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a b s t r a c t

This paper is devoted to the study of a general dynamic variational–hemivariational
inequality with history-dependent operators. These operators appear in a convex
potential and in a locally Lipschitz superpotential. The existence and uniqueness
of a solution to the inequality problem is explored through a result on a class of
nonlinear evolutionary abstract inclusions involving a nonmonotone multivalued
term described by the Clarke generalized gradient. The result presented in this
paper is new and general. It can be applied to study various dynamic contact
problems. As an illustrative example, we apply the theory on a dynamic frictional
viscoelastic contact problem in which the contact is modeled by a nonmonotone
Clarke subdifferential boundary condition and the friction is described by a version
of the Coulomb law of dry friction with the friction bound depending on the total
slip.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Inequality problems in Mechanics can be divided into two main categories: that of variational inequalities,
which is mainly concerned with convex functions, and that of hemivariational inequalities, which is concerned
with nonconvex locally Lipschitz functions. Both variational and hemivariational inequalities are useful in a
wide variety of applications, in Mechanics, Engineering, Economics, etc.

The notion of hemivariational inequality was first introduced and studied by P.D. Panagiotopoulos [1]
in connection with contact problems with nonmonotone and possibly multivalued constitutive or interface
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laws for deformable bodies. The literature on the mathematical theory and applications of hemivariational
inequalities is growing; some comprehensive references are [2–8].

Variational–hemivariational inequalities can be seen as an effective mathematical tool which combines the
variational inequalities and the hemivariational inequalities and involves both convex and nonconvex energy
functions. Recently, some papers are found studying various types of variational–hemivariational inequalities.
For instance, an adhesive unilateral contact problem between a viscoelastic body and a deformable
foundation is treated in [9], where a result is presented on unique solvability for a system consisting of a
variational–hemivariational inequality and an ordinary differential equation. In [10,11], results are obtained
on the existence and uniqueness of solutions for two different types of variational–hemivariational inequalities
and applied these abstract results to study a static frictional contact problem and a quasistatic frictionless
contact problem, respectively.

The goal of this paper is to study a general evolutionary variational–hemivariational inequality which
involves history-dependent operators. The latter are operators which at any time moment depend on the
history of the solution up to this time moment. Analysis of various classes of history-dependent quasistatic
hemivariational inequalities and variational–hemivariational inequalities and their applications can be found
in [9,12–14,6,11,15,16]. An evolutionary history-dependent variational–hemivariational inequality is studied
in [17]. Different from [17], in this paper, we consider a general evolutionary variational–hemivariational
inequality without a compact operator in the multivalued term and provide a new existence and uniqueness
result. We allow now both convex potential and nonconvex superpotentials to depend on history-dependent
operators.

Our abstract results find applications in the variational analysis of a variety of dynamic contact problems.
To provide an illustrative example we consider a dynamic frictional contact problem for viscoelastic materials
with long memory. In this problem the contact is described with a nonmonotone normal damped response
condition with a damping coefficient depending on the normal displacement. The friction is modeled by
a version of Coulomb’s law of dry friction with the friction bound depending on the total slip. The weak
formulation in terms of the unknown velocity of the contact problem leads to a variational–hemivariational
inequality with three history-dependent operators to which our abstract results apply. Then we mention two
different versions of the problem which can be treated by our abstract existence and uniqueness result.

The paper is structured as follows. In Section 2, we review some basic mathematical notation, definitions
and results. In Section 3, we provide an existence and uniqueness result for an abstract subdifferential
inclusion of first order considered in the framework of an evolution triple of spaces. Then, in Section 4, we
show the unique solvability of a general abstract evolutionary history-dependent variational–hemivariational
inequality. Finally, in Section 5, we introduce a new viscoelastic frictional contact problem, present its weak
formulation, and apply the abstract result obtained in Section 4 to prove the existence of a unique weak
solution to the contact problem.

2. Preliminaries

In this section we briefly review basic definitions on single-valued and multivalued operators in Banach
spaces and on subdifferentials which are used later. We refer to [18–21] for more material on these topics.

Let (X, ∥ · ∥X) be a reflexive Banach space. We denote by X∗ its topological dual and by ⟨·, ·⟩X∗×X
the duality pairing of X and X∗. Given a set S ⊂ X, we define ∥S∥X = sup{∥s∥X | s ∈ S}. A single-
valued operator A : X → X∗ is said to be hemicontinuous if the function λ → ⟨A(u + λv), w⟩X∗×X is
continuous on [0, 1] for all u, v, w ∈ X. The operator A is demicontinuous if for all w ∈ X, the functional
u → ⟨Au,w⟩X∗×X is continuous, i.e., A is continuous as a mapping from X to (w∗–X∗). It is monotone
if ⟨Au − Av, u − v⟩X∗×X ≥ 0 for all u, v ∈ X. It is known that for a monotone operator A : X → X∗
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with D(A) = X, the notions of demicontinuity and hemicontinuity coincide [20, Exercise I.9]. The operator
A : X → X∗ is said to be bounded if it maps bounded subsets of X into bounded subsets of X∗.

Let 0 < T < ∞ and A : (0, T ) × X → X∗. The Nemitsky (superposition) operator associated with A

is the operator A : L2(0, T ;X) → L2(0, T ;X∗) defined by (Av)(t) = A(t, v(t)) for v ∈ L2(0, T ;X) and
a.e. t ∈ (0, T ).

A multivalued operator A : X → 2X∗ is called bounded if it maps bounded sets into bounded ones. It is
called coercive if either its domain D(A) = {u ∈ X | Au ̸= ∅} is bounded or D(A) is unbounded and

lim
∥u∥X→∞, u∈D(A)

inf { ⟨u∗, u⟩X∗×X | u∗ ∈ Au }
∥u∥X

= +∞.

We recall the notion of pseudomonotonicity of a multivalued operator.

Definition 1. Let A : X → 2X∗ be a multivalued operator and L : D(L) ⊂ X → X∗ be a linear and maximal
monotone operator. The operator A is pseudomonotone with respect to L or simply L-pseudomonotone if
the following conditions hold:

(a) for all u ∈ X the set Au is a nonempty, bounded, closed, and convex subset of X∗.
(b) A is upper semicontinuous (u.s.c.) from each finite dimensional subspace of X to X∗ endowed with the

weak topology.
(c) if {un} ⊂ D(L), un → u weakly in X,Lun → Lu weakly in X∗, u∗n ∈ Aun is such that u∗n → u∗ weakly

in X∗ and lim sup ⟨u∗n, un − u⟩X∗×X ≤ 0, then u∗ ∈ Au and ⟨u∗n, un⟩X∗×X → ⟨u∗, u⟩X∗×X .

We will need the following surjectivity result [20, Theorem 1.3.73].

Proposition 2. Let X be a reflexive Banach space, let L : D(L) ⊂ X → X∗ be a linear and maximal monotone
operator. If A : X → 2X∗ is bounded, coercive, and L-pseudomonotone, then L+A is surjective.

The result is stated in [20, Theorem 1.3.73] under the hypothesis that X is strictly convex. However, by
passing to an equivalent norm on X, we may always assume that X is a strictly convex Banach space.

Let E be a Banach space. A function ϕ : E → R ∪ {+∞} is proper if it is not identically equal to +∞,
i.e., the effective domain domϕ = {x ∈ E | ϕ(x) < +∞} ̸= ∅. It is lower semicontinuous (l.s.c.) if xn → x

in E implies ϕ(x) ≤ lim inf ϕ(xn). It is well known that a convex and l.s.c. function ϕ : E → R is locally
Lipschitz [19, Proposition 5.2.10].

The following notion of the subgradient of a convex function generalizes the classical notion of gradient.
Let U be an open convex subset of E and g : U → R be a convex function. An element x∗ ∈ E∗ is called a
subgradient of g at x ∈ E if

g(v) ≥ g(x) + ⟨x∗, v − x⟩E∗×E for all v ∈ U. (2.1)

The set of all x∗ ∈ E∗ satisfying (2.1) is called the (convex) subdifferential of g at x, and is denoted by
∂g(x). Next, we recall the definitions of the generalized directional derivative and the generalized gradient
of Clarke for a locally Lipschitz function h : E → R. The generalized directional derivative of h at x ∈ E in
the direction v ∈ E, denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv)− h(y)
λ

.

The generalized gradient of h at x ∈ E, denoted by ∂h(x), is a subset in the dual space E∗ given by

∂h(x) = {ζ ∈ E∗ | h0(x; v) ≥ ⟨ζ, v⟩E∗×E for all v ∈ E}.
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In what follows the generalized gradient of Clarke for a locally Lipschitz function and the subdifferential of
a convex function will be denoted in the same way.

Finally, we recall a fixed point result (cf. [22, Lemma 7] or [23, Proposition 3.1]). For a Banach space E,
the space L2(0, T ;E) of vector-valued functions consists of all measurable functions v : (0, T )→ E for which T

0 ∥v(t)∥2Edt is finite.

Lemma 3. Let E be a Banach space and 0 < T <∞. Let Λ : L2(0, T ;E)→ L2(0, T ;E) be an operator such
that

∥(Λη1)(t)− (Λη2)(t)∥2E ≤ c
 t

0
∥η1(s)− η2(s)∥2E ds

for all η1, η2 ∈ L2(0, T ;E), a.e. t ∈ (0, T ) with a constant c > 0. Then Λ has a unique fixed point in
L2(0, T ;E), i.e., there exists a unique η∗ ∈ L2(0, T ;E) such that Λη∗ = η∗.

3. Subdifferential inclusion of first order

In this section we present an existence and uniqueness result for an abstract subdifferential inclusion of
first order. We treat this inclusion within the framework of an evolution triple of spaces V ⊂ H ⊂ V ∗,
where V is a reflexive and separable Banach space, H is a separable Hilbert space, the embedding V ⊂ H
is continuous, and V is dense in H. Given 0 < T < +∞, we introduce the spaces V = L2(0, T ;V ) and
W = {w ∈ V | w′ ∈ V∗}, where the time derivative w′ = ∂w/∂t is understood in the sense of vector-valued
distributions; the dual of V is V∗ = L2(0, T ;V ∗). It is known that the spaceW endowed with the graph norm
∥w∥W = ∥w∥V+∥w′∥V∗ is a separable and reflexive Banach space. Identifying H = L2(0, T ;H) with its dual,
we obtain the continuous embeddings W ⊂ V ⊂ H ⊂ V∗. The embedding W ⊂ C(0, T ;H) is continuous,
C(0, T ;H) being the space of continuous functions on [0, T ] with values in H. The duality pairing between
V∗ and V is denoted by

⟨w, v⟩V∗×V =
 T

0
⟨w(t), v(t)⟩V ∗×V dt for w ∈ V∗, v ∈ V,

where ⟨·, ·⟩V ∗×V stands for the duality brackets of the pair (V ∗, V ).
Let A : (0, T ) × V → V ∗ and ψ : (0, T ) × V → R. Assume ψ is locally Lipschitz in its second argument

and we denote by ∂ψ the Clarke generalized gradient of ψ with respect to its second argument. Given
f : (0, T )→ V ∗ and w0 ∈ H, we consider the following evolutionary inclusion.

Problem 4. Find w ∈ W such that
w′(t) +A(t, w(t)) + ∂ψ(t, w(t)) ∋ f(t) a.e. t ∈ (0, T ),
w(0) = w0.

In the study of Problem 4 we introduce the following definition.

Definition 5. A function w ∈ W is called a solution of Problem 4 if there exists w∗ ∈ V∗ such that
w′(t) +A(t, w(t)) + w∗(t) = f(t) a.e. t ∈ (0, T ),
w∗(t) ∈ ∂ψ(t, w(t)) a.e. t ∈ (0, T ),
w(0) = w0.

We need the following hypotheses on the data.



W. Han et al. / Nonlinear Analysis: Real World Applications 36 (2017) 69–88 73

H(A): A : (0, T )× V → V ∗ is such that

(1) A(·, v) is measurable on (0, T ) for all v ∈ V .
(2) A(t, ·) is demicontinuous on V for a.e. t ∈ (0, T ).
(3) ∥A(t, v)∥V ∗ ≤ a0(t) + a1∥v∥V for all v ∈ V , a.e. t ∈ (0, T ) with a0 ∈ L2(0, T ), a0 ≥ 0 and a1 ≥ 0.
(4) A(t, ·) is strongly monotone for a.e. t ∈ (0, T ), i.e., for a constant mA > 0,

⟨A(t, v1)−A(t, v2), v1 − v2⟩V ∗×V ≥ mA∥v1 − v2∥2V

for all v1, v2 ∈ V , a.e. t ∈ (0, T ).

H(ψ): ψ : (0, T )× V → R is such that

(1) ψ(·, v) is measurable on (0, T ) for all v ∈ V .
(2) ψ(t, ·) is locally Lipschitz on V for a.e. t ∈ (0, T ).
(3) ∥∂ψ(t, v)∥V ∗ ≤ c0(t) + c1∥v∥V for all v ∈ V , a.e. t ∈ (0, T ) with c0 ∈ L2(0, T ), c0 ≥ 0, c1 ≥ 0.
(4) ∂ψ(t, ·) is relaxed monotone for a.e. t ∈ (0, T ), i.e., for a constant mψ ≥ 0,

⟨z1 − z2, v1 − v2⟩V ∗×V ≥ −mψ∥v1 − v2∥2V

for all zi ∈ ∂ψ(t, vi), zi ∈ V ∗, vi ∈ V, i = 1, 2, a.e. t ∈ (0, T ).

(H1): f ∈ V∗, w0 ∈ V .
(H2): mA > max{mψ, 2

√
2 c1}.

We have the following existence and uniqueness result.

Theorem 6. Under hypotheses H(A), H(ψ), (H1) and (H2), Problem 4 has a unique solution.

Proof. We prove the existence in Step 1 and the uniqueness in Step 2.

Step 1. Let A : V → V∗ and B : V → 2V∗ be the Nemitsky operators corresponding to the translations of
A(t, ·) and ∂ψ(t, ·) by the element w0:

(Av)(t) = A(t, v(t) + w0),
(Bv)(t) = { v∗ ∈ V∗ | v∗(t) ∈ ∂ψ(t, v(t) + w0) for a.e. t ∈ (0, T ) }

for v ∈ V and a.e. t ∈ (0, T ). We further introduce an operator F : V → 2V∗ defined by

Fv = Av + Bv for v ∈ V.

Define an operator L : D(L) ⊂ V → V∗ by

Lv = v′ for v ∈ D(L)

with its domain D(L) = {w ∈ W | w(0) = 0}. The operator L is linear and maximal monotone [21, Propo-
sition 32.10]. With these operators, we consider the following inclusion:

Lw + Fw ∋ f,
w(0) = 0.

(3.2)

Then, w ∈ W is a solution of Problem 4 if and only if w − w0 ∈ W satisfies (3.2).

Let us apply Proposition 2 to prove that problem (3.2) has a solution. For this purpose, we verify that
F has the properties required in Proposition 2.
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Claim 1. F is a bounded operator.

Let v ∈ V and v∗ ∈ Fv. Then v∗ = Av + w∗ with w∗ ∈ Bv. From hypotheses H(A)(3), H(ψ)(3) and the
elementary inequality (a+ b)2 ≤ 2 (a2 + b2) for a, b ≥ 0, we have

∥Av∥V∗ ≤
√

2∥a0∥L2(0,T ) + 2a1
√
T∥w0∥V + 2a1∥v∥V , (3.3)

∥w∗∥V∗ ≤
√

2∥c0∥L2(0,T ) + 2c1
√
T∥w0∥V + 2c1∥v∥V . (3.4)

Combining these inequalities, we immediately deduce that F is a bounded operator, being the sum of two
bounded operators.

Claim 2. F is coercive.

First, by H(A)(3) and (4), we have

⟨A(t, v), v⟩V ∗×V = ⟨A(t, v)−A(t, 0), v⟩V ∗×V + ⟨A(t, 0), v⟩V ∗×V
≥ mA∥v∥2V − a0(t)∥v∥V (3.5)

for all v ∈ V , a.e. t ∈ (0, T ). Let v ∈ V and v∗ ∈ Fv. Then v∗ = Av + w∗ where w∗ ∈ Bv. Using H(A)(3),
(3.5) and the inequality (a+ b)2 ≥ 1

2a
2 − b2 for a, b ∈ R, we obtain

⟨Av, v⟩V∗×V =
 T

0
[⟨A(t, v(t) + w0), v(t) + w0⟩V ∗×V − ⟨A(t, v(t) + w0), w0⟩V ∗×V ] dt

≥
 T

0


mA∥v(t) + w0∥2V − a0(t)∥v(t) + w0∥V − (a0(t) + a1∥v(t) + w0∥V ) ∥w0∥V


dt

≥ mA

2 ∥v∥
2
V −

∥a0∥L2(0,T ) + a1

√
T∥w0∥V


∥v∥V

−mAT∥w0∥2V − 2
√
T∥w0∥V ∥a0∥L2(0,T ) − a1T∥w0∥2V . (3.6)

Since w∗ ∈ Bv, w∗(t) ∈ ∂ψ(t, v(t) + w0) for a.e. t ∈ (0, T ). Using H(ψ)(3), we obtain ∥w∗(t)∥2V ∗ ≤
2 c2

1 ∥v(t)∥2V + 2(c0(t) + c1∥w0∥V )2 for a.e. t ∈ (0, T ), and then

∥w∗∥V∗ ≤
√

2 c1∥v∥V + c2

with c2 =
√

2 (
 T

0 (c0(t) + c1∥w0∥V ) dt)1/2 ≥ 0. Hence

⟨v∗, v⟩V∗×V = ⟨Av, v⟩V∗×V + ⟨w∗, v⟩V∗×V ≥
mA

2 ∥v∥
2
V −
√

2c1∥v∥2V − c3∥v∥V − c4

with c3, c4 ≥ 0. Thus, it is clear from (H2) that F is coercive.

Claim 3. F is L-pseudomonotone.

First, we show the following properties of the operator A:

A : V → V∗ is demicontinuous, (3.7)
⟨Av1 −Av2, v1 − v2⟩V∗×V ≥ mA∥v1 − v2∥2V for all v1, v2 ∈ V. (3.8)

For a proof of (3.7), let vn → v in V. Then, by passing to a subsequence if necessary, we have vn(t)→ v(t) in
V for a.e. t ∈ (0, T ) and ∥vn(t)∥V ≤ h(t) for a.e. t ∈ (0, T ) with h ∈ L2(0, T ). Exploiting H(A)(2), we deduce

A(t, vn(t))→ A(t, v(t)) weakly in V ∗, a.e. t ∈ (0, T ).

Hence, ⟨A(t, vn(t)), ϕ(t)⟩V ∗×V → ⟨A(t, v(t)), ϕ(t)⟩V ∗×V for all ϕ ∈ V, a.e. t ∈ (0, T ). Use H(A)(3) and apply
the Lebesgue dominated convergence theorem,

lim
 T

0
⟨A(t, vn(t)), ϕ(t)⟩V ∗×V dt =

 T

0
⟨A(t, v(t)), ϕ(t)⟩V ∗×V dt.
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Thus Avn → Av weakly in V∗. The standard argument shows that the entire sequence {Avn} converges
weakly in V∗ to Av. This concludes the proof of (3.7).

The strong monotonicity property for A in (3.8) follows from hypothesis H(A)(4).

We now prove that the operator F satisfies conditions (a)–(c) of Definition 1.

(a) For every v ∈ V, the set Fv is a nonempty, bounded, closed and convex in V∗. The fact that values of the
operator F are nonempty and convex follows from the well known property [18, Proposition 2.1.2] that values
of ∂ψ(t, ·) are nonempty and convex subsets of V ∗ for a.e. t ∈ (0, T ). From (3.3) and (3.4), it follows that
∥v∗∥V∗ ≤ c0 + c1∥v∥V for all v∗ ∈ Fv = Av+Bv, v ∈ V with c0, c1 ≥ 0. Hence, the set Fv is bounded in V∗
for all v ∈ V. The set Bv is also closed in V∗ for all v ∈ V. Indeed, let v ∈ V, v∗n ∈ V∗, v∗n ∈ Bv, v∗n → v∗ in V∗.
Passing to a subsequence if necessary, we may suppose that v∗n(t)→ v∗(t) in V ∗ for a.e. t ∈ (0, T ). We have

v∗n(t) ∈ ∂ψ(t, v(t) + w0) a.e. t ∈ (0, T )

and the latter is a closed subset of V ∗. Thus v∗(t) ∈ ∂ψ(t, v(t) + w0) for a.e. t ∈ (0, T ), i.e., v∗ ∈ Bv, which
proves the closedness of the set Bv. Hence, the set Fv is closed in V∗ for all v ∈ V, which concludes the
proof of (a).

(b) The operator F is u.s.c. from V into 2V∗ , where V∗ is endowed with the weak topology. In order
to show this property, we apply [19, Proposition 4.1.4]. To this end, we prove that the weak inverse im-
age F−(D) = {v ∈ V | Fv ∩ D ̸= ∅} is a closed subset of V, for every weakly closed set D ⊂ V∗. Let
{vn} ⊂ F−(D) be such that vn → v in V. We may assume, passing to a subsequence if necessary, that

vn(t)→ v(t) in V, a.e. t ∈ (0, T ). (3.9)

Therefore, there exists v∗n ∈ Fvn ∩D for n ∈ N, that is,

v∗n = Avn + w∗n (3.10)

with w∗n ∈ Bvn and v∗n ∈ D. Since {vn} is bounded in V and the operators A and B are bounded (cf. Claim 1),
we know that {v∗n} and {w∗n} are both bounded in V∗. Thus, at least for subsequences, we may suppose that

v∗n → v∗, w∗n → w∗ weakly in V∗

with v∗, w∗ ∈ V∗. Since D is weakly closed in V∗, we have v∗ ∈ D. By the definition of the operator B, we have

w∗n(t) ∈ ∂ψ(t, vn(t) + w0) a.e. t ∈ (0, T ). (3.11)

Taking into account the convergences (3.9) and w∗n → w∗ weakly in V∗, and the fact that ∂ψ(t, ·) is u.s.c. with
closed and convex values, we can apply a convergence theorem found in [24, p. 60] to the inclusion (3.11)
and deduce w∗(t) ∈ ∂ψ(t, v(t) + w0) a.e. t ∈ (0, T ). Hence, w∗ ∈ Bv.

By the demicontinuity of the operator A (cf. (3.7)), we have Avn → Av weakly in V∗. Passing to the
limit in (3.10), we obtain v∗ = Av + w∗, where w∗ ∈ Bv and v∗ ∈ D. Therefore, v∗ ∈ Fv ∩ D, implying
v∗ ∈ F−(D). This proves that F−(D) is closed in V and concludes the proof of condition (b).

(c) The condition (c) of Definition 1 holds. Let {vn} ⊂ D(L), vn → v weakly in W, Lvn → Lv weakly in
W∗, v∗n ∈ Fvn, v∗n → v∗ weakly in V∗ and

lim sup⟨v∗n, vn − v⟩V∗×V ≤ 0. (3.12)

We prove that v∗ ∈ Fv and

⟨v∗n, vn⟩V∗×V → ⟨v∗, v⟩V∗×V . (3.13)
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First, we observe that F : V → 2V∗ is strongly monotone. Indeed, by H(ψ)(4),

⟨w∗1 − w∗2 , v1 − v2⟩V∗×V =
 T

0
⟨w∗1(t)− w∗2(t), v1(t)− v2(t)⟩V ∗×V dt

≥ −mψ

 T

0
∥v1(t)− v2(t)∥2V dt

= −mψ∥v1 − v2∥2V

for all w∗i ∈ Bvi, vi ∈ V, i = 1, 2. This inequality and (3.8) together imply

⟨v∗1 − v∗2 , v1 − v2⟩V∗×V ≥ (mA −mψ) ∥v1 − v2∥2V

for all v∗i ∈ Fvi, vi ∈ V, i = 1, 2. From (H2), it follows that the operator F is strongly monotone.

Next, we prove that vn → v in V. From the strong monotonicity of F , we have

(mA −mψ) ∥vn − v∥2V ≤ ⟨v∗n − η, vn − v⟩V∗×V

for all v∗n ∈ Fvn, η ∈ Fv. Taking lim sup in the last inequality and using (3.12), we obtain

0 ≤ (mA −mψ) lim inf ∥vn − v∥2V ≤ (mA −mψ) lim sup ∥vn − v∥2V
≤ lim sup⟨v∗n, vn − v⟩V∗×V − lim⟨η, vn − v⟩V∗×V ≤ 0,

implying vn → v in V.

Using the convergence of vn to v in V, and passing to a subsequence if necessary, we may assume

vn(t)→ v(t) in V, a.e. t ∈ (0, T ). (3.14)

Consequently, from v∗n ∈ Fvn, we have

v∗n = Avn + w∗n (3.15)

with w∗n ∈ Bvn, and thus

w∗n(t) ∈ ∂ψ(t, vn(t) + w0) a.e. t ∈ (0, T ).

By the boundedness of the operator B (cf. Claim 1), we can assume that w∗n → w∗ weakly in V∗ with
w∗ ∈ V∗. Similarly as in the proof of condition (b), we use the convergences (3.14) and w∗n → w∗ weakly in
V∗, and apply the convergence theorem of [24, p. 60] to obtain

w∗(t) ∈ ∂ψ(t, v(t) + w0) a.e. t ∈ (0, T ).

Hence, w∗ ∈ Bv. By the demicontinuity of the operator A (cf. (3.7)), we obtain Avn → Av weakly in V∗.
Passing to the limit in (3.15), we get v∗ = Av+w∗. Since w∗ ∈ Bv, we have v∗ ∈ Fv. From v∗n → v∗ weakly
in V∗ and vn → v in V, we deduce (3.13), which concludes the proof of condition (c).

Having established Claims 1–3 and noting that the operator L is linear and maximal monotone, we apply
Proposition 2 to deduce that the problem (3.2) has at least one solution w ∈ D(L). Then, w +w0 ∈ W is a
solution of Problem 4. This concludes the proof of the existence part of the theorem.

Step 2. We prove the uniqueness part of a solution to Problem 4. Assume w1, w2 ∈ W are two solutions.
Then, there are w∗i ∈ V∗ such that

w′i(s) +A(t, wi(s)) + w∗i (s) = f(s) a.e. s ∈ (0, T )
w∗i (s) ∈ ∂ψ(s, wi(s)) a.e. s ∈ (0, T )
wi(0) = w0
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for i = 1, 2. We subtract the two equations for w1 and w2, take the result in duality with w1(t) − w2(t),
integrate from 0 to t, and note that w1(0)− w2(0) = 0 to obtain

1
2 ∥w1(t)− w2(t)∥2H +

 t

0
⟨A(s, w1(s))−A(s, w2(s)), w1(s)− w2(s)⟩V ∗×V ds

+
 t

0
⟨w∗1(s)− w∗2(s), w1(s)− w2(s)⟩V ∗×V ds = 0

for all t ∈ [0, T ]. From hypotheses H(A)(4) and H(ψ)(4), we obtain

1
2 ∥w1(t)− w2(t)∥2H + (mA −mψ)

 t

0
∥w1(s)− w2(s)∥2V ds ≤ 0

for all t ∈ [0, T ]. Hence, by the smallness condition in (H2), it follows that w1 = w2 on [0, T ], i.e., a solution
to Problem 4 is unique. �

4. Inequality problem with history-dependent operators

In this section we study the first order variational–hemivariational inequality with history-dependent
operators. The main feature of this problem is that history-dependent operators appear at several places of
the inequality including a locally Lipschitz, generally nonconvex, superpotential and a convex potential. Let
Y and Z be two Banach spaces. The inequality under consideration reads as follows.

Problem 7. Find w ∈ W such that
⟨w′(t) +A(t, w(t)) + (R1w)(t)− f(t), v − w(t)⟩V ∗×V + J0(t, (Sw)(t), w(t); v − w(t))

+ϕ(t, (Rw)(t), v)− ϕ(t, (Rw)(t), w(t)) ≥ 0 for all v ∈ V, a.e. t ∈ (0, T )
w(0) = w0.

Throughout the paper, for the functional J(t, z, v) defined on (0, T ) × Z × V, J0 and ∂J refer to the
generalized directional derivative and the generalized gradient of Clarke with respect to the last argument v.

In the study of Problem 7 we need the following hypotheses on the data.
H(J): J : (0, T )× Z × V → R is such that

(1) J(·, z, v) is measurable on (0, T ) for all z ∈ Z, v ∈ V .
(2) J(t, ·, v) is continuous on Z for all v ∈ V , a.e. t ∈ (0, T ).
(3) J(t, z, ·) is locally Lipschitz on V for all z ∈ Z, a.e. t ∈ (0, T ).
(4) ∥∂J(t, z, v)∥V ∗ ≤ c0J(t) + c1J∥z∥Z + c2J∥v∥V for all z ∈ Z, v ∈ V , a.e. t ∈ (0, T ) with c0J ∈

L2(0, T ), c0J , c1J , c2J ≥ 0.
(5) J0(t, z1, v1; v2 − v1) + J0(t, z2, v2; v1 − v2) ≤ m2J ∥z1 − z2∥Z∥v1 − v2∥V + m2J ∥v1 − v2∥2V for all

zi ∈ Z, vi ∈ V, i = 1, 2, a.e. t ∈ (0, T ) with m2J ≥ 0,m2J ≥ 0.

H(ϕ): ϕ : (0, T )× Y × V → R is such that

(1) ϕ(·, y, v) is measurable on (0, T ) for all y ∈ Y, v ∈ V .
(2) ϕ(t, ·, v) is continuous on Y for all v ∈ V , a.e. t ∈ (0, T ).
(3) ϕ(t, y, ·) is convex and l.s.c. on V for all y ∈ Y , a.e. t ∈ (0, T ).
(4) ∥∂ϕ(t, y, v)∥V ∗ ≤ c0ϕ(t) + c1ϕ∥y∥Y + c2ϕ∥v∥V for all y ∈ Y, v ∈ V , a.e. t ∈ (0, T ) with c0ϕ ∈

L2(0, T ), c0ϕ, c1ϕ, c2ϕ ≥ 0.
(5) ϕ(t, y1, v2)−ϕ(t, y1, v1)+ϕ(t, y2, v1)−ϕ(t, y2, v2) ≤ βϕ ∥y1−y2∥Y ∥v1−v2∥V for all yi ∈ Y, vi ∈ V, i = 1, 2,

a.e. t ∈ (0, T ) with βϕ ≥ 0.
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(H4): R1 : V → V∗,R : V → L2(0, T ;Y ) and S : V → L2(0, T ;Z) are such that

(1) ∥(R1v1)(t)− (R1v2)(t)∥V ∗ ≤ cR1

 t
0 ∥v1(s)− v2(s)∥V ds for all v1, v2 ∈ V, a.e. t ∈ (0, T ) with cR1 > 0.

(2) ∥(Rv1)(t)− (Rv2)(t)∥Y ≤ cR
 t

0 ∥v1(s)− v2(s)∥V ds for all v1, v2 ∈ V, a.e. t ∈ (0, T ) with cR > 0.
(3) ∥(Sv1)(t)− (Sv2)(t)∥Z ≤ cS

 t
0 ∥v1(s)− v2(s)∥V ds for all v1, v2 ∈ V, a.e. t ∈ (0, T ) with cS > 0.

(H5): mA > max{m2J , c2J , c2ϕ}.

Remark 8. It can be shown that the hypothesis H(J)(5) is equivalent to the following condition

⟨v∗1 − v∗2 , v1 − v2⟩V ∗×V ≥ −m2J∥z1 − z2∥Z∥v1 − v2∥V −m2J∥v1 − v2∥2V (4.16)

for all v∗i ∈ ∂J(t, zi, vi), zi ∈ Z, vi ∈ V, i = 1, 2, a.e. t ∈ (0, T ). In particular, if J is independent of the
variable z, the hypothesis H(J)(5) (or, equivalently, (4.16)) reduces to the following relaxed monotonicity
condition

⟨v∗1 − v∗2 , v1 − v2⟩V ∗×V ≥ −m2J∥v1 − v2∥2V (4.17)

for all v∗i ∈ ∂J(t, vi), vi ∈ V, i = 1, 2, a.e. t ∈ (0, T ) with m2J ≥ 0. The latter has been recently used in the
literature to prove the uniqueness of the solution to the variational–hemivariational inequality. We refer to [6]
for examples of nonconvex functions which satisfy the condition (4.17). Furthermore, we note that when
J(t, ·) is convex, then (4.17) holds with m2J = 0, i.e., the condition (4.17) simplifies to the monotonicity of
the (convex) subdifferential.

We have the following existence and uniqueness result.

Theorem 9. Under hypotheses H(A), H(J), H(ϕ), (H1), (H4) and (H5), Problem 7 has a unique solution.

Proof. The proof is carried out in four steps and it is based on Theorem 6 combined with a fixed-point
argument.

Step 1. Let ξ ∈ L2(0, T ;V ∗), η ∈ L2(0, T ;Y ) and ζ ∈ L2(0, T ;Z) and consider the following auxiliary
problem. Find wξηζ ∈ W such that

⟨w′ξηζ(t) +A(t, wξηζ(t))− f(t) + ξ(t), v − wξηζ(t)⟩V ∗×V + J0(t, ζ(t), wξηζ(t); v − wξηζ(t))
+ϕ(t, η(t), v)− ϕ(t, η(t), wξηζ(t)) ≥ 0 for all v ∈ V, a.e. t ∈ (0, T ),

wξηζ(0) = w0.

(4.18)

To study the inequality (4.18), we define a functional ψξηζ : (0, T )× V → R by

ψξηζ(t, v) = ⟨ξ(t), v⟩V ∗×V + ϕ(t, η(t), v) + J(t, ζ(t), v)

for all v ∈ V , a.e. t ∈ (0, T ), and consider the following problem: Find wξηζ ∈ W such that
w′ξηζ(t) +A(t, wξηζ(t)) + ∂ψξηζ(t, wξηζ(t)) ∋ f(t) a.e. t ∈ (0, T )
wξηζ(0) = w0.

(4.19)

We apply Theorem 6 to prove the unique solvability of the problem (4.19). Let us check the hypotheses
of Theorem 6.

From hypotheses H(J)(1), (2) and H(ϕ)(1), (2), we know that J(·, ·, v) and ϕ(·, ·, v) are Carathéodory
functions for all v ∈ V . Thus, since t → ξ(t), t → ζ(t) and t → η(t) are measurable on (0, T ), we infer that the
functional ψξηζ(·, v) is also measurable on (0, T ) for all v ∈ V , i.e.,H(ψ)(1) holds. Since ϕ(t, y, ·) is convex and
l.s.c. for all y ∈ Y , a.e. t ∈ (0, T ), we find that ϕ(t, y, ·) is locally Lipschitz [19, Proposition 5.2.10]. Thanks
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to condition H(J)(3), we conclude that the functional ψξηζ(t, ·) is locally Lipschitz on V for a.e. t ∈ (0, T ),
i.e., H(ψ)(2) is satisfied.

From the fact that J(t, z, ·) and ϕ(t, y, ·) are locally Lipschitz for all z ∈ Z and y ∈ Y , a.e. t ∈ (0, T ), we
have [19, Proposition 5.6.23]

∂ψξηζ(t, v) ⊂ ξ(t) + ∂ϕ(t, η(t), v) + ∂J(t, ζ(t), v) (4.20)

for all v ∈ V and a.e. t ∈ (0, T ). Hence

∥∂ψξηζ(t, v)∥V ∗ ≤ ∥ξ(t)∥V ∗ + ∥∂J(t, ζ(t), v)∥V ∗ + ∥∂ϕ(t, η(t), v)∥V ∗
≤ ∥ξ(t)∥V ∗ + c0J(t) + c1J∥ζ(t)∥Z + c2J∥v∥V + c0ϕ(t) + c1ϕ∥η(t)∥Y + c2ϕ∥v∥V
= c0(t) + c1∥v∥V

for all v ∈ V , a.e. t ∈ (0, T ), where c0 ∈ L2(0, T ), c0 ≥ 0 and c1 = max{c2J , c2ϕ} ≥ 0. So, condition H(ψ)(3)
is satisfied.

Taking into account hypothesis H(ϕ)(3), we know that ∂ϕ(t, y, ·) is maximal monotone for all y ∈ Y , a.e.
t ∈ (0, T ) [19, Theorem 6.3.19]. Using the monotonicity of ∂ϕ(t, y, ·) and condition H(J)(5), we obtain

⟨∂ψξηζ(t, v1)− ∂ψξηζ(t, v2), v1 − v2⟩V ∗×V
= ⟨∂J(t, ζ(t), v1)− ∂J(t, ζ(t), v2), v1 − v2⟩V ∗×V + ⟨∂ϕ(t, η(t), v1)− ∂ϕ(t, η(t), v2), v1 − v2⟩V ∗×V
≥ −m2J ∥v1 − v2∥2V

for all v1, v2 ∈ V , a.e. t ∈ (0, T ). Therefore, condition H(ψ)(4) holds with mψ = m2J , which completes the
proof of H(ψ). In addition, since mψ = m2J , it is clear that (H5) implies (H2).

Applying Theorem 6, we deduce that the problem (4.19) has a unique solution wξηζ ∈ W. By the relation
(4.20), it is obvious that wξηζ ∈ W is also a solution to the following inclusion: Find wξηζ ∈ W such that

w′ξηζ(t) +A(t, wξηζ(t)) + ∂J(t, ζ(t), wξηζ(t))
+∂ϕ(t, η(t), wξηζ(t)) + ξ(t) ∋ f(t) a.e. t ∈ (0, T ),

wξηζ(0) = w0.

(4.21)

Furthermore, it is clear from the definitions of the Clarke and the convex subdifferentials that every solution
to problem (4.21) is also a solution to the problem (4.18). This completes the proof that the problem (4.18)
has a solution wξηζ ∈ W.

Step 2. We show that a solution to the problem (4.18) is unique. Let w1, w2 ∈ W be solutions to the
problem (4.18) and, for simplicity, we skip the subscripts ξ, η and ζ for this part of the proof. Take w2(t) as
the test function in the inequality for w1, take w1(t) as the test function in the inequality for w2, and add
the two resulting inequalities to get

⟨w′1(t)− w′2(t), w1(t)− w2(t)⟩V ∗×V + ⟨A(t, w1(t))−A(t, w2(t)), w1(t)− w2(t)⟩V ∗×V
≤ J0(t, ζ(t), w1(t);w2(t)− w1(t)) + J0(t, ζ(t), w2(t);w1(t)− w2(t))

for a.e. t ∈ (0, T ). Integrating the above inequality over the time interval (0, t), noting w1(0) − w2(0) = 0,
and using conditions H(A)(4) and H(J)(5), we have

1
2∥w1(t)− w2(t)∥2H +mA

 t

0
∥w1(s)− w2(s)∥2V ds ≤ m2J

 t

0
∥w1(s)− w2(s)∥2V ds

for all t ∈ [0, T ]. Hence, due to assumption (H5), we obtain

∥w1(t)− w2(t)∥2H = 0 for all t ∈ [0, T ].

Thus, w1 = w2, i.e., a solution to the problem (4.18) is unique.
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Step 3. Define an operator Λ : L2(0, T ;V ∗ × Y × Z)→ L2(0, T ;V ∗ × Y × Z) by

Λ(ξ, η, ζ) = (R1wξηζ ,Rwξηζ ,Swξηζ) for all (ξ, η, ζ) ∈ L2(0, T ;V ∗ × Y × Z),

where wξηζ ∈ W denotes the unique solution to the problem (4.18) corresponding to (ξ, η, ζ).

We apply Lemma 3 to show that the operator Λ has a unique fixed point. Let (ξi, ηi, ζi) ∈ L2(0, T ;V ∗ ×
Y ×Z), i = 1, 2 and w1 = wξ1η1ζ1 , w2 = wξ2η2ζ2 be the unique solutions to the problem (4.18) corresponding
to (ξ1, η1, ζ1) and (ξ2, η2, ζ2), respectively. We have

⟨w′1(t) +A(t, w1(t))− f(t) + ξ1(t), w2(t)− w1(t)⟩V ∗×V
+ J0(t, ζ1(t), w1(t);w2(t)− w1(t)) + ϕ(t, η1(t), w2(t))− ϕ(t, η1(t), w1(t)) ≥ 0

for a.e. t ∈ (0, T ) and

⟨w′2(t) +A(t, w2(t))− f(t) + ξ2(t), w1(t)− w2(t)⟩V ∗×V
+ J0(t, ζ2(t), w2(t);w1(t)− w2(t)) + ϕ(t, η2(t), w1(t))− ϕ(t, η2(t), w2(t)) ≥ 0

for a.e. t ∈ (0, T ), and w1(0) = w2(0) = w0. Adding these two inequalities, we obtain

⟨w′1(t)− w′2(t), w2(t)− w1(t)⟩V ∗×V + ⟨A(t, w1(t))−A(t, w2(t)), w2(t)− w1(t)⟩V ∗×V
+ J0(t, ζ1(t), w1(t);w2(t)− w1(t)) + J0(t, ζ2(t), w2(t);w1(t)− w2(t))
+ϕ(t, η1(t), w2(t))− ϕ(t, η1(t), w1(t)) + ϕ(t, η2(t), w1(t))− ϕ(t, η2(t), w2(t))
≥ ⟨ξ1(t), w2(t)− w1(t)⟩V ∗×V − ⟨ξ2(t), w1(t)− w2(t)⟩V ∗×V

for a.e. t ∈ (0, T ). We integrate the above inequality on (0, t), and use conditions H(A)(4), H(J)(5) and
H(ϕ)(5) to get

1
2∥w1(t)− w2(t)∥2H −

1
2∥w1(0)− w2(0)∥2H +mA

 t

0
∥w1(s)− w2(s)∥2V ds

≤ m2J

 t

0
∥ζ1(s)− ζ2(s)∥Z∥w1(s)− w2(s)∥2V ds+m2J

 t

0
∥w1(s)− w2(s)∥2V ds

+ βϕ

 t

0
∥η1(s)− η2(s)∥Y ∥w1(s)− w2(s)∥V ds+

 t

0
∥ξ1(s)− ξ2(s)∥V ∗∥w1(s)− w2(s)∥V ds

for all t ∈ [0, T ]. Next, using hypothesis (H5) and the Hölder inequality, we have

(mA −m2J) ∥w1 − w2∥2L2(0,t;V ) ≤ m2J∥ζ1 − ζ2∥L2(0,t;Z)∥w1 − w2∥L2(0,t;V )

+ βϕ∥η1 − η2∥L2(0,t;Y )∥w1 − w2∥L2(0,t;V )

+ ∥ξ1 − ξ2∥L2(0,t;V ∗)∥w1 − w2∥L2(0,t;V )

for all t ∈ [0, T ]. Hence

∥w1 − w2∥L2(0,t;V ) ≤ c

∥ζ1 − ζ2∥L2(0,t;Z) + ∥η1 − η2∥L2(0,t;Y ) + ∥ξ1 − ξ2∥L2(0,t;V ∗)


(4.22)

for all t ∈ [0, T ], where c is a positive constant. By the definition of operator Λ, hypothesis (H4), condition
(4.22) and the Jensen inequality, we can verify that

∥Λ(ξ1, η1, ζ1)(t)− Λ(ξ2, η2, ζ2)(t)∥2V ∗×Y×Z
= ∥(R1w1)(t)− (R1w2)(t)∥2V ∗ + ∥(Rw1)(t)− (Rw2)(t)∥2Y + ∥(Sw1)(t)− (Sw2)(t)∥2Z

≤

cR1

 t

0
∥w1(s)− w2(s)∥V ds

2
+

cR

 t

0
∥w1(s)− w2(s)∥V ds

2
+

cS

 t

0
∥w1(s)− w2(s)∥V ds

2

≤ c ∥w1 − w2∥2L2(0,t;V )

≤ c

∥ζ1 − ζ2∥2L2(0,t;Z) + ∥η1 − η2∥2L2(0,t;Y ) + ∥ξ1 − ξ2∥2L2(0,t;V ∗)


,
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i.e.,

∥Λ(ξ1, η1, ζ1)(t)− Λ(ξ2, η2, ζ2)(t)∥2V ∗×Y×Z ≤ c
 t

0
∥(ξ1, η1, ζ1)(s)− (ξ2, η2, ζ2)(s)∥2V ∗×Y×Z ds (4.23)

for a.e. t ∈ (0, T ). By Lemma 3, we deduce that there exists a unique fixed point (ξ∗, η∗, ζ∗) of Λ, i.e.,

(ξ∗, η∗, ζ∗) ∈ L2(0, T ;V ∗ × Y × Z) and Λ(ξ∗, η∗, ζ∗) = (ξ∗, η∗, ζ∗).

Step 4. Let (ξ∗, η∗, ζ∗) ∈ L2(0, T ;V ∗×Y ×Z) be the unique fixed point of the operator Λ. Let wξ∗η∗ζ∗ ∈ W
be the unique solution to the problem (4.18) corresponding to (ξ∗, η∗, ζ∗). From the definition of the operator
Λ, we have

ξ∗ = R1(wξ∗η∗ζ∗), η∗ = R(wξ∗η∗ζ∗) and ζ∗ = S(wξ∗η∗ζ∗).

Using these relations in (4.18), we know that wξ∗η∗ζ∗ is the unique solution of Problem 7. This completes
the proof of the theorem. �

5. A frictional contact problem

Various dynamic contact problems with elastic, viscoelastic or viscoplastic materials lead to evolutionary
problems of the form given in Problem 7 in which the unknown is the velocity field. For such inequalities,
Theorem 9 may be applied. We illustrate this point here on a dynamic viscoelastic contact problem. For
this purpose, we need some additional notation.

Given d ∈ N, we use the symbol Sd for the space of second order symmetric tensors on Rd or, equivalently,
the space of symmetric matrices of order d. The canonical inner products and the corresponding norms on
Rd and Sd are given by

u · v = uivi, ∥v∥ = (v · v)1/2 for all u = (ui), v = (vi) ∈ Rd,
σ · τ = σijτij , ∥τ∥ = (τ · τ )1/2 for all σ = (σij), τ = (τij) ∈ Sd,

respectively. Everywhere below Ω will represent a regular domain of Rd (d = 2, 3) with a boundary ∂Ω
partitioned into three disjoint measurable parts Γ1,Γ2 and Γ3, such that the measure of Γ1, denoted m(Γ1),
is positive. We use the notation x = (xi) for a typical point in Ω ∪ ∂Ω and we denote by ν = (νi) the
outward unit normal on ∂Ω . Here and below, the indices i, j, k, l run between 1 and d and, unless stated
otherwise, the summation convention over repeated indices is used. An index following a comma indicates
a partial derivative with respect to the corresponding component of the spatial variable x. We denote by
u = (ui),σ = (σij), and ε(u) = (εij(u)) the displacement vector, the stress tensor, and linearized strain
tensor, respectively. Sometimes we do not indicate explicitly the dependence of the variables on the spatial
variable x. Recall that the components of the linearized strain tensor ε(u) are

εij(u) = 1
2 (ui,j + uj,i)

where ui,j = ∂ui/∂xj . For a vector field, we use the notation vν and vτ for the normal and tangential
components of v on ∂Ω given by vν = v · ν and vτ = v − vνν. The normal and tangential components of
the stress field σ on the boundary are defined by σν = (σν) · ν and στ = σν − σνν, respectively.

The physical setting is the following. A viscoelastic body occupies, in its reference configuration, a regular
domain Ω . The body is clamped on Γ1 and so the displacement field vanishes there. Time-dependent surface
tractions of density f2 act on Γ2 and time-dependent volume forces of density f0 act in Ω . The body is in
permanent contact on Γ3 with a device, say a piston. The contact is modeled with a nonmonotone normal
damped response condition associated with a total slip-dependent version of Coulomb’s law of dry friction.
We are interested in the evolutionary process of the mechanical state of the body, in the time interval of
interest (0, T ) with T > 0. The mathematical model of the contact problem is stated as follows.
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Problem 10. Find a displacement field u : Ω × (0, T )→ Rd and a stress field σ : Ω × (0, T )→ Sd such that
for all t ∈ (0, T ),

σ(t) = Aε(u′(t)) + Bε(u(t)) +
 t

0
C(t− s)ε(u′(s)) ds in Ω , (5.24)

ρu′′(t) = Divσ(t) + f0(t) in Ω , (5.25)
u(t) = 0 on Γ1, (5.26)
σ(t)ν = f2(t) on Γ2, (5.27)
−σν(t) ∈ k(uν(t))∂jν(u′ν(t)) on Γ3, (5.28)

∥στ (t)∥ ≤ Fb
 t

0
∥uτ (s)∥ ds


,

−στ = Fb

 t

0
∥uτ (s)∥ ds

 u′τ (t)
∥u′τ (t)∥ if u′τ (t) ̸= 0 on Γ3, (5.29)

and

u(0) = u0, u′(0) = w0 in Ω . (5.30)

We briefly comment on the equations and conditions in Problem 10 and refer the reader to [25,6,26] for
more details and mechanical interpretation. Eq. (5.24) is the constitutive law for viscoelastic materials in
which A represents the viscosity operator, B represents the elasticity operator and C is the relaxation tensor.
Such kind of equations have been used in [27–29], for instance. Eq. (5.25) is the equation of motion in which
ρ denotes the density of mass. For simplicity, in what follows we set ρ ≡ 1. We have the clamped boundary
condition (5.26) on Γ1 and the surface traction boundary condition (5.27) on Γ2.

Relation (5.28) is the multivalued contact condition with normal damped response in which ∂jν denotes
the Clarke subdifferential of a given function jν and k is a damper coefficient. Condition (5.29) represents a
version of Coulomb’s law of dry friction in which Fb is a given positive function, the friction bound. Details
on such a frictional contact condition is found in [6] and some references therein. However, note that in
contrast to the conditions used in the literature, in (5.28) the damper coefficient is allowed to depend on
the normal displacement uν(t). In addition, in (5.28) the friction bound may depend on the quantity

S(x, t) =
 t

0
∥uτ (x, s)∥ ds

which represents the total slip (or, alternatively, the accumulated slip) at the point x ∈ Γ3 over the time
period [0, t]. Considering such a dependence is reasonable from the physical point of view, since it incorporates
the changes on the contact surface resulting from sliding.

Finally, conditions (5.30) are the initial conditions in which u0 and w0 represent the initial displacement
and the initial velocity, respectively.

In the study of Problem 10 we use standard notation for Lebesgue and Sobolev spaces. For v ∈ H1(Ω ; Rd),
we use the same symbol v for the trace of v on ∂Ω and we use the notation vν and vτ for its normal and
tangential traces. In addition, we introduce spaces V and Q as follows:

V =


v = (vi) ∈ H1(Ω ; Rd) | v = 0 on Γ1

, Q = L2(Ω ; Sd).

Both are real Hilbert spaces with inner products

(u, v)V = (ε(u), ε(v))Q for u, v ∈ V,

(σ, τ )Q =

Ω

σij(x) τij(x) dx for σ, τ ∈ Q.
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The associated norms are ∥ · ∥V and ∥ · ∥Q. By the Sobolev trace theorem,

∥v∥L2(Γ3;Rd) ≤ ∥γ∥ ∥v∥V for all v ∈ V. (5.31)

Here and below ∥γ∥ represents the norm of the trace operator γ : V → L2(Γ3; Rd).
With the space V defined above and the space H = L2(Ω ; Rd), we introduce the spaces V ∗,V,V∗ and W

as in Section 3. Define a space of fourth order tensor fields

Q∞ = { E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d }.

This is a real Banach space with the norm

∥E∥Q∞ =


0≤i,j,k,l≤d
∥Eijkl∥L∞(Ω).

Moreover, a simple calculation shows that

∥Eτ∥Q ≤ ∥E∥Q∞∥τ∥Q for all E ∈ Q∞, τ ∈ Q. (5.32)

We now list assumptions on the problem data. For the viscosity operator A : Ω × Sd → Sd, assume

(a) there exists LA > 0 such that ∥A(x, ε1)−A(x, ε2)∥ ≤ LA∥ε1 − ε2∥
for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω .

(b) there exists mA > 0 such that (A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ∥ε1 − ε2∥2

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω .
(c) the mapping x → A(x, ε) is measurable on Ω , for all ε ∈ Sd.
(d) A(x,0) = 0 a.e. x ∈ Ω .

(5.33)

For the elasticity operator B : Ω × Sd → Sd, assume
(a) there exists LB > 0 such that ∥B(x, ε1)− B(x, ε2)∥ ≤ LB∥ε1 − ε2∥

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω .
(b) the mapping x → B(x, ε) is measurable on Ω , for all ε ∈ Sd.

(c) B(x,0) = 0 a.e. x ∈ Ω .

(5.34)

For the relaxation tensor C, assume

C ∈ C(0, T ; Q∞). (5.35)

For the potential function jν : Γ3 × R→ R, assume

(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there
exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(Γ3).

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3.

(c) |∂jν(x, r)| ≤ c0 for a.e. x ∈ Γ3, for all r ∈ R with c0 ≥ 0.
(d) j0

ν(x, r1; r2 − r1) + j0
ν(x, r2; r1 − r2) ≤ β |r1 − r2|2

for a.e. x ∈ Γ3, all r1, r2 ∈ R with β ≥ 0.

(5.36)

For the damper coefficient k : Γ3 × R→ R+, assume

(a) the mapping x → k(x, r) is measurable on Γ3, for any r ∈ R.
(b) there are constants k1, k2 such that 0 < k1 ≤ k(x, r) ≤ k2

for all r ∈ R, a.e. x ∈ Γ3.

(c) there exists Lk > 0 such that |k(x, r1)− k(x, r2)| ≤ Lk|r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ3.

(5.37)
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For the friction bound Fb : Γ3 × R→ R+, assume
(a) the mapping x → Fb(x, r) is measurable on Γ3, for any r ∈ R.
(b) there exists LFb > 0 such that |Fb(x, r1)− Fb(x, r2)| ≤ LFb |r1 − r2|

for all r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) the mapping x → Fb(x, 0) belongs to L2(Γ3).

(5.38)

Finally, for the densities of body forces, surface tractions and the initial data, assume

f0 ∈ L2(0, T ;L2(Ω ; Rd)), f2 ∈ L2(0, T ;L2(Γ2; Rd)), u0, w0 ∈ V. (5.39)

Remark 11. We provide an example of the function which satisfies hypothesis (5.36). For simplicity, we skip
its dependence on the spatial variable. Let jν : R→ R be defined by

jν(r) =


0, if r < 0,
a− b

2a r2 + b r, if 0 ≤ r ≤ a,

a r + a(b− a)
2 , if r > a,

with 0 < a < b. It is clear that jν is a locally Lipschitz and nonconvex function, and its Clarke subgradient
is given by

∂jν(r) =


0, if r < 0,
[0, b], if r = 0,
a− b
a

r + b, if 0 < r ≤ a,
a, if r > a.

Hence, |∂jν(r)| ≤ b for all r ∈ R and so jν satisfies (5.36)(c) with c0 = b. Next, we check that the function
R ∋ r → jν(r) + b−a

a ∈ R is nondecreasing, and therefore, by [6, Corollary 3.53], condition (5.36)(d) holds
with β = b−a

a . More examples can be found in [30] and [6, Section 7.1].

We now turn to the weak formulation of Problem 10. Let v ∈ V and t ∈ (0, T ). We multiply Eq. (5.25)
by v − u′(t), integrate over Ω , perform an integration by parts, and apply the boundary conditions (5.26)
and (5.27) to obtain

Ω

u′′(t) · (v − u′(t)) dx+

Ω

σ(t) · (ε(v)− ε(u′(t))) dx

=

Ω

f0(t) · (v − u′(t)) dx+

Γ2

f2(t) · (v − u′(t)) dΓ +

Γ3

σ(t)ν · (v − u′(t)) dΓ . (5.40)

From (5.28), (5.29) and the definition of the subdifferential, we have

Fb

 t

0
∥uτ (s)∥ ds

 
∥vτ∥ − ∥u′τ (t)∥


+ k(uν(t)) j0

ν(u′ν(t); vν − u′ν(t)) + σ(t)ν · (v − u′(t)) ≥ 0 a.e. on Γ3,

which implies that
Γ3

Fb

 t

0
∥uτ (s)∥ ds

 
∥vτ∥ − ∥u′τ (t)∥


dΓ

+

Γ3

k(uν(t)) j0
ν(u′ν(t); vν − u′ν(t)) dΓ +


Γ3

σ(t)ν · (v − u′(t)) dΓ ≥ 0. (5.41)

Define f : (0, T )→ V ∗ by

⟨f (t), v⟩V ∗×V = (f0(t), v)L2(Ω ;Rd) + (f2(t), γv)L2(Γ2;Rd) (5.42)
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for all v ∈ V and all t ∈ (0, T ). Then, combining (5.40)–(5.42), we find that
Ω

u′′(t) · (v − u′(t)) dx+ (σ(t), ε(v − u′(t)))Q +

Γ3

F
 t

0
∥uτ (s)∥ ds

 
∥vτ∥ − ∥u′τ (t)∥


dΓ

+

Γ3

k(uν(t)) j0
ν(u′ν(t); vν − u′ν(t)) dΓ ≥ ⟨f (t), v − u′(t)⟩V ∗×V . (5.43)

We now use the constitutive law (5.24) and inequality (5.43) to obtain the following weak formulation of
Problem 10 in terms of the displacement.

Problem 12. Find a displacement field u : (0, T )→ V such that for a.e. t ∈ (0, T ),
Ω

u′′(t) · (v − u′(t)) dx+ (Aε(u′(t)), ε(v − u′(t)))Q

+ (Bε(u(t)), ε(v − u′(t)))Q +
 t

0
C(t− s)ε(u′(s)) ds, ε(v − u′(t))


Q

+

Γ3

Fb

 t

0
∥uτ (s)∥ ds

 
∥vτ∥ − ∥u′τ (t)∥


dΓ

+

Γ3

k(uν(t)) j0
ν(u′ν(t); vν − u′ν(t)) dΓ ≥ ⟨f (t), v − u′(t)⟩V ∗×V , (5.44)

and

u(0) = u0, u′(0) = w0. (5.45)

The unique solvability of Problem 12 is provided in the following result.

Theorem 13. Assume the hypotheses (5.33)–(5.39). If

mA > β k2∥γ∥2, (5.46)

then Problem 12 has a unique solution with regularity u ∈ V,u′ ∈ W.

Proof. Let Y = Z = L2(Γ3). We introduce operators A : (0, T )×V → V ∗,R1 : V → V∗,R : V → L2(0, T ;Y )
and S : V → L2(0, T ;Z) as follows:

⟨Aw, v⟩V ∗×V = (Aε(w), ε(v))Q for all w, v ∈ V, t ∈ (0, T ), (5.47)

⟨(R1w)(t), v⟩V ∗×V =

B
 t

0
ε(w(s)) ds+ u0


, ε(v)


Q

+
 t

0
C(t− s)ε(w(s)) ds, ε(v)


Q

for all w ∈ V, v ∈ V, t ∈ (0, T ), (5.48)

(Rw)(t) =
 t

0

 s

0
wτ (r) dr + u0τ

 ds for all w ∈ V, t ∈ (0, T ), (5.49)

(Sw)(t) =
 t

0
wν(s) ds+ u0ν for all w ∈ V, t ∈ (0, T ). (5.50)

Also, define functions J : (0, T )× Z × V → R and ϕ : (0, T )× Y × V → R by

J(t, z, v) =

Γ3

k(z) jν(vν) dΓ for all z ∈ Z, v ∈ V, t ∈ (0, T ), (5.51)

ϕ(t, y, v) =

Γ3

Fb(y) ∥vτ∥ dΓ for all y ∈ Y, v ∈ V, t ∈ (0, T ). (5.52)
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With the notation above we consider the following problem in terms of the velocity.

Problem 14. Find w ∈ W such that
⟨w′(t) +A(t,w(t)) + (R1w)(t)− f (t), v −w(t)⟩V ∗×V + J0(t, (Sw)(t),w(t); v −w(t))

+ϕ(t, (Rw)(t), v)− ϕ(t, (Rw)(t),w(t)) ≥ 0 for all v ∈ V, a.e. t ∈ (0, T ),
w(0) = w0.

We apply Theorem 9 in studying Problem 14. For this purpose, we check that the hypotheses
H(A), H(J), H(ϕ), (H1), (H4) and (H5) are satisfied. Note that A, J and ϕ do not depend explicitly on
the temporal variable. First, it follows from (5.33) and [6, Theorem 7.3] that the operator A defined by
(5.47) satisfies hypothesis H(A) with mA = mA.

By hypotheses (5.36) and (5.37), it is clear that for the function J defined by (5.51), conditions H(J)(2)
and (3) hold. From [6, Proposition 3.37(ii) & Theorem 3.47] and the relation ∂(jν(x, ξν)) ⊂ ∂jν(x, ξν)ν for
all ξ ∈ Rd and a.e. x ∈ Γ3, we deduce that the hypothesis H(J)(4) is satisfied with c0J(t) = k2c0∥γ∥


m(Γ3)

and c1J = c2J = 0. Next, from (5.36) and (5.37), [6, Theorem 3.47], and the relation |ξν | ≤ ∥ξ∥ for all ξ ∈ Rd,
we have

J0(t, z1, v1; v2 − v1) + J0(t, z2, v2; v1 − v2)

≤

Γ3


k(z1)j0

ν(v1ν ; v2ν − v1ν) + k(z2)j0
ν(v2ν ; v1ν − v2ν)


dΓ

≤

Γ3


k(z1)− k(z2)


j0
ν(v1ν ; v2ν − v1ν) + k(z2)


j0
ν(v1ν ; v2ν − v1ν) + j0

ν(v2ν ; v1ν − v2ν)

dΓ

≤ c0Lk


Γ3

|z1(x)− z2(x)| ∥v1(x)− v2(x)∥ dΓ + k2β


Γ3

∥v1(x)− v2(x)∥2 dΓ

≤ m2J∥z1 − z2∥Z∥v1 − v2∥V +m2J∥v1 − v2∥2V ,

where m2J = c0Lk∥γ∥ and m2J = βk2∥γ∥2. Hence H(J)(5) follows.

From (5.38) and the convexity of the norm function, it follows that the function ϕ defined by (5.52)
satisfies H(ϕ)(2) and (3). Exploiting again [6, Proposition 3.37(ii), Theorem 3.47] and the relation
|Fb(x, r)| ≤ LFb |r| + |Fb(x, 0)| for all r ∈ R and a.e. x ∈ Γ3 (a consequence of (5.38)), we see that the
hypothesis H(ϕ)(4) holds with c0ϕ(t) =

√
2∥γ∥∥Fb(0)∥Y , c1ϕ =

√
2LFb∥γ∥ and c2ϕ = 0. By (5.38) and the

Hölder inequality, we have

ϕ(t, y1, v2)− ϕ(t, y1, v1) + ϕ(t, y2, v1)− ϕ(t, y2, v2)

=

Γ3


Fb(y1)− F (y2)


∥v2τ∥ − ∥v1τ∥


dΓ

≤ LFb

Γ3

|y1(x)− y2(x)| ∥v1(x)− v2(x)∥ dΓ

≤ LFb ∥y1 − y2∥Y ∥v1 − v2∥L2(Γ3;Rd)

≤ LFb∥γ∥ ∥y1 − y2∥Y ∥v1 − v2∥V

for all yi ∈ Y, vi ∈ V, i = 1, 2, a.e. t ∈ (0, T ), i.e., H(ϕ)(5) holds with βϕ = LFb∥γ∥.

Moreover, the operators R1,R and S defined by (5.48)–(5.50), respectively, under the hypotheses (5.34)
and (5.35), satisfy (H4). For details, we refer to [31]. Condition (H1) is a consequence of the assumption (5.39)
and the definition (5.42). Finally, the condition (H5) follows from (5.46). We have verified all hypotheses
of Theorem 9. Then, we can deduce that Problem 14 has a unique solution w ∈ W. Define a function
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u : (0, T )→ V by

u(t) =
 t

0
w(s) ds+ u0 for all t ∈ (0, T ).

It follows from the above that u ∈ V with u′ ∈ W is the unique solution to Problem 12. This completes the
proof of Theorem 13. �

A couple of functions (u,σ) which satisfies (5.24) and (5.44) is called a weak solution to Problem 10. We
conclude that, under the assumptions of Theorem 13, Problem 10 has a unique weak solution. Moreover the
solution has the regularity

u ∈ V, u′ ∈ W, σ ∈ L2(0, T ;Q), Divσ ∈ V∗.

We end this section with a remark that a similar unique weak solvability result can be obtained if we
replace the boundary conditions (5.28), (5.29) in Problem 10 with the following frictional contact conditions:

|σν(t)| ≤ F
 t

0
u+
ν (s) ds


,

σν(t) =

0 if uν < 0

F
 t

0
u+
ν (s) ds


if uν > 0,

 on Γ3, (5.53)

−στ (t) ∈ µ(uν(t))∂jτ (u̇τ (t)) on Γ3. (5.54)

Indeed, it is easy to see that Problem (5.24)–(5.27), (5.30), (5.53), (5.54) leads to a variational formulation
in velocities given by Problem 10, with an appropriate choice of operators R,S and functionals J, ϕ. For
the convenience of the reader we precise that relation (5.53) represents a multivalued contact condition with
normal compliance and memory effects, in which F is a given function and r+ denotes the positive part of r.
Condition (5.54) represents the friction law in which ∂jτ denotes the Clarke subdifferential of the nonconvex
function jτ and µ is a given coefficient of friction, which vanishes for a negative argument. Its dependence of
the normal displacement uν guarantees the fact that when there is separation then the contact is frictionless.

The same remark can be formulated in the case when the boundary conditions (5.28), (5.29) are replaced
by the frictional contact conditions

−σν(t) = pν(uν(t)) on Γ3, (5.55)

∥στ (t)∥ ≤ µ|σν |, −στ = µ|σν |
u̇τ (t)
∥u̇τ (t)∥ if u̇τ (t) ̸= 0 on Γ3. (5.56)

Here, condition (5.55) represents the normal compliance condition in which pν is a given function and (5.56)
in the classical Columb’s law of dry friction in which µ denotes the coefficient of friction.

We conclude from the above examples that our abstract result find applications in various dynamic
frictional contact problems, as claimed in Section 1 of this paper.
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