [9] and by Hlaváček et al. [14]).The first systematic mathematical study of
the elastoplastic problem is due to Duvaut and Lions [6], who considered the problem
for a perfectly plastic material. Johnson [17] subsequently extended the analysis in [6]
by approaching the problem in two stages; in the first stage the velocity is eliminated
and the problem becomes a VI posed on a time-dependent convex set. The second
stage involves the solution for the velocity. The contributions of Duvaut–Lions and
Johnson also predated, and were therefore not in a position to draw on, the important
works of Matthies [26], Matthies, Strang, and Christiansen [27], and Temam [33] on
existence for the displacement problem in perfect plasticity. This work gave rise to the
definition and study of the space BD(Ω) of functions of bounded deformation, which
are central to a proper study of the existence problem for perfectly plastic materials.

Analyses of finite element approximations of the elastoplastic problem have en-
joyed limited but steady attention, in contrast to the voluminous literature devoted
to computational and algorithmic aspects of this problem. Havner and Patel [12] and
Jiang [16] analyzed approximations of the so-called rate problem; this is an elliptic VI
in which the primary unknowns are the velocity, rather than the displacement, and
the plastic multiplier. Johnson [18] has considered a formulation of the elastoplastic-
ity problem in which stress is the primary variable and has derived error estimates for
the fully discrete (that is, discrete in both time and space) problem (see also related
work by Hlaváček [13] and a summary account in [14]). In a later work, Johnson [19]
considered fully discrete finite element approximations in the context of plasticity,
while Brezzi, Johnson, and Mercier [3] have treated finite element approximations of
the time-independent Hencky problem for elastoplastic plates.

All of the above studies differ from that undertaken here in that, first, the model
problem investigated here is a VI of the mixed kind; it is an inequality both because
of the presence of a nondifferentiable functional and because the problem is posed on
a closed convex cone in a Hilbert space. Secondly, unlike the standard parabolic VI
which is of the form: find u : [0, T ]→ V such that

(u̇, v − u) + a(u, v − u) + j(v)− j(u) ≥ l(v − u) for all v ∈ V,(1.1)

rate quantities occur in all of the terms of the VI (see (4.1)).
We make use of a formulation which has been extensively treated both theoreti-

cally and computationally over the last decade by Reddy [29] and Reddy and Martin
[31, 32]. The chief characteristic of this formulation is that, unlike conventional for-
mulations in elastoplasticity (such as that presented, for example, in [6]), it is a logical
extension of the standard displacement problem of linear elasticity in the sense that it
reduces to this problem in the event that the body behaves elastically. We confine this
study to one involving materials which undergo hardening; thus, solutions are sought
in Sobolev spaces. The existence theory for this problem has been treated, for the
case of kinematic hardening only, in [29]; here we extend this theory to accommodate
the case of isotropic hardening.

The outline of the remainder of this work is as follows. In section 2 the model
quasi-static problem is described, while the corresponding VI is formulated in section
3. This VI is considered in an abstract context in section 4, where conditions for its
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 145

wellposedness are established. Section 5 is concerned with semidiscrete finite element
approximations of the abstract VI, while section 6 is devoted to fully discrete approx-
imations. In section 7 we apply the results of the previous sections to the quasi-static
problem of elastoplasticity with combined kinematic-isotropic hardening as well as the
special case of kinematic hardening only. In the latter case the VI reduces to one of
the second kind, in which the nondifferentiable functional is present but the problem is
posed on the entire space. We establish error estimates for the semidiscrete and fully
discrete approximations. In the last section, we consider regularization techniques for
handling the nondifferentiable terms and derive a posteriori error estimates.

2. Formulation of the problem. We consider the initial-boundary value prob-
lem for quasi-static behavior of an elastoplastic body which occupies a bounded do-
main Ω with Lipschitz boundary Γ. The plastic behavior of the material is assumed to
be describable within the classical framework of a convex yield surface coupled with
the normality law.

The material is assumed to undergo linear kinematic and isotropic hardening. The
assumption of a hardening material, apart from the fact that it represents realistic
material behavior, serves also to allow for a complete analysis within a Sobolev space
framework, the case of perfect plasticity requiring special treatment (see, for example,
[23]). The model incorporates also the classical assumption of no volume change
accompanying plastic deformation.

Suppose that the system is initially at rest and that it is initially undeformed and
unstressed. A time-dependent field of body force f(x, t) is given, with f(x, 0) = 0.
We are required to find the displacement field u(x, t) and plastic strain field p(x, t)
which satisfy for 0 ≤ t ≤ T the equilibrium equation

div σ(u,p) + f = 0 ,(2.1)

the elastic constitutive equation

σ(u,p) = C(ε(u)− p) ,(2.2)

the strain-displacement relation

ε(u) = 1
2 (∇u+ (∇u)T ),(2.3)

and the condition of plastic incompressibility

trp := I · p = 0(2.4)

or pkk = 0. Here and henceforth summation is implied on repeated indices unless
otherwise stated.

Equations (2.1)–(2.4) are required to hold in Ω; here σ is the stress tensor, ε is
the strain tensor, u is the displacement vector, and p is the plastic strain tensor. The
quantity C is a fourth-order tensor of elastic coefficients.

In addition we have to specify the plastic flow law. For this purpose let γ represent
the internal variable associated with isotropic hardening, and define the (thermody-
namic) conjugate forces χ and g by [32]

χ = σ − k1p, g = −k2γ;(2.5)

where k1 and k2 are nonnegative scalars. The region of admissible conjugate forces is
then defined to be the set

K = {(χ, g) : F (χ) + g ≤ c0};(2.6)
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146 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

where c0 is a positive constant and F is a convex function known as the yield function.
The boundary of K is known as the yield surface, while its interior is known as the
elastic region. The term k1p in (2.5) is the back stress and defines the amount by
which the yield surface is translated as a result of previous plastic behavior. The term
g in the definition of K governs isotropic hardening, that is, the amount by which the
admissible region expands as a result of previous plastic behavior.

For a quantity z, we will use ż to denote the derivative of z with respect to time
t. In its classical form the flow law is

(ṗ, γ̇) ∈ NK(χ, g),(2.7)

where NK(χ, g) denotes the normal cone to K at (χ, g). If the yield function is smooth
this may be rewritten in the form(

ṗ

γ̇

)
= λ

( ∇F (χ)
1

)
,(2.8)

where λ is a nonnegative scalar. Thus λ may be identified with γ̇.
We will find it advantageous to consider the flow law not in this form but in a

form which is dual to the relation (2.7) in the sense of convex analysis. We introduce
the support function D of K, defined by

D : M3 × R→ R ∪ {∞}, D(q, µ) = sup{χ · q + gµ : (χ, g) ∈ K}.(2.9)

Here M3 is the set of all symmetric 3× 3 matrices. The support function is denoted
here by the symbol D since in plasticity it has the interpretation of the dissipation
function. We will henceforth use this latter term to describe this function.

The dissipation function is a gauge; that is, it is proper, nonnegative, convex,
positively homogeneous, and lower semicontinuous (l.s.c.):

D 6≡ +∞,(2.10)

D(q, µ) ≥ 0, D(0, 0) = 0,(2.11)

D(θp+ (1− θ)q, θγ + (1− θ)µ) ≤ θD(p, γ) + (1− θ)D(q, µ),

∀ θ ∈ (0, 1), ∀p, q ∈M3, ∀ γ, µ ∈ R(2.12)

D(αp, αγ) = αD(p, γ), 0 < α ∈ R(2.13)

lim
n→∞

D(qn, µn) ≥ D(q, γ), ∀ {(qn, µn)}, (qn, µn)→ (q, γ).(2.14)

In analyzing the variational inequality for the elastoplasticity problem, it will be
convenient to consider the dissipation function D on its effective domain domD =
{(q, µ) ∈ M3 × R : D(q, µ) < ∞}. It is easy to verify that domD is a nonempty,
convex, closed cone in M3 × R. From Corollary 2.4 in [7], if D is bounded above
over a nonempty open set, then D is locally Lipschitz continuous on domD. We will
assume that

D is Lipschitz continuous on domD.(2.15)

As an example, we consider the popular von Mises yield condition. For this case
we have

F (χ) = |χD| ≡
√
χDijχ

D
ij ,
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 147

where χD = χ− 1
3 (trχ) I is the deviatory part of χ. One can show that (see [32])

D(ṗ, γ̇) =
{
c0|ṗ| if |ṗ| ≤ γ̇,
+∞ if |ṗ| > γ̇.

(2.16)

Obviously, on domD = {(q, µ) : |q| ≤ µ a.e. in Ω}, D(q, µ) = c0|q| is Lipschitz
continuous.

By exploiting the fact that the dissipation function is the Legendre–Fenchel con-
jugate of the indicator function of K we can express the flow law (2.7) or (2.8) in the
form

(χ, g) ∈ ∂D(ṗ, γ̇);(2.17)

that is,

D(q, µ) ≥ D(ṗ, γ̇) + χ · (q − ṗ) + g (µ− γ̇) ∀ q ∈M3, µ ∈ R,(2.18)

where the inner product in M3 is defined by p · q = pijqij . The relation (2.18) is
equivalent to (ṗ, γ̇) ∈ domD and

D(q, µ) ≥ D(ṗ, γ̇) + χ · (q − ṗ) + g (µ− γ̇) ∀ (q, µ) ∈ domD.(2.19)

We assume for the coefficient functions in (2.5) that k1, k2 ∈ L∞(Ω) and that
there are constants k̄i (i = 1, 2) such that

ki(x) ≥ k̄i > 0 a.e. in Ω.(2.20)

The elasticity tensor C has the symmetry properties

Cijkl = Cjikl = Cklij ,(2.21)

and we assume that

Cijkl ∈ L∞(Ω)(2.22)

and that C is pointwise stable: there exists a constant c0 > 0 such that

Cijkl(x)ζijζkl ≥ c0|ζ|2 ∀ ζ ∈M3 a.e. in Ω.(2.23)

Finally, we take the boundary condition to be

u = 0 on Γ ,(2.24)

while the initial conditions are assumed to be

u(x, 0) = 0 and p(x, 0) = 0.(2.25)

3. The variational problem. Function spaces. Before addressing the ques-
tion of the variational formulation of the problem posed in section 2, we introduce
the function spaces which will be required.

We use multi-index notation for derivatives of functions. Let α = (α1, α2, . . . , αn)
be an n-tuple of nonnegative integers and set |α| = α1 + α2 + · · · + αn. Then Dαu
denotes the αth derivative of a function u defined by

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 · · · ∂xαnn
.
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148 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

For integersm ≥ 1, we denote byHm(Ω) the space of (equivalence classes of) functions
in L2(Ω) whose distributional partial derivatives of order |α|, |α| ≤ m, are in L2(Ω).
The space Hm(Ω) is a Hilbert space equipped with the inner product

(u, v)m,Ω =
∫

Ω

∑
|α|≤m

Dαu(x)Dαv(x) dx

so that

‖u‖m,Ω = ‖u‖m,2,Ω = [(u, u)m,Ω]1/2 .

When the domain of a function is contextually apparent, we use the simpler notation

‖ · ‖m,p = ‖ · ‖m,p,Ω, ‖ · ‖m = ‖ · ‖m,Ω.

We will also use the following seminorm defined on Hm(Ω):

|u |m,Ω=

∫
Ω

∑
|α|=m

|Dαu(x) |2 dx

1/2

.(3.1)

We denote by H1
0 (Ω) the subspace of H1(Ω) comprising functions whose values vanish

on the boundary Γ, in the sense of traces. The seminorm (3.1) with m = 1 is a norm
on H1

0 (Ω), equivalent to the standard H1-norm.
The spaces of displacements and plastic strains are defined, respectively, by

V = [H1
0 (Ω)]3, Q = {q = (qij) : qji = qij , qij ∈ L2(Ω)}.

We will also need the space Q0 of traceless functions defined by Q0 = {q ∈ Q : tr q =
0 a.e. in Ω}. Both V and Q are Hilbert spaces with inner products

(u,v)V =
∫

Ω

∂ui
∂xj

∂vi
∂xj

dx and (p, q)Q =
∫

Ω
p · q dx =

∫
Ω
pijqijdx

and norms ||v||V = (v,v)1/2
V , ||q||Q = (q, q)1/2

Q . Furthermore, Q0 is a closed subspace
of Q.

The space M of isotropic hardening variables is defined by M = L2(Ω). We define
the product space Z = V ×Q0 ×M which is a Hilbert space with the inner product

(w, z)Z : = (u,v)V + (p, q)Q + (γ, µ)M

and norm ||z||Z = (z, z)1/2
Z , where w = (u,p, γ) and z = (v, q, µ). We also need a

subset of Z, defined by

K = {z = (v, q, µ) ∈ Z : |q| ≤ µ a.e. in Ω}.

Obviously, K is a nonempty, closed, convex cone in Z.
For any Banach space X, we denote by Cm([0, T ];X) the space of continuous

functions u : [0, T ] → X that have continuous derivatives up to and including those
of order m on [0, T ] with the norm

||u||Cm([0,T ];X) =
m∑
i=0

max
0≤t≤T

||u(i)(t)||X(3.2)
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 149

and by Lp(0, T ;X) for 1 ≤ p <∞ the space of all measurable functions u : (0, T )→ X
for which

||u||Lp(0,T ;X) =

(∫ T

0
||u(t)||pX dt

)1/p

<∞.(3.3)

The space of measurable functions u : (0, T ) → X which are essentially bounded is
denoted by L∞(0, T ;X), and this space is endowed with the norm

||u||L∞(0,T ;X) = ess sup0≤t≤T ||u(t)||X .

Some properties of these spaces are listed in the following theorem. For a proof, see
Zeidler [35].

THEOREM 3.1. Let m be a nonnegative integer and 1 ≤ p ≤ ∞. Let X and Y be
real Banach spaces. Then

1. Cm([0, T ];X) with the norm (3.2) is a Banach space;
2. Lp(0, T ;X) is a Banach space if we identify functions that are equal almost

everywhere on (0, T );
3. If X is a Hilbert space with inner product (·, ·)X , then L2(0, T ;X) is also a

Hilbert space with the inner product

(u, v)L2(0,T ;X) =
∫ T

0
(u(t), v(t))X dt.

The topological dual of a Banach space X is denoted by X∗, and the operation
of an element u∗ ∈ X∗ on an element u ∈ X is indicated by 〈u∗, u〉. If X is separable,
then the space L1(0, T ;X) is separable and

L1(0, T ;X)∗ = L∞(0, T ;X∗).

We define by W 1,2(0, T ;X) the space of functions f ∈ L2(0, T ;X) such that ḟ ∈
L2(0, T ;X), equipped with the norm

‖f‖2W 1,2(0,T ;X) = ‖f‖2L2(0,T ;X) + ‖ḟ‖2L2(0,T ;X),

where ḟ denotes the generalized derivative of f on (0, T ). We define w = u(n) to be
the nth generalized derivative of the function u on (0, T ) iff∫ T

0
φ(n)(t)u(t) dt = (−1)n

∫ T

0
φ(t)w(t) dt ∀φ ∈ C∞0 (0, T )

is valid. Note that these integrals are defined whenever u,w ∈ L1(0, T ;X) (see, for
example, Zeidler [35, p. 418]). This generalized derivative is unique.

We record the fundamental inequality

‖f(t)− f(s)‖X ≤
∫ t

s

‖ḟ(τ)‖Xdτ,(3.4)

which holds for s < t and f ∈W 1,2(0, T ;X) (see, for example, Zeidler [35]). We have
that W 1,2(0, T ;X) ⊂ C([0, T ], X), with the embedding being continuous.
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150 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

We introduce the bilinear form a : Z × Z → R defined by

a(w, z) =
∫

Ω
[C(ε(u)− p) · (ε(v)− q) + k1p · q + k2γµ] dx

=
∫

Ω
[Cijkl (εij(u)− pij)(εkl(v)− qkl) + k1pijqij + k2γµ] dx,(3.5)

the linear functional

l(t) : Z → R, 〈l(t), z〉 =
∫

Ω
f(t) · v dx,(3.6)

and the functional

j : Z → R ∪ {∞}, j(z) =
∫

Ω
D(q(x), µ(x)) dx,(3.7)

where as before w = (u,p, γ) and z = (v, q, µ).
The functional l(t) is easily shown to be bounded. From the properties of D,

j(·) is a convex, positively homogeneous, nonnegative, l.s.c. functional on Z and is
Lipschitz continuous on domD = K. Note, however, that j is not differentiable.

We are now ready to define the variational problem.
Problem EP. Given l ∈ W 1,2(0, T ;Z∗) with l(0) = 0, find w = (u,p, γ) :

[0, T ]→ Z with w(0) = 0, such that for almost all t ∈ (0, T ), ẇ(t) ∈ K, and

a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t))− 〈l, z − ẇ(t)〉 ≥ 0 ∀ z ∈ K.(3.8)

The formal equivalence of problem EP to the classical problem defined by (2.1)–(2.4) is
readily established (cf. [29, 31], for example). We take as fundamental the variational
problem EP, though.

4. An abstract variational inequality.

4.1. The formulation. We study the elastoplastic problem EP in the frame-
work of an abstract VI, of which problem EP is a specific example. This VI closely
resembles a parabolic VI, with the important distinction that the rate quantity occurs
in the arguments of all the functionals in the inequality. Apart from elastoplasticity,
another application in which this VI may be found is that of elasticity with frictional
contact (see [6] and [28]). In that case, though, the problem is posed on the entire
space rather than on a convex subset. Furthermore, it will be seen that the meth-
ods adopted here are quite different from those used in the works cited, and we will
present a wider range of results in the case of approximate problems.

We now take as fundamental the following abstract variational problem.
Problem P. Find w : [0, T ]→ H, w(0) = 0, such that for almost all t ∈ (0, T ),

ẇ(t) ∈ K and

a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t))− 〈l(t), z − ẇ(t)〉 ≥ 0 ∀ z ∈ K.(4.1)

Here H denotes a Hilbert space, K a nonempty, closed, convex cone in H. The bilinear
form a : H ×H → R is symmetric, bounded, and H-elliptic, l ∈W 1,2(0, T ;H∗). The
functional j: K → R is nonnegative, convex, positively homogeneous, and Lipschitz
continuous, which is not assumed to be differentiable. We call the problem P a
variational inequality of the mixed kind, because it has features of VIs of both the
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first kind (the presence of the convex set K) and the second kind (the presence of the
nondifferentiable term j). For a classification for the kinds of VI, see [8].

Questions of existence and uniqueness of solutions to this problem have been
investigated in the context of elastoplasticity with kinematic hardening by Reddy
[29].

We extend the functional j from K to the whole space H through

J(z) =
{
j(z), z ∈ K,
+∞, z 6∈ K.

Since K is a nonempty, closed and convex cone and since j is nonnegative, convex,
positively homogeneous, and Lipschitz continuous on K, the extended functional J :
H → R ∪ {∞} is proper, nonnegative, positively homogeneous, convex, and l.s.c.
From now on, we will identify j with J ; i.e., we will use the same notation j(z) to
denote the extension of j(z) from K to H by ∞ for z 6∈ K. With this identification,
we observe that (4.1) is equivalent to

a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t))− 〈l(t), z − ẇ(t)〉 ≥ 0 ∀ z ∈ H;

i.e., the inequality problem is not affected whether the test functions z are taken in H
or only in K. We will have occasion to use this property later; in particular, we observe
that problem P is equivalent to the problem of finding functions w: [0, T ] → H,
w(0) = 0, and w∗(t): [0, T ]→ H∗ such that for almost all t ∈ (0, T ),

a(w(t), z) + 〈w∗(t), z〉 = 〈l(t), z〉 ∀ z ∈ H,(4.2)

w∗(t) ∈ ∂j(ẇ(t)),(4.3)

where ∂j(ẇ(t)) denotes the subdifferential of j(·) at ẇ(t).
From the definition of the subdifferential, we observe that, because of the positive

homogeneity of j, the relation w∗(t) ∈ ∂j(ẇ(t)) is equivalent to

〈w∗(t), z〉 ≤ j(z) ∀z ∈ H and 〈w∗(t), ẇ(t)〉 = j(ẇ(t)).(4.4)

A feature of the proof of the existence result presented below is that it employs a
discretization method closely related to one which is used in practice for computational
purposes (see, for example, Reddy and Martin [31], [32]). The method of proof has
interesting parallels with the semidiscrete approximations of problem P, for which an
estimate of the rate of convergence of the approximations is derived in section 5.

4.2. Existence, uniqueness, and stability.
Existence. The existence proof involves two stages: first, discretizing in time and

establishing the existence of a family of solutions {wn}Nn=1 to the discrete problems.
The second stage involves constructing a linear interpolate in time wε of the discrete
solutions and showing that the limit, as the time step size ε approaches zero, of these
interpolates is in fact a solution of problem P. The proof technique was employed in
[29] for the problem with isotropic hardening only. Here, for convenience, we give a
sketch of the proof for the existence of a solution to the problem under somewhat
more general assumptions stated after (4.1).

Time discretization involves partitioning the time interval [0, T ] by 0 = t0 < t1 <
· · · < tN = T , where tn − tn−1 = ε. For given l ∈W 1,2(0, T ;H∗), ln = l(tn), which is
well defined by the embedding W 1,2(0, T ;X) ↪→C([0, T ];X) for any Banach space X
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(see section 3). We define ∆wn to be the backward difference wn−wn−1 corresponding
to a sequence {wn}Nn=0.

We start with the following.
LEMMA 4.1. For any given {ln}Nn=0 ⊂ H∗, l0 = 0, there exists a unique sequence

{wn}Nn=0 ⊂ H, with w0 = 0, such that for n = 1, 2, . . . , N , ∆wn ∈ K and

a(wn, z −∆wn) + j(z)− j(∆wn)− 〈ln, z −∆wn〉 ≥ 0 ∀ z ∈ H.(4.5)

Furthermore, there exists a constant c, independent of ε, such that

‖∆wn‖H ≤ c ‖∆ln‖H∗ , n = 1, . . . , N.(4.6)

Proof. The inequality (4.5) may be rewritten as

a(∆wn, z −∆wn) + j(z)− j(∆wn)

≥ 〈ln, z −∆wn〉 − a(wn−1, z −∆wn) ∀ z ∈ H.
(4.7)

We proceed inductively. For n = 1, since by the assumptions the bilinear form a(·, ·)
is continuous and H-elliptic, the functional j(·) is proper, convex, and l.s.c., and the
functional defined by the right-hand side of (4.7) is bounded and linear, the problem
(4.7) has a unique solution ∆wn = w1 (cf. [8]). Obviously, j(∆wn) < ∞. Hence,
∆wn ∈ K. Assuming now that the solution wn−1 is known, we similarly show the
existence of the solution wn = ∆wn + wn−1. To derive the estimate (4.6), set z = 0
in (4.7) to get

a(∆wn,∆wn) ≤ 〈∆ln,∆wn〉 − a(wn−1,∆wn)− j(∆wn) + 〈ln−1,∆wn〉.(4.8)

We now show that −a(wn−1,∆wn) − j(∆wn) + 〈ln−1,∆wn〉 ≤ 0. By replacing n by
(n− 1) and setting z = ∆wn−1 + ∆wn ∈ K in (4.5), we obtain

0 ≤ a(wn−1,∆wn)− 〈ln−1,∆wn〉+ j(∆wn−1 + ∆wn)− j(∆wn−1)

≤ a(wn−1,∆wn)− 〈ln−1,∆wn〉+ j(∆wn),

where we have used the convexity and positive homogeneity of j(·). Hence from (4.8)
we obtain the inequality

a(∆wn,∆wn) ≤ 〈∆ln,∆wn〉,

from which estimate (4.6) follows by the H-ellipticity of a(·, ·).
LEMMA 4.2. Assume l ∈ W 1,2(0, T ;H∗), l(0) = 0, then the solution {wn}Nn=0

defined in Lemma 4.1 satisfies

max
1≤n≤N

‖wn‖H ≤ c ‖l̇‖L1(0,T ;H∗),(4.9)

N∑
n=1

‖∆wn‖2H ≤ c ε ‖l̇‖2L2(0,T ;H∗).(4.10)

Proof. The estimates are consequences of (4.6) and (3.4) (see Reddy
[29, Lemma 3]).
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We construct a piecewise linear interpolation wε of {wn} by setting

wε(t) = wn−1 +
∆wn
ε

(t− tn−1)

for tn−1 ≤ t ≤ tn. Clearly wε belongs to L∞(0, T ;H), while ẇε ∈ L2(0, T ;H). For
any sequence {zn}Nn=1 ⊂ H, we define a step function z(t) by

z(t) = zn for tn−1 ≤ t < tn, n = 1, . . . , N − 1,

z(t) = zN for tN−1 ≤ t ≤ tN .

Let zN+1 = 0. We divide both sides of (4.5) by ε and use the positive homogeneity of
j to obtain

a(wn, z − δwn) + j(z)− j(δwn)− 〈ln, z − δwn〉 ≥ 0 ∀ z ∈ H,

where δwn = ∆wn/ε. Taking z = (zn + zn+1)/2 in the above inequality, multiplying
by ε, and summing over n, n = 1, . . . , N , we find that

N∑
n=1

ε a(wn, (zn + zn+1)/2− δwn) +
N∑
n=1

ε j((zn + zn+1)/2)

−
N∑
n=1

ε j(δwn)−
N∑
n=1

ε 〈ln, (zn + zn+1)/2− δwn〉 ≥ 0.

(4.11)

We have

N∑
n=1

ε a(wn, (zn + zn+1)/2) =
∫ T

0
a(wε(t), z(t)) dt,

N∑
n=1

ε a(wn, δwn) ≥
∫ T

0
a(wε(t), ẇε(t)) dt,

N∑
n=1

ε j( 1
2 (zn + zn+1)) ≤

N∑
n=1

ε 1
2 (j(zn) + j(zn+1)) =

∫ T

0
j(z(t)) dt− 1

2 ε j(z1)

(using the convexity of j),

N∑
n=1

ε j(δwn) =
∫ T

0
j(ẇε(t)) dt,

N∑
n=1

ε 〈ln, 1
2 (zn + zn+1)〉 =

∫ T

0
〈lε(t), z(t)〉 dt,

N∑
n=1

ε 〈ln, δwn〉 =
∫ T

0
〈lε(t), ẇε(t)〉 dt+

N∑
n=1

〈∆ln,∆wn〉

≤
∫ T

0
〈lε(t), ẇε(t)〉 dt+ cε

∫ T

0
‖l̇(t)‖2H∗ dt,
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where, lε(t) represents the piecewise linear interpolation of {ln}Nn=0 and c is the con-
stant appearing in (4.6).

Thus from (4.11) we see that wε satisfies the VI

0 ≤ Jε ≡
∫ T

0
[a(wε(t), z − ẇε(t)) + j(z)− j(ẇε(t))− 〈lε(t), z − ẇε(t)〉] dt

− 1
2εj(z1) + 1

2cε

∫ T

0
‖l̇(t)‖2H∗ dt.(4.12)

From (4.9), (4.10), and the definition of wε we see by direct evaluation that

‖wε‖L∞(0,T ;H) ≤ C1 and ‖ẇε‖L2(0,T ;H) ≤ C2.

Now we fix a stepsize ε0 > 0 and consider the sequence of stepsizes εk = 2−kε0,
k = 0, 1, . . .. It follows that there exists a subsequence {wεki } of the sequence {wεk}
and a w ∈W 1,2(0, T ;H) such that

wεki
∗
⇀ w in L∞(0, T ;H) and ẇεki ⇀ ẇ in L2(0, T ;H) as i→∞.

From the properties of j, it is easy to verify that the functional
∫ T

0 j(v(t)) dt is convex
and l.s.c. on L1(0, T ;K) and thus is weakly l.s.c. on L1(0, T ;H). Since we also have

ẇεki ⇀ ẇ in L1(0, T ;H) as i→∞,

we obtain ∫ T

0
j(ẇ(t)) dt ≤ lim inf

i→∞

∫ T

0
j(ẇεki (t)) dt,

a relation needed in proving the next inequality below. In particular, the above
relation implies that ẇ(t) ∈ K for almost all t ∈ [0, T ].

It can then be proved that

0 ≤ lim sup
i→∞

Jεki ≤
∫ T

0

[
a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t))− 〈l(t), z − ẇ(t)〉

]
dt

for any step function z corresponding to a stepsize εki , i = 1, 2, . . .. Approximating
any z ∈ L2(0, T ;K) by its piecewise averaging step functions zεki , it then follows that∫ T

0

[
a(w(t), z(t)− ẇ(t)) + j(z(t))− j(ẇ(t))− 〈l(t), z(t)− ẇ(t)〉

]
dt ≥ 0,

∀ z ∈ L2(0, T ;K)

Here we used the Lipschitz continuity of j on K and the fact that

z ∈ L2(0, T ;K) =⇒ zεki (t) ∈ K a.e. t.

By a standard procedure of passing to the pointwise inequality (see, for example,
Duvaut and Lions [6]), we find from the above inequality that w satisfies the VI (4.1)
a.e. on [0, T ]. By the Sobolev embedding theorem, W 1,2(0, T ;H) ⊂ C([0, T ];H),
and we observe that w ∈ L∞(0, T ;H) and ẇ ∈ L2(0, T ;H) is equivalent to w ∈
W 1,2(0, T ;H).
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Uniqueness. Suppose that problem P has two solutions, w1 and w2. Denote by
∆w the difference w1 − w2. From (4.1), on setting w = w1, z = ẇ2 ∈ K, and then
w = w2, z = ẇ1 ∈ K, respectively, we have

a(w1,∆ẇ) + j(ẇ1)− j(ẇ2) ≤ 〈l,∆ẇ〉,
−a(w2,∆ẇ) + j(ẇ2)− j(ẇ1) ≤ −〈l,∆ẇ〉.

Adding, we get

0 ≥ a(∆w,∆ẇ) =
1
2
d

dt
a(∆w,∆w).

Integration, the H-ellipticity of a(·, ·), and the initial conditions w1(0) = w2(0) = 0
together yield w2 = w1, as required.

We summarize the above analysis in the following theorem.
THEOREM 4.3 (Existence and uniqueness). Let H be a Hilbert space; K ⊂ H a

nonempty, closed, convex cone; a: H ×H → R a bilinear form which is symmetric,
bounded, and H-elliptic; l ∈W 1,2(0, T ;H∗) with l(0) = 0; and j: K → R nonnegative,
convex, positively homogeneous, and Lipschitz continuous. Then there exists a unique
solution w of problem P satisfying w ∈ W 1,2(0, T ;H). Furthermore, w: [0, T ] → H
with w(0) = 0, is the solution of the problem P iff there is a function w∗(t): [0, T ]→
H∗ such that for almost all t ∈ (0, T ),

a(w(t), z) + 〈w∗(t), z〉 = 〈l(t), z〉 ∀ z ∈ H,(4.13)

w∗(t) ∈ ∂j(ẇ(t)).(4.14)

We observe from (4.13) that w∗ has the regularity property

w∗ ∈W 1,2(0, T ;H∗).(4.15)

If we assume l ∈W 1,p(0, T ;H∗), 1 ≤ p <∞, then (4.10) can be replaced by

N∑
n=1

‖∆wn‖pH ≤ c εp−1‖l̇‖pLp(0,T ;H∗).

As a result, {wε} is uniformly bounded in W 1,p(0, T ;H). Hence, from the existence
proof above, the solution is w ∈W 1,p(0, T ;H). Similarly, if l ∈W 1,∞(0, T ;H∗), then
the solution w ∈W 1,∞(0, T ;H).

Stability. We discuss the stability of the solution w of (4.1) with respect to l.
Let l1, l2 ∈ W 1,2(0, T ;H∗) be given, l1(0) = l2(0) = 0, and let w1 and w2 be the
corresponding solutions whose existence is assured by Theorem 4.3. Thus, for almost
all t ∈ (0, T ), ẇ1(t) ∈ K, ẇ2(t) ∈ K, and

a(w1(t), z − ẇ1(t)) + j(z)− j(ẇ1(t))− 〈l1(t), z − ẇ1(t)〉 ≥ 0 ∀ z ∈ K,(4.16)

a(w2(t), z − ẇ2(t)) + j(z)− j(ẇ2(t))− 〈l2(t), z − ẇ2(t)〉 ≥ 0 ∀ z ∈ K.(4.17)

Take z = ẇ2(t) ∈ K in (4.16) and z = ẇ1(t) ∈ K in (4.17) and add the two resultant
inequalities to obtain

−1
2
d

dt
a (w1(t)− w2(t), w1(t)− w2(t)) + 〈l1(t)− l2(t), ẇ1(t)− ẇ2(t)〉 ≥ 0;
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that is,

1
2
d

dt
a (w1(t)− w2(t), w1(t)− w2(t)) ≤ 〈l1(t)− l2(t), ẇ1(t)− ẇ2(t)〉.

Denote e = w1 − w2. Observing that e(0) = 0, we have

1
2 a (e(t), e(t)) ≤

∫ t

0
〈l1(t)− l2(t), ė(t)〉 dt

= 〈l1(t)− l2(t), e(t)〉 −
∫ t

0
〈l̇1(t)− l̇2(t), e(t)〉 dt.

Since a is H-elliptic, we have

‖e(t)‖2H ≤ c ‖l1(t)− l2(t)‖H∗‖e(t)‖H + c

∫ t

0
‖l̇1(t)− l̇2(t)‖H∗‖e(t)‖Hdt.

Let M = sup0≤t≤T ‖e(t)‖H , then

‖e(t)‖2H ≤ c ‖l1(t)− l2(t)‖H∗M + c

∫ t

0
‖l̇1(t)− l̇2(t)‖H∗M dt.

Hence,

M2 ≤ cM ‖l1 − l2‖L∞(0,T ;H∗) + cM ‖l̇1 − l̇2‖L1(0,T ;H∗),

and

M ≤ c
(
‖l1 − l2‖L∞(0,T ;H∗) + ‖l̇1 − l̇2‖L1(0,T ;H∗)

)
.

In conclusion, we have proved the following.
THEOREM 4.4 (Stability). Under the assumptions of Theorem 4.3, the solution of

the problem (4.1) depends continuously on l: for l1, l2 ∈ W 1,2(0, T ;H∗) with l1(0) =
l2(0) = 0, the corresponding solutions w1 and w2 satisfy

‖w1 − w2‖L∞(0,T ;H) ≤ c
(
‖l1 − l2‖L∞(0,T ;H∗) + ‖l̇1 − l̇2‖L1(0,T ;H∗)

)
.

5. Semidiscrete internal approximations. In this section we consider semi-
discrete internal approximations of the model problem P. As in the last section, we
assume that H is a Hilbert space; K ⊂ H is a nonempty, closed, convex cone; a : H×
H → R is bilinear, symmetric, bounded and H-elliptic; and l ∈ W 1,2(0, T ;H∗) with
l(0) = 0. The functional j : K → R is nonnegative, convex, positively homogeneous,
and Lipschitz continuous; i.e.,

|j(z1)− j(z2)| ≤ c ‖z1 − z2‖H ∀ z1, z2 ∈ K.

Let h ∈ (0, 1] be a mesh parameter and {Hh} a family of finite-dimensional
subspaces of H, with the property that

lim
h→0
‖z − zh‖H = 0 ∀ z ∈ H.(5.1)

Denote Kh = Hh ∩ K. Then a semidiscrete internal approximation of the model
problem P is as follows.
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Problem Ph. Find wh : [0, T ] → Hh, wh(0) = 0, such that for almost all
t ∈ (0, T ), ẇh(t) ∈ Kh and

a(wh(t), zh − ẇh(t)) + j(zh)− j(ẇh(t))− 〈l(t), zh − ẇh(t)〉 ≥ 0

∀ zh ∈ Kh.
(5.2)

We note that for any given h, Kh is a nonempty, closed, convex cone in Hh.
Thus, the existence of a unique solution wh to problem Ph follows from Theorem 4.3
with H and K replaced by Hh and Kh. We also note from Theorem 4.3 that wh ∈
W 1,2(0, T ;H). This regularity result implies that wh ∈ C([0, T ];H); in particular,
the value wh(0) is well defined. From Theorem 4.4, we have the stability estimate

‖wh1 − wh2‖L∞(0,T ;H) ≤ c
(
‖l1 − l2‖L∞(0,T ;H∗) + ‖l̇1 − l̇2‖L1(0,T ;H∗)

)
for semidiscrete solutions wh1 and wh2 corresponding to l1 and l2.

The main purpose of the section is to give an estimate for the semidiscrete ap-
proximation error w − wh. For convenience, we will use the notation

‖w‖2a = a(w,w).

Note that ‖ · ‖a is a norm equivalent to ‖ · ‖H . The strategy used in the following to
derive the error estimate is inspired by ideas contained in [5], although the problems
and analyses differ greatly.

Set z = ẇh(t) ∈ K in (4.1) to obtain

a(w(t), ẇh(t)− ẇ(t)) + j(ẇh(t))− j(ẇ(t)) ≥ 〈l(t), ẇh(t)− ẇ(t)〉.(5.3)

We now add (5.3) to (5.2) and obtain

a(w(t), ẇh(t)− ẇ(t)) + a(wh(t), zh − ẇh(t)) + j(zh)− j(ẇ(t))

≥ 〈l(t), zh − ẇ(t)〉.
(5.4)

Using (5.4), Theorem 4.3, and (4.4), we have for any zh ∈ Kh,

1
2
d

dt
‖w(t)− wh(t)‖2a

= a(w(t)− wh(t), ẇ(t)− ẇh(t))

= a(w(t)− wh(t), ẇ(t)− zh) + a(w(t)− wh(t), zh − ẇh(t))

≤ a(w(t)− wh(t), ẇ(t)− zh) + a(w(t), zh − ẇh(t))

+a(w(t), ẇh(t)− ẇ(t)) + j(zh)− j(ẇ(t))− 〈l(t), zh − ẇ(t)〉

= a(w(t)− wh(t), ẇ(t)− zh) + j(zh)− j(ẇ(t))− 〈w∗(t), zh − ẇ(t)〉

≤ a(w(t)− wh(t), ẇ(t)− zh) + j(zh)− j(ẇ(t)) + j(ẇ(t)− zh),

where in the last step, we used (4.4) which in turn is derived based on the positive
homogeneity of j(·). On the other hand, we have the regularity estimate (4.15) directly
from (4.13). Thus, we have w∗ ∈ C([0, T ];H∗) and

−〈w∗(t), zh − ẇ(t)〉 ≤ c ‖zh − ẇ(t)‖H
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158 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

which can be used in deriving (5.5) below. Now, using the convexity, positive homo-
geneity, and Lipschitz continuity of j(·), we find that

1
2
d

dt
‖w(t)− wh(t)‖2a ≤ a(w(t)− wh(t), ẇ(t)− zh) + C ‖zh − ẇ(t)‖H

∀ zh ∈ Kh.
(5.5)

Since

a(w(t)− wh(t), ẇ(t)− zh)

≤ a(w(t)− wh(t), w(t)− wh(t))1/2a(ẇ(t)− zh, ẇ(t)− zh)1/2

≤ c
(
‖w(t)− wh(t)‖2a + ‖ẇ(t)− zh‖2H

)
,

from (5.5), we find that for any zh = zh(t) ∈ Kh,

d

dt
‖w(t)− wh(t)‖2a

≤ c
(
‖w(t)− wh(t)‖2a + ‖ẇ(t)− zh(t)‖2H + ‖ẇ(t)− zh(t)‖H

)
.

(5.6)

We multiply the inequality (5.6) by e−ct and integrate from 0 to t to obtain

‖w(t)− wh(t)‖2a ≤ c ect
∫ t

0
e−cs

(
‖ẇ(s)− zh(s)‖2H + ‖ẇ(s)− zh(s)‖H

)
ds.

Therefore, we have the Céa-type inequality

‖w(t)− wh(t)‖L∞(0,T ;H) ≤ c inf
zh∈L2(0,T ;Kh)

‖ẇ − zh‖1/2L2(0,T ;H).(5.7)

The inequality (5.7) is the basis for various convergence order estimates (see
section 7).

6. Fully discrete internal approximations. In this section, we consider the
simultaneous discretizations of the temporal variable and the spatial variables. We
keep the same assumptions on the data as in section 5. We divide the time interval I =
[0, T ] into N equal parts. Denote k = T/N , the stepsize, tn = nk, n = 0, 1, . . . , N , the
nodal points, and In = [tn−1, tn], n = 1, 2, . . . , N , the subintervals. For a continuous
function v(t), with values inH orH∗, we use the notation vn = v(tn), vn−1/2 = v((tn+
tn−1)/2), ∆vn = vn − vn−1, ∆vn−1/2 = vn−1/2 − vn−3/2, and δvn = (vn − vn−1)/k.
In this and later sections, no summation is implied over the repeated index n.

We will consider two different kinds of discretizations for the differentiation with
respect to the temporal variable t.

6.1. Backward Euler scheme. We first consider a backward Euler scheme.
The fully discrete approximation problem is as follows.

Problem Phk
1 . Find whk = {whkn }Nn=0, where whkn ∈ Hh, 0 ≤ n ≤ N , and

whk0 = 0, such that for n = 1, 2, . . . , N , δwhkn ∈ Kh and

a(whkn , zh − δwhkn ) + j(zh)− j(δwhkn )− 〈ln, zh − δwhkn 〉 ≥ 0 ∀ zh ∈ Kh.(6.1)

The existence and uniqueness of the solution whk to the problem Phk
1 follow when

the argument in proving Lemma 4.1 is applied to the case of a finite-dimensional space.
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 159

It can also be similarly proved that

max
1≤n≤N

‖whkn ‖H ≤ c1,

N∑
n=1

k ‖δwhkn ‖2H ≤ c2.

We also have a stability result for the fully discrete solution. Let l1, l2 ∈W 1,2(0, T ;H∗),
and let whk1,n and whk2,n, 0 ≤ n ≤ N , be the corresponding fully discrete solutions. Then
for n = 1, 2, . . . , N , we have δwhk1,n, δw

hk
2,n ∈ Kh, and

a(whk1,n, z
h − δwhk1,n) + j(zh)− j(δwhk1,n)− 〈l1,n, zh − δwhk1,n〉 ≥ 0 ∀ zh ∈ Kh,(6.2)

a(whk2,n, z
h − δwhk2,n) + j(zh)− j(δwhk2,n)− 〈l2,n, zh − δwhk2,n〉 ≥ 0 ∀ zh ∈ Kh.(6.3)

Denote en = whk1,n − whk2,n. We take zh = δwhk2,n in (6.2) and zh = δwhk1,n in (6.3) and
add the two resultant inequalities to obtain

a(en, δen) ≤ 〈l1,n − l2,n, δen〉.

Since

a(en, δen) =
1
k

(a(en, en)− a(en, en−1)) ≥ 1
2k

(a(en, en)− a(en−1, en−1)) ,

we have

a(en, en)− a(en−1, en−1) ≤ 2 〈l1,n − l2,n, en − en−1〉.

Hence, noticing that e0 = 0,

a(en, en) ≤ 2
n∑
j=1

〈l1,j − l2,j , ej − ej−1〉

= −2
n−1∑
j=1

〈(l1,j+1 − l1,j)− (l2,j+1 − l2,j), ej〉+ 2 〈l1,n − l2,n, en〉

≤ c
n−1∑
j=1

‖(l1,j+1 − l1,j)− (l2,j+1 − l2,j)‖H∗‖ej‖H + c ‖l1,n − l2,n‖H∗‖en‖H .

Using (3.4) and the H-ellipticity of a, we obtain the inequality

‖en‖2H ≤ c
n−1∑
j=1

∫ tj+1

tj

‖l̇1(t)− l̇2(t)‖H∗dt ‖ej‖H + c ‖l1,n − l2,n‖H∗‖en‖, 1 ≤ n ≤ N.

Let M = max0≤n≤N ‖en‖H . We find from the above inequality that

M2 ≤ cM
∫ T

0
‖l̇1(t)− l̇2(t)‖H∗dt+ cM ‖l1 − l2‖L∞(0,T ;H∗).
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160 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

Hence, we get the desired stability estimate

max
0≤n≤N

‖whk1,n − whk2,n‖H ≤ c
(
‖l̇1 − l̇2‖L1(0,T ;H∗) + ‖l1 − l2‖L∞(0,T ;H∗)

)
.

Our purpose now is to derive error estimates for wn − whkn .
THEOREM 6.1. For the solution w of P and the solution whk of Phk

1 , we have
the inequalities

‖wn − whkn ‖2H ≤ c k
n∑
j=1

(
inf

zh∈Hh
‖zh − ẇj‖H + ‖δwj − ẇj‖H

)
, n = 1, 2, . . . , N

and

max
0≤n≤N

‖wn − whkn ‖2H ≤ c k
N∑
n=1

(
inf

zh∈Hh
‖zh − ẇn‖H + ‖δwn − ẇn‖H

)
.

Proof. Denote en = wn −whkn , n = 0, 1, . . . , N . Consider the quantity a(en, δen).
First we have a lower bound:

a(en, δen) =
1
k

[a(en, en)− a(en, en−1)] ≥ 1
2k

[a(en, en)− a(en−1, en−1)] .

For an upper bound we write for any zh ∈ Kh,

a(en, δen)

= a(wn, δwn − δwhkn )− a(whkn , δwn − δwhkn )

= a(wn, ẇn − δwhkn ) + a(wn, δwn − ẇn)− a(whkn , zh − δwhkn )− a(whkn , δwn − zh)

= a(wn, ẇn − δwhkn )︸ ︷︷ ︸
I1

+ a(wn, zh − ẇn)︸ ︷︷ ︸
I2

+ a(whkn , δwhkn − zh)︸ ︷︷ ︸
I3

+ a(wn − whkn , δwn − zh)︸ ︷︷ ︸
I4

.

Since

I1 = −a(wn, δwhkn − ẇn) ≤ j(δwhkn )− j(ẇn)− 〈ln, δwhkn − ẇn〉

and

I3 = −a(whkn , zh − δwhkn ) ≤ j(zh)− j(δwhkn )− 〈ln, zh − δwhkn 〉,

we have

I1 + I3 ≤ j(zh)− j(ẇn)− 〈ln, zh − ẇn〉.

From Theorem 4.3 and (4.4),

I2 = 〈ln, zh − ẇn〉 − 〈w∗n, zh − ẇn〉 ≤ 〈ln, zh − ẇn〉+ j(zh − ẇn).

Hence,

a(en, δen) ≤ j(zh)− j(ẇn) + j(zh − ẇn) + a(en, δwn − zh) ∀ zh ∈ Kh.
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 161

Combining the upper and lower bounds for a(en, δen), we find that

1
2k

[a(en, en)− a(en−1, en−1)]

≤ a(en, δwn − zh) + j(zh)− j(ẇn) + j(zh − ẇn)

≤ 1
2 a(en, en) + c ‖δwn − zh‖2H + j(zh)− j(ẇn) + j(zh − ẇn).

Using the properties of j, we get

‖wn − whkn ‖2a

≤ 1
1− k ‖wn−1 − whkn−1‖2a + c k

(
‖zh − ẇn‖H + ‖δwn − zh‖2H

)
.

(6.4)

Hence,

‖wn − whkn ‖2a

≤ 1
1− k ‖wn−1 − whkn−1‖2a + c k

(
inf

zh∈Kh
‖zh − ẇn‖H + ‖δwn − ẇn‖2H

)
.

Applying the above inequality recursively, we find that

‖wn − whkn ‖2a ≤ c k
n∑
j=1

(1− k)j−n
(

inf
zh∈Kh

‖zh − ẇj‖H + ‖δwj − ẇj‖2H
)
.

Since (1−k)−n ≤ c for n ≤ T/k, we obtain the first inequality. The second inequality
is an obvious consequence of the first.

As a simple consequence of Theorem 6.1, we have the following.
COROLLARY 6.2. Assume the solution to the problem P satisfies ẅ ∈ L2(0, T ;H);

then

max
0≤n≤N

‖wn − whkn ‖2H ≤ c k
N∑
n=1

inf
zh∈Kh

‖zh − ẇn‖H + c k2‖ẅn‖2L2(0,T ;H).

Proof. We rewrite the term δwn − ẇn:

δwn − ẇn =
1
k

∫ tn

tn−1

ẇ(t) dt− ẇn =
1
k

∫ tn

tn−1

(ẇ(t)− ẇn) dt

=
1
k

∫ tn

tn−1

∫ t

tn

ẅ(τ) dτ dt = −1
k

∫ tn

tn−1

ẅ(τ) dτ
∫ τ

tn−1

dt

= −1
k

∫ tn

tn−1

(τ − tn−1) ẅ(τ) dτ.

Thus,

‖δwn − ẇn‖2H ≤
1
k2

∫ tn

tn−1

(τ − tn−1)2dτ

∫ tn

tn−1

‖ẅ(τ)‖2H dτ ≤
k

3
‖ẅ‖2L2(tn−1,tn;H).

Hence, Corollary 6.2 follows from Theorem 6.1.
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We have seen that the scheme Phk
1 is first-order accurate in time t, which is

expected since we used the backward difference to approximate the derivative. When
the solution w is smooth with respect to the time variable, it is natural to use a scheme
with a higher order accuracy in time. We present and analyze a Crank–Nicolson-type
scheme for solving the problem P in the next subsection.

6.2. Crank–Nicolson scheme. The discrete problem is as follows.
Problem Phk

2 . Find whk = {whkn }Nn=0, where whkn ∈ Hh, 0 ≤ n ≤ N , whk0 = 0,
such that for n = 1, 2, . . . , N , δwhkn ∈ Kh, and

a
( 1

2 (whkn + whkn−1), zh − δwhkn
)

+ j(zh)− j(δwhkn )− 〈ln−1/2, z
h − δwhkn 〉 ≥ 0

∀ zh ∈ Kh.
(6.5)

For the existence and uniqueness of the solution whk to the problem Phk
2 , we have

the following.
PROPOSITION 6.3. The problem Phk

2 has a unique solution whk.
Proof. Since j is positively homogeneous, (6.5) is equivalent to

a
(
(whkn + whkn−1)/2, zh −∆whkn

)
+ j(zh)− j(∆whkn ) ≥ 〈ln−1/2, z

h −∆whkn 〉
∀ zh ∈ Kh

(6.6)

which can be written as
1
2 a
(
∆whkn , zh −∆whkn

)
+ j(zh)− j(∆whkn )

≥ 〈ln−1/2, z
h −∆whkn 〉 − a

(
whkn−1, z

h −∆whkn
)
∀ zh ∈ Kh.

(6.7)

We can then prove the existence of a unique solution by mathematical induction, as
in the case of Lemma 4.1.

For the Crank–Nicolson solution, we have the following stability result.
PROPOSITION 6.4. Assume that l1, l2 ∈ W 1,2(0, T ;H∗). For the corresponding

Crank–Nicolson solutions whk1,n and whk2,n, 0 ≤ n ≤ N , the inequality

max
0≤n≤N

‖whk1,n − whk2,n‖H ≤ c
(
‖l̇1 − l̇2‖L1(0,T ;H∗) + ‖l1 − l2‖L∞(0,T ;H∗)

)
holds.

Proof. The fully discrete solutions whk1,n and whk2,n satisfy δwhk1,n, δw
hk
2,n ∈ Kh and

a
( 1

2 (whk1,n + whk1,n−1), zh − δwhk1,n
)

+ j(zh)− j(δwhk1,n) ≥ 〈l1,n−1/2, z
h − δwhk1,n〉

∀ zh ∈ Kh,
(6.8)

a
( 1

2 (whk2,n + whk2,n−1), zh − δwhk2,n
)

+ j(zh)− j(δwhk2,n) ≥ 〈l2,n−1/2, z
h − δwhk2,n〉

∀ zh ∈ Kh.
(6.9)

Denote en = whk1,n − whk2,n. We take zh = δwhk2,n in (6.8) and zh = δwhk1,n in (6.9) and
add the two inequalities to obtain

a ((en + en−1)/2, δen) ≤ 〈l1,n−1/2 − l2,n−1/2, δen〉;

that is,

‖en‖2a − ‖en−1‖2a ≤ 2 〈l1,n−1/2 − l2,n−1/2, en − en−1〉.
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 163

Thus

‖en‖2a

≤ 2
n∑
j=1

〈l1,j−1/2 − l2,j−1/2, ej − ej−1〉

= 2
n−1∑
j=1

〈(l1,j−1/2 − l1,j+1/2)− (l2,j−1/2 − l2,j+1/2), ej〉+ 2 〈l1,n−1/2 − l2,n−1/2, en〉.

We can then proceed as in the stability proof for the backward Euler solution to
obtain the required inequality.

In particular, if we take l2(t) ≡ 0, then whk2,n = 0, 0 ≤ n ≤ N , and from Proposition
6.4, we get a bound on the discrete solution of the problem Phk

2 .
COROLLARY 6.5. For the solution whkn , 0 ≤ n ≤ N , of problem Phk

2 , we have

max
0≤n≤N

‖whkn ‖H ≤ c
(
‖l̇‖L1(0,T ;H∗) + ‖l‖L∞(0,T ;H∗)

)
.

Before proving an error estimate for the Crank–Nicolson solution, we need some
preliminary results. We will use the notation

Dwn = 1
2 (wn + wn−1)− wn−1/2, n = 1, . . . , N.

LEMMA 6.6. Assume that ẅ ∈ L∞(0, T ;H); then

‖Dwn‖H ≤
k2

8
‖ẅ‖L∞(0,T ;H).

Proof. We use Taylor expansions at tn−1/2:

wn = wn−1/2 +
k

2
ẇn−1/2 +

∫ tn

tn−1/2

(tn − t) ẅ(t) dt,

wn−1 = wn−1/2 −
k

2
ẇn−1/2 +

∫ tn−1

tn−1/2

(tn−1 − t) ẅ(t) dt.

Hence

1
2 (wn + wn−1)− wn−1/2 = 1

2

[∫ tn

tn−1/2

(tn − t) ẅ(t) dt+
∫ tn−1/2

tn−1

(t− tn−1) ẅ(t) dt

]
.

Therefore

‖(wn + wn−1)/2− wn−1/2‖H ≤
k2

8
‖ẅ‖L∞(0,T ;H).

LEMMA 6.7. Assume that w(3) ∈ L1(0, T ;H); then

‖Dwn −Dwn+1‖H ≤ c k2‖w(3)‖L1(tn−1,tn+1;H).
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Proof. We again use Taylor expansions at tn−1/2:

wn = wn−1/2 +
k

2
ẇn−1/2 +

1
2

(
k

2

)2

ẅn−1/2

+
1
2

∫ tn

tn−1/2

(tn − t)2 w(3)(t) dt
(6.10)

and

wn−1 = wn−1/2 −
k

2
ẇn−1/2 +

1
2

(
k

2

)2

ẅn−1/2

+
1
2

∫ tn−1

tn−1/2

(tn−1 − t)2 w(3)(t) dt.
(6.11)

Thus

Dwn =
k2

8
ẅn−1/2 +

1
4

[∫ tn

tn−1/2

(tn − t)2 w(3)(t) dt−
∫ tn−1/2

tn−1

(tn−1 − t)2 w(3)(t) dt

]
and so

Dwn −Dwn+1

=
k2

8
(
ẅn−1/2 − ẅn+1/2

)
+

1
4

[∫ tn

tn−1/2

(tn − t)2 w(3)(t) dt−
∫ tn−1/2

tn−1

(tn−1 − t)2 w(3)(t) dt

]

−1
4

[∫ tn+1

tn+1/2

(tn+1 − t)2 w(3)(t) dt−
∫ tn+1/2

tn

(tn − t)2 w(3)(t) dt

]
.

The estimate follows from the above inequality and (3.4).
LEMMA 6.8. Assume that w(3) ∈ L1(0, T ;H); then

‖δwn − ẇn−1/2‖H ≤
k2

8
‖w(3)‖L1(tn−1,tn;H).

Proof. Using (6.10) and (6.11), we have

δwn − ẇn−1/2 =
1
2k

[∫ tn

tn−1/2

(tn − t)2 w(3)(t) dt+
∫ tn−1/2

tn−1

(tn−1 − t)2 w(3)(t) dt

]
.

Hence,

‖δwn − ẇn−1/2‖H ≤
k2

8
‖w(3)‖L1(tn−1,tn;H).

From the next theorem we see that the Crank–Nicolson-type scheme provides a
more accurate approximation to the solution of problem P when the solution of the
original problem has greater regularity.
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 165

THEOREM 6.9. For the solution w of problem P and the solution whk of problem
Phk

2 , if w ∈W 2,∞(0, T ;H) and w(3) ∈ L1(0, T ;H), then the following inequality holds

max
0≤n≤N

‖wn − whkn ‖2H ≤ c k4 + c k
N∑
n=1

inf
zh∈Kh

‖zh − ẇn−1/2‖H

for some constant c depending on ‖l̇‖L1(0,T ;H∗), ‖w‖W 2,∞(0,T ;H), and ‖w(3)‖L1(0,T ;H)
only.

Proof. Denote the error by en = wn − whkn , n = 0, 1, . . . , N . We will use c to
denote a generic constant independent of n and k, but which may in general depend
on ‖l̇‖L1(0,T ;H∗), ‖w‖W 2,∞(0,T ;H), and ‖w(3)‖L1(0,T ;H). Consider the expression

Dn = 1
2a
(
(wn + wn−1)− (whkn + whkn−1), δwn − δwhkn

)
.

It is easy to verify that

Dn =
1
2k
(
‖en‖2a − ‖en−1‖2a

)
.

On the other hand, for any zh ∈ Kh we write

Dn = 1
2a((en + en−1), δwn − zh) + 1

2a((en + en−1), zh − δwhkn ).

Now

a( 1
2 (en + en−1), zh − δwhkn )

= a( 1
2 (wn + wn−1), zh − δwhkn )− a( 1

2 (whkn + whkn−1), zh − δwhkn )

≤ a( 1
2 (wn + wn−1), zh − δwhkn ) + j(zh)− j(δwhkn )− 〈ln−1/2, z

h − δwhkn 〉.

From problem P at t = tn−1/2 we have

a(wn−1/2, δw
hk
n − ẇn−1/2) + j(δwhkn )− j(ẇn−1/2)− 〈ln−1/2, δw

hk
n − ẇn−1/2〉 ≥ 0.

Hence

a((en + en−1)/2, zh − δwhkn )
≤ a((wn + wn−1)/2, zh − δwhkn ) + j(zh)− j(ẇn−1/2)

+ a(wn−1/2, δw
hk
n − ẇn−1/2)− 〈ln−1/2, z

h − ẇn−1/2〉
= a((wn + wn−1)/2, zh − δwhkn ) + j(zh)− j(ẇn−1/2)

+ a(wn−1/2, δw
hk
n − ẇn−1/2)− a(wn−1/2, z

h − ẇn−1/2)− 〈w∗n−1/2, z
h − ẇn−1/2〉

≤ a(Dwn, zh − δwhkn ) + j(zh)− j(ẇn−1/2) + j(zh − ẇn−1/2)

= a(Dwn, δwn − δwhkn ) + a(Dwn, zh − δwn) + j(zh)− j(ẇn−1/2) + j(zh − ẇn−1/2).

Thus, using the Lipschitz continuity of j and Lemma 6.6,

a((en + en−1)/2, zh − δwhkn )

≤ a(Dwn, δwn − δwhkn ) + c k2‖zh − δwn‖H + c ‖zh − ẇn−1/2‖H .
(6.12)

So an upper bound for Dn is given by the expression

c (‖en‖a + ‖en−1‖a) ‖zh − δwn‖H + a(Dwn, δwn − δwhkn )

+ c k2‖zh − δwn‖H + c ‖zh − ẇn−1/2‖H .
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166 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

To further simplify the presentation we introduce the notation

cn,h = inf
zh∈Kh

‖zh − ẇn−1/2‖H , n = 1, 2, . . . , N.

Now from Lemma 6.8,

inf
zh∈Kh

‖zh − δwn‖H ≤ cn,h + ‖δwn − ẇn−1/2‖H ≤ cn,h + c k2.(6.13)

Combining the various estimates above, we have

Dn =
1
2k
(
‖en‖2a − ‖en−1‖2a

)
≤ c (‖en‖a + ‖en−1‖a) (cn,h + c k2)

+
1
k
a(Dwn, en − en−1) + c k2(cn,h + k2) + c cn,h.

Thus

‖en‖2a − ‖en−1‖2a ≤ c k (M + k2) (cn,h + k2) + c k cn,h + a(Dwn, en − en−1),

where

M = max
0≤n≤N

‖en‖a.

We then get

‖en‖2a

≤ c (M + k2)

k n∑
j=1

cj,h + k2

+ c k

n∑
j=1

cj,h +
n∑
j=1

a(Dwj , ej − ej−1)

= c (M + k2)

k n∑
j=1

cj,h + k2

+ c k
n∑
j=1

cj,h +
n−1∑
j=1

a(Dwj −Dwj+1, ej) + a(Dwn, en)

≤ c (M + k2)

k n∑
j=1

cj,h + k2

+ c k

n∑
j=1

cj,h + c
n−1∑
j=1

‖Dwj −Dwj+1‖HM

+ c ‖Dwn‖HM

= cM

k n∑
j=1

cj,h + k2 +
n−1∑
j=1

‖Dwj −Dwj+1‖H + ‖Dwn‖H

+ c k4 + c k
n∑
j=1

cj,h.

Hence, using Lemmas 6.6 and 6.7, we find that M satisfies the relation

M2 ≤ cM
(
k

N∑
n=1

cn,h + c k2

)
+ c k4 + c k

N∑
n=1

cn,h.(6.14)

It is easy to verify that if a, b, x ≥ 0 and x2 ≤ a x + b, then x2 ≤ a2 + 2 b. Thus, the
required error estimate follows from (6.14).
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7. Applications to the elastoplastic problem. The problem with com-
bined kinematic-isotropic hardening. First we apply the results of the pre-
vious three sections to the quasi-static elastoplastic problem with combined linear
kinematic-isotropic hardening considered in section 2. The variational problem is
problem EP and is given by (3.8).

We apply Theorem 4.3 to obtain an existence and uniqueness result for problem
EP. We identify H in Theorem 4.3 with Z and define K = {z = (v, q, µ) ∈ Z : |q| ≤
µ a.e. in Ω}. We will show that the bilinear form a(·, ·) is Z-elliptic; the remaining
assumptions of Theorem 4.3 are obviously true. In particular, j inherits the properties
that Theorem 4.3 requires of it from the corresponding properties of the dissipation
function D.

LEMMA 7.1. The bilinear form a : Z × Z → R is Z-elliptic; that is, there exists
α > 0 such that

a(z, z) ≥ α ‖z‖2Z ∀ z ∈ Z.

Proof. For any z = (v, q, µ) ∈ Z we have, using the pointwise stability assumption
on C,

a(z, z) ≥ c0
∫

Ω
|ε(v)− q|2dx+ k1

∫
Ω
|q|2dx+ k2

∫
Ω
|µ|2dx

≥ c0θ
∫

Ω
|ε(v)|2dx+

(
k1 −

1
1− θ

) ∫
Ω
|q|2dx+ k2

∫
Ω
|µ|2dx

for any θ ∈ (0, 1). The result then follows by choosing θ = k1/(2c0 + k1) and using
Korn’s inequality (see, for example, [6]).

Applying Theorems 4.3 and 4.4 to problem EP, we thus have the following.
THEOREM 7.2. Under the assumptions made on the data in section 2, the quasi-

static elastoplasticity problem EP has a unique solution w = (u,p, γ) ∈W 1,2(0, T ;Z).
Furthermore, if w1 and w2 are the solutions corresponding to l1, l2 ∈ W 1,2(0, T ;Z∗)
with l1(0) = l2(0) = 0, then

‖w1 −w2‖L∞(0,T ;Z) ≤ c
(
‖l1 − l2‖L∞(0,T ;Z∗) + ‖l̇1 − l̇2‖L1(0,T ;Z∗)

)
.

Let Zh = V h × Qh0 × Mh be a finite-dimensional subspace of Z. Let Kh =
Zh∩K = V h×Kh

0 , where, Kh
0 = {(qh, µh) ∈ Qh0×Mh : |qh| ≤ µh in Ω}. Then in the

semidiscrete internal approximation of the problem EP1, we find wh = (uh,ph, γh) :
[0, T ]→ Zh, wh(0) = 0 such that for almost all t ∈ (0, T ), ẇh(t) ∈ Kh, and

a(wh(t), zh − ẇh(t)) + j(zh)− j(ẇh(t)) ≥ 〈ln, zh − ẇh(t)〉 ∀ zh ∈ Kh.(7.1)

From the discussion in section 5, we know that the discrete problem has a unique
solution wh. Since j(z) depends on q only, a careful examination of the argument in
section 3 shows we may modify the error estimate (5.7) to read

‖w −wh‖L∞(0,T ;Z) ≤ c
[

inf
vh∈L2(0,T ;V h)

‖u̇− vh‖L2(0,T ;V )

+ inf
(qh,µh)∈L2(0,T ;Kh

0 )

(
‖ṗ− qh‖1/2L2(0,T ;Q) + ‖γ̇ − µh‖L2(0,T ;M)

)]
.

(7.2)D
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168 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

The inequality (7.2) is the basis for various error estimates. For example, sup-
pose that we use linear elements for V h and piecewise constants for both Qh0 and
Mh. Assume that u̇ ∈ L2(0, T ; (H2(Ω))3), ṗ ∈ L2(0, T ; (H1(Ω))3×3), and γ̇ ∈
L2(0, T ;H1(Ω)). Then from standard interpolation error estimates for finite elements
(cf. [2], [4]), we have

inf
vh∈L2(0,T ;V h)

‖u̇− vh‖L2(0,T ;V ) ≤ c h.

Let qh = Πhṗ be the orthogonal projection of ṗ onto Qh0 with respect to the inner
product of Q. We observe that on each element, Πhṗ is the average value of ṗ on the
element. Similarly we take µh = Πhγ̇ to be the orthogonal projection of γ̇ onto Mh

with respect to the inner product of M . Since ẇ ∈ K, we have (Πhṗ,Πhγ̇) ∈ Kh
0 .

Thus, from (7.2) and the inequalities

‖ṗ−Πhṗ‖L2(0,T ;Q) ≤ c h,

‖γ̇ −Πhγ̇‖L2(0,T ;M) ≤ c h,

we get the error estimate

‖w −wh‖L∞(0,T ;Z) ≤ c h1/2.(7.3)

If ṗ ∈ L2(0, T ; (H2(Ω))3×3) and γ̇ ∈ L2(0, T ;H2(Ω)), we can use either discontin-
uous or continuous piecewise linear functions for both Qh0 and Mh. By choosing Πhṗ
and Πhγ̇ to be the piecewise linear interpolations of ṗ and γ̇, we have (Πhṗ,Πhγ̇) ∈ Kh

0
and

‖ṗ−Πhṗ‖L2(0,T ;Q) ≤ c h2,

‖γ̇ −Πhγ̇‖L2(0,T ;M) ≤ c h2.

Then the error estimate for this case becomes

‖w −wh‖L∞(0,T ;Z) ≤ c h.(7.4)

Now let us consider fully discrete approximations. As in section 6, we divide the
time interval [0, T ] by evenly spaced nodes tn = nk, n = 0, 1, . . . , N , with k = T/N
the stepsize.

In the backward Euler approximation of the problem EP, we compute wh =
(uh,ph, γh) : [0, T ]→ Zh, wh(0) = 0 such that for n = 1, 2, . . . , N , δwhk

n ∈ Kh and

a(whk
n , zh − δwhk

n ) + j(zh)− j(δwhk
n )− 〈ln, zh − δwhk

n 〉 ≥ 0 ∀ zh ∈ Kh.(7.5)

We have a unique solution for the backward Euler scheme. By Corollary 6.2, again
noticing that j(z) depends only on q, we find that if ẅ ∈ L2(0, T ;Z), then

max
0≤n≤N

‖wn −whk
n ‖2Z ≤ c k

N∑
n=1

[
inf
vh∈V h

‖u̇− vh‖2V

+ inf
(qh,µh)∈Kh

0

(
‖ṗ− qh‖Q + ‖γ̇ − µh‖2M

)]
+ c k2.

(7.6)D
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 169

Assume u̇ ∈ L2(0, T ; (H2(Ω))3), ṗ ∈ L2(0, T ; (H1(Ω))3×3), and γ̇ ∈ L2(0, T ;H1(Ω)).
If we use linear elements for V h, piecewise constants for both Qh0 and Mh, then
similarly as above, we have (Πhṗ,Πhγ̇) ∈ Kh

0 and

inf
vh∈L2(0,T ;V h)

‖u̇− vh‖L2(0,T ;V ) ≤ c h,

‖ṗ−Πhṗ‖L2(0,T ;Q) ≤ c h,

‖γ̇ −Πhγ̇‖L2(0,T ;M) ≤ c h.

Therefore we have the error estimate

max
0≤n≤N

‖wn −whk
n ‖Z ≤ c (h1/2 + k).(7.7)

If ṗ ∈ L2(0, T ; (H2(Ω))3×3), γ̇ ∈ L2(0, T ;H2(Ω)), and we use either discontinuous
or continuous piecewise linear functions for both Qh0 and Mh, then the error estimate
for this case becomes

max
0≤n≤N

‖wn −whk
n ‖Z ≤ c (h+ k).(7.8)

Similarly, the Crank–Nicolson scheme for the problem has a unique solution, and
for the two different choices of the finite element spaces, under suitable smoothness
assumptions on the solution of the original problems, we have the error estimates

max
0≤n≤N

‖wn −whk
n ‖Z ≤ c (h1/2 + k2),(7.9)

max
0≤n≤N

‖wn −whk
n ‖Z ≤ c (h+ k2),(7.10)

to replace (7.7) and (7.8), respectively.
Finally, we make a remark on implementation of fully discrete schemes. As an

example, we consider the backward Euler scheme (7.5), which is equivalent to

δwhk
n ∈ Kh, k a(δwhk

n , zh − δwhk
n ) + j(zh)− j(δwhk

n )

≥ 〈ln, zh − δwhk
n 〉 − a(whk

n−1, z
h − δwhk

n ) ∀ zh ∈ Kh.
(7.11)

Clearly δwhk
n ∈ Kh is the minimimizer of the problem

inf{J(zh) : zh ∈ Kh},(7.12)

where

J(zh) =
k

2
a(zh, zh) + j(zh)− 〈ln, zh〉+ a(whk

n−1, z
h).(7.13)

Once we have the solution of the problem (7.12), called δwhk
n , we compute whk

n

through the formula

whk
n = whk

n−1 + k δwhk
n .

We observe that J(z) is a strictly convex function of z. Algorithms based on
direct minimization of J have been treated, for example, in [32]. An alternative
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170 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

approach is to observe that J is not differentiable, due to the nondifferentiability of
the term j, and to use a regularization technique to overcome this difficulty (cf. [8],
[9], [10], [20], [30]). More precisely, let jε be a sequence of differentiable functions
approximating j when ε→ 0. For example, we may take

jε(z) =
∫

Ω
c0
√
|q(x)|2 + ε2 dx.

Then, instead of the problem (7.12), we solve a sequence of approximate differentiable
optimization problems:

inf{Jε(zh) : zh ∈ Kh},(7.14)

where

Jε(zh) =
k

2
a(zh, zh) + jε(zh)− 〈ln, zh〉+ a(whk

n−1, z
h).(7.15)

For the finite element subspaces discussed earlier, the requirement zh ∈ Kh is
equivalent to a set of linear inequalities. Thus, an element in Kh satisfying Kuhn–
Tucker conditions is the solution of the problem (7.14) (cf. [22]). For details on the
regularization technique, as well as on a posteriori error estimates for solutions of the
regularized problems, see section 8.

The problem with kinematic hardening. The quasi-static problem of elasto-
plasticity with kinematic hardening is a special case of the more general problem with
combined kinematic-isotropic hardening. Besides its importance in certain applica-
tions, the problem with kinematic hardening allows a simpler treatment. The simpli-
fication comes from the fact that in this case, the functional j is Lipschitz continuous
on the whole space. Indeed, for the case in which plastic behavior is governed by the
von Mises condition, the conjugate force is χ = σ − k1p, instead of (χ, g) as defined
in (2.5). The region of admissible conjugate forces is K = {χ : F (χ) ≤ c0}, and the
dissipation function is

D(q) = c0|q|, q ∈M3.

We assume the remaining ingredients of the problem setting are the same as in section
2. Then the variational problem is, instead of (3.8), to find w = (u,p) : [0, T ] → Z
with w(0) = 0, such that for almost all t ∈ (0, T ),

a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t))− 〈l, z − ẇ(t)〉 ≥ 0 ∀ z = (v, q) ∈ Z,

where Z = V ×Q0 and

a(w, z) =
∫

Ω
[C(ε(u)− p) · (ε(v)− q) + k1p · q] dx(7.16)

and

j(z) =
∫

Ω
c0 |q(x)| dx.(7.17)

From Lemma 7.1 (with k2 = 0) it is seen that a is Z-elliptic. Thus we have the
following.
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THEOREM 7.3. Under the assumptions made in section 2, the quasi-static elasto-
plasticity problem EP with kinematic hardening has a unique solution w = (u,p) ∈
W 1,2(0, T ;Z). Furthermore, if w1 and w2 are the solutions corresponding to l1, l2 ∈
W 1,2(0, T ;Z∗), then

‖w1 −w2‖L∞(0,T ;Z) ≤ c
(
‖l1 − l2‖L∞(0,T ;Z∗) + ‖l̇1 − l̇2‖L1(0,T ;Z∗)

)
.

Now we consider discrete approximations to the solution w of this problem. Let
V h and Qh0 be finite element subspaces of V and Q0 and set Zh = V h ×Qh0 . Then a
semidiscrete approximation of the problem is to find wh = (uh,ph) ∈ Zh, wh(0) = 0,
such that

a(wh(t), zh − ẇh(t)) + j(zh)− j(ẇh(t)) ≥ 〈l(t), zh − ẇh(t)〉
∀ zh = (vh, qh) ∈ Zh.

(7.18)

The semidiscrete approximation problem has a unique solution wh(t), t ∈ [0, T ].
Since the functional j(z) depends on the second component q of z only, the term
c ‖zh − ẇ(t)‖H on the right-hand side of (5.5) may be replaced by c ‖qh − ṗ(t)‖Q.
Thus, the error estimate (5.7) becomes, for this case,

sup
0≤t≤T

‖w(t)−wh(t)‖2Z

≤ c
{

inf
vh∈L2(0,T ;V h)

‖u̇− vh‖2L2(0,T ;V ) + inf
qh∈L2(0,T ;Qh0 )

‖ṗ− qh‖L1(0,T ;Q)

}
.

(7.19)

Now we consider fully discrete approximations of the problem. As in section 6,
we divide [0, T ] into N equal parts and use k = T/N for the stepsize. The backward
Euler method amounts to finding whk = {whk

n }Nn=0, where whk
n = (uhkn ,phkn ) ∈ Zh,

0 ≤ n ≤ N , whk
0 = 0, such that for n = 1, 2, . . . , N ,

a(whk
n , zh − δwhk

n ) + j(zh)− j(δwhk
n ) ≥ 〈ln, zh − δwhk

n 〉
∀ zh = (vh, qh) ∈ Zh.

(7.20)

The discrete problem has a unique solution. Once again we observe that the term
‖zh − ẇn‖H on the right-hand side of the inequality (6.4) may be replaced by ‖qh −
ṗn‖Q. Therefore, the error estimate from Theorem 6.1 and Corollary 6.2 for the case
of the problem (7.18) becomes

max
0≤n≤N

‖wn −whk
n ‖2Z

≤ c k
N∑
n=1

(
inf
qh∈Qh0

‖qh − ṗn‖Q + inf
vh∈V h

‖vh − u̇n‖2V
)

+ c k2‖ẅ‖2L2(0,T ;Z).
(7.21)

For the Crank–Nicolson scheme, we have to compute whk = {whk
n }Nn=0, where

whk
n = (uhkn ,phkn ) ∈ Zh, 0 ≤ n ≤ N , whk

0 = 0, such that for n = 1, 2, . . . , N ,

a((whk
n +whk

n−1)/2, zh − δwhk
n ) + j(zh)− j(δwhk

n ) ≥ 〈ln−1/2, z
h − δwhk

n 〉

∀ zh = (vh, qh) ∈ Zh.
(7.22)
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172 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

The discrete problem has a unique solution. Assuming that w ∈ W 2,∞(0, T ;Z) and
w(3) ∈ L1(0, T ;Z), we have the error estimate

max
0≤n≤N

‖wn −whk
n ‖2Z

≤ c k
N∑
n=1

(
inf
qh∈Qh0

‖qh − ṗn−1/2‖Q + inf
vh∈V h

‖vh − u̇n−1/2‖2V
)

+ c k4.
(7.23)

The inequalities (7.19), (7.21), and (7.23) are the basis for various convergence order
estimates, which can be obtained as in the combined isotropic-kinematic case.

8. Regularization technique and a posteriori error estimates. In this
section, we take the backward Euler method (7.20) for the problem with kinematic
hardening as an example. We will apply the regularization technique to solve (7.20).
Besides an a priori error estimate showing the convergence of the regularization se-
quence, we will also develop an a posteriori error estimate giving a computable error
bound once the solution of a regularized problem is computed. The discussion on the
model problem (7.20) can be extended without difficulty to the regularization tech-
nique with other discrete schemes and the schemes for the problem with combined
kinematic-isotropic hardening.

First we notice that, by the positive homogeneity of j, (7.20) can be equivalently
written as

a(whk
n , zh −∆whk

n ) + j(zh)− j(∆whk
n ) ≥ 〈ln, zh −∆whk

n 〉
∀ zh = (vh, qh) ∈ Zh,

(8.1)

or

a(whk
n , zh −whk

n ) + j(zh −whk
n−1)− j(whk

n −whk
n−1) ≥ 〈ln, zh −whk

n 〉
∀ zh ∈ Zh.

(8.2)

A difficulty in solving (8.2) is caused by the nondifferentiability of the functional j
(cf. (7.17)).

The idea of the regularization technique, which has been widely used in applica-
tions (cf. [8, 9, 20, 30]), is to approximate j by a family of differentiable functionals jε,
ε ∈ (0, 1) and to solve a sequence of approximation problems for (8.2) with j replaced
by jε. Thus, let us introduce

jε(z) =
∫

Ω
φε(q(x)) dx,(8.3)

where φε are differentiable functions approximating φ. Specifically, the conditions
satisfied by φε are as follows:

φε(q) is convex and continuously differentiable, |φε(q)− φ(q)| ≤ c ε ∀ q.(8.4)

There are many regularization functions satisfying (8.4). For the von Mises condition
we will make the popular choice

φε(q) = c0
√
|q|2 + ε2.(8.5)
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QUASI-STATIC PROBLEMS IN ELASTOPLASTICITY 173

The regularization technique corresponding to a given regularization function for
(8.2) is to compute whk

ε,n ∈ Zh, such that

a(whk
ε,n, z

h −whk
ε,n) + jε(zh −whk

n−1)− jε(whk
ε,n −whk

n−1) ≥ 〈ln, zh −whk
ε,n〉

∀ zh ∈ Zh.
(8.6)

Since jε is differentiable, (8.6) is equivalent to

a(whk
ε,n, z

h) + 〈j′ε(whk
ε,n −whk

n−1), zh〉 = 〈ln, zh〉 ∀ zh = (vh, qh) ∈ Zh.(8.7)

As usual, we have an a priori error estimate.
THEOREM 8.1. The regularization method converges, whk

ε,n → whk
n in Z as ε→ 0,

and

‖whk
ε,n −whk

n ‖Z ≤ c
√
ε.

Proof. We take zh = whk
ε,n in (8.2), zh = whk

n in (8.6), add the two inequalities,
and use the Z-ellipticity of a and (8.4) to obtain

α ‖whk
ε,n −whk

n ‖2Z
≤ a(whk

ε,n −whk
n ,whk

ε,n −whk
n )

≤ j(whk
ε,n −whk

n−1)− jε(whk
ε,n −whk

n−1) + jε(whk
n −whk

n−1)− j(whk
n −whk

n−1)

≤ c ε.

The main part of the section is devoted to a posteriori error estimations for the
regularization method. To do this, we need a result from convex analysis (cf. [7], [34]).
A posteriori error estimates for the regularization technique for other application
problems can be found in [10], [11], and [15].

Let Z, P be two normed spaces and Z∗, P ∗ their dual spaces. Assume there
exists a linear continuous operator Λ ∈ L(Z,P ), with transpose Λ∗ ∈ L(Z∗, P ∗). Let
J be a function mapping Z × P into R, the extended real line. Define the conjugate
function of J by

J∗(z∗, p∗) = sup
z∈Z,p∈P

[〈z, z∗〉+ 〈p, p∗〉 − J(z, p)] .

THEOREM 8.2. Assume that
(1) Z is a reflexive Banach space, P a normed space;
(2) J : Z × P → R is a proper, l.s.c., strictly convex function;
(3) ∃ z0 ∈ Z, such that J(z0,Λz0) <∞ and p 7→ J(z0, p) is continuous at Λz0;
(4) J(z,Λz)→ +∞, as ‖z‖ → ∞, z ∈ V .
Then the problem

inf
z∈Z

J(z,Λz)(8.8)

has a unique solution y ∈ Z, and

−J(y,Λy) ≤ J∗(Λ∗p∗,−p∗) ∀ p∗ ∈ P ∗.(8.9)
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174 W. HAN, B. D. REDDY, AND G. C. SCHROEDER

For definiteness, assume we are using piecewise linear elements for V h and piece-
wise constants for Qh and Qh0 = {qh ∈ Qh : tr qh = 0}. Let us apply Theorem 8.2 to
the following problem setting:

Z = Zh, with the norm of V ×Q,
P = Qh, with the norm of Q,
Λzh = ε(vh),

J(zh, s) =
∫

Ω

[
1
2
C (s− qh) · (s− qh) +

k1

2
|qh|2 + c0|qh − phkn−1| − fn · vh

]
dx.

We identify Qh∗ with Qh and use s∗ to denote a generic element in Qh∗. It is easily
seen that the discrete problem (8.2) is equivalent to the minimization problem (8.8)
with the above identification. After a lengthy computation, from the definition of the
conjugate function we find that

J∗(Λ∗s∗,−s∗)

=



∫
Ω

[
1

2k1

(
|k1p

hk
n−1 + s∗D| − c0

)2
+ −

k1

2
|phkn−1|2 − phkn−1 · s∗ +

1
2
C−1s∗ · s∗

]
dx

if
∫

Ω

[
ε(vh) · s∗ + fn · vh

]
dx = 0 ∀vh ∈ V h,

+∞ otherwise,
(8.10)

where, s∗D = s∗ − (1/3) tr(s∗) I, and x+ = max{x, 0}.
Now let us consider the difference

D = J(whk
ε,n,Λw

hk
ε,n)− J(whk

n ,Λwhk
n ).

First we derive a lower bound for D. From (8.2) with zh = whk
ε,n, we get the inequality∫

Ω

[
C
(
ε(uhkn )− phkn

)
·
[(
ε(uhkε,n)− phkε,n

)
−
(
ε(uhkn )− phkn

)]
+k1 p

hk
n ·

(
phkε,n − phkn

)
+ c0|phkε,n − phkn−1| − c0|phkn − phkn−1|

]
dx

≥
∫

Ω
fn · (uhkε,n − uhkn ) dx.

Thus

D =
∫

Ω

[
1
2
C
(
ε(uhkε,n)− phkε,n

)
·
(
ε(uhkε,n)− phkε,n

)
+
k1

2
|phkε,n|2 + c0|phkε,n − phkn−1|

− fn · uhkε,n −
1
2
C
(
ε(uhkn )− phkn

)
·
(
ε(uhkn )− phkn

)
−k1

2
|phkn |2 − c0|phkn − phkn−1|+ fn · uhkn

]
dx

≥
∫

Ω

[
1
2
C

((
ε(uhkε,n)− ε(uhkn )

)
−
(
phkε,n − phkn

))
·
((
ε(uhkε,n)− ε(uhkn )

)
−
(
phkε,n − phkn

))
+
k1

2
|phkε,n − phkn |2

]
dx

≥ α ‖whk
ε,n −whk

n ‖2Z .

D
ow

nl
oa

de
d 

02
/2

0/
22

 to
 1

28
.2

55
.4

4.
16

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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In the last step above, we used the Z-ellipticity of the bilinear form a. On the other
hand, we have an upper bound for D from (8.9) and (8.10):

D ≤
∫

Ω

[
1
2
C
(
ε(uhkε,n)− phkε,n

)
·
(
ε(uhkε,n)− phkε,n

)
+
k1

2
|phkε,n|2 + c0|phkε,n − phkn−1| − fn · uhkε,n

+
1

2k1

(
|k1p

hk
n−1 + s∗D| − c0

)2
+ −

k1

2
|phkn−1|2 − phkn−1 · s∗ + 1

2 C
−1s∗ · s∗

]
dx

∀ s∗ ∈ Qh∗ such that
∫

Ω

[
ε(vh) · s∗ + fn · vh

]
dx = 0 ∀vh ∈ V h.

Now we choose s∗ by using the solution whk
ε,n of the regularized problem (8.7). We

have from (8.7) that ∀ zh ∈ Zh,

∫
Ω

C (
ε(uhkε,n)− phkε,n

)
·
(
ε(vh)− qh

)
+ k1 p

hk
ε,n · qh

+c0

(
phkε,n − phkn−1

)
· qh√

|phkε,n − phkn−1|2 + ε2
− fn · vh

 dx = 0;

that is, ∫
Ω

[C
(
ε(uhkε,n)− phkε,n

)
· ε(vh)− fn · vh] dx = 0 ∀vh ∈ V h(8.11)

and ∫
Ω

−C (
ε(uhkε,n)− phkε,n

)
· qh + k1 p

hk
ε,n · qh

+c0

(
phkε,n − phkn−1

)
· qh√

|phkε,n − phkn−1|2 + ε2

 dx = 0 ∀ qh ∈ Qh0 .
(8.12)

Because of the relation (8.11), an admissible choice for s∗ is

s∗ = −C
(
ε(uhkε,n)− phkε,n

)
.(8.13)

From (8.12), we then find a useful relation

s∗D + k1 p
hk
ε,n + c0

phkε,n − phkn−1√
|phkε,n − phkn−1|2 + ε2

= 0.(8.14)

And we find

|k1p
hk
n−1 + s∗D| =

k1 +
c0√

|phkε,n − phkn−1|2 + ε2

 |phkε,n − phkn−1|.
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After some simplifications, we obtain

D ≤
∫

Ω

{
c0|phkε,n − phkn−1| ε2

E(phkε,n,phkn−1, ε)
− k1

2
|phkε,n − phkn−1|2

+
1

2k1

[
k1 |phkε,n − phkn−1| −

c0ε
2

E(phkε,n,phkn−1, ε)

]2

+

 dx,

where

E(p, q, ε) =
√
|p− q|2 + ε2

(√
|p− q|2 + ε2 + |p− q|

)
.(8.15)

Combining the lower bound and the upper bound for D, we get the a posteriori
error estimate

α ‖whk
ε,n −whk

n ‖2Z

≤
∫

Ω

{
c0|phkε,n − phkn−1| ε2

E(phkε,n,phkn−1, ε)
− k1

2
|phkε,n − phkn−1|2

+
1

2k1

[
k1 |phkε,n − phkn−1| −

c0ε
2

E(phkε,n,phkn−1, ε)

]2

+

 dx,

(8.16)

where E(phkε,n,p
hk
n−1, ε) is defined by (8.15).

We observe that the summation of the last two terms of the integrand on the
right-hand side is nonpositive, so that a simple consequence of (8.16) is

α ‖whk
ε,n −whk

n ‖2Z ≤
∫

Ω

c0|phkε,n − phkn−1| ε2

E(phkε,n,phkn−1, ε)
dx,

which shows the efficiency of the a posteriori error estimate (8.16).
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