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Abstract 

The initial boundary value problem of quasistatic elastoplasticity is considered here as a variational inequality and equation in the 
displacement and stress. A variational inequality for the stress only may be obtained by eliminating the displacement. Semidiscrete 
approximations of the stress problem and fully discrete finite element approximations of the full problem are considered under assumptions 
of minimum regularity of the solution. It is shown that the resulting familie,; of approximations converge to the solution of the original 
problem. © 1999 Elsevier Science S.A. All rights reserved. 

1. Introduction 

Computational elastoplasticity is, at the present time, at a mature stage of development, and there is general 
agreement that most relevant computational issues have been settled, particularly in the regime of the 
infinitesimal theory. Thus, there exist at the present time, well-established procedures for obtaining solutions by 
means of finite element approximations, and a variety of algorithms exist for integration of the initial value 
problem. A comprehensive overview of the status quo, for both the infinitesimal and finite strain situations, may 
be found in the monograph by Simo and Hughes [7]. 

The mathematical theory of elastoplasticity has also seen some significant developments during the past two 
decades. The existence theory for the small strain perfectly plastic problem has been settled, with a number of 
authors contributing to the achievement of this goal; see, for example, the works of Anzellotti and Luckhaus [1] 
and Matthies [6]. 

Well-posedness of the initial boundary value problem of hardening elastoplasticity may be established within 
the framework of Sobolev spaces. The work by Han and Reddy [3] gives a comprehensive account of existence 
and uniqueness, convergence of semi- and fully discrete finite element approximations, as well as the 
convergence of some algorithms, for the case of hardening materials, and for infinitesimal strains. In that work 
the authors show that the initial boundary value problem of elastoplasticity may be formulated in two alternative 
variational forms, each being an evolutionary variational inequality. The two formulations arise from the use of 
the flow law in two forms: either in the form that uses the dissipation function, or in the more conventional 
form, which makes use of the yield function. These are referred to in that work as the primal and dual forms of 
the problem, respectively. 

It is the dual problem that is of interest here; this is essentially a weak form of the equilibrium equation and 
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normality law (see the next section). The principal unknown variables are the displacement u and generalized 
stress ,E. Let ~2 C R 'z be the initial configuration of the elastoplastic body. It has been shown in [3] that, under 
assumptions that are given in detail in Section 2, the problem has a unique solution (u, E )  with u 
H~(0, T; [H~([~)] a) and ~ E H~(0, T; [L2(/2)]dx"). However, convergence of semi- and fully discrete finite 
element approximations has been established in [3] under the additional assumption that , E E  
W3'~(0, T; [L2(ff2)] dxd) and u EWJ'=(O, T; [H2(f2)]d). The aim of this contribution is to establish the 
convergence of various discrete approximations, under the conditions of minimal regularity. We notice that in 
[5], convergence is proved for a fully discrete approximation for the dual problem with a linear isotropic 
hardening material. Our convergence analysis is given for more general hardening plastic materials. 

The rest of this work is organized as follows. In Section 2 we formulate the variational problem and also 
summarize a rmmber of results that will be subsequently required. Section 3 is devoted to a convergence 
analysis of time-discrete schemes of the stress problem, that is, the problem obtained when the displacement is 
eliminated as a variable. These approximations are based on a generalized midpoint rule. Finally, in Section 4 
we consider fully discrete approximations of the full problem, and verify convergence under conditions of 
minimal regularity. 

2. Formulation of the problem 

2.1. Function ,¢paces 

Let ,(2 C R J be a nonempty open bounded set with a Lipschitz boundary. We will use the standard I_~besgue 
space Lz(Y2) and Sobolev spaces Hk(O), k ~> l, and H~(O). For a normed space V, we denote its topological 
dual by V'. The Cartesian product V X W of two normed spaces V and W is the space of all the ordered pairs 
(v, w) for v ~ V and w E W, and 

lily, w)lJv×w = IIdlv + Ilwllw • 

We will also need some vector-valued function spaces. For a normed space V and a positive number T, the space 
cm([0, T ; V), m ~> 0, consists of all continuous functions u from [0, T] to V that have continuous derivatives up 
to and including those of order m. Let 

C~([0, T]:. V) = f - )  cm([0, T]; V). 
t t l=O 

For 1 ~<p < zc the space LP(O, T; V) consists of all measurable functions u from [0, T] to V for which 

d') 
This is a Banarh space with the norm I]ul]tp~o,r:x~, provided that the members are understood to represent 
equivalence classes of functions which are equal a.e. on (0, T). Vector-valued Sobolev spaces H~(0, T; V), k t> 0, 
are defined similarly. 

We will need the following inequality 

I' IIo(t)-o(stll  II01lv V o @ H ' ( O , T ; V ) ,  O<-s<~t:<<-T. 

Here, 6 denotes the time derivative of o. The continuous embedding property 

H~(0, T; V) ~ C([0, T1; V) 

assures that for any v EH~(0,  T; V), the value ul,= o in V is well-defined. 
Finally, we record a density result, a proof of which is found in [4]. 

THEOREM 2.1._ Assume ~ has a Lipschitz continuous boundary 0[2, l,k>~O. Then, the space 
C~([0, T]; C~([2)) is dense in HI(O, T; Hk($2)). 
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2.2. Description of the problem 

Consider the initial boundary value problem for quasistatic behavior of an elastoplastic body which occupies a 
bounded domain /2 C ~a (d <~ 3 for practical applications) with Lipschitz boundary /2. We assume that 
deformations are sufficiently small to warrant adoption of the ,;mall strain assumption. The plastic behavior of 
the material is assumed to be describable within the classical framework of a convex, elastic domain coupled 
with the normality law. The yield surface, which is the boundary of the elastic domain, need not be smooth, 
however. The material is assumed to undergo kinematic or isotropic hardening, or a combination of both, and 
the features of hardening behavior are captured through the introduction of a set of scalar and]or  tensorial 
internal variables, denoted collectively here by an m-dimensional vector ~:. 

Suppose that the system is initially at rest, and that it is initially undeformed and unstressed. A time- 
dependent field of body force f(x, t) is given, with f(x, 0) = 0. Then, the problem is governed by the following 
set of equations in /2: 

the equilibrium equation 

div o" + f =  0 ,  (2.1) 

the additive decomposition of strain 

= e + p ,  (2.2) 

and the strain-displacement relation 

1 
~(u) = ~ (Vu + (Vu)r) .  (2.3) 

Here, tr is the stress tensor, ~ is the strain tensor, u the displacement vector, p =p(~:)  the plastic strain tensor 
and e the elastic strain. All the tensors encountered here are symmetric. The plastic deformation is assumed to 
be incompressible so that 

d 

t r p = 0  or ~ p ,=O.  (2.4) 
i - I  

For simplicity, and with little loss in generality, we take the boundary condition to be the homogeneous 
Dirichlet condition 

u = 0  on F ,  (2.5) 

while the initial conditions are assumed to be 

u(x, 0) = 0 and tr(x, 0) = 0.  (2.6) 

A complete description of the problem requires that a set of constitutive equations be added to (2.1)-(2.6). We 
have a linear relation between the stress and the elastic strain e = ~(u) - p :  

~r = C ( ~ ( u )  - p )  (2.7) 

where C is the elasticity modulus. We also introduce a stress-like variable X conjugate to the internal variable ~:, 
which is defined by 

X = - H ~  (2.8) 

for some hardening modulus H. We call the ordered pairs X = (tr, X) and P = (p, so:) the generalized stress and 
generalized plastic strain. The relationship between ~: and X in a thermodynamic context is discussed in [3]. 

The generalized stress takes values only in a closed convex set K; the interior of K contains the origin and is 
called the elastic region, while its boundary is known as the yield surface. The yield surface may be represented 
by the level set of a continuous convex function ~b called the yield function, with K then being defined by 

K = { ~  GM a×a × N" : ~b(X) ~< 0}. (2.9) 

Here and elsewhere, M axa denotes the space of d × d symmetric second-order tensors or matrices. 
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Fig. I. The yield surface and normality law, in generalized stress space. 

The evolution of  the generalized plastic strains is governed by the normality law, which takes the form 

t i =- (Ii, ~ ) E N x ( Z ) .  (2.10) 

Here, NK(g) = {M : M -  (T - .,~) ~< 0 V T E K} denotes the normal cone to K at .,~ (see Fig. 1). 
An alternative way of  describing the flow law is by using the support function of  K, defined by 

D(P)  = sup{T.P  : T E K } .  (2.11) 

The function D is non-negative and may take on the value +~ .  Then from the theory of  convex analysis, the 
flow law (2.10) is equivalent to the relation (cf. [3]) 

E aD(P;), (2.12) 

where aD(P)  = {(o-, g)} denotes the subdifferential of  D at P, defined by 

O ( q , ~ ) ~ > D ( l / , ~ ) + o ' . ( q - / ~ ) + X . ( ~ / - ~ )  V(q,T/) .  (2.13) 

In the context of  plasticity, the function D is a measure of the rate of  irreversible or plastic work, and is known 
as the dissipation function. 

Two possible variational formulations of  the initial boundary value problem for elastoplasticity may be 
obtained from the set of  equations summarized here: one, which we refer to as the primal formulation, is based 
on the flow law in the form (2.12), while the other is based on the dual form (2.10) of  this law, and is therefore 
referred to as the dual formulation. We focus on the dual formulation in this work. The unknown variables are 
the generalized stress ~ = (o', g )  and displacement u. The space V of  displacements is defined by 

V = [H 'o(~')] a , (2.14) 

the space of  stresses by 

S = {~" = (:r,i)a× a : ~ / =  ~j, ~j E L2(12)}, (2.15) 

and the space M of  conjugate forces by 

M = {1~ = ( ~ )  : ~ E L2(#2), j = 1 . . . . .  m}. (2.16) 

Further, we set 

J - = S X M .  

This space is endowed with the inner products induced by the natural inner products on S and M. 
Admissible generalized stresses are those that belong to the set K pointwise. We accordingly define the 

convex subset 
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= {T = ('r,/~) E 3- : (¢(x), ~(x)) E K a.e. in /-2}. 

2.3. Properties o f  the material parameters 

The elasticity tensor C has the symmetry properties 

Cuk , = Cjm = Ck, u , (2.17) 

and we assume that 

Cuk , E L~(O)  (2.18) 

and that C is pointwise stable: there exists a constant C o > 0 such that 

C#k , (x)(ufk,~>Colg'l 2 V g ' E M  u×d, a.e. i n / 2 .  (2.19) 

The compliance tensor C-~ has the same symmetry properties as C, and is also pointwise stable in the sense that 
a constant  C O > 0 exists such that 

Cij--k' ' 2 v C E M  d×d , a.e. i n / 2 .  (2.20) 

The hardening modulus H, viewed as a linear operator from R"  into itself, is assumed to possess the symmetry 
property 

~ : . H a  = a .  H g ,  (2.21) 

and it is further assumed that 

H u E L~(,(2) (2.22) 

and that a constant H > 0 exists such that 

~:.H~: i> HI~:] 2 for all ~¢ E R " ,  a.e. in $2. (2.23) 

The inverse H-~  of  the hardening modulus possesses the same properties as H :  it is a symmetric operator whose 
matrix representation has uniformly bounded components. Furthermore, there exists a constant H ' >  0 such that 

j r . H  Jx~>H' Ix I  2 f o r a l l x E R " ,  a.e. i n g 2 .  

2.4. The variational formulations 

We now introduce the bilinear forms 

a : S x S - - - ~ R ,  

b(v,z)=-f ,(o):zdx, 

c : M X M - - - ~ R ,  c ( x , ~ ) =  f a x . H - l ~ d x  , 

and 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

A : S X ~---~ •, A(~, T)  = a(~, ~') + c(x ,  i~) (2.28) 

for ~7 = (o', X) and T = (~-,/x). Here, C-J  is the compliance tensor, which is inverse to the elasticity tensor C in 
the sense that 

C-J[C~] = E and C[C-l~r] = ~r 

for all symmetric matrices or second-order tensors ~ and ~r. 
We will also need the linear functional 
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l(t) : V ---) ~,  (l(t), v> = - f~  f ( t )"  v dr .  

We are now in a position to define the variational problem 

PROBLEM DUAL. Given I ~ H ~ ( 0 ,  T;V ' ) ,  l ( 0 ) = 0 ,  find 
(u(0), .,~(0)) = (0, 0), such that for almost all t ~ (0, T), 

b(v, ~(t)) = (l(t), v} V v ~ V ,  

a(~( t ) ,  T - ~(t))  + b(ti(t), ~" - o~(t)) >i 0 V T = (~', i ~) ~ ~ .  
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(2.29) 

(u, X )  = (u, ~ ,  X) : [0, T} ---> V × ~ with 

(2.30) 

(2,31) 

b(v, s) = (B,¢, v> = (B ' v ,  s> for v ~ V, s ~ S .  

Then, the following statements are equivalent: 
(a) the bilinear form b(', ") satisfies the Babu~ka-Brezzi condition 

Ib(v, s)l 
sup IIslls - ~ c°{I°{lv V v e V ; 

O~sES 

Problem DUAL. is easily obtained from the governing equations (2.1)-(2.10)  (see [3]). 
Introducing the space 

~(t)  = {T = (~', 1~) E ~ : b(v, ~') = (l(t), v )  V v E V},  

we can eliminate the variable t/(t) from Problem DUAL to obtain the following stress problem. 

PROBLEM STRESS. Given l E HI(0 ,  T; V'),  l(0) = 0, find ~ = (~r, ,t/) : [0, T] ~ ~ with ~ ( 0 )  = 0, such that for 
almost all t ~ (0, T), 2f(t) ~ ~( t )  and 

A(~(t) ,  T - ~(t))  ~> 0 V T = (r, ~ )  ~ ~ ( t ) .  (2.32) 

It has been shown in [3] that A(., .) is continuous and J--elliptic, that is, there exist positive constants a a and flA 
such that 

IA(X,  AZlI  -IITII, - for all ~ ,  T ~ i f ,  
(2.33) 

A(T, T )  >I ~IITII~ for all r ~ 3- ,  

and that the problem STRESS has a unique solution .,Y ~ H ~ ( 0 ,  T; 3-) under the following assumption, 
commonly known as the safe load condition. 

ASSUMPTION 2.2. For any X~ = CO'l , XI ) ~ ~ ,  and for  any o" z C S, there exists X2 E M such that IX21 <~ c[o'2l 
for  some constant c > 0 independent o f  Xj and cr 2, and such that ~l  + ~2 ~ ~,  with ~2 = (°'2, X2 ). 

With the following additional assumption, the problem DUAL is shown in [3] to have a unique solution 
( u , X ) G H J ( O , T ;  V N J').  

ASSUMPTION 2.3. For any ~ E K, and any x ~ [0, 1), we have XX E K and 

inf dist(K~;(x), OK) > 0 .  
rE]2 

Both of these assumptions are easily verified for materials undergoing combined linear kinematic and isotropic 
hardening, or linear kinematic or isotropic hardening only. 

The next result plays an important role in the analysis of  well-posedness, as well as in the convergence 
analysis to be presented here. 

PROPOSITION 2.4. Let V and S be two Hilbert spaces. Let b : V × S ---> ~ be a continuous bilinear form. Define 
two bounded linear operators B : S--> V' and B '  : V---> S'  by 
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(b) the operator B is an isomorphism from (Ker B) ~ onto V', where 

KerB = {s ~ S  :b (v , s )  = 0  V v  E V }  ; 

(c) the operator B' is an isomorphism f rom V onto ( K e r B y ,  where 

(Ker B) ° = {f  ~ S'  : {.f, s) = 0 V s E Ker B}. 

It has been shown in [3] that 

Ib(v, ~')1 
sup t> flhllvllv V v E V (2.34) 

for some constant /3  h > 0, and for V and S as defined in (2.14) and (2.15). Thus, the equivalent statements in 
Proposition 2.4 hold for the bilinear form (2.28). 

The following elementary result will be used repeatedly: 

a , b , x ~ > 0  and x 2 ~ a x  + b ~ x 2 <~a e + 2b.  (2.35) 

3. Time-discrete approximations of the stress problem 

3.1. A family o f  generalized mid-point schemes 

We partition the time interval [0, T] into N equal parts, and let k = T [ N  denote the stepsize. The partition 
points are t. = nk, n = 0, 1 . . . . .  N. Let 0 be a real parameter. A family of  generalized mid-point time-discrete 
approximations of  the problem STRESS is then given by the following. 

Find a sequence {Zk = (ok,  ~ N k g~)}.=o C 3- with Z o  = 0, such that for n = 1,2 . . . . .  N, PROBLEM STRESSk, o. 
"~kn 1+0 ~--" 0"~kn -}- (i - 0)1:~_~ E ~ _ , _ 0 ,  and 

A(A~:~, T -  1:ko-,+0) >~o V T  ~ ~ . - , + o ,  (3.1) 

where A..~ = 1:~ - Z k  t; the constraint set ~ .  t+o is defined by 

~. - ,+o  =- ~ ( t . - ,+o)  = { r  = (~ p~) E ~ : b(v, r) = (l(t._, +o), v )  V v E V} . 

It has been shown in [3] that for 0 E [½, 1], the problem STRESSk, o admits a unique solution, which satisfies the 
inequality 

max II1:(t,,) - I:o11~2~ <~ c IlEjo(.v.)-E,+,.o(1:)ll~+l!ENo(Y.)ll~+k )l~1:(t/) - £(tj ,+o)11,. O<~n~N • , - 
j=  1 

N 

+ ck E 1181:(tj) - 2(t,_,+o)ll.~[IE, 0(Z)ll r .  (3.2) 
j - - I  

where 

E..o(~f) = O.Y.(t.) + (1 - O).~(t._j) - Z ( t ._ t+o) .  (3.3) 

It is also shown in [3] that when 0 ~ [½, 1], the scheme is divergent. So from now on, we will always assume 
0 ~ [ ½ . 1 ] .  

The inequality (3.2) is the basis for optimal order error estimates when the solution is assumed to be 
sufficiently smooth. However, for the case in which one assumes only the minimum degree of regularity under 
which well-posedness is proved, that is, (u, XX) E H~(0, T; V x ~r), (3.2) is not useful for convergence analysis. 
We accordingly modify the estimate (3.2). 

We set e .  = 1:(t.) - 1:k.; then since 0 E [½, 1], we have 

1 
a(e .  - e . _ , ,  Oe. + (1 - 0)e ._~)  ~> ~- ([]e.lla 2 -[le,,_,llA) ' (3.4) 

where [[T[[ A = ~  defines a norm on ;Y- which is equivalent to the norm Ilrll~. 
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k On the other hand, with A~(t . )  = .Y(t.) - X ( t ._l)  and A~.  = . ~  -- "~ . - i ,  we have 

A(e.  - e._~, Oe. + (1 - 0 )e ._ l )  

= A(A.~(t .) ,  Oe,, + (1 - 0)e._~) - A(A~;~., 0e,, + (1 - 0)e._~) 

= A(A.~(t.), 0e. + (1 - O)e._,  ) - A ( A ~ . ,  ~ ( t . _ ,  +o) - ~ . - ,  +o) - A(A~,~., E . .o (~) ) .  

Setting T =  ~(t._~+ o) in (3.1), we have 

-A(AX~I, ~( t ._ ,+o)  - X~ -1+0 ) ~ 0 ,  

Thus 

A(e.  - e .  _,, Oen + (1 - 0)e._~ )~< A(A~( t . ) ,  Oe. + (1 - O)e._~ ) - A ( A ~ .  E.,o(Y. )) 

= A(A.Z(t.), 0e. + (1 - 0)e ._  t) + a(Ae . ,  E. ,o(X))  - A(AJ[.,  E. .o(~))  

(3.5) 

Now, for any t ~ I, = [t~_ l, t,,], from Proposition 2.4 we have the existence of a unique ~r~(t)E (Ker B) L such 
that 

and 

b(v, 7a(t)) = (l(t) - l~_ J+o, v}  V o ~ V 

}l~;(t)}ls ~ clll(t) - l . _  I + O I I V '  " 

and in what follows, a subscript 6 indicates that the Here, 
Assumption 2.2, we can find /t~(t) ~ M such that T~(t) = (7~(t),/x~(t)) E ~(t)  and 

[IT~(t)ll,~ <~i cl[l(t)  - l _ , +  o[Iv, . (3.6) 

Set T(t) = v~_~+ o + T~(t). Obviously, T ( t ) ~  °~(t). We take T = T(t) in (2.32) to obtain 

A(~.(t), T , ( t )  + ~ _ , + o  - ~( t ) )  >~ O, 

that is, 

A(~( t ) ,  Oe,, + ( 1 - O)e._l  ) <- A(~( t ) ,  Ts(t)) + A(~( t ) ,  O~(t .)  + (1 - O)X(t ._ l  ) - X(t))  . 

By integrating this relation over I. we obtain 

a(Ar(t , , ) .  0e. + ( 1 -  0)e,,_~)~< ~. a($ ( t ) ,  T . ( t ) )d t  + (. A ($ ( t ) .  O ~ ( t ) +  ( 1 -  O ) X ( t . _ , ) -  ..~(t)) d t ,  
a n 

which may be used in (3.5) to yield 

A ( e . - - e . _ l , O e  . + ( 1 -  0)en_,)~< f A(~( t ) ,Ta ( t ) )d t  + f A ( ~ ( t ) , ~ ( t . _ , + o ) -  ~(t)) dt 
d l  n I n 

+ A(Ae . ,  E . ,o (~) ) ,  (3.7) 

Henceforth, to simplify the writing, we introduce the moduli of continuity 

tok(l) = sup{Ill(s) - I(t)ll v, : 0 <~ s, t <~ T, It - s l  <~ k} , (3.8) 

oJ~(~f) = suM]b~(s) - X(t)]]~ :0  ~< s, t~< T, It - sl ~< k}. (3.9) 

Note that l G H~(0, T; V') and X U HI(0,  T; 3-) are uniformly continuous with respect to t ~ [0, T]. Hence, 
wk(l)--~O and O~k(X)--~0 as k--~0. 

Combining (3.4) and (3.7), we now have 

quantity is associated with a difference. By 
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Ile°lla ~ --lie. ,llm ~ < C('k(l) + O~k(~)) ~, I15(/)11~ d t +  2a(e n --e._j, E,,,o(~)). 
n 

Applying this inequality recursively and recalling that e o = 0, we see that 

fo Ile°lla ~ ~< c(~ok(l) + o)k(I;)) IIZ(t)ll~ dt + 2 A(ej - -  e j _ l ,  Ej,o(.Y)) 
j = l  

fl 'n = c(o~(l) + ,o~(~:)) II-V(t)ll~- dt + 2A(e., E.,o(X)) + 2 ~ A(ej, Ej,oGZ) - Ej.,.o(.Z)). 
j= l 

Since II'lla is an equivalent norm on if, with 

M = max l i e . G ,  
O<<.n<~N 

we then have 

( - ) 
M2 <~ c(o~k(l) + ,o~(~:))11~:11~,¢o,~;~, + c IIEN.o(Z)II~ + Y~ IIE~,o(Z) - Eo. , ,  o(Z)l l :  M .  

n = l  

Now, using the inequality (2.35), we obtain 

{ " / ~1,2 + c IIEN,o(Z)II~ + ]'~ IIE..o(Z) - E n + l . O ( ~ Y ) l l ~  • ( 3 . 1 0 )  

By Theorem 2.1, for any e > O  we have ~ ~ C~([0, T]; 3-) such that 

I l l  - Z l l . , , o . T : ~ ) <  ~. (3.11) 

Furthermore, it is easy to see that 

N - I  

IIE.,.o(~)l[~ + 2 IIE°.o(~) - E~+,.o(Z)II~ 
n= 1 

f /  N--I  f :  .2" 
~< [[..~(t)[letlt+ ~ IIE~,o(Y.)-E~+I.O(Y.)II3+c l l2( t ) -z( t ) l l~dt .  

N n = l  

From [4] we also have the estimate 

N--I 

IIE..o(2) - Eo+,,o(2)ll~ ~< ckll$;[l~.<o.T;~, • 
n = l  

Making use of  all these results, from (3.10) we finally obtain the following. 

k N THEOREM 3.1. Let ~Y E H 1(0, T; J )  be the solution of the problem STRESS. Then, for the solution {X.}.=o 
of the discrete problem STRESSk,o, the following error estimate holds: 

t ~ ' 1/2 
max IIZ(t.) - ~.1[,~ ~ c{(,o~(l) + o~(X))llZll~,(o.~:.~>} 

O ~ n ~ N  

+ c(ll~ll~,.~ ,,,~;~, + kll$ll~,,o.~;~, + I l l -  ~11.,¢o.~;~>}. (3.12) 

in particular, 

k ___) 
max I I Z ( t ° ) - Z ° l l ~  o as k ~ O .  
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4. Fully discrete approximations of  the dual problem 

We now discuss a family of  fully discrete approximations to the problem DUAL. 
The fully discrete schemes discussed here can also be viewed as mixed approximations to the stress problem 

STRESS, the term 'mixed '  here referring to the fact that a Lagrange multiplier is introduced as a result of  the 

constraint associated with the bilinear form b(', "). 
To begin with, we assume that a uniform partition of the time interval [0, T] into N sub-intervals is given, 

with step size k = T/N.  We assume further that a finite element mesh of the spatial domain /2 is constructed in 
the usual way, with the mesh size defined by h = max h x, where h x is the diameter of element K, a general 
element of  the'. triangulation. The finite element subspace V h consists of  piecewise linear functions in 
V=  [H~(g2)] u, while S h and M h are defined to be subspaces of  S and M, respectively, comprising piecewise 

constants. We set ~-h = S h X M h, and 

go t' = {T h = (z ~ , / i f )  @ 3 -h : T~(x) U_ K a.e. in S'2}. 

= - f , _ l ) / k .  Then, the family of  fully discrete schemes Again, the parameter 0 E [½, 1], and we set 8 f ~  (f~k nk 
for the problem DUAL is 

,~hk.~N V h ~h  h* hk PROBLEM DUALhk.  Find (w hk, ,~hk)  -~- {(W~k, n )~, =0 C X with (w o , -'~o ) = 0, such that for n = 

1 . . . . .  N, 

b(v h, tr~kj+o)=(l( t ._l+o) , v  h) V v  hU_V h, (4.1) 

Ah(~,yh~, Fh __ ,yhk_, +O) + b(w~k~+o" ~.h __ trhk +o) ~ 0 V T h = (7 h, If f)  ~ ~h . (4.2) 

Here, as before, we use the notation .,Y~k ,+ 0 = 0X~* + ( 1 -  0).,Y~*_,. We also use w~,+o  E V  h to denote an 
approximation of the velocity w ( t ) - t i ( t )  at t = t ,  J+o. The bilinear form A h ( ' , ' ) :  f f X J - - ~  is the 

approximation to A(. ,-) ,  defined by 

fa  - '  f,2 1 dx (4.3) Ah(.,y, T)  == O" ". C h 7 d x  "[- X " t t  h 

in which the approximate moduli Ch -t and H ~  ~ are piecewise constant approximations of C ~ and H -~. They 
may be defined to be the average values of  C - J  and H - ~  on elements, for example. The approximations Ch j 
and H h  ~ are assumed to satisfy the material properties enjoyed by C-z  and H J, with the constants independent 
of  h, and so A~(', ') inherits the properties (2.33) of  continuity and ~-ellipticity possessed by A(-,-),  with the 
constants independent of h. We assume ch(C, H ) = - m a x { l l C h ' -  CllL~¢mllH;'-HIIL~<a,} ~ 0  as h ~ 0 .  

It is shown in [3] that under suitable assumptions, the discrete problem DUALh, has a solution. We introduce 
the projection operator /-/h : 3----> ,y-h, which is orthogonal with respect to the inner product defined by the 
bilinear form A~.(., "); that is, for T ~ J ,  I]hT is the unique element in j h  such that 

A h ( T - H h T ,  T h)=O V T  hU-3 -h. (4.4) 

From the expression (4.3) we see that the projection has the form HaT = (~.hj, lxh), with ~'~ E S h and/.t~ E M h 
being orthogonal projections of  ~" and/ . t  onto S h and M h in the inner products defined by the bilinear forms 

ah(" , ") and Ch(', "), respectively, where 

o ' : C ~  ~'dx a~(o', .r) = .  

ch(x, ~ )  = X" Hh Ix dx.  

We will use the same symbol H h also to denote these two orthogonal projections; that is, we will write 
HhT = (Hh~ ", Hh~) .  The following result is proved in [3]. 
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The orthogonal  project ions  [ I  n : S ~ S n and  H~' : M----) M n are p iecewise  averaging operators;  L E M M A  4.1. 
that is, f o r  T = (z, tz)  E 3-, 

IIhr[K -- mea~(K) ~'(x) dx,  H h ~ ] r  -- meas(K-----~ tz(x)  d x ,  f o r  any e lement  K .  (4.5) 

Consequent ly ,  by the convexi ty  o f  the set  ~ ,  i f  T ~ ~ ,  then H h T  E ~t , .  Also,  we have 

b(v h, I l h r  -- ~') = 0 V V h ~ V ~, ~" E S . (4.6) 

Denote by I]'l[h the norm induced by the discrete bilinear form ah( ' ,  '); that is, 

Ilrlln = Ah(T, T)"2 .  

By the assumptions made on C h ' and H h ',  the norm [l'[[h is ectuivalent to ]].[[.: with the equivalence constants 
independent of  h. 

Let e .  = 2 ( t . )  - ~ * ,  n = O, 1 . . . . .  N, denote the approximation error, with e o = 0, and 

M =omax N Ile.lP,~z. 

Since 0 E [½, 1], we have 

1 2 
Ah(ge,,, 0e. + (1 - 0)e.  ,) ~>~-~ (lie.lib -lie,, ,ll~). (4.7) 

To derive an upper bound, we write 

A h(~e,,, Oe. + ( 1 -- O)e._~ ) = ah(ge  ., E . ,o (~) )  + ah(~e,,, ~'(t._~+ o) -- "W'~k-J +o) (4.8) 

where E. ,o(X)  is defined in (3.3). Hence 

1 ,~ hk 
2-k (I]e"][7' - Ile"-11[~) ~< An(Be"'  E".°(~))  + Ah(~e"'  ~;(t,, 1+0) -- X,, 1+o)" (4.9) 

We now examine the second term on the right-hand side of  (4.9). 

Ah(ge ., X ( t .  _, +o) -- X~k-,+o) = ah(8"~,,, Z ( t .  1+o) -- "~*-J +o) -- a n ( ~ ' ~ ' ,  X ( t . _ ,  +o) - x~k-l+O) 

= Ah(~.,~ ., -E..0(.,~)) + An(8~ ., 0e. + (1 - 0 ) e ._ l )  

- a n ( 8 ~ * ,  H h ~ ( t . - I  + o ) -  ~ k  +o) - A n ( 8 ~  k, ~ ( t . _ ,  +o) 

- H h ~ ( t , , -  1 + o)) '  (4.10) 

Now, take T n = H h X ( t .  1+o) E ~ h  in (4.2) to obtain 

_ah(~.~'~k, h hk f,k h nk 
I I  ,~( t ,_ l+o)  ~ , _ l + o ) < - b ( w , , _ j + o ,  _ . - I I  ~ r ( t . _ ~ + o ) -  o',, ~+o) 

Setting t = t ._ l+ o and v = v n in (2.30), and subtracting (4.1) f iom the resulting equation, we find that 

b(vn, o'(t. i+o)--  I~'2k-l+O) = 0  v Vn ~ Vh . (4.11) 

Next, applying (4.6), we have 

b(w2k ,*o  , I Ih° ' ( t .  - ,  +o) -- o'~k-,+o) = b(w2~-,+o, I lho ' ( t .  1+0) -- O'(t. 1+0)) = O. 

Therefore, 

- -Ah (gX2  ~, HhX(t , ,  , *o) - ~f2 k- , +o) ~< O. (4.12) 

Because 17 n is the orthogonal projection onto ~-~ in the inner product induced by the bilinear form An(' ,  "), we 
have 

a n ( 8 X ~  ~, X(t,, _, +o) - I I h X ( t .  -~ +0)) = 0 .  (4.13) 
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Using (4.12) and (4.13) in (4.10), we see that 

Ah(Se ., ".¢(t._, +o) -- Z~ k- , +o) <- ah(~Y., -E,,.o(~Y)) + A,,(8~Y.. 0e. + (1 - 0)e.  _, ) .  (4.14) 

Now, we take T =  .,Y~k ,+ 0 @ ~ in (2.31) and integrate the inequality over I.  = [t ._, .  t.] to obtain 

£ A(~(t),~hk f hk . ,+o--2~(t))dt + b(w(t) ,o ' ._ ,+o-or(t))dt~O, 
n n 

which can be rewritten, after being divided by k, as 

'f, ah (~X . ,Oe .+(1 - -O)e ._ , )~ -  ~ a (~ . ( t ) ,O~( t . )+(1 -O)~( t . _ l ) -X( t ) )d t  
n 

O'n 1 +0 + -~ b(w(t). - tr(t)) dt. (4.15) 
n 

Combining (4.9). (4.14) and (4.15). we obtain 

1 2 
([le°[[~ - lie,, , II~) ~< a h ( ~ e . .  E..o(.Y)) + ah(~2;.. -E. , , , (~f ) )  

'f, 'f, +-~ ah(~.(t),Oe.+(1--O)e . , ) d t -  ~- a ( ~ ( t ) . O e . + ( l - O ) e . _ , ) d t  
n n 

if, +-~ a(2(t), O~Y(t.) + (1 -O)~Y(t, ,_,)- ~Y(t)) dt 
a 

1 f hk O'n 1+8 + ~ b(w(t), - tr(t)) dt 
n 

Now, multiplying the inequality by k and rearranging some terms, we get 

1 e 2 - -1 ,  , f /  , f /  , ~- ( l [e . l l~  - l] , , - , lID ~< ah(e. - e. E. 0(2;)) + a(X(t), E. o ( ~ f ) )  d t  - A~(.Y(t), E. o(-Y)) dt 
n n 

n n 

+ £., ah(~(t). Z(t._,+o) Z(t)) dt + f b(w(t), hk - -  t r . _ l +  0 - -  o ' ( t ) )  dt .  
n 

Using the quantiities ch(C, H )  and to,(..Y) defined before, we then derive from the above inequality 

I[e.l[~ - l i e . _  ,[[~ ~< 2ah(e . -- e ._ , ,  E,,,o(.,Y)) + cch(C, H) f I[~(t)[[.~ z dt(l[E..o(X)H.~ + M + tok(~)) 

+ f b(w(t), hk O',,_l+ 0 -- tr(t)) d t .  (4.16) 

Next. we estimate the last term in (4.16). From (4.1) and (2.30), we have 

b(vh(t), O'(t.-l+o) -- trh*-J +o) = 0 V oh(t) E V h 

and so 
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ft b(w(t) hk or,-J +o -- Or(t)) dt = 
n 

f b(w(t), orh k l+o -- or(t.-~+o)) dt + f b(w(t), or(t._l+o) - or(t)) dt 
n In 

fl b(w(t)- or(t), O'n-l+ohk -- ~(t. ,+o)) dt + cwk(or) fl l]w(t)nv dt 
n n 

= fi b(w(t) - vh(t), 0(o" - or(t.)) + (I - O)(or._~ - or(t. j))) dt 
n 

+ ft,, b(w(t)- Vh(t), E.,o(or))dt + co,k(or) ~.  Ilw(t)llv dt 

~< o f, IIw(t) - oh(t)lk, dt( l lor .-  or(t.)ll~ + Ilor. , - or(t,,_, )lls + IIf..o(or)lls) 
n 

+ co,,(,,-) f, IIw(t)ll~ dt 
n 

~ c  f, II,,,(t)- v~(t)lh, dt(M ÷ IIE~,o(X)II,)+ co,~(o')f, IlwU)ll~ at. 
n n 

Apply ing  the inequality recursively,  and using the fact that e o = 0' we  have 

Ile.ll~ <- 2 ~ Ah(e j - -  e/_~, Ej,o(X)) 
j = l  

fo'" + cch(C, H) IIS(t)ll~ dt(o<ma,~_<N II~.o(Z)ll~ + m +  o'AX)) 

f t fo" + c (  max IIEm o(Z)ll.7 + M) II,,'(t) - v~(t)llv d,~+ co,.(,.) II.'(t)llv at 
x.i)<~m <_N 

n -  I 

= 2Ah(e,,, E,.o(X)) + 2 ~,  Ah(e j, Ej,o(X ) - Ej+I,O(X)) 
j =  1 

fo fo 
t 1 

+ c (  max liE,. o(Z)ll~ + M) Ilw(t) - o~(t ) l l~  at + co,k(o" ) II.,(t)ll~ a t  
\ O ~ m < ~ N  

Therefore,  

M 2 <~cM IIEN.o(Z)II,~ + 2 IIE,.o(-~)- E~+,,o(X)IIJ + c"(C, H)II-~IIL,,o.T;~, + IIw - V~IIL,¢o.T;v, 
n = l  

+ c:(C, n)ll.$1l~ ,,o.~;.~, (oW~XN Ilfo,o(X)ll.~ + o,s(z)) 
+ c max  Ile,..o(Z)ll,~ll., " 

0 ~ n ~ N  

Next ,  apply the inequality (2 .35)  to obtain 

( - ,  ) 
M ~ ~ <  c IIEN.o(Z)II: + 2 IIEo.o(X) - E.+ ,.o(~)ll.~ + ?(C. n)ll:~ll~,,o.~;.~, ÷ II" - v " l l ~ , , , . ~ ,  

n = l  

+ c{c~(C, H)II~:II~ ',O.T: .r,\O~,,<_N'( max IIE,,o(X)ll ,~ ÷ o,s(X)) 

+ max Ile,,o(Z)ll.~llw " }"~ - v IIL,,o.~:V, + ,o,w-)ll,~ll~.,o.~:: 
O~n~<N 

Since v h E  L~(0, T; V a) is arbitrary, w e  then get the est imate  
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I N-I 

m a x  Ile,,ll,, ~<c I[EN.o(Z)IId + ~ lIE. o(~)-E.+,.o(~')[l~ 
O-<-n<<-N n = l  ' 

+ d ( c ,  H)ll2[[~,~o.~.,~ + inf I[w - v h[lL,¢0.7.:v)) 
v h E L  I(O,T;Vh) / 

+ c{e"(C,  H)IIXIIL'¢0. T; j ,(omax N IJE.,o(~f)l/.~- + o~k(~:)) 

+ max liE. o(X)[],¢ inf [[w - -  vh[[LI(O.T;V) q- Wk(O')[JI~I[LI(o.T:V)} 1/2 
O~n<<N , v h E L  I(O,T;vh) 

Now for any ~'> 0, by Theorem 2.1, there exists w ~LZ(0, T; (HZ(d2)) d) such that 

Furthermore, by a standard result in finite element interpolalion theory (cf. e.g. [2]), 

inf [[n;(t)- u h(I)IIV ~ chJ[w(t)l[~.:~a)), . 
vh( t )CV h 

Then 

(4.17) 

inf [I w - Vh[[L',O.r:V) <<- II w --WI[L '~O.T:V) + inf []w - vh[Ic 'co, r; v) 
vh~L I (0, T;V h ) vhEL ~ (O,T;V h) 

<- c e  + chll~lJL,,o.~;,.,~.~,~, - 

The other terms on the right-hand side of (4.17) can be estimated as in the case of the time-discrete schemes in 
the previous section. Recalling also that I1'/1~ is a norm equivalent to I1"11~ with the equivalence constants 
independent of h, we have the following result. 

T H E O R E M  4.2. Let  (u, ~7) EHI(0,  T; V X if-) 
solution o f  the prob lem DUALhk converges." 

max II.,~(/~) ~k - 2 f ~  Ilj--->0 ask,  h--->0. 

be the solution to the prob lem DUAL. Then, the discrete 
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