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ON THE FINITE ELEMENT METHOD FOR MIXED VARIATIONAL
INEQUALITIES ARISING IN ELASTOPLASTICITY*

WEIMIN HANt AND B. DAYA REDDYt

Abstract. We analyze the finite-element method for a class of mixed variational inequalities
of the second kind, which arises in elastoplastic problems. An abstract variational inequality, of
which the elastoplastic problems are special cases, has been previously introduced and analyzed
lB. D. Reddy, Nonlinear Anal., 19 (1992), pp. 1071-1089], and existence and uniqueness results
for this problem have been given there. In this contribution the same approach is taken; that is,
finite-element approximations of the abstract variational inequality are analyzed, and the results are
then discussed in further detail in the context of the concrete problems. Results on convergence are
presented, as are error estimates. Regularization methods are commonly employed in variational
inequalities of this kind, in both theoretical and computational investigations. We derive a posteriori
error estimates which enable us to determine whether the solution of a regularized problem can be
taken as a sutficiently accurate approximation of the solution of the original problem.

Key words, elastoplastic problems, mixed variational inequalities, finite-element method, con-
vergence, error estimates, regularization method, a posteriori error estimates
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1. Introduction. Mixed finite-element approximations play a central role in a

variety of problems of continuum mechanics. Perhaps the most prominent example
concerns finite-element methods for problems with the constraint of incompressibility,
such as the Stokes or Navier-Stokes equations for viscous Newtonian fluids, and anal-
ogous problems in elasticity. There exists a large body of literature devoted to the
development of stable and convergent finite-element schemes for this class of prob-
lems; comprehensive surveys may be found in the monographs by Brezzi and Fortin

[7] and by Girault and Raviart [14].
Another popular mixed problem which arises particularly in the context of elastic-

ity is that obtained from the Hellinger--Reissner variational principle. In this problem
it is not a constraint which produces a mixed or saddle-point problem; rather, such a
problem arises from the fact that both the stress and the displacement are treated as
unknown variables. Details of finite-element approximations of this class of problems
may be found in the work by Brezzi and Fortin [7], as well as in a number of pa-
pers devoted to this subject (see, for example, Johnson and Mercier [25], Arnold and
coworkers [1], [2], Arnold and Falk [3], PitkSranta and Stenberg [29], and Stenberg
[38], [39]).

There is now a sizeable literature on the numerical approximation of variational
inequalities (see, for example, the works by Glowinski et al. [16] and by Hlavek et
al. [21]), which includes investigations of variational inequalities arising in plasticity.
Analyses of finite-element approximations of the elastoplastic problem have enjoyed
limited but steady attention, in contrast to the voluminous literature devoted to
computational and algorithmic aspects of this problem. Havner and Patel [19] and
Jiang [22] analysed approximations of the so-called rate problem; this is an elliptic
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1779

variational inequality in which the primary unknowns are the velocity, rather than
the displacement, and the plastic multiplier. Reddy and Griffin [32] and Han [17]
have considered finite-element approximations of the holonomic or time-independent
problem which arises as a typical step when time discretization is introduced in the
full problem. These works are all displacement based. Mercier [26] and Oden and
Whiteman [27] have both studied finite-element approximations of versions of the
closely related Hencky problem of plasticity. Johnson [23] has considered a formulation
of the elastoplasticity problem in which stress is the primary variable and has derived
error estimates for the fully discrete (that is, time-and-space) problem (see also related
work by Hlavek [20] and a summary account in [21]).

With regard to work on ruized variational problems in the form of variational
inequalities, little has appeared. Johnson [24] has considered fully discrete finite-
element approximations in the context of plasticity, and Brezzi et al. [9] have treated
finite-element approximations of the time-independent Hencky problem for elastoplas-
tic plates. Brezzi et al. [8] studied problems which arise in the context of the obstacle
problem for a membrane and the unilateral contact problem. The variational inequal-
ities in all these works arise as a result of the problems being posed on convex subsets;
that is, these are variational inequalities of the first kind.

In an earlier work, Reddy [30] has considered the problem of mixed variational
problems which take the form of variational inequalities. This work was motivated by
mixed variational problems which arise in elastoplasticity; these are mixed problems
either because of the constraint of plastic incompressibility or because the problem is
of Hellinger-Reissner type, so that the stress is treated explicitly along with the dis-
placement and plastic strain. Furthermore, the problems take the form of variational
inequalities of the second kind; that is, these are inequalities because of the presence
of a nondifferentiable functional. The issues of existence and uniqueness of solutions
to these problems have been addressed in [30].

The aim of this contribution is to return to that work and to consider finite-
element approximations. The problem is of some importance in engineering appli-
cations, and the particular model treated here forms the basis for one approach to
large-scale finite element codes for the simulation of elastoplastic behavior [12], [33].
The variational inequality considered in the present work is time independent and
arises typically either when time discretization is introduced into the time-dependent
problem or alternatively when the applied forces vary linearly with time--the problem
of proportional loading--so that the problem reduces to one which is time indepen-
dent. To place matters in proper perspective, it may be worth mentioning that the
problem considered here is a more general version of the Hencky problem, which has
been the subject of much investigation in recent times (see [40] and references therein),
and which differs from the present problem in that it applies to isotropically elastic,
perfectly plastic materials; neither of these restrictions are present in the problem
considered here.

While the problem treated here is motivated by applications in elastoplasticity,
there are clearly other areas in which it would be of interest, for example, problems
involving frictional contact [11]. Furthermore, as indicated earlier, a study of finite-
element approximations of mixed variational inequalities of the second kind, that is,
those involving a nondifferentiable functional, appears to be lacking.

This work is organized as follows. In 2 we give full details of the elastoplastic
problem. In 3, we present some of the mixed formulations for the elastoplastic
problems; these come about due to the constraint of plastic incompressibility and/or
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1780 W. HAN AND B. D. REDDY

as a result of inclusion of the stress as a variable (the so-called Hellinger-Reissner
formulation, in the context of elasticity). These problems are special cases of an
abstract problem, which is then formulated in 4; the main results of [30], which
concern existence and uniqueness of solutions to these problems, are reviewed here
for use in subsequent sections.

We consider finite-element approximations for the abstract mixed variational in-
equality problem in 5. We prove some convergence results, together with error es-
timates. In 6 we apply the results of 5 to the elastoplastic problems formulated in

4. We elaborate on the error estimates of finite-element approximations.
The main result on the solvability of the abstract mixed variational inequality is

proved in [30] by introducing a regularizing sequence. In applications, the regularizing
sequence technique is also used for numerical computations. A regularization method
depends on a small parameter > 0, and convergence is obtained when e goes to 0.
However, as e 0, the conditioning of a regularized problem deteriorates. So there
is a tradeoff in the selection of the regularization parameter. Theoretically, to obtain
more accurate approximations, we need to use smaller values of e. On the other
hand, if e is too small, the numerical solution of the regularized problem cannot be
computed accurately. Thus, it is highly desirable to have a posteriori error estimates
that can provide computable error bounds once solutions of the regularized problems
have been found. We derive such a posteriori error estimates in 7.

2. The elastoplastic problem. We consider the problem of quasistatic be-
haviour of an elastoplastic body which occupies a bounded domain ft c Rd with
Lipschitz boundary F. The plastic behaviour of the material is assumed to be de-
scribable within the classical framework of a convex yield surface coupled with the
normality law. We adopt the equivalent form of the flow law in which the dissipa-
tion function, rather than the yield function, is employed. This formulation has been
studied in some detail both theoretically and computationally in the works [31], [33].

Full details of the formulation considered here are presented in [30]. As indicated
in that work, this formulation may be arrived at by approximating rates, for example,
by an Euler backward difference. The effect of this assumption would be that the rate
problem is approximated by a sequence of incremental problems, in the sense that
it is required to determine the response of the body to forces at time to / At, given
the complete state of the body at time to. The boundary-value problem which we
consider arises in a typical time step.

Alternatively, the problem considered here arises when there is proportional load-
ing; that is, the applied forces vary linearly with time, so that a time discretization is
rendered unnecessary. This is in fact similar to the formulation adopted in [17], [32].

The elastoplastic material under consideration is assumed to undergo nonlinear
kinematic hardening; the nonlinear term takes the form of an exponential decay, and
is one which is in current use in numerical treatments of this class of problems (see,
for example, [36]). The assumption of a hardening material, apart from the fact that
it represents realistic material behaviour, serves also to allow for a complete analysis
within a Sobolev space framework, the special case of perfect plasticity requiring that
the displacements be sought in the space BD(ft) of functions of bounded deformation
(see, for example, the text [40] and references therein).

Of special interest here is the classical assumption of no volume change accompa-
nying plastic deformation. This is an assumption which is conventionally accommo-
dated by expressing the yield condition in terms of the stress deviator. We treat this
constraint explicitly through the introduction of a Lagrange multiplier.
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1781

Under these circumstances, the following equations govern the problem [30]"
(1) the equilibrium equation

(2.1) dip a + b 0;

(2) the constitutive equations

(2.2)
(2.3) X =- crD --o"0

D OD(p);

(3) the strain-displacement relation

1
(2.4) e(u) (Vu + (Vu)T);

(4) and the condition of plastic incompressibility

(2.5) trp I.p 0

or Pkk 0. Here and henceforth summation is implied on repeated indices, unless oth-
erwise stated. Equations (2.1)-(2.5) are required to hold on ft; we take the boundary
condition to be

(2.6) u 0 on F.

In the above, a denotes the stress tensor, aD a- d (tr a)I denotes the stress
deviator, b is the body force, e is the strain tensor, u is the displacement vector, and
p is the plastic strain tensor. The subdifferential OD of D is defined to be the set

OD(p) {x e Md D(q) >_ D(p) + x. (q-p) Vq e Md},

where Md is the set of all real symmetric d x d matrices, and x’q xijqij.
The quantity C is a fourth-order tensor of elastic coefficients, which has the

symmetry properties

(2.7) Cj Cj

and we assume that

(2.8) Cijkz e L(),

and that C is pointwise stable; that is, there exists a constant co > 0 such that

(2.9) Cijz(x) ij >_ Coijij, V E Md, a.e. in f.

Equation (2.3} characterises nonlinear kinematic hardening, as mentioned earlier,
and this is represented by the term or0 appearing there. This term is the back stress,
which we assume to be given by

(2.10) ro(p) h( PI)P,

where h(.) is a scalar-valued hardening function (see, for example, [361). The function
h(.) is assumed to be of the form

(2.11) h(o) ho + hie-’,
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1782 w. HAN AND B. D. REDDY

where h0, hi, and u are scalars whose values depend on the material constitution.
Here u is a constant with

(2.12) u > 0;

furthermore, it is assumed that h0, hi E L(ft), and that

(2.13) ho(x) > rio > O, hl (x) > O, a.e. in f,

for some constant rio. We will also require the assumption that a constant 0 E (0, 1)
exists such that

(2.14) h(x) < Oho(x)e2, a.e. in f;

this is a reasonable approximation for a wide range of materials. The consequences
of the approximations embodied in this hardening law are discussed in [30].

The function D Me [0, oc], which is known as the dissipation function, is a
gauge, that is,

(2.15)
(2.16)

D(q) > 0, D(0) 0,
D is convex and positively homogeneous.

For realistic models of plasticity it is necessary to assume further that

(2.17) D(q)=O if and only if q=0,

(2.18) D is continuous,

and that

(2.19) D(q) < ec, for all q Md.

The properties (2.15)-(2.19) ensure that D is a norm on Md.
properties of convexity and positive homogeneity imply that

Furthermore, the

ID(p)- D(q)l _< D(p- q),

and since all norms on Md are equivalent, it follows that

(2.20) D is Lipschitz continuous on dom D.

let
REMARK 2.1. The property (2.20) is true under rather weak assumptions. Indeed,

c9’D(p) {X Ma liminf
D(q) D(p) X" (q-P) }q_.p [q__p[2 > --OC

One has (O’D(p) C cOD(p). It is proved in [34] that for a proper, lower semicontinuous

function D, if _< , O’D(p) at any point p Md where O’D(p) exists, and if
D(po) < oc at some Po Md, then

D(p) < oe, VpEMd,
D is Lipschitz continuous on Md.
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1783

The relationship between the dissipation function and the possibly more familiar
yield function may be summarised as follows (see [35, 15], for further details, and
[13] for a discussion and further developments in the context of plasticity).

LEMMA 2.2. Set

K= {)i E Md x.q < D(q) for all q E Md}.
Then

(2.21) D(p) sup X’ P;

(2.22) K 0D(0);
(2.23) )t e OD(p) ca p e Nz(X).

The set K is convex and is referred to as the region of admissible (generalised)
stresses; its boundary is known as the yield surface. Here NK(X) denotes the normal
cone to K at X.

The function D, by virtue of its properties as a gauge and the property (2.18),
admits a polar function f :Md -- [0, ], defined by

(2.24) f(x) sup
x’q

qO D(q)"

This function is known in the present context as the canonical yield function. That
is, it is a gauge and also has the property

(2.25) f(x) 0 if and only if )/= 0.

It derives its name as a yield function from the fact that its level set at unity describes
K

(2.26) K-- {X: f(x) <- 1}.

For X K and X OD(p),

(2.27) X P f(x)D(p).

We also observe from (2.25) and (2.26) that

(2.28) X e intK =a NK(X)= {0} =a f(x)< 1.

The polar function f is also a norm on Md. Since all norms on Md are equivalent,
there then exists a constant c > 0 such that

(2.29) IX[<-cf(x) <-c, VxeK,

where I’ denotes the Euclidean norm on Md. Thus it follows in particular from (2.3)
and Lemma 2.2 that

(2.30) I(o 00)D < c.

Example. A simple and popular example is that corresponding to the von Mises
yield condition, for which
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1784 W. HAN AND B. D. REDDY

where X: aD -a0
D and k is a positive scalar; then

(2.31) D(q) klql k4qjqi,

and the canonical yield function is given by

/(X)- T"
3. The variational problems. As a prelude to presenting the variational for-

mulations of the elastoplastic problem of the last section, we define the spaces

v [H](a)]
Q {q (qij) qij e L2(ft), qji qij}, and Qo={qeQ’trq=O},

where H(ft) is the space of distributions which together with their first derivatives
are in L2(ft), and whose traces on F vanish. Both V and Q are Hilbert spaces with
inner products

a

Oui Ov(u, v)v
Oxj Ox

dx and p. q dx =/a Pijqij dx,

and norms I111 (, )/, IlqllQ (q, q)/e. Furthermore, Q0 is a closed subspace
of Q.

We define the product space V V x Q, which is a Hilbert space, with the inner
product

.= v). + (;,

--\1/2and norm llll- (, u), where g (u,p) and (v,q). We also define V0
V x Q0, a closed subspace of V. The topological dual of a Hilbert space X is denoted
by X*.

We define the operator A1 --* * by

(3.1) [C (e(u) p). (e(v) q) + ao(p) q] dx

[Cijkl(eij(u) pij)(ekl(V) qkl) + (ao(p))ijqij] dx,

the linear functional

l" V R, (l,g) b. vdx

and the functional

(3.2) j" V R, J() J’a D(q(x)) dx,

where as before g (u,p) and g (v, q). The functionals l(.) and j(.) are easily
shown to be bounded and, from the properties of D, j(.) is a convex, positively
honogeneous, nonnegative continuous functional. Note that, however, in general,
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1785

j is not differentiable. As with the dissipation function D, convexity and positive
homogeneity of j imply that

(3.3) j is Lipschitz continuous on

We remark also that the Lipschitz continuity of j is assured under weaker assumptions,
as implied by Remark 2.1.

The classical problem defined by (2.1)-(2.5) is formally equivalent [30] to the
following Problem P

Problem P1. Find (u,p) E V0 such that

(Al,-}+j()-j()-(1,-/ >-0, VEV0.

We also have the following result.
THEOREM 3.1 (see [30]). Problem P1 has a unique solution.
This result depends in particular on the fact that the operator A1 is Lipschitz

continuous and strongly monotone. That is, there are constants a0, (1 > 0, such that

(3.4) A-AV.
(3.5) (AI AlV, U } o ,
for all , V.

The main concern here is not with variational inequalities of the form of Problem
P1, but rather with mixed variational problems associated with P1. Two such mixed
variational problems are considered in [30]. The first is as follows.

Problem P2. Find (u, p) V and A such that

where A L2() and the bilinear form

(a.7) bl g x A R, b (g, ) tr q dz.

The second mixed variational inequality considered in [a0] may be obtained by
extending to the case of elastoplastic materials the classical Hellinger-Reissner varia-
tional problem [7] for elasticity, and at the same time relaxing the constraint of plastic
incompressibility. Let E be the elastic compliance tensor, inverse to C. The tensor
E is bounded, symmetric, and pointwise stable. We set 2 Q, 2 x Q, and for

(, p) and (r, q) in 2 define the operator A by

(a.s) $ e) + pl. + q]

Define N V x A, the new space of Lagrange multipliers, where A L(), and the
bilinear form b

(a.9) b(, n) . e(v)dz ,trq dz, (v, ,), (, q).

Problem Pa. Find (, p) 2 and m (, ) N such that

(a.10) b(,
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1786 W. HAN AND B. D. REDDY

where the linear functional g’ N - R is defined by (g, n) fab. v dx.
There are many mixed finite-element methods in elasticity which take as a vari-

ational basis not the appropriate reduction of Problem P3, which is (after setting
p- q- 0 throughout)" find (or, u) E E x V such that

(3.11) .fo Ea T dx .It, (U) T dx O, V’r E,

(3.12) J e(v) a dx fa b v dx, V v V,

but instead the version of the Hellinger-Reissner formulation in which the differen-
tiability condition on the displacement is transferred to the stress. For this purpose
it is necessary to define the spaces

W -[L2(ft)] d and H {T (Tij)’Tji 7ij, 7ij e L2(ft), divT e W},

where div T is the vector with components OTij/Oxj (with summation implied on j).
The space W has the standard L-product norm, while H is endowed with the norm

It 11 / tl llg+ Ildiv ll W"
It is straightforward to derive the alternative Hellinger-Reissner formulation for elas-
ticity in the following form: find (or, u) H x W such that

(3.13) /aEc.Tdx+/au.div’rdx=O, VT"EH,

(3.14) v. divadx b v dx, V v W.

This problem has formed the basis of most investigations of mixed finite-element
methods for elasticity problems [1], [2], [25], [29], [38], [39], though the formulation
(3.11)-(3.12) is favoured in many engineering applications (see, for example, [28]). An
exception is the work [37], in which the abstract conditions for stability in the works
cited above are given an interesting mechanical interpretation. Numerical examples
are also given in [37].

The appropriate generalisation to elastoplasticity is as follows.
Problem Pa. Find (or, p) H H x Q and m (u,A) L W x A such

that

(Aa,T-Y}+j()-j()+b3(-N,m)_>0, V=(v,q) ell,(3.15) b3(Y, n) (g, n) V n (v, #) e L,

where

(3.16) Ae"- *, (AY,) fa [(Ecr

and

+ + q] dx,

f
(3.17) b3(, n) ]a(v div-- #trq)dx.

Problems P2-P4 can be conveniently studied as special cases of an abstract mixed
variational inequality, which we now formulate.
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1787

4. The abstract problem. Let P and N be two Hilbert spaces, A .an operator
from P to its dual P*, b P N R a bilinear form, and j P --. R a functional.
The bilinear form b is assumed to have the following two properties.

(i) b(., .) is bounded, so that there exist bounded linear operators B, BT defined
by

B P g*, {Be, n} b(,n) and BT g *, {BTn,} b(,n)

for all and n N. BT is thus the adjoint operator of B. The kernels of B and
BT are defined by

KerB={ e Be=0} and gerBT={neg: Bn=O}.
(ii) There exists a constant > 0 such that

(4.1) sup b(_,_n). > []n[N/Ker BT, V e N.

The operator A is assumed to be Lipschitz continuous on ; that is, there exists a
constant 1 > 0 such that

For any given e (Ker B) x, let A: * be the operator defined by

(4.3) Ax=A(x+I) for all xKerB.
The operator is required to be strongly monotone on Ker B; that is, there exists a
constant a0 > 0 such that

(4.4) { , } a0[[ ][, V, ger B.

We assume also that

(4.5) j is convex, nonnegative, and continuous, but not differentiable.

REMARK 4.1. The assumption (4.4) replaces that of strong monotonicity of A on
Ker B, which was assumed in [30] (see (3.3) in that work). The strong monotonicity

of A on Ker B is an insucient assumption, since it is readily established, as in the
analysis of the auxiliary problem (3.8) in [30], that A is actually required to be strongly
monotone on the ane set + Ker B. The assumption (4.4) guarantees this. Note
that the condition of strong monotonicity of A on implies (4.4).

The mixed problems defined in 3 are all particular cases of the following general
problem.

Pwblem P. Given f * and g N*, find (, m) x N such that

b(,n)={g,n}, Vn e g.

This problem is approached in [30] by introducing a regularized version of the prob-
lem, which reduces the inequality (4.6)1 to an equation. We imroduce the family of
functionals j R parametrized by (0, 1] and with the following properties:

(4.7) j is convex and differentiable, with Gteaux derivative 3
(4.8) j() j() as 0, uniformly with respect to ;
(4.9) IIJt()il,* c, v e .D
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1788 W. HAN AND B. D. REDDY

The constant c is required to be independent of : and E
The regularized problem then takes the following form.
ProblemPe. FindCeE andme Nsuchthat

(4.10) {
Since je is differentiable, the inequality (4.10)1 reduces to a variational equation

(4.11)

Then we have the following theorem.
THEOREM 4.2. Assume that conditions (4.1)-(4.5) and (4.7)-(4.9) hold, and that

g Im B, the range of B. Then
(a) there exists a unique solution (e, me) E x (N/ZerBT) to Problem Ps;
(b) there exists a solution (, m) q2 N to Problem P. Furthermore, is unique,

and is the strong limit of Ce as O.
In [30], this theorem is proved for the case Ker B {0}, and when the condition

(4.8) is replaced by the less general condition

0 <_ je() j()

It follows readily from the proof in [30] that the result holds with the somewhat
more general assumptions (4.1) and (4.8). The weaker assumption (4.8), in particu-
lar, allows the possibility of treating more general types of yield conditions, such as
nonsmooth yield functions (see, for example, [5]).

In [30], it is shown that Problem P2 satisfies the conditions of Theorem 4.2, that
it has a solution (u,p, ) V A, and that (u,p) is unique. It is also shown that
Problem P3 has a solution (a,p, u, A) E x N, with (a, p) being unique. Furthermore,
it may be proved that the Lagrange multiplier u is unique, though not the multiplier

To obtain similar results for Problem P4, which was not treated in [30], we need to
show that A2 is Lipschitz continuous on H H Q and that A2 is strongly monotone
on Ker B3, defined by

KerB3= (%q) EH" v.divTdx=0, VvWand #trqdx=0, V#A

(4.12) ={(-,q) ell" div-=0andtrq=0, a.e. in

We also have to show that the Babuka-Brezzi condition holds. That is, that a

constant/ > 0 exists such that

(4.13) sup
b3(:’ n) > n IIL/Ker B3T’

The functional j is as in Problems P2 and P3, and its fulfilment of properties (4.7)-
(4.9) in the case of the von Mises condition has been established in [30].

Lipschitz continuity of A2 on H follows from the fact that

(4.14)

as has been established in [30], and using also the fact that a II_<]l r IIH for a e H.

D
ow

nl
oa

de
d 

02
/2

0/
22

 to
 1

28
.2

55
.4

4.
16

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1789

Whereas Ag. is strongly monotone on E x E (for Problem P3), it is not strongly
monotone on H H x Q. Instead, we show that (4.4) holds. We have, given
1 ((rl, Pl) (Ker B3) +/-, with fi-2 A2(F1 + ), and for F, Ker B3,

(22"- 2, O" ) (A2( + 1) A2(Y + 1),- )

./ {E( ). ( ) + [o(; + ;) o( + ;)]. (; )} dx

(4.1a) k o ( II + -o (lI 5 + ; q )
o -for some constant ao > 0. Here we have used the fact that div a 0 and div 0,

since K, Ker B3, and also the inequality

[o(q)- o()]" (q- )

[(Oh0 + hle-’[q[)q (Oho + hle-[r[)r] (q r) + (1 O)ho[q r 2

(1 O)0]q 1
(ee ]so em 2 in [30]).

FinMly, it is straightforward to show [38] that the Babuka-Brezzi condition (4.13)
holds. Thus Prob]em P4 has a solution H, n (, A) L, and is unique. It
may furthermore be established that u is unique.

For the convergence analysis of finite-element solutions lter, we introduce a for-
mulation equivalent to (4.6). For this, we need the notion of the subdifferentiM
j" 2*, defined by

aN(,) (** * .() ; (,) + (**, ), v d ,}.

We observe that the problem (4.6) is equivalent to the problem of finding
m E N and * E * such that

(,) + (*, ) + (,) (y, }, v
(4.6) (, ) (9, ), v ,, ().

REMARK 4.3. Prom the equivalent formulation (4.16), it is easily seen that if

* * is unique, then N is unique in N/KerB. I the case when there is
o constraint, c a * * iq ( [17, Crop. 4.]). Po t
roZem P, owever, te uniqueness oZ * (and ence tat oZ N/KerB) eends
on both b and j. It is not dicult to see that we have uniqueness for * if and only
if the following condition is satisfied:

(4.1) * 0J()’ te 0j() o not contain

of the form * + Bmo with mo N/KerB.
Usually, however, the condition (4.17) cannot be verified easily.

For a mechanicM interpretation of the nonuniqueness of m see [30].
REMARK 4.4. In the case of plasticity with the yon Mises yield condition (see

(.3) a (.3)), av V V x , a i 9i

J() A k Iql dx
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1790 W. HAN AND B. D. REDDY

where k is bounded, measurable, and nonnegative.
two conditions (with * (u*, p*)):

Then (4.16)3 is equivalent to the

(4.18) p*(x) k
p(x)
Ip(x)/ if p(x) 0 and Ip*(x)l <_ k if p(x) 0,

which hold a.e. in f. Whereas we have uniqueness when p(x) O, V x E 2, in general
we have no a priori control over the solution p, and p* fails to be unique. This is

easy to appreciate if it is observed, from (2.3), that p* is equivalent to the quantity
aD aoD(p) (= aD when p 0), and (4.18)2 expresses the fact that this lies in the
set of admissible stresses, which on its own does not determine crD or p* uniquely.

Note also that by application of the arguments leading to (2.29) we have uniform
boundedness of {p* }

(4.19) Ip*(x)l <_ k a.e. in .
REMARK 4.5. In certain other applications (cf. [15], [18]), [HI()] d or

[H()]d, and j is of the form

j() ] k IVI dx(4.20)

where k is bounded, measurable, and nonnegative. It can be proved that * E 0j() is

equivalent to the two conditions

*(x)=k V(x)
if V(x) O and I*(x)l<<-k if V(x) O.

Once again, the uniqueness of * depends on the form of b (cf. the condition (4.17)
above). We still have uniform boundedness of {* }, though.

5. Finite-element approximation of the abstract mixed variational in-
equality. To study finite-element approximations of the mixed problems of 3, we
first consider that of the abstract Problem P. Let I/h C I/ and Nh C N be finite-
dimensional subspaces, h > 0 being a discretization parameter. We assume that

lim inf I1- Chll O, V e
h O 2/3h h

lim inf [In--nhllN=O, VneN.
h--*O nh ENh

The finite-element approximation to the abstract Problem P is as follows.
Problem Ph. Find Ch II/h and mh Nh, such that

(ACh, Ch --/h} + j(h) j(h) + b(h Ch, rnh)

_
(f, h

b(h, nh)=,, nh), Vnh e Nh.
(5.1)
Let

zh(a) {h E Vh" e

and introduce the discrete operators Bh and B[ through the relation

b(h, nh) (BhCh, nh) (BThnh,h), VCh E h, Vnh E Nh.
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1791

The kernels of Bh and B[ are defined by

KerBh--{hEh" b(h, nh)=0 VnhENh},
KerB[={nheNh" b(h,nh) --O VCh e h}.

For any given lh (KerBh) -L

defined by
we will also require the operator h lI/h "-+ II/

(5.4) thXh A(Xh + 1h) for all Xh Ker Bh.

Applying Theorem 4.2 to Problem Ph we have Theorem 5.1.
THEOREM 5.1. Assume that the conditions of Theorem 4.2 hold, with the excep-

tion that the condition (4.1) is replaced by its discrete counterpart

( .)(5.5) sup > khllnhllN/KerB, Vnh Nh, for some kh > O,

and the condition (4.4) is replaced by the condition that a constant Co > O, independent
of h and independent of the function lh used in defining fih in (5.4), exists such that

(.6) (fihCh fihCh, Ch Ch} > CollCh Chll for all Ch, Ch Ker Bh.

Then, if Zh(g) 7 O, Problem Ph has a solution (h, mh) h X Nh, Ch being unique.
Furthermore, (h, mh) h X Nh is a solution of Problem Ph if and only if there
exists a *h, such that

(.7)
(ACh, h} + (, h} + b(2h, rnh) (y, h},

b(h,nh) (g, nhl, Vnh e Nh,
0j(),

where

Ohj(h) { " j(h) > j(h) + (,h Ch}, VCh h}.

To study the convergence of the finite-element solution, we first derive an error
estimate for 4)- Ch. We will denote a solution of (4.16) by {, *, rn}.

THEOREM 5.2. Assume the conditions of Theorems 4.2 and 5.1 hold. For any
h h, set

I(h, , *) j(h) j() (*, h

Then there is a constant c > O, independent of h, such that

(5.9) I1-11 _< c [L| inf /(,11 hll / IZ(h, , *)11/) + inf II-nhll].nh ENh

Proof. For any Ch Zh(9),

I1 Chll I1 hll + IlCh hll"
Now write Ch 0h + 1h, where 0h E Ker Bh, lh Zh(g) n (KerBh) +/-, and define
Ah as in (5.4) by this 1h. Observe that h --1h E Ker Bh. Thus, by property (5.6)
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1792 W. HAN AND B. D. REDDY

we have

We add the two inequalities

(ACh, h Chl + j(h) j(h) > (f, h Ch/,
(A, Ch / + j(h) j() + b(h , m) > (f Ch 1

to obtain

(ACh, h Ch) + (A, Ch ) + j(h) j() + b(h , m) > (f h

that is,

(ACh, Ch h) < (A, Ch ) + j(h) j() + b(h , m) (f, h

Hence

for any nh Nh, and so

<-- II(h, , *)1 / 0111( hllq211h hll / Ilbl II(h hll’llm fthl N"

Thus

(5.11) I* mll <- c [11- mll / IZ(m, , *)11/2 / rn 11], Nh.

Combining (5.10) and (5.11), we get the desired error estimate.
In the special case when Ker Bh C Ker B, b(h- (h,m- nh) 0 in the proof

above. Then we have Proposition 5.3.
PROPOSITION 5.3. If we further assume that Ker Bh C Ker B, then

ChllV < c inf (11 hll* + I(h, , *)11/2
\

The nature of the bound on the term II((h, , Ch)l will depend on the particular
form taken by the functional j. In elastoplasticity j is Lipschitz continuous (see (3.3)),
and so

(5.12)

To bound infhez,(g)lie- Chll by the more standard approximation quantity

infeh I1- hll, we need the following result ([7, p. 55]).
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1793

LEMMA 5.4. Assume that the discrete inf-sup condition (5.5) holds; then

An obvious consequence of Theorem 5.2 and Lemma 5.4 is the following conver-
gence result for Ch.

THEOREM 5.5. Under the assumptions of Theorem 5.2, ff (5.12) holds and ff
1

inf [--9h]0 ash0,(5.13)
k e,

then

Ch--+ in as h -+ 0.

If the pair { h, Nh} of finite-element spaces is such that kh is bounded away from
0, independently of h, then the condition (5.13) is automatically satisfied. To have
convergence, however, we do not require kh to be bounded away from 0, as long as kh
does not tend to 0 too fast (in the sense that (5.13) holds).

Now we consider the convergence of mh. Here it is necessary to turn again to
the motivating problems for further information about the behaviour of the sequence

with and viewS*{b;}. We identify I/h h h as a subspace of * for any E ,
we extend from ; to * by setting (,} 0, V E -. Now in Problems
P2-P4, Ch is the ordered pair (Uh, Ph) or (ah, Ph), and we find that, from the Lipschitz
continuity of D,

(5.14) Ohj(h) =:> IP*hl ’* <-- C, for a constant c independent of h.

Hence,

{} is weakly precompact in *.

Thus every subsequence of {} contains a subsequence weakly converging in *.
Using the discrete inf-sup condition (5.5), the relation (5.7), and the boundedness

of the sequence {}, we find that

(5.16)

Since Ch -- in , {I Chll} is uniformly bounded with respect to h. Thus, under
the Babugka-Brezzi condition [4], [6]

(5.17) kh >_ kl > O,

we can modify mh by elements in Ker BhT, the modified multiplier being denoted once
again by mh, such that {llmhllN} is uniformly bounded with respect to h. Therefore
we can find a subsequence {mh, } and an element rh Q, such that

(5.18) mh, --+ rh weakly in N, as h --, 0.
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1794 W. HAN AND B. D. REDDY

Since { a} is weakly precompact in * we can find a further subsequence of the
subsequence {, }, still denoted by {, }, and a $* E *, such that

(5.19) , q* weakly in *.

From (5.19), the strong convergence Ch , the approximability of any E by
finite-element functions, and the continuity of j, we get

(5.20) $* e 0j().

Now fixing a finite-element test function h [-Jh’ I/h’, taking the limit in the first
relation of (5.7) along the subsequence h, and then approximating an arbitrary test
function by Ch, we obtain

(5.21) (A, )+ (*, )+ b(, rh)= (f, ), Y e .
From (5.20), (5.21), and Theorem 5.5, we then know that {, *, rh} is a solution

of (4.16); in other words, {, rh} is a solution of Problem P.
So far, we have proved the following.
THEOREM 5.6. Under the assumptions of Theorem 5.5 together with the condition

(5.17), we have

mh, --+ r?t weakly in N,

where mh, is a suitably chosen solution of (5.1).
Usually, we can say more about the convergence of the multipliers of the discrete

problems for Problems P-P4. From the assumption that D is positively homogeneous
(cf. (2.16)), we find that

] D(qa(x))dx >_ j( D(ph(x))dx + (P*h, qa --Pa}, Vqh e Qa

is equivalent to the two relations

(5.22) (p,ph) ] n(ph(x)) dx and (p,qh) <_ / D(qh(x)) dx, Vqh Qh.

Here h will be a product space of the form h Xh Qh, where Q is the space of
discrete plastic strains. Since D is a norm on Md (see 2) we have

D(q(x))dx <_ Vq e (L())dd,

so that

(5.23) [Ip*hllno() <_ c, for a constant c independent of h.

Indeed, if (5.23) is not true, we can find a subsequence {p, } and a q (L2())dd
such that

I[q[[(Ll())d 1 and (p,,q} -, c.

Let Iih, q Qh, be the (L2(gt))dd-projection of q to Qh,, then since (p,, q-Hh, q) O,
we have

(5.24)
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1795

On the other hand, since

IIq- IIh’qll(L())dd "-+ 0 as h’ -- 0,

the sequence {IIh, q} is bounded in (L1(2))dd. But then from (5.22), we get

(p,, IIh, q} <_ fa D(IIh, q(x)) dx <_ c IlIIh, qll(Ll(a))de <_ c,

which contradicts (5.24).
We incorporate the property (5.23) of elastoplasticity solutions in a more general

assumption, namely, that

{} is precompact in *.

Also assume

(5.26) KerB[ {0},

as is the case for the applications in the next section. We can then further show that
mh rh strongly in N, for a subsequence {mh}. From now on, we will use {mh} and
{} to denote the convergent subsequences {mh,} and {,}.

To prove the strong convergence of rnh, we write

By the condition (5.17),

1 b(h, nh mh)
sup

Now we have

b(h, nh mh) b(h, (n- mh) + b(h, nh rh)

and so, from (4.16) with * and rn being replaced by * and rh, and (5.7), we get

b(h, rh mh) -(A ACh, Ch) ($* *h,

Thus

1
sup

1 {-(A ACh, h) (* , h} + b(h, nh rh) }
_<c

Combining this result with (5.27), we now have

(5.28) I1 mhllN c (11- Chl* + I1* 11.* + i1 nhllN), Vnh

We summarize this result in the Nllowing theorem.
THEOREM 5.7. Under the assumptions made in Theorem 5.6, together with (5.25)

and (5.26), for a subsequence {mh},

mh ---* rt strongly in N.

D
ow

nl
oa

de
d 

02
/2

0/
22

 to
 1

28
.2

55
.4

4.
16

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1796 W. HAN AND B. D. REDDY

REMARK 5.8. Theorem 5.2 provides an error estimate for - Ch. TO estimate
the convergence order, for some applications, it is inappropriate to use (5.12) to bound
II(h,,*)1. Such is the situation when [L2(f)] d and j() fa k Il dx. One
needs to dig into the special structure of the finite-element space J2 h and try to con-
struct an interpolant h from the set Zh(g) in such a way that no loss in the order
of convergence is introduced. For some other applications, however, (5.12) readily
leads to an optimal error estimate. As an example, when [Hl(f)] 3 and the
nondifferentiable functional j is of the form (4.20), then I(h, , *) becomes

I(h, , *) j(h) j() Jfa )dx

for some measurable vector function ) satisfyin9 I)(x)l <_ 1 a.e. in f. In this case,
the estimate

does not cause loss in the order of convergence, and the optimal error estimate is

I1- Chll --< c inf 11- + inf lira nhilg
hEZh(g) nhEN

6. Application to the elastoplastic problems. We return now to the mixed
problems of 3, and apply the results of 5. We discuss in detail finite-element ap-
proximations of Problem P4 only, since the corresponding treatments for Problems
P2 and P3 follow in a similar way (and are in fact more straightforward).

The condition (4.17) takes a common form for all problems. Since in all cases

(6.1) J() =/a D(p(x))dx,

condition (4.17) states that there is no ,0 E A/Ker/T such that

(6.2) * e0j() ** /a[D(q)-D(P)-(P*+’I)’(q-P)] dx>O VqeQ.

By setting q 0 and q 2p, and by using the fact (see (2.27)) that p*.p D(p), we
obtain the condition

(6.3) Ji A0trp dx O.

The inequality (6.2) takes a slightly different form in the elastic domain, which is
defined by f {x e f: p(x) 0 a.e.}. From (6.2) it follows that

(6.4) D(q) dx > /ao p* q dx + J )otr q dx.

It is not easy to verify that there is no 0 0 satisfying (6.3) and (6.4). On the other
hand, in the fully plastic case, that is, when f q), it is a straightforward matter to
verify (4.17).
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1797

Also common to all the example problems is the question of the existence of a
regularizing sequence je satisfying (4.7)-(4.9). For the case of the von Mises yield
condition (see (2.31)) one may set

je() ] De(q)dx,

where

De(q)

or

De(q)-= { k (Iql- /2), if Iql ,
klqle/(2e), if Iql ,

for example. We recall also from (3.3) that j is Lipschitz continuous.
Going on now to finite-element approximations of Problem P4, we will assume for

simplicity that the domain ft is polygonal (resp., polyhedral) so that Ft is completely
covered by triangular (resp., tetrahedral) elements. We make the identification
H H Q, N L W A, Y (a,p), (-,q), rn (u,A), n (v,#),
A- Ag., and b(., .) b3(., .).

Suppose that we choose Hh C H, Wh C W, Qh C Q, and Ah C A; then Hh
Hh Qh C H and Lh Wh Ah C L. We define Problem P4,h.

Problem P4,h. Find Yh (ah,Ph) E Hh and mh (Uh, Ah) Lh such that

(A2-h, h "hl + j(h) j(-h) + b3(h -h, mh) >_ O,
b3(-Sh,nh) (g, nh}, Vnh (Vh,#h) Lh.

Vh (7h, qh) Hh,

Various finite-element spaces have been constructed for the purpose of obtaining
stable and convergent approximations for the purely elastic case (see [7]). For the pur-
pose of illustration we consider here the element introduced by Johnson and Mercier
[25], in the context of the 2-dimensional problem and assuming isotropic elasticity. In
this case the operator A2 takes the form

/ [(1 D ) 7D 1
(trcr)(tr-)+(cr0(p)--a)D.q]dx(6.6) (Aa,}= ppa +p +A+#

where A and it are Lam’s constants. The polygonal domain ft is partitioned into
triangular elements, and the Johnson-Mercier element is constructed as follows. A
generic element K is subdivided into three subtriangles Kj, j 1, 2, 3, these having
a common vertex at the centroid of K. We then define the space H/ by

HK={-H" -Ij e [PI(Kj)]x j-1 2 3}

where P1 (Kj) is the space of the polynomials of degree _< 1 on Kj, and the space Hh
by

The space Wh is simply defined by

(6.7)
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1798 W. HAN AND B. D. REDDY

and we define Qh and Ah by

(6.8) Qh {qh e Q: qhlI e [Pl(K)]22}, Ah P,
where P {v L(t) Vlg is a polynomial of degree 1}. Then with this choice
of spaces it can be shown [25] that the elastic version of Problem P4,h (which is
obtained by setting Ph qh 0) has a unique solution, and that, if a (H(t))2
and u (H2())2, then

(6.9) [a-ah]O Ch, [u-Uh[O Ch,
where . ]]0 denotes the product L2-norm.

The proof relies on the fact that the elastic version of A is Ker B-elliptic, that
KerB C Ker B, and that the discrete condition (5.5) holds, with a constant kh
independent of h. Here, B and B are defined through the bilinear form

b (T, v) f v div dx

by

and

/BeTv V

The operator -2,h, defined by ,hh A(h + h) for all h h, where lh
(KerBh) +/- satisfies b(lh, nh) (g, nh} for all nh e Nh, is shown to be strongly
monotone on Ker Bh in the same way as the corresponding result is derived for .
(see (4.15)).

Properties of the operators Bh and BhT follow also by exploiting the. properties
of the elastic problem. That is, it follows readily from the definition (3.17) of b b3
and the properties of its elastic part, that Ker Bh C Ker B and that the bilinear form
satisfies the discrete Babuka-Brezzi condition, with Ker BhT {0}. The property
Ker Bh C Ker B follows first from

{ahHh" /divah.Vhdx=OforallvhWh}C {aH" diva=0}

as in the elastic case, and second from

{PhQh" /a#htrphdx=O, V#hAh}C{PQ" trp=O}.

Thus Problem P4,h has a solution (ah,Ph) Hh and (Uh,/h) Lh, and (ah,Ph) is
unique. Furthermore, it is possible to show that the multiplier Uh is unique; setting
qh Ph in (6.5), this problem reduces to

2# (trah)(trTh)] l l"
Ph’Th dx, Th Hh,D
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1799

and this problem, which is a minor variation of the elastic problem, has a unique
solution.

To obtain an error estimate that extends to the present problem, the estimate
(6.9) which is valid for the elastic case, we return to Proposition 5.3, and set E
where E has the same definition as in the previous problem. We also note that A2 is
strongly monotone on E, and set

Zh(g) {h E Hh b3(h, nh) (g, nh) Vnh Nh}.
Then by following the steps taken in the proof of Theorem 5.2, using the inequality

and noticing that KerBh C KerB, we find that

h[l
\

Applying Lemma 5.4, we then find that if a (HI(t))22, p (H2())22,

Note in particular the reduction in order; the elastic problem yields an error estimate
of O(h). This reduction is due to the presence of the nondifferentiable term.

We may also obtain an error estimate for lu- UhllO. We first write down the
continuous analogue of (6.10), that is,

/a [ ---aN. TD - z -Jr-1
which, together with (6.10), implies the relation

(Vh
Uh) div-h dx

(p p). + ( ). +
Vh

ow rom (.e) o levi,

tr(a ah trTh + (U- Vh)" diVTh] dx,

tr(a ah trTh
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1800 W. HAN AND B. D. REDDY

7. A posteriori error analysis of regularizing sequences. Because of the
difficulty in dealing with the nondifferentiable term j, one rarely solves the finite-
element system (5.1) directly. In practice, there are several approaches to circumvent
the difficulty caused by the nondifferentiability. One approach is to introduce a La-
grange multiplier for the nondifferentiable term, and the problem (5.1) is solved by
an iterative procedure; for details, see, for example, [15]. Here, we concentrate on
another approach, namely, the regularization method. The idea of the regularization
method is to approximate the nondifferentiable term by a sequence of differentiable
ones. The regularizing sequence technique has been used in proving Theorem 4.2 (see
[30]). Here, we use the technique as a numerical method to solve the mixed variational
inequality. It is easy to give an a priori error estimate which implies convergence of
the regularization method (cf. [30]). Our main concern in this section is to derive a
posteriori error estimates for solutions of the regularized problems. We will derive
such an a posteriori error estimate for solving Problem P2. For Problems P3 and P4,
the same techniques presented here can be employed to give similar a posteriori error
estimates.

As in [17], we need a result from convex analysis (cf. [10]).
Let V, A be two normed spaces, with V*, A* their dual spaces. Assume there

exists a linear continuous operator F E (V, A), with transpose F* (A*, V*). Let
J be a function mapping V A into R U (/c}. Consider the minimization problem

(7.1) inf J(v Fv).
vEV

Define the conjugate function of J by

J*(v*,#*) sup [(v,v*)+ (#,#*)- J(v,#)].
vEV,A

THEOREM 7.1. Assume that
(i) V is a reflexive Banach space, A is a norrned space.
(ii) J: V A - R U {+} is a proper, lower sernicontinuous, strictly convex

function.
(iii) Suo V, such that J(uo,Fuo) < c and # H J(uo,#) is continuous at

Fuo
(iv) J(v, Fv) +, as IIll c, v e V.

Then problem (7.1) has a unique solution u V, and

(7.3) J(u, Fu) <_ J*(F*#*,-#*), V#* e A*.

We will apply Theorem 7.1 to derive an a posteriori error estimate for the regular-
izing technique for solving (3.6), that is, Problem P2, and its discrete version, in the
context of the yon Mises yield condition. Instead of the Problem P2, we consider a
slightly more general problem, namely, the constraint bl (g, #) 0, V # E A is replaced
by

(7.4) bl (, #) (9, #}, V/2 e A.

In this way, one will see more clearly how to employ the techniques presented here to
derive a posteriori error estimates for Problems P3 and P4. We choose the following
regularizing function for the dissipation function:

(7.5) De(q) k v/iq[ + .D
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1801

First, we need to rewrite the problem (3.6) in the form of (7.1). To do this, set

S {8 (sij)" 8ij 8ji E L2 (ft), 1 _< i, j _< d}

and identify S* with S. We make use of the spaces V, Q, A and V V Q used
earlier in Problem P2, and define the operator F’ 1? -- S by

Fv=(v), VvV.

Let

Z(g) { e V" bl(,t)-- (g,t), Vt A}.

We now define the energy function on V x S by

(7.6)

J(V, s) {
where

L [1/2 C (s q) (s q) + H(lql) + k Iql b. v] dx,

+oc, otherwise,

if V e Z(9),

1 1
_,)

1
H(o) h0oz2 + hi (1 e -p hlCt e-us

(cf. (2.10) and (2.11)). Then it can be shown that the problem (3.6) with the more
general constraint (7.4), is equivalent to the minimization problem

ge, J(,F)= inf J(V, FV).

To use Theorem 7.1, we need to compute J*(F*s*,-s*), for s* S*. We have

J*(F*s*, -s*) sup [@,F*s*)- (s,s*>- J(V,s)]

sup [<F,s*>-<s,s*>-J(,s)]
9,sS

IF 1C (8--q).(8 q)sup e(v). s* s. s g
EZ(g),sES

H(Iql)- k Iql + bv] dx

----i-/0 sup
eZ(g)

where

(7.7)

with

K(18*I)- T(t(18*l)),

T(t) (Is*t- ) t- H(t),

and t(Is*l) 0 if Is*l <_ k, t(Is*l) > 0 being the unique solution of the equation (the
unique solvability is guaranteed by the assumption h0 > 0)

(ho + hle-’t) t Is*l k if I *1 >
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1802 W. HAN AND B. D. REDDY

Next, we deal with the term

f[e(v) s* +.b. v] dx.sup
ez()

We have

sup Jl’[(v) s* + b v] d:c f[(u) s* + b u] dx + sup ]2[(v) s* + b v] dx
z() ez(0)

a[(). * + b. 1d

if [e(v). s* + b. v] dx 0, V e Z(0),

+ otherwise.

Applying (4.11) to the problem (3.6), we find that

(Ae, ) + (j’(), ) {b, ), V e Z(0),

that is, V Z(0),

C (e(u,) p,). (e(v) q) + h(Ip, I)p, ’q + lp,l + 2
Hence,

kps
(7.8) C (e(u) ps) + h(]pel)p + [p;.12 + e 0,

(7.9) C (e(us) Pc)" (v) dx b v dx, Vv KerB.

With (7.9), we choose

(7.10) s* -C(e(us)-ps);

then

fie(v). * + . v] x [ [-c (() -,). () + . 1 ex.sup
vCZ(9) Jfl J

Therefore, with the choice (7.10) for the duM variable s*, we have

c (() ). () +. + (lc (() dx.

(.)
Now consider the difference

J(fi, F) J(, F).

By Theorem 7.1, an upper bound for the difference, with s* given by (7.10), is

g(, Fte) g(t, Ft)
_< J(e, Fe)+ g*(F*s*,-s*)

+ H(lpI) h(Ipl)ipl + K(IC(e(u) pC)l) dx.
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1803

In the derivation above, we used the relation (7.8). We then turn to a lower bound
of the difference. Taking 9 in (3.6)1, we obtain

(7.12) .fo [k IPel- k IPi- b. (ue u)] dx

>_ j [-C ((u) p). (((u) p) ((u) p)) h(IPl)p" (p p)] dx.

Thus

where we have made use of (7.12).
Now define the function

Hl(O) H(c) h0a2 hi -(1 e- -ce-’"v
the part of H related to hi. Then

H’(a) hi (1 ua) e-va _> -e-2hl > -Oho,

using (2.14). Hence,

H(IPI) H(Ipl) h(IPl)p. (p -p)
-ho(Ipl -Ipl 9 2p. (p -p))/ H(IpI) H([pl) hle-’lplP (P p)

> h--0- IP Pl 2 + n(IPI) nl(IPl) H (IPt- IPl)
2
ho Oho- ----I ]PI- [Pl [

> (! O)hO [p plY.
2

Thus

where

12}+ ( o) holp p dx

1 {r/0(1 0) min 1, }co + vo( -0)/2

the last inequality is obtained using the trick employed in proving Lemma 2.1 in [32].
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1804 W, HAN AND B. D. REDDY

Combining the two bounds on the difference J(e, F)- J(2, F), we then have
the a posteriori error estimate for the regularizing technique for solving the problem
(3.6).

THEOREM 7.2. Under the assumptions made on the problem (3.6), the following
inequality holds:

(7.13)

To see more clearly the effectiveness of the a posteriori error estimate (7.13), we
consider the simpler case when the material undergoes linear hardening, that is, when
the function h(a) in (2.11) is of the form

h(a) ho,

and ho(x) >_ r/o > O, a.e. in t2. We can compute

where

1 2K(Is*l) oo [(Is*] k)+]

j" t, iftk0,t+ 0, if t <0.

In this special case of linear hardening, the a posteriori error estimate assumes the
simpler form

(7.14)

where

co +Vo/2
If

(7.x5) (IC (e(u) p)l- k)+ h01Pl,

then from (7.14) we Mve

k
dx
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MIXED VARIATIONAL INEQUALITIES IN ELASTOPLASTICITY 1805

which indicates that (7.14) (and (7.13), at least when hi is small) is a useful a poste-
riori error estimate. To prove (7.15), we notice that from (7.8),

(ho +
Thus

IC(() P)I (ho + v/IPl 2 +

and so

Obviously,

Therefore, (7.15) follows.
For the finite-element system (5.1), we can also use the regularization technique.

So instead of solving (5.1), which is difficult because of the presence of the nondif-
ferentiable term, we solve a sequence of regularized problems: find Uh, E Vh and
Ph,e E Qh, such that

(AUh,e,Vh--Uh,) +js(Vh)--j(Uh,e)+b(Vh--Uh,s,ph,s) >_ (b, Vh--Uh,}, VVh Vh,
b(uh,e, qh) (g, qh}, Vqh Qh.

(7.16)
We can apply the results in Theorem 7.2 to the discrete problems, (5.1) and (7.16),
to obtain the a posteriori error estimate

(7.17)

Note that the computable error estimate (7.17) can help one to determine whether
a solution of the regularized problem can be accepted as the solution of the original
finite-element problem.

Acknowledgment. The authors thank an anonymous referee for comments that
led to an improvement in the presentation of this paper.
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