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a b s t r a c t

In this paper, we consider a penalty based numerical method to solve a model contact
problemwith unilateral constraint that is described by a constrained stationary hemivaria-
tional inequality. The penalty technique is applied to approximately enforce the constraint
condition, and a corresponding numerical method using finite elements is introduced. We
show the convergence of the penalty based numerical solutions to the solution of the
constrained hemivariational inequality as both the mesh-size and the penalty parameter
approach zero.
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1. Introduction

It is important to study contact problems due to their wide applications in industry and engineering. The mathematical
formulations of the problems are usually stated in the form of variational inequalities and hemivariational inequalities.
Comprehensive references on variational inequalities in contact mechanics include [1,2]. When material properties and
contact conditions involve non-monotone and possibly multi-valued relations, contact problems are formulated as more
complicated hemivariational inequalities. A comprehensive reference on hemivariational inequalities in contact mechanics
is [3].

Hemivariational inequalities were first introduced in early 1980s by Panagiotopoulos in the context of applications in
engineering problems involving non-monotone and possibly multi-valued constitutive or interface laws for deformable
bodies. Studies of hemivariational inequalities can be found in several comprehensive references, e.g., [4,5], and more
recently, [3]. The book [6] is devoted to the finite element approximations of hemivariational inequalities, where con-
vergence of the numerical methods is discussed. In the recent years, there have been efforts to derive error estimates.
In the literature, [7] represents the first paper that provides an optimal order error estimate for the linear finite element
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method in solving hemivariational or variational–hemivariational inequalities. The idea of the derivation technique in [7]
was adopted by various authors for deriving optimal order error estimates for the linear finite element method of a few
individual hemivariational or variational–hemivariational inequalities. More recently, general frameworks were developed
on convergence and error estimation for hemivariational or variational–hemivariational inequalities, see [8,9] for internal
numerical approximations of general hemivariational and variational–hemivariational inequalities, and [10] for both
internal and external numerical approximations of general hemivariational and variational–hemivariational inequalities.
In these recent papers, convergence is shown for numerical solutions by internal or external approximation schemes under
minimal solution regularity condition, Céa type inequalities are derived that serve as the starting point for error estimation,
and optimal order error estimates for the linear finite element solutions are derived for hemivariational and variational–
hemivariational inequalities arising in contact mechanics.

Penalty methods have been used as an approximation tool to treat constraints in variational inequalities [1,11,12] and
in proving solution existence [13,14]. In a penalty method, the constraint is approximately satisfied through the inclusion
of a penalty term with a small penalty parameter δ and the constraint is enforced by taking the limit δ → 0. In this paper,
we take a unilateral contact problem with a non-monotone contact condition as an example to show the convergence of
a penalty based finite element method as both the penalty parameter and the finite element mesh-size tend to zero. We
introduce the contact problem and its weak formulation in Section 2. In Section 3, we present a numerical method for the
contact problem based on a finite element discretization of the corresponding penalty approximation. In Section 4, we prove
the convergence of the penalty based numerical method.

2. The contact problem with unilateral constraint

In this section, we introduce the classical formulation of the model contact problem, list assumptions on the data, and
present the corresponding weak formulation.

The contact problem concerns the deformation of an elastic material subject to the action of body and boundary forces,
is clamped on part of its surface and is in contact with a foundation on another part of its surface. We denote by Ω the
reference configuration of the elastic material, and assumeΩ is an open, bounded, connected set in Rd (d = 2 or 3) with a
Lipschitz boundary Γ = ∂Ω . To describe the boundary conditions, we split the boundary Γ into disjoint, measurable parts
Γ1, Γ2 and Γ3. Here, meas (Γ1) > 0 and meas (Γ3) > 0, whereas Γ2 is allowed to be empty.

To describe the contact problem, we need some notations. We use u:Ω → Rd for the displacement field of the elastic
material and use v:Ω → Rd for an arbitrary virtual displacement. We only consider small deformations and thus will use
the linearized strain tensor ε(u) :=

(
∇u + (∇u)T

)
/2. The linearized strain tensor ε(u) and the stress tensor σ are Sd-valued

functions defined onΩ . The space Sd consists of all second order symmetric tensors onRd. We use the symbols ‘‘·’’ and ‘‘∥·∥’’
for the canonical inner product and norm over both the spaces Rd and Sd. Since the boundary Γ is Lipschitz continuous, the
unit outward normal vector ν is defined a.e. onΓ . For a vector field v, its normal and tangential components on the boundary
are vν := v · ν and vτ := v − vνν, respectively. For the stress field σ, its normal and tangential components on the boundary
are σν := (σν) · ν and στ := σν − σνν, respectively.

We now list the relations for the classical formulation of the contact problem. The constitutive law of the elastic material
is

σ = Fε(u) inΩ, (2.1)

where F:Ω × Sd
→ Sd is the elasticity operator. We assume the body is under the action of a body force of density f0 and

put down the equilibrium equation

Div σ + f0 = 0 inΩ. (2.2)

The material is fixed on Γ1, and so

u = 0 on Γ1. (2.3)

If Γ2 is non-empty, then the material is subject to a surface traction of density f2:

σν = f2 on Γ2. (2.4)

Over Γ3, we consider a frictionless unilateral contact condition:

στ = 0 on Γ3, (2.5)

uν ≤ g, σν + ξν ≤ 0, (uν − g) (σν + ξν) = 0, ξν ∈ ∂ jν(uν) on Γ3. (2.6)

The equality (2.5) reflects the fact that the contact is frictionless. The condition (2.6) models the contact between the elastic
material and a foundation that consists of two parts: a rigid body and a layer of deformable material on its surface. The
thickness of the layer is described by the non-negative function g . Penetration of the elastic material to the foundation is
allowed but is limited by the unilateral constraint uν ≤ g . At points where uν < g , the contact is described by amulti-valued
normal compliance condition −σν = ξν ∈ ∂ jν(uν), ∂ jν being the Clarke subdifferential of a potential functional jν that will
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be assumed to be locally Lipschitz continuous. We recall that for a locally Lipschitz continuous function ψ: X → R defined
on a normed space X , the generalized (Clarke) directional derivative of ψ at x ∈ X in the direction v ∈ X is

ψ0(x; v) := lim sup
y→x, λ↓0

ψ(y + λv) − ψ(y)
λ

.

The generalized subdifferential of ψ at x is a subset of the dual space X∗ given by

∂ψ(x) := { ζ ∈ X∗
| ψ0(x; v) ≥ ⟨ζ , v⟩X∗×X ∀ v ∈ X }.

Properties of the Clarke subdifferential can be found in the books [3,4,15,16]. In particular, we will use the relation

ψ0(x; v) = max {⟨ζ , v⟩X∗×X | ζ ∈ ∂ψ(x)} , (2.7)

as well as the upper semi-continuity of ψ0:

xn → x and vn → v H⇒ lim sup
n→∞

ψ0(xn; vn) ≤ ψ0(x; v). (2.8)

The classical formulation of the contact problem consists of the relations (2.1)–(2.6). For the weak formulation of the
contact problem,we need tomake assumptions on the data and introduce function spaces.We assume the elasticity operator
F:Ω × Sd

→ Sd has the following properties:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) there exists LF > 0 such that for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

∥F(x, ε1) − F(x, ε2)∥ ≤ LF∥ε1 − ε2∥;

(b) there existsmF > 0 such that for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ∥ε1 − ε2∥
2
;

(c) F(·, ε) is measurable onΩ for all ε ∈ Sd
;

(d) F(x, 0) = 0 for a.e. x ∈ Ω.

(2.9)

If F is a linear operator, (2.1) represents the constitutive law of linearly elastic materials,

σij = aijklεkl(u),

where σij are the components of the stress tensor σ and aijkl are the components of the elasticity tensorF . Clearly, assumption
(2.9) is satisfied in this particular case, if all the components aijkl belong to L∞(Ω) and satisfy the usual properties of symmetry
and ellipticity:

aijkl = ajikl = aklij, 1 ≤ i, j, k, l ≤ d

and there existsmF > 0 such that

aijklεijεkl ≥ mF∥ε∥
2

∀ ε = (εij) ∈ Sd.

In particular, for an isotropic linearized elastic material, the constitutive law is

σ = λ trε(u) Id + 2µ ε(u),

where λ > 0 and µ > 0 are the Lamé coefficients, and Id ∈ Sd is the identity tensor.
An example of a nonlinear elastic constitutive law of the form (2.1) is

σ = Eε(u) + β (ε(u) − PKε(u)). (2.10)

Here E is a linear or nonlinear operator which satisfies (2.9), β > 0, K is a closed convex subset of Sd such that 0 ∈ K and
PK : Sd

→ K denotes the projection operator. The corresponding elasticity operator is nonlinear and is given by

Fε = Eε + β (ε − PKε). (2.11)

Usually the set K is defined by

K = { ε ∈ Sd
| F(ε) ≤ 0 } (2.12)

where F : Sd
→ R is a convex continuous function such that F(0) < 0.

Another example of nonlinear elasticity operators satisfying the conditions (2.9) is provided by a Henckymaterial, see [2]
for details. For the Hencky material, the constitutive law is

σ = k0 (tr ε(u)) Id + ψ(∥εD(u)∥2) εD(u),

so that the elasticity operator is

F(ε) = k0 (tr ε) Id + ψ(∥εD
∥
2) εD. (2.13)
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Here, k0 > 0 is amaterial coefficient, Id is the identitymatrix of order d,ψ : R → R is a constitutive function and εD
= εD(u)

denotes the deviatoric part of ε = ε(u), defined by

εD
= ε −

1
d
(tr ε) Id. (2.14)

The function ψ is assumed to be piecewise continuously differentiable, and there exist positive constants c1, c2, d1 and d2,
such that

ψ(ξ ) ≤ d1, −c1 ≤ ψ ′(ξ ) ≤ 0, c2 ≤ ψ(ξ ) + 2ψ ′(ξ ) ξ ≤ d2

for all ξ ≥ 0. The conditions (2.9) are satisfied for the elasticity operator defined in (2.13), see for instance [2, p. 125].
On the densities of the body force and the surface traction, we assume

f0 ∈ L2(Ω;Rd), f2 ∈ L2(Γ2;Rd). (2.15)

On the thickness function g , we assume

g ∈ L2(Γ3), g(x) ≥ 0 a.e. on Γ3. (2.16)

On the potential functional jν , we assume⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there
exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(Γ3);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;

(c) |∂ jν(x, r)| ≤ c0 + c1|r| for a.e. x ∈ Γ3 ∀ r ∈ Rwith c0, c1 ≥ 0;
(d) j0ν(x, r1; r2 − r1) + j0ν(x, r2; r1 − r2) ≤ αjν |r1 − r2|2

for a.e. x ∈ Γ3, all r1, r2 ∈ Rwith αjν ≥ 0.

(2.17)

Here, the relation

|∂ jν(x, r)| ≤ c0 + c1|r|

means

|ξ | ≤ c0 + c1|r| ∀ ξ ∈ ∂ jν(x, r).

Let a ≥ 0, b > 0 and consider the function jν :R → R given by

jν(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if r < 0,
a + e−b

2b
r2 if 0 ≤ r ≤ b,

ar − e−r
+

(b + 2)e−b
− ab

2
if r > b.

(2.18)

It is easy to see that the function jν satisfies assumption (2.17) with c0 = a + e−b and c1 = 0. Moreover,

∂ jν(r) =

⎧⎪⎨⎪⎩
0 if r < 0,
a + e−b

b
r if 0 ≤ r ≤ b,

e−r
+ a if r > b,

(2.19)

for all r ∈ R. In this case the condition −σν = ξν ∈ ∂ jν(uν) models the contact with an elastic layer, with softening.
The softening effect consists in the fact that, when the penetration reach the limit b, then the reactive force decreases.
Additional examples of contact conditions of this form in which the function jν satisfies condition (2.17), together with
the corresponding mechanical interpretations, can be found in [3,17].

Let

V =
{
v = (vi) ∈ H1(Ω;Rd) | v = 0 a.e. on Γ1

}
. (2.20)

The displacement will be sought from the following subset of the space V :

U := {v ∈ V | vν ≤ g on Γ3} . (2.21)

Note that since meas (Γ1) > 0, V is a Hilbert space with the inner product

(u, v)V :=

∫
Ω

ε(u) · ε(v) dx, u, v ∈ V .

We denote the trace of a function v ∈ H1(Ω;Rd) on Γ by the same symbol v. We use the space Q = L2(Ω; Sd) for the stress
and strain fields; Q is a Hilbert space with the canonical inner product

(σ, τ)Q :=

∫
Ω

σij(x) τij(x) dx, σ, τ ∈ Q .
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To simplify the notation, we define f ∈ V ∗ by

⟨f , v⟩V∗×V = (f0, v)L2(Ω;Rd) + (f2, v)L2(Γ2;Rd) ∀ v ∈ V . (2.22)

By a standard approach (cf. [2,3]), the following weak formulation of the contact problem (2.1)–(2.6) can be derived.

Problem (P). Find a displacement field u ∈ U such that∫
Ω

F(ε(u)) · ε(v − u) dx +

∫
Γ3

j0ν(uν; vν − uν) ds ≥ ⟨f , v − u⟩V∗×V ∀ v ∈ U . (2.23)

It is known (cf. [8,14]) that Problem (P) has a unique solution u ∈ U under the stated assumptions (2.9)–(2.17) and the
smallness condition

αjν < λ1ν,VmF , (2.24)

where λ1ν,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V ,
∫
Ω

ε(u)·ε(v) dx = λ

∫
Γ3

uνvνds ∀ v ∈ V .

3. A penalty based numerical method

We now introduce a penalty based numerical method of Problem (P). For a small parameter δ > 0, known as the penalty
parameter, we consider the following penalty approximation of Problem (P).

Problem (Pδ). Find a displacement field uδ ∈ V such that∫
Ω

F(ε(uδ)) · ε(v − uδ) dx +
1
δ

∫
Γ3

(uδ,ν − g)+(vν − uδ,ν) ds

+

∫
Γ3

j0ν(uδ,ν; vν − uδ,ν) ds ≥ ⟨f , v − uδ⟩V∗×V ∀ v ∈ V . (3.1)

We use the finite element method for the numerical solution of Problem (Pδ). For brevity, assume Ω is a polygo-
nal/polyhedral domain and express the three parts of the boundary, Γk, 1 ≤ k ≤ 3, as unions of closed flat components
with disjoint interiors:

Γk = ∪
ik
i=1Γk,i, 1 ≤ k ≤ 3.

Let {T h
}h>0 be a regular family of partitions of Ω into triangles/tetrahedrons that are compatible with the partition of the

boundary ∂Ω into Γk,i, 1 ≤ i ≤ ik, 1 ≤ k ≤ 3, in the sense that if the intersection of one side/face of an element with one
set Γk,i has a positive measure with respect to Γk,i, then the side/face lies entirely in Γk,i. Construct the linear element space
corresponding to T h

= {T }:

V h
=

{
vh

∈ C(Ω)d | vh
|T∈ P1(T )d, T ∈ T h, vh

= 0 on Γ1
}
,

where P1(T ) is the space of linear functions defined on T .
We note the following property of the finite element spaces:

∀ v ∈ V , ∃ vh
∈ V h s.t. lim

h→0
∥vh

− v∥V = 0. (3.2)

This property can be shown by the standard finite element interpolation error estimates for smooth functions (cf. [18–20])
combined with a density argument, noting that smooth functions are dense in V .

A further finite element approximation property will be needed:

∀ v ∈ U, ∃ vh
∈ V h

∩ U s.t. lim
h→0

∥vh
− v∥V = 0. (3.3)

One set of sufficient conditions for (3.3) are (i) C∞(Ω)d ∩ U is dense in U and (ii) the function g is concave. A sketch of
this statement is as follows. Let v ∈ U and let ε > 0 be arbitrarily small. Then there exists vε ∈ C∞(Ω)d ∩ U such that
∥vε − v∥V ≤ ε/2. Let vh

ε ∈ V h be the finite element interpolant of vε; vh
ε ∈ V h

∩ U since vε ∈ U and g is concave. By the
finite element interpolation theory, ∥vh

ε − vε∥V ≤ c h ∥vε∥H2(Ω)d . Let h > 0 be sufficiently small so that c h ∥vε∥H2(Ω)d ≤ ε/2.
Then, ∥vh

ε − v∥V ≤ ε.
We comment that in [21] the following density result is shown: AssumeΩ is a Lipschitz planar domain whose boundary

is split into threemutually disjoint partsΓ1,Γ2, andΓ3, such thatΓi∩Γj consists of a finite number of points for 1 ≤ i < j ≤ 3.
Then C∞(Ω)d ∩ U is dense in U in the case g = 0. In particular, with our assumptions onΩ and its boundary splitting, this
density result can be applied. In addition, the proof method in [21] can be extended to cover the 3D case of a polyhedral
domainΩ . Moreover, for g a non-zero constant, Γ1 ∩Γ3 = ∅ and Γ3 a line segment in 2D or a polygon in 3D, it is easy to see
that the density statement of C∞(Ω)d ∩ U in U carries over and (3.3) holds.
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The penalty based numerical method for Problem (P) is as follows.

Problem (Phδ ). Find a displacement field uh
δ ∈ V h such that∫

Ω

F(ε(uh
δ )) · ε(vh

− uh
δ ) dx +

1
δ

∫
Γ3

(uh
δ,ν − g)+(vhν − uh

δ,ν) ds

+

∫
Γ3

j0ν(u
h
δ,ν; v

h
ν − uh

δ,ν) ds ≥ ⟨f , vh
− uh

δ⟩V∗×V ∀ vh
∈ V h. (3.4)

We will focus on the convergence of the numerical method as both the penalty parameter and the finite element mesh-
size tend to zero:

uh
δ → u in V , as h, δ → 0.

As a preparation, we first prove a uniform boundedness property of the numerical solutions.

Proposition 3.1. Let uh
δ ∈ V h be the solution of Problem (Ph

δ ). Then for some constant M > 0 independent of h and δ, we have
∥uh

δ∥V ≤ M.

Proof. By (2.9) (b) and (2.9) (d), we have

mF∥uh
δ∥

2
V ≤

∫
Ω

F(ε(uh
δ )) · ε(uh

δ ) dx.

From (3.4) with vh
= 0,∫

Ω

F(ε(uh
δ )) · ε(uh

δ ) dx ≤ −
1
δ

∫
Γ3

(uh
δ,ν − g)+uh

δ,νds +

∫
Γ3

j0ν(u
h
δ,ν; −uh

δ,ν) ds + ⟨f , uh
δ⟩V∗×V .

Thus,

mF∥uh
δ∥

2
V ≤ −

1
δ

∫
Γ3

(uh
δ,ν − g)+uh

δ,νds +

∫
Γ3

j0ν(u
h
δ,ν; −uh

δ,ν) ds + ⟨f , uh
δ⟩V∗×V . (3.5)

Note that

−
1
δ

∫
Γ3

(uh
δ,ν − g)+uh

δ,νds ≤ 0 (3.6)

since

−(uh
δ,ν − g)+uh

δ,ν = −(uh
δ,ν − g)+(uh

δ,ν − g) − (uh
δ,ν − g)+g ≤ 0.

By (2.17) (d),

j0ν(u
h
δ,ν; −uh

δ,ν) ≤ αjν |u
h
δ,ν |

2
− j0ν(0; u

h
δ,ν),

and by (2.17) (c) and (2.7),

|j0ν(0; u
h
δ,ν)| ≤ c0|uh

δ,ν |;

thus,

j0ν(u
h
δ,ν; −uh

δ,ν) ≤ αjν |u
h
δ,ν |

2
+ c0|uh

δ,ν |. (3.7)

Moreover,

⟨f , uh
δ⟩V∗×V ≤ c

(
∥f0∥L2(Ω)d + ∥f2∥L2(Γ2)d

)
∥uh

δ∥V . (3.8)

Using (3.6)–(3.8) in (3.5), we find that(
mF − αjνλ

−1
1ν,V − ε

)
∥uh

δ∥V ≤ c.

Therefore, {∥uh
δ∥V }h,δ>0 is uniformly bounded with respect to h and δ. ■

4. Convergence of the numerical method

We now prove the convergence of the numerical solution of Problem (Ph
δ ) to that of Problem (P) as the penalty parameter

δ and the meshsize h tend to zero.

Theorem 4.1. Assume (2.9)–(2.21), (2.24), and (3.3). Then,

uh
δ → u in V as h, δ → 0. (4.1)
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Proof. By Proposition 3.1, {uh
δ}h,δ>0 is bounded in V . Since V is a Hilbert space, and the trace operator V ∋ v ↦→ vν ∈ L2(Γ3)

is compact, we can find a sequence of {uh
δ}h,δ>0, again denoted as {uh

δ}h,δ>0, and an element w ∈ V such that

uh
δ ⇀ w in V , uh

δ,ν → wν in L2(Γ3). (4.2)

Let us first show thatw ∈ U . By (3.4), for any vh
∈ V h,

1
δ

∫
Γ3

(uh
δ,ν − g)+(uh

δ,ν − vhν ) ds ≤

∫
Ω

F(ε(uh
δ )) · ε(vh

− uh
δ ) dx +

∫
Γ3

j0ν(u
h
δ,ν; v

h
ν − uh

δ,ν) ds

− ⟨f , vh
− uh

δ⟩V∗×V .

Fix vh
∈ V h. Since {∥uh

δ∥V }h,δ→0 is bounded, there is a constant c(vh), dependent on vh but independent of δ, such that

1
δ

∫
Γ3

(uh
δ,ν − g)+(uh

δ,ν − vhν ) ds ≤ c(vh).

Then, we deduce that

lim sup
δ→0

∫
Γ3

(uh
δ,ν − g)+(uh

δ,ν − vhν ) ds ≤ 0 ∀ vh
∈ V h. (4.3)

For any fixed v ∈ V , by (3.2), there exists vh
∈ V h such that vh

→ v in V . Since {∥uh
δ ν∥L2(Γ3)}h,δ>0 is bounded, we derive from

(4.3) that

lim sup
δ→0

∫
Γ3

(uh
δ,ν − g)+(uh

δ,ν − vν) ds ≤ 0 ∀ v ∈ V .

Since uh
δ,ν → wν in L2(Γ3), we derive from the above that∫
Γ3

(wν − g)+(wν − vν) ds ≤ 0 ∀ v ∈ V .

Therefore,∫
Γ3

(wν − g)+vνds = 0 ∀ v ∈ V

and then

(wν − g)+ = 0 a.e. on Γ3,

i.e., wν ≤ g a.e. on Γ3. Thus,w ∈ U .
Let us then prove the strong convergence

uh
δ → w in V .

By (3.3), there existswh
∈ V h

∩ U such that

∥wh
− w∥V → 0 as h → 0.

We take vh
= wh in (3.4) to get∫

Ω

F(ε(uh
δ )) · ε(uh

δ − wh) dx ≤
1
δ

∫
Γ3

(uh
δ,ν − g)+(wh

ν − uh
δ,ν) ds +

∫
Γ3

j0ν(u
h
δ,ν;w

h
ν − uh

δ,ν) ds

− ⟨f ,wh
− uh

δ⟩V∗×V .

Since wh
ν ≤ g on Γ3,

1
δ

∫
Γ3

(uh
δ,ν − g)+(wh

ν − uh
δ,ν) ds ≤ −

1
δ

∫
Γ3

(uh
δ,ν − g)+(uh

δ,ν − g) ds ≤ 0.

Hence,∫
Ω

F(ε(uh
δ )) · ε(uh

δ − wh) dx ≤

∫
Γ3

j0ν(u
h
δ,ν;w

h
ν − uh

δ,ν) ds − ⟨f ,wh
− uh

δ⟩V∗×V . (4.4)

By (2.17) (c) and (2.7),

|j0ν(u
h
δ,ν;w

h
ν − uh

δ,ν)| ≤
(
c0 + c1|uh

δ,ν |
)
|wh

ν − uh
δ,ν |.

Then, ∫
Γ3

j0ν(u
h
δ,ν;w

h
ν − uh

δ,ν) ds ≤ c
(
1 + ∥uh

δ,ν∥L2(Γ3)
)
∥wh

ν − uh
δ,ν∥L2(Γ3)
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and so

lim sup
h,δ→0

∫
Γ3

j0ν(u
h
δ,ν;w

h
ν − uh

δ,ν) ds ≤ 0.

Note thatwh
− uh

δ ⇀ 0 in V , implying

lim
h,δ→0

⟨f ,wh
− uh

δ⟩V∗×V = 0.

Hence, from (4.4), we derive that

lim sup
h,δ→0

∫
Ω

F(ε(uh
δ )) · ε(uh

δ − wh) dx ≤ 0.

Since {∥F(ε(uh
δ ))∥Q }h,δ>0 is bounded andwh

→ w in V , the previous inequality implies

lim sup
h,δ→0

∫
Ω

F(ε(uh
δ )) · ε(uh

δ − w) dx ≤ 0. (4.5)

Apply the condition (2.9) (b),

mF∥uh
δ − w∥

2
V ≤

∫
Ω

(
F(ε(uh

δ )) − F(ε(w))
)
·
(
ε(uh

δ ) − ε(w)
)
dx

=

∫
Ω

F(ε(uh
δ )) · ε(uh

δ − w) dx −

∫
Ω

F(ε(w)) · ε(uh
δ − w) dx.

By (4.5) and the weak convergence uh
δ ⇀ w in V , we find from the above inequality that

lim sup
h,δ→0

mF∥uh
δ − w∥

2
V ≤ 0.

Therefore,

∥uh
δ − w∥V → 0 as h, δ → 0,

and we have shown the strong convergence.
Finally, we show that the limit w is the solution of Problem (P). We fix an arbitrary element vh′

∈ V h′

∩ U . We consider
(3.4) in a space V h

⊃ V h′

with vh
= vh′

:∫
Ω

F(ε(uh
δ )) · ε(uh

δ − vh′

) dx ≤
1
δ

∫
Γ3

(uh
δ,ν − g)+(vh

′

ν − uh
δ,ν) ds +

∫
Γ3

j0ν(u
h
δ,ν; v

h′

ν − uh
δ,ν) ds

− ⟨f , vh′

− uh
δ⟩V∗×V .

Since vh′

∈ V h′

∩ U ,∫
Γ3

(uh
δ,ν − g)+(vh

′

ν − uh
δ,ν) ds ≤ −

∫
Γ3

(uh
δ,ν − g)+(uh

δ,ν − g) ds ≤ 0.

Thus, ∫
Ω

F(ε(uh
δ )) · ε(uh

δ − vh′

) dx ≤

∫
Γ3

j0ν(u
h
δ,ν; v

h′

ν − uh
δ,ν) ds − ⟨f , vh′

− uh
δ⟩V∗×V . (4.6)

By the upper semi-continuity property (2.8),

lim sup
h,δ→0

∫
Γ3

j0ν(u
h
δ,ν; v

h′

ν − uh
δ,ν) ds ≤

∫
Γ3

lim sup
h,δ→0

j0ν(u
h
δ,ν; v

h′

ν − uh
δ,ν) ds

≤

∫
Γ3

j0ν(wν; v
h′

ν − wν) ds.

We take the upper limit as h → 0 and δ → 0 along the subsequence of the spaces V h
⊃ V h′

in (4.6) to obtain

lim sup
h,δ→0

∫
Ω

F(ε(uh
δ )) · ε(uh

δ − vh′

) dx ≤

∫
Γ3

j0ν(wν; v
h′

ν − wν) ds − ⟨f , vh′

− w⟩V∗×V . (4.7)

Since uh
δ converges to w strongly, we deduce from (4.7) that∫
Ω

F(ε(w)) · ε(w − vh′

) dx ≤

∫
Γ3

j0ν(wν; v
h′

ν − wν) ds − ⟨f , vh′

− w⟩V∗×V .
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The element vh′

∈ V h′

∩ U being arbitrary, we use the density of {V h′

∩ U} in U to obtain∫
Ω

F(ε(w)) · ε(w − v) dx ≤

∫
Γ3

j0ν(wν; vν − wν) ds − ⟨f , v − w⟩V∗×V ∀ v ∈ U . (4.8)

There, w = u is the unique solution of Problem (P). Since the solution of Problem (P) is unique, we conclude that the entire
family {uh

δ}h,δ>0 converges to u in V . ■

References

[1] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[2] W. Han, M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in: Studies in Advanced Mathematics, vol. 30, Americal

Mathematical Society, RI–International Press, Providence, Somerville, MA, 2002.
[3] S. Migórski, A. Ochal, M. Sofonea, Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, in: Advances in

Mechanics and Mathematics, vol. 26, Springer, New York, 2013.
[4] Z. Naniewicz, P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, Inc., New York, Basel,

Hong Kong, 1995.
[5] P.D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993.
[6] J. Haslinger, M. Miettinen, P.D. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications, Kluwer

Academic Publishers, Boston, Dordrecht, London, 1999.
[7] W. Han, S. Migórski, M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM J. Math.

Anal. 46 (2014) 3891–3912.
[8] W. Han, M. Sofonea, M. Barboteu, Numerical analysis of elliptic hemivariational inequalities, SIAM J. Numer. Anal. 55 (2017) 640–663.
[9] W. Han, M. Sofonea, D. Danan, Numerical analysis of stationary variational-hemivariational inequalities, Numer. Math. 139 (2018) 563–592.

[10] W. Han, Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics, Math. Mech. Solids 23
(2018) 279–293.

[11] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.
[12] R. Glowinski, J.-L. Lions, R. Trémolières, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
[13] M. Sofonea, F. Patrulescu, Penalization of history-dependent variational inequalities, European J. Appl. Math. 25 (2014) 155–176.
[14] S. Migórski, A. Ochal, M. Sofonea, A class of variational-hemivariational inequalities in reflexive Banach spaces, J. Elasticity 127 (2017) 151–178.
[15] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, Interscience, New York, 1983.
[16] Z. Denkowski, S. Migórski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/PlenumPublishers, Boston, Dordrecht,

London, New York, 2003.
[17] M. Sofonea, S. Migórski, Variational-hemivariational inequalities with applications, in: Pure and Applied Mathematics, Chapman & Hall/CRC Press,

Boca Raton-London, 2018.
[18] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, third ed., Springer-Verlag, New York, 2009.
[19] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, third ed., Springer-Verlag, New York, 2008.
[20] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.
[21] I. Hlaváček, J. Lovíšek, A finite element analysis for the Signorini problem in plane elastostatics, Apl. Mat. 22 (1977) 215–227.

http://refhub.elsevier.com/S0377-0427(19)30067-6/sb1
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb2
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb2
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb2
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb3
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb3
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb3
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb4
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb4
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb4
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb5
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb6
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb6
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb6
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb7
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb7
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb7
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb8
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb9
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb10
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb10
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb10
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb11
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb13
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb14
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb15
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb16
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb16
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb16
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb17
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb17
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb17
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb18
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb19
http://refhub.elsevier.com/S0377-0427(19)30067-6/sb21

	On penalty method for unilateral contact problem with non-monotone contact condition
	Introduction
	The contact problem with unilateral constraint
	A penalty based numerical method
	Convergence of the numerical method
	References


