SIAM J. MATH. ANAL. (© 2014 Society for Industrial and Applied Mathematics
Vol. 46, No. 6, pp. 38913912

A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
WITH APPLICATIONS TO FRICTIONAL CONTACT PROBLEMS*

WEIMIN HANT, STANISIAW MIGORSKI¥, AND MIRCEA SOFONEAS$

Abstract. A class of variational-hemivariational inequalities is studied in this paper. An in-
equality in the class involves two nonlinear operators and two nondifferentiable functionals, of which
at least one is convex. An existence and uniqueness result is proved for a solution of the inequality.
Continuous dependence of the solution on the data is shown. Convergence is established rigorously
for finite element solutions of the inequality. An error estimate is derived which is of optimal order
for the linear finite element method under appropriate solution regularity assumptions. Finally, the
results are applied to a variational-hemivariational inequality arising in the study of some frictional
contact problems.
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1. Introduction. The theory of variational inequalities started in early sixties
and has gone through substantial development since then, see for instance [2, 3, 4,
10, 11, 12, 19, 25] and the references therein. The main ingredients in the study of
variational inequalities are the arguments of monotonicity and convexity, including
properties of the subdifferential of a convex function. In contrast, the theory of
hemivariational inequalities is based on properties of the subdifferential in the sense
of Clarke, defined for locally Lipschitz functions which may be nonconvex. Analysis of
hemivariational inequalities, including existence and uniqueness results, can be found
in [7, 16, 21, 23, 26]. Applications of the variational and hemivariational inequalities
in Mechanics and Engineering Sciences, and in Contact Mechanics in particular, can
be found in [9, 13, 14, 15, 17, 18, 20, 21, 25, 26, 27, 28|, among others. Variational-
hemivariational inequalities represent a special class of inequalities, in which both
convex and nonconvex functions are involved. Interest in their study is motivated by
various problems in Mechanics (e.g., [23, 24]).

The aim of this paper is to study a new class of variational-hemivariational in-
equalities and to apply these results in the analysis of an elastic contact problem.
New feature of the problems is reflected by the presence of two nondifferentiable func-
tionals, one convex and the other nonconvex. In addition to the unique solvability of
the inequalities, we also show the continuous dependence of the solution on the data.
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Moreover, we introduce and analyze numerical methods for solving the inequalities.
Novel techniques are employed, leading to desired error estimates for the numerical
solutions. Finally, we apply our abstract results in the study of a new model of con-
tact, which describes the equilibrium of a nonlinear elastic body in frictional contact
with a reactive foundation.

The rest of the paper is organized as follows. In Section 2 we review some pre-
liminary material. In Section 3 we introduce the class of variational-hemivariational
inequalities to be studied, state and prove an abstract existence and uniqueness re-
sult. The proof of the result is based on arguments of surjectivity for pseudomonotone
operators and the Banach fixed point theorem. In Section 4 we study the continuous
dependence of the solution with respect to the data. In Section 5 we study numer-
ical methods for the variational-hemivariational inequalities, prove convergence and
derive error estimates. Finally, in Section 6 we consider a contact problem in which
the material behavior is modeled with a nonlinear elastic constitutive law and the
frictional contact conditions are in a subdifferential form. The contact problem leads
to a variational-hemivariational inequality for the displacement field, and we apply
our abstract results in the analysis of the problem.

2. Preliminaries. We recall some definitions and results related to various
classes of functions and nonlinear operators that are needed in the rest of the pa-
per. More details on the material presented in this section can be found in the books
[6, 7, 8, 21, 23]. All the spaces in this paper are real.

For a normed space X, we denote by || - ||x its norm, by X* its topological dual,
and by (-,-)x+xx the duality pairing between X* and X. The symbol w-X is used
for the space X endowed with the weak topology, while 2% represents the set of all
subsets of X*. For simplicity in exposition, in the following we always assume X is a
Banach space, unless stated otherwise.

DEFINITION 2.1. Let h: X — R be a locally Lipschitz function. The generalized
(Clarke) directional derivative of h at x € X in the direction v € X, denoted by
hO(x;v), is defined by

h —h
hY(z;v) = limsup (y+v) = hy) .
y—x, A0 A

The generalized gradient (subdifferential) of h at x, denoted by Oh(x), is a subset of
the dual space X* given by

Oh(z) = {¢ € X* | hO(m;v) > (C,v) xur x for allv € X }.

A locally Lipschitz function h is said to be regular (in the sense of Clarke) at x € X if
for allv € X the one-sided directional derivative h'(x;v) exists and h°(x;v) = B/ (z;v).

Recall that a function p: X — RU {400} is proper if it is not identically equal
to 400 and is lower semicontinuous if x,, — z in X implies p(x) < liminf p(z,). The
effective domain of ¢ is denoted by dom ¢ = {z € X | p(z) < +oo}.

DEFINITION 2.2. Let p: X — RU{+o00} be a proper, conver and lower semicon-
tinuous function. The mapping dp: X — 2X° defined by

Op(x) ={a" € X* | (z",v — ) xxx < () —p(z) for allv e X}

is called the subdifferential of . An element x* € dp(x) (if any) is called a subgra-
dient of ¢ in x.



Let ¢: X — RU {400} be a proper, convex and lower semicontinuous function.
Denote by int dom ¢ and D(d¢) the interior of the effective domain and the domain
of the subdifferential ¢, respectively. Then, it is known that ¢ is locally Lipschitz
on int dom ¢ and int dom ¢ C D(d¢) C dom ¢. In particular, if p: R? — R is convex,
then it is locally Lipschitz on R,

Next, we shall consider single-valued operators A: X — X* as well as multivalued
operators A: X — 2X". The following definitions hold for single-valued operators.

DEFINITION 2.3. An operator A: X — X* is called:
(a) bounded, if A maps bounded sets of X into bounded sets of X*;
(b) monotone, if (Au — Av,u — V) x«xx >0 for all u, v € X;
(¢) maximal monotone, if it is monotone, and (Au—w,u—v)x«xx > 0 for anyu € X
implies that w = Av;
(d) coercive, if there exists a function a: Ry — R with limy—, o a(t) = 400 such
that (Au, u)x+xx > a(llulx) ||ullx for allu e X;
(e) pseudomonotone, if it is bounded and w, — u weakly in X together with
lim sup(Aun, up, — u)x<xx < 0 imply (Au,u — v)x+xx < liminf(Auy,, u, — v) x*xx
forallve X.

It can be proved that an operator A: X — X* is pseudomonotone, iff it is
bounded and u, — u weakly in X together with limsup (Au,,u, — u)xxx < 0
imply lim (Auy,, up — u)x=xx = 0 and Au,, — Au weakly in X*.

For a multivalued operator A: X — 2% its domain D(A), range R(A) and graph
Gr(A) are defined by

D(A)={z e X |Ax#0}, R(A)=|J{Az|ze X},
Gr(A) ={(z,2") € X x X* | 2" € Az}.

If up € X we define a multivalued operator A,, by A,,(v) = A(v+ ug) for all v € X.

DEFINITION 2.4. A multivalued operator A: X — 25" s called:
(a) monotone, if (u* —v*u—v)x xx > 0 for all (u,u*), (v,v*) € Gr(A);
(b) maximal monotone, if it is monotone and mazimal in the sense of inclusion of
graphs in the family of monotone operators from X to 2% ;
(c) coercive, if there exists a function c: Ry — R with limg_, 1 o ¢(t) = +00 such that
(u*, u)x=xx = c([Jullx) lullx for all (u,u”) € Gr(A).

The following important result is due to Rockafellar, cf. [8, Theorem 6.3.19].

THEOREM 2.5. Let ¢ be a proper, conver and lower semicontinuous function on
X. Then dp: X — 2% is a mazximal monotone operator.

The notions of pseudomonotonicity and generalized pseudomonotonicity for mul-
tivalued operators are recalled in the following definitions.

DEFINITION 2.6. Let X be a reflexive Banach space. A multivalued operator
A: X — 2% is pseudomonotone if:
(a) for every u € X, the set Au C X* is nonempty, closed and convez;
(b) A is upper semicontinuous from each finite dimensional subspace of X into w-X*;
(c) for any sequences {u,} C X and {ul} C X* such that u, — u weakly in X,
ul € Auy, for all m > 1 and limsup(ul, u, — u)x«xx < 0, we have that for every
v € X, there exists u*(v) € Au such that

(u* (v),u — V) x-xx < lminf (U}, u, — ) x-xx-



DEFINITION 2.7. Let X be a reflexive Banach space. A multivalued operator
A: X — 2% s generalized pseudomonotone if for any sequences {un,} € X and
{ur} C X* such that u, — u weakly in X, u¥ € Au, forn > 1, uf — u* weakly in
X* and limsup(u, up, — u)x-xx < 0, we have u* € Au and

Hm (u), wn) x«xx = (U u) x xx-

The relationship between these notions is given by the following results (cf. [8,
Propositions 6.3.65 and 6.3.66]).

PROPOSITION 2.8. Let X be a reflexive Banach space and A: X — 2% a pseu-
domonotone operator. Then A is generalized pseudomonotone.

PROPOSITION 2.9. Let X be a reflexive Banach space and A: X — 2% a bounded
generalized pseudomonotone operator. If for each uw € X, Au is a nonempty, closed
and convex subset of X*, then A is pseudomonotone.

Finally, we recall the following surjectivity result; see [23, Theorem 2.12].

THEOREM 2.10. Let X be a reflexive Banach space, T: X — 2% a mazimal
monotone operator, and T: X — 2% a pseudomonotone operator. Suppose either
T,, or Tuo is bounded for some uy € D(T). Assume that there erists a function
c: Ry — R with ¢(r) — +00 as r — 400 such that for all (u,u*) € Gr(T), we have
(s u—up)x+xx > c(|lullx) |ullx. Then T +T is surjective, i.e. R(T +T) = X*.

3. An existence and uniqueness result. Let Q C R? be an open bounded
subset of R? with a Lipschitz continuous boundary 92 and let I' C 9 be a measurable
subset. We use the notation x for a generic point in I' and m(T") for the (d — 1)
dimensional measure of I'. Given an integer s > 1 we denote by V' a closed subspace of
HY(Q;R?) and let H = L?(Q; R*). We also use the notation v: V — L?(T'; R®) for the
trace operator, ||| for its norm in the space £(V, L?(T;R®)) and v*: L?(T'; R%) — V*
for its adjoint operator. It is known that (V, H, V*) forms an evolution triple of spaces
and the embedding V' C H is compact.

Given operators A: V — V* F: V — L*(T), functions ¢, j: I' x R® — R and a
functional f: V' — R, we consider the following problem.

PROBLEM (P). Find an element u € V' such that

(3.1) (Au,v — u)yxv + /F(Fu) (gp(vv) — <p(’yu)) dar

+/j0(7u;'yv—7u)d1"2 (fiv—uyy«xy foralveV.
r
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For the study of PROBLEM (P), we introduce the following hypotheses.

AV - V*is
(a) pseudomonotone and there exists o > 0 such that
(3.2) (Av, V) > aol|} for all v € V;
(b) strongly monotone, i.e., there exists ma > 0 such that
(Avy — Avg, 1 — V) iy > mallvr — vol|3 for all vy, v € V.
F:V — L*T) and
(3.3) (a) there exists Ly > 0 such that
| Fvr — Fuall 2y < Lp|lvy — 2y for all vy, vy € V;
(b) Fv>0 ae. onT, forallveV.
@: ' x R® — R is such that
(a) ¢(+, &) is measurable on I for all £ € R® and there
exists € € L?(I";R®) such that ¢(-,é(-)) € L*(T);
(3-4) (b) ¢(x,) is convex for a.e. & € I';
(c) there exists L, > 0 such that for all &,&; € R?,
[p(m,&1) — p(,&2)| < Lyll& — &2l[re, ae. z €T
7: ' x R® — R is such that
(a) j(+,&) is measurable on T for all £ € R® and there exists
e € L?(I'; R®) such that j(-,e(:)) € L}(T);
(3.5) (b) j(x,-) is locally Lipschitz on R® for a.e. € T
(c) 104(x,&)|lrs < co+ c1 ||€]|rs for ae. & €T,
all £ € R® with cg,c; > 0;
(d) 1%z, €156 — &) + 502, &2;6 — &) < Bl& — &R
for a.e. x €T, all &, & € R® with 5 > 0.
(3.6) feve

Note that the function ¢ is assumed to be convex and Lipschitz continuous with
respect to its second argument while the function j is locally Lipschitz with respect
to the second argument and may be nonconvex. For this reason, the inequality (3.1)
is a variational-hemivariational inequality.

REMARK 3.1. The hypothesis (3.5)(d) has been introduced to guarantee the
uniqueness of the solution to the variational-hemivariational inequality. It can be
verified that for a locally Lipschitz function j: R® — R, the condition (3.5)(d) is
equivalent to the so-called relaxed monotonicity condition

(3.7) (1= Q) (& — &) = -Bl& — &g

for all ¢, & € R®, ¢ € 9j(&), i = 1, 2. The latter was extensively used in the
literature, cf. e.g. [21] and the references therein. For particular problems, condition
(3.7) is easy to verify by showing that the function

2
2.eR

RS € 5(6) + D6
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is nondecreasing. Examples of nonconvex functions which satisfy the condition (3.5)
can be found in [22]. We merely remark that when j: R® — R is convex, (3.5)(b) and
(d) are satisfied with 8 = 0. Indeed, by convexity,

(& — &) <j(&) — (&) and jO(&sé — &) < (&) — (&)

for all &, & € R® which entails j°(&1; & — &) +7°(&2; &1 — &) < 0. It means that for
a convex function j: R® — R, condition (3.5)(d) or, equivalently, the condition (3.7)
reduces to monotonicity of the (convex) subdifferential, i.e., 8 = 0.

Our existence and uniqueness result for PROBLEM (P) is the following.
THEOREM 3.2. Assume (3.2)—(3.6) and the smallness condition

(3.8) LrLy|lyll + B 9] < ma.
Then, if one of the following two inequalities holds,

(i) a>ec1 V2|
(i) §°(x,&—€) < d(1+]l¢|

PROBLEM (P) has a unique solution u € V.

rs) for all £ €R® a.e. x €T withd >0,

Proof of Theorem 3.2 is carried out in several steps. In the rest of the section, we
assume the conditions (3.2)—(3.8). For n € V, denote

(3.9) z, = Fne L*()

and consider the following auxiliary problem.
ProBLEM (Py). Find u, € V such that

(3.10)  (Auy,v —uy)vexy + /F 2y ((yv) = o(yuy)) dT

+/j0(7un;w—7un)dfz <f,U—U77>V*><V forall v e V.
T

We have the following result.

LEMMA 3.3. PROBLEM (P,)) has a unique solution u, € V.

Proof. For the existence part, we apply Theorem 2.10. Define a functional
J: L*(T;R*) — R by

J(v):/rj(w,v(a:))df, v € L*(I;R?).

Thanks to the hypotheses (3.5) (a)—(c), we have the following statements ([21, Corol-
lary 4.15]).

(i) J is well defined and Lipschitz continuous on bounded
subsets of L2(T'; R®);

(3.11) (i) JO(u;v) < /jo(w,u(az);v(a:))dF for all u,v € L*(T';R®);

r
(iii) ||u*||L2(rirey < o 4 €1 JullL2(rrsy  for all u € L?(T;R®);

u* € 0J(u) with &) = co\/2m(T") and ¢ = ¢1V/2.
6



Then we define an operator B: V — 2V by
B(v) =~"0J(yv), veV.

We claim that the operator A+ B is pseudomonotone and bounded from V to 2V
To this end, note that the values of 0J are nonempty, convex and weakly compact
subsets of L(I'; R®) ([21, Proposition 3.23 (iv)]). So for every v € V, the set B(v) is
nonempty, closed and convex in V*. Also, by (3.11) (iii), we have

(3.12) [o* [l < [V IHI0T(vo)ll L2 wsmey < [Vl (G0 + ey IHlvllv)

for all (v,v*) € Gr(B), implying the boundedness of the operator B. To show the
claim, we apply Proposition 2.9. Then, it is sufficient to prove that B is generalized
pseudomonotone.

Let vp, v €V, v, = v weakly in V, v}, v* € V*, vF — v* weakly in V*, v} €
B(v,) and limsup(v}, v, — v)y=xy < 0. We prove that v* € Bv and (v}, vp)vxv —
(v*,v)vexv. We have v} = v*(, with ¢, € 0J(yv,). From the bound (3.11)(iii),
we know that {(,} is bounded in L?(T';R®). Hence, by passing to a subsequence
if necessary, we can assume that ¢, — ¢ weakly in L?(T';R®). Since the graph of
dJ () is closed in L?(T';R®) x (w— L?(I';R?®))-topology and v, — v in L*(T;R?),
by the compactness of the trace operator we obtain ¢ € d.J(vyv). Furthermore, from
vk = 4*(, it follows that v* = ~v*¢. Thus v* € v*0J(yv) = B(v). Clearly, we have

(Vs Vi) vexv = (Y G, Un)vexy = <Cn»'7vn>L2(I‘;RS)
= ((, )2 rire) = (VG 0)vexy = (U, 0)vexv.
So the operator B is generalized pseudomonotone and, therefore, it is also pseu-
domonotone.

By the hypothesis (3.2)(a), it is clear (cf. Section 3.4 of [21]) that A is pseu-
domonotone and bounded as a multivalued operator from V to 2. Since the set
of multivalued pseudomonotone operators is closed under addition of mappings (cf.
Proposition 3.59 of [21]), we deduce that the operator A + B is pseudomonotone and
bounded from V to 2. This proves the claim.

We now establish the coercivity of the multivalued operator A+ B in the sense of
Definition 2.4(c). First, we assume the hypothesis (i) of Theorem 3.2. From (3.12),
we have

(", v)vexv = =@l Pvll5 = @llyll vl for all v € V, v* € Bu.
Hence, by (3.2) (a) we obtain
(3.13) (Av+ 0" o)vexy 2 (@ = eavV2 [P ollf — 2ol llvllv
for all v € V, v* € Bv

which implies that the operator A 4 B is coercive since a — ¢1v/2 ||y]|? > 0.
Next, we show the coercivity under the hypothesis (ii) of Theorem 3.2. In this
case, from the property (3.11) (ii) and (3.5) (¢), we have

J(v;—v) < di(1+ ||v||p2rgs)) for all ve L*(I;R?)
with d; > 0. Therefore, for every v € V and ¢ € 0J(yv), we deduce that

(¢ ) remrey = =0 (yw; —yv) > —dy — da ||v]| [|v]lv
7



with dy,ds > 0. Hence, by (3.2) (a), the operator A + B is coercive.
Consider a functional ®,: V' — R defined by

(3.14) P, (v) = /an(zc)ap(w,vv(a:)) ar, veV.

We observe that the hypothesis (3.4) implies that o(-,yv(-)) € L3(T') for all v € V.
This property together with the fact that z, € L*(T') ensures that ®,, is well defined.
Moreover, it is clear that dom (®,) = V. Next, since (3.3)(b) implies that z, > 0
a.e. on I', by assumption (3.4) we infer that ®, is a convex continuous function.
Therefore, the operator ®,,: V — 2" is maximal monotone with D(d®,) =V (cf.
Theorem 2.5).

In summary, the operator 9®,: V — 2V" is maximal monotone with Oy €
D(09,,), the operator A+ B: V — 2V" is pseudomonotone, bounded, and satis-
fies the coercivity condition (3.13). We apply Theorem 2.10 to the operators 0®,, and
A+ B, and deduce the existence of u,, € V such that

Auy, + Buy, + 09, (uy) 2 f.
This means that
(3.15) Auy +7*C + 0, = f,

where ¢, € 0J(yu,) and 6, € 99, (u,). Using the property (3.11) (ii) of the functional
J, we have

(3.16) (G W) p2rirey < IO (Yug; w) < /jo(fyun;w) dl' for all w € L*(T;R?)
r

and
(3.17) (O, v —up)vexy < Pp(v) — ) (u,) forallveV.
For any v € V, we get from (3.15) that

(A, v — ty)vexv + (Cpy YU — YUy) L2(05re) + (05, 0 — Up)vexv = (f,0 — up)v-xv.

We use (3.16) and (3.17) in the equality to find that

(A, v — up)ysxv + / 70 (yun; yv — yuy) dl + / 2y (p(yv) — @(yuy)) dU
I N

Z <fa v —= u77>V*><Va

which shows that w,, is a solution to PROBLEM (P,,).

To show the uniqueness of a solution, let u1, us € V' be two solutions to PROBLEM
(P,,). We write (3.10) for u; with v = ug, and then for uy with v = u;, and add the
resulting inequalities. Use the strong monotonicity of A and assumption (3.5) (d) on
the function j to obtain

mallur — a2} < By flur — ualff-

Applying the smallness condition (3.8), we deduce that u; = uy. This completes the
proof. ]



Lemma 3.3 allows us to define an operator A: V — V by
(3.18) An=wu,, neV

We have the following fixed point result.

LEMMA 3.4. The operator A has a unique fixed point n* € V.

Proof. Let 1, n2 € V and let z; be the functions defined by z; = z,, for i = 1,
2. Denote by u; the solution of the variational-hemivariational inequality (3.10) for
n="mn;, i.e., u; = uy,, i = 1,2. From the definition (3.18) we have

(3.19) [Am — Ana|lv = [lur — ualv.

We write (3.10) for n = 1 with v = ug, and then for n = 9y with v = u;. Add the
resulting inequalities and use the strong monotonicity of A together with assumptions
(3.4) and (3.5) on ¢ and j to obtain

mallur = usll} < Lolvll 21 = 22l ey lus = uzllv + By 1P [lus — well?-

Since m4 — B ]v]|* > 0 by (3.8), we have

Lo ||l
L |2 ||Zl — 22||L2(p).

3.20 Uy — U < — " =
(3.20) l[ur — uallv T Y

Next, we use (3.9) and the property (3.3)(a) of the operator F' to see that
21 = 22/l 20y = 1 F'm = Fnall 2@y < Lelim —ne2lv

Use this inequality in (3.20) to yield

LpLy|yll
3.21 wy — gy < —FZM
( ) || 1 QHV A 7/8”7”2 || 1 2||V
We combine (3.19) and (3.21) to deduce that
LpLy|vll
3.22 Amgp — A < - .
( ) H m 772||V 0 — /B ||’7H2 ||771 772HV

Finally, we use (3.22), the smallness assumption (3.8) and the Banach fixed point
theorem to show that the operator A has a unique fixed point n* € V', which concludes
the proof of the lemma. O

Now we complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Euxistence. Let n* € V be the fixed point of the operator
A. Tt follows from (3.9) and (3.18) that the following equalities hold:

(3.23) zge = F", Up =1

We write the inequality (3.10) for n = n* and then use the equalities (3.23) to conclude
that the function n* € V is a solution to PROBLEM (P).

Uniqueness. The uniqueness part is a consequence of the uniqueness of the fixed
point of the operator A and can be proved as follows. Denote by n* € V' the solution
of the inequality (3.1) obtained above, and let 7 € V be another solution of this
inequality. Also, consider the function z, € L*(T") defined by (3.9). Then, it follows

9



that 7 is a solution to the variational inequality (3.10) and, since by Lemma 3.3 this
inequality has a unique solution, denoted u,,, we conclude that

(3.24) 0= Uy.

Equality (3.24) shows that Anp = 7 where A is the operator defined by (3.18). There-
fore, by Lemma 3.4, it follows that n = n*.
Alternatively, the uniqueness of a solution can be also proved directly.

4. Continuous dependence on data. We now study the continuous depen-
dence of the solution of PROBLEM (P) on the data. Assume in what follows that
(3.2)—(3.8) hold and denote by u the solution of PROBLEM (P) stated in Theorem
3.2. For each p > 0 let F),, j, and f, represent perturbed data corresponding to F, j
and f, which satisfy conditions (3.3), (3.5) and (3.6), respectively. For each p > 0 we
denote by Lr, and j3, the constants involved in assumptions (3.3) and (3.5). Assume
that there exists mg such that

(4.1) L, Ly|v|| + Boll7]|> < mo < ma  for all p> 0.

Consider the following perturbed version of PROBLEM (P).
PrOBLEM (P,). Find u, € V such that

(4.2)  (Aup,v —u,)vexy + /F(Fpup)(so(vv) —¢(yup)) dr

+/j2(’yup;vv—’yup)dfz (fp,v—up)v+xy forallveV.
r

It follows from Theorem 3.2 that, for each p > 0, PROBLEM (P,) has a unique so-
lution u, € V. To consider the limiting behaviour of {u,}, we introduce the following
assumptions:

There exist G: Ry — R, and g € R such that
(4.3) (a) |Fpv = Fv| 2y < G(p)(|lv]lv +g) forallveV, p>0;
(b) G(p) -0 asp—0.

There exist H: Ry — R, and h € Ry such that

» () (@, & 1) — 10w, &n) < H()([Ellz- + h)lInle
’ forall ,7 € R®* ae. x €T, p > 0;

(b) H(p) > 0 as p—0.

(4.5) fo—=f inV"asp—0.

We have the following convergence result.

THEOREM 4.1. Assume (4.3)—(4.5). Then the solution u, of PROBLEM (P,)
converges in 'V to the solution u of PROBLEM (P), i.e.,

4.6 u, —»u inV as p—0.
P
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Proof. Let p > 0. We take v = u in (4.2) and v = u, in (3.1) and add the resulting
inequalities to obtain

(1) Ay = Auc, = uyesv < [ (B = Fu) (o) = ol,)) T

+ /F (jg(vup; YU —yup) + 5 (yus yu, — w)) dr

+(fp — frup —u)vexv.

Let us bound each term in the previous inequality. First, it follows from assump-
tion (3.2)(b) that

(4.8) (Au, — Au, up — u)yexyv > mA||up—uH%,.

Next, we use the properties (3.3), (3.4) of the operator F, and the function ¢, respec-
tively, combined with assumption (4.3)(a) to see that

[ Foty = Pu)(pte) = () ar
< Lyl Fpup — Fullpery lvup — yull L2 rrs)
< Lol 1y = Fpull oy + 1 Fpu = Full ey ) llup = ully
< Lol (Lr, Iy = ullv + Go)(llullv +9)) llup — ully-
Therefore,
@9) [ (Fyu, = Pu)(pt) = p(u,) U < LoL, Il =l

+ Lo G o) VIl ([ellv + 9) lup = ullv-

We use the property (3.5)(d) of the function j, combined with assumption (4.4) to
get

/ (jg(vup; Yu — yu,) + §° (yu; yu, — ’yu)) dr
T
= /F (j,?(vup; YU — Yu,) + jo (yu; yu, — w)) dr
+ /F (jO(W; Yup = yu) = jo (yu; yu, — w)) dr

< Boll 2y — ul® + H(p) / (lul oo dT.

e+ h)llyup, — yul
Therefore,
(4.10) / (jg(vup;wu —yu,) + 30 (yu; yu, — Wu)) dr

r

< BolPllup = ulls + H(p) I (Il [ullv + hy/m(T)) [l — ullv-
11



Finally, note that

(4.11) (fo = frup —uw)vexy < |Ifp — £l

We combine now inequalities (4.7)—(4.11) to deduce that

V* up — UHV
mallu, —ull} < Ly Lp, |¥lllup = ully + LG o) V] (lullv + 9) [lup — ullv

+ Bl up = ulli + H(p) VI llv + hy/m(D)) [up —ullv
+1fo = fllvellu, — ullv
which yields
(ma = BollvlI* = Ly Lr, 191 llup — ullv
< Lo G(p) IVl (lullv +9) + Hp) IV [U I lullv +hvm(D)) +[1fo = fllv-
We apply assumption (4.1) to see that
(4.12)  (ma —mo)llu, —ully < LoG(p) 7]l ([lullv + 9)

+ H(p) [V ullv + h/m(D)) + 1 £, = f]

Theorem 4.1 is now a consequence of inequality (4.12) combined with assumptions
(4.3)(b), (4.4)(b) and (4.5). O

V*.

5. Numerical approximations. In this section, we consider numerical schemes
for solving PROBLEM (P). We make the assumptions stated in Theorem 3.2 so that
a unique solution u € V is guaranteed for PROBLEM (P). Let V* C V be a finite
dimensional subspace with h > 0 denoting a spatial discretization parameter. We
consider the following approximation of PROBLEM (P).

PrOBLEM (P"). Find an element u" € V* such that
(5:1) (Au ot =)+ [ (B (00" = o)) d
r
+/j0(’yuh;711h —yu™)dl > (f, 0" —uM)yeyy  for all v € VI
r

The arguments of the proof of Theorem 3.2 can be applied in the setting of
the finite dimensional space V", and we know that under the assumptions given in
Theorem 3.2, PROBLEM (P") has a unique solution u” € V". The focus of this section
is error analysis for the numerical solution defined by PROBLEM (P").

THEOREM 5.1. Assume the conditions stated in Theorem 3.2. Moreover, assume
A:V — V* is Lipschitz continuous, i.e., there exists La > 0 such that

(5.2) |[Au — Av||y+ < La|lu — ||y for all u,v €V,

and, in addition, j(x,-) is locally Lipschitz on R® for a.e. x € T, with a Lipschitz con-
stant L; > 0 which does not depend on x. Then, there exists a constant c independent
of h such that

. 1/2
(5.3) u—wtlly <c_inf (ke = 0"l + v = 0" ot ) -

h

12



Proof. By the strong monotonicity of A, (3.2) (b),
(5.4) mallu—u} < (Au — Aul,u — u)ye sy
Let v® € V" be an arbitrary function from V". We write

(5.5)  (Au-— Aul u— uh>V*XV = (Au — Aul u— vh>v*xv + (Au,vh — Uy xy

+ (Au,u — uh>v*xv + (Auh,uh — vh>v*xv.

We take v = u” in (3.1) to obtain

6:6)  (uu=u)y < [ (Fo)ptu®) - pl)) ar
T
+ /Fjo(w; yu" —yu)dl = (f,u" —u)yv-xv.
By (5.1),
61 (A =)y < [ (P (") - pou)) ar

+ [ Plntine = qut)dr = (0" = i)y
r

Combining (5.4)—(5.7), we have
(5.8) mallu —u"||? < By + By + B3 + Eu,
where

By = (Au— Aul u— ")y,

Ba = (Au, "~ u)y-xv + [ (Pu) (plru) — pl2yu = ") dr

r

—/jo(w;w—wh)dF— (fio" —uwvexv,
I

E; = /F (Fu— Fu") (p(yu") — p(y0™)) dT

+ /(Fu) ((7") + (27w — ™) — 2¢(yu)) dT,
I

By = / [0 (v yu — yu) + 50 (yul; y0" — yu™) + 50 (yus yu — yo™)] dT.
I

Let us bound each of the terms E;, 1 < j < 4. First, by the Lipschitz continuity
of A,

(5.9) Er < [|Au — Au"|[v+|lu — v" [y < Lallu — u"[[v[lu = v"[|v.
13



Next, we replace v by 2u — v in (3.1) to get

(A, u = vy + [ (Fu) (o2 = 7o) = o) dr
r
+ / P2 (yu;yu — yv) dU > (f,u — v)yexy  forallv € V.
r
Then,
(5.10) By <0.

Applying (3.3) (a) and (3.4) (c), we have

[ (Fu=Put) (o) = (")) ar
< ||Fu— Fu|| 2y lle(vu”) — (™)l 2 ms)
< LpLy|ly| lu — u*|lv [u® — o"|lv

< LpLyllyl llu = w5 + LeLglly] lu = u"llv]lu—v"|lv,

and
/F(FU) (p(y0") + (27u — ") = 2 p(u)) dT
< |[Full g2 o) lo(vo™) + o(2yu = y0") = 2 (yu) || L2 (0yee)
< 2 Lo[|Full g2 (o) llye — 70" | 220 me)-
Thus,
(5.11) B3 < LpLy|lyll llu — ™% + L Lo |yl llu — u"{lvlu — v"|lv

+ 2 Ly||Ful| g2 (ryre) |yu — ’Y'Uh||L2(F;Rs).
Finally, to bound FE,, we note that
PO (yul Al — yuly < 50 (vl ol — yu) + 50 (yul yu — Au) ace. on Ts.
Use the condition (3.5) (d),

]%{s a.e. on I's.

30 (yus yul = qu) + 0 (quts yu — ) < B [lyu — yul|
Also,
70 (yu; v — qu) < Ljfvo” = ullgs,
70 (yu; yu — ") < Ljllyu — 0" |[gs,
a.e. on I's. Hence,

(5.12) Ey<p HVHQHU - Uh”%/ + 2Lj||’)’u - ’WhHLZ(F;Rs)-
14



Using (5.9)—(5.12) in (5.8), we have

malu—u"l[} < (La+ LrLe |yl lu = u"|lv]lu = o"|v
+ (LrLelvll + 8172 llu — w3

+2 (Lol Full L2ogey + Lj) 7w — 70" || L2y
Recall the condition (3.8) and bound the first term on the right as follows:
(La+ LeLglly) llu = w*llv llu—o* v < dllu— [}, + C@) llu— o[}

with a sufficiently small § > 0. Then we derive from the above relation the following
inequality

lu—u" (3 < e (Jlu— o™+ lyu = 70" 220pe))
where ¢ represents a positive constant which does not depend on h. Since v € V" is
arbitrary, we the conclude the error bound (5.3). 0

The inequality (5.3) is the basis for convergence analysis and error estimation.
Indeed, let {V"},¢ be a family of finite dimensional subspaces of V such that

(5.13) for any v € V, there exists v" € V" such that v" — vin V as h — 0T.

In other words, any function from the space V' can be approximated by functions from
V" when h — 0. We have the following convergence result.

COROLLARY 5.2. Assume (5.13) and the conditions stated in Theorem 5.1. Then
we have convergence of the numerical solutions:

(5.14) |u—u"||y =0 ash— 0.

To present a result of concrete error estimate, we consider the finite element
method. Let us assume € is a polygonal/polyhedral domain and express the parts of
the boundary, T" and 9Q\T" as unions of closed flat components with disjoint interiors:

We introduce a regular family of partitions {77} of  into triangles/tetrahedrons.
The triangulations are compatible with the partition of the boundary 92 into I,
1 <i <1, in the sense that if the intersection of one side/face of an element with one
of the sets I';), 1 < <y, has a positive measure relative to I';), then the side/face
lies entirely in I'(;). For the finite dimensional subspace V" we use the linear element
corresponding to 7"

Vh= [ eV | oh|p e Py(T) for all T € T"},

where P (T') is the space of polynomials of degree less than or equal to one over T
Then the property (5.13) is valid. Using the standard finite element interpolation
error estimates ([1, 5]), we can derive the following error estimate from Theorem 5.1.

COROLLARY 5.3. Under the assumptions stated in Theorem 5.1 as well as the
solution regularities u € H?(Q;R?) and Yulr,,, € H?*(D(;);RY), 1 < i < ig, we have
the optimal order error bound

(5.15) u— "y < ch.
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6. A frictional contact problem. Several static contact problems with elastic
materials lead to a variational-hemivariational inequality of the form (3.1) in which
the unknown is the displacement field. For a variety of such inequalities, the results in
Section 3-5 can be applied. We illustrate this point here on a representative contact
problem.

The physical setting is the following. An elastic body occupies a regular domain
Q of R? (d = 2, 3) with its boundary I' = 92 that is partitioned into three disjoint
measurable parts I'q, I'y and T's, such that the measure of I'y, denoted m(I'7), is
positive. The body is clamped on I'; and so the displacement field vanishes there.
Surface tractions of density f, act on I's and volume forces of density f act in Q2. The
body is allowed to arrive in contact with an obstacle on I's, the so-called foundation.
The contact is modeled with a nonmonotone normal compliance condition associated
with one version of Coulomb’s law of dry friction. We are interested in the equilibrium
process of the mechanical state of the body.

We use the notation & = (z;) for a typical point in Q UT and we denote by
v = (v;) the outward unit normal at T'. Here and below, the indices i, j, k, I
run between 1 and d and, unless stated otherwise, the summation convention over
repeated indices is used. An index following a comma indicates a partial derivative
with respect to the corresponding component of the spatial variable . We denote by
u = (u;), o = (0;5), and e(u) = (&;;(u)) the displacement vector, the stress tensor,
and the linearized strain tensor, respectively. Recall that e;;(u) = (u;; + u;,)/2,
where u; ; = Ou;/0x;. We use S¢ for the space of second order symmetric tensors on
R? or, equivalently, the space of symmetric matrices of order d. The canonical inner
products and the corresponding norms on R% and S are given by

w-v=uw;, |v|=w-v)? foral u=(u;),v=(v;) €Re

1/2

o-T=0yTj; |T|=(T-T) for all & = (0i;), T = (1i;) € S%,

respectively. For a vector field, we use the notation v, and v, for the normal and
tangential components of v on I' given by v, = v-v and v, = v — v,v. The
normal and tangential components of the stress field o on the boundary are defined
by o, = (ov) -v and o, = ov — o,V, respectively.

The classical formulation of the contact problem is stated as follows.

PROBLEM (P¢). Find a displacement field w: Q — R? and a stress field o: Q —
S% such that

(6.1) o = Fe(u) in Q,
(6.2) Dive + f, =0 in Q,
(6.3) u=0 on I'y,
(6.4) ov=f, on Iy,
(6.5) —0y € 0ju(uy) on I's,
(6.6) oo || < Fy(w,), —or= Fb(uu)”Z—:H if w,£0 on Ts.

We now present a short description of the equations and conditions in PROB-
LEM (P¢) and we refer the reader to [14, 21, 28] for more details and mechanical
interpretation. Equation (6.1) is the constitutive law for elastic materials in which F
represents the elasticity operator. Equation (6.2) is the equilibrium equation for the
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static contact process. On I'y, we have the clamped boundary condition (6.3), and
on I'y, the surface traction boundary condition (6.4). Relation (6.5) is the contact
condition in which 975, denotes the Clarke subdifferential of a given function j,, and
(6.6) represents a version of static Coulomb’s law of dry friction. Here F}, is a given
positive function, the friction bound.

We note that (6.5) represents the nonmonotone contact condition with normal
compliance, which describes the contact with a reactive foundation. In this condition
the scalar u,, when positive, may be interpreted as the interpenetration between
the asperities of the body’s contact surface and the foundation. The condition can
model the contact with an elastic, rigid-perfect plastic and rigid-plastic foundation.
Due to the nonmonotonicity of dj,, the condition allows to describe the hardening
of the softening phenomena of the foundation. Various examples and mechanical
interpretation associated with this contact condition can be found in [21].

The friction bound F} in (6.6) is assumed to depend on the normal displacement
u,. This assumption is reasonable for any version of Coulomb’s friction law when
associated with the normal compliance contact condition. Indeed, in the Coulomb’s
law the friction bound is assumed to depend on the normal stress which, in turn, in
the normal compliance condition, is assumed to depend on the normal displacement.
Consequently, dependence of the friction bound on the normal displacement results,
as is shown in (6.6). This dependence makes sense from the physical point of view,
since it takes into account the influence of the asperities of the contact surface on the
friction law. Assume, for instance, that Fj is an increasing function which vanishes
for a negative argument. We deduce that when there is no penetration (i.e. when
u, < 0) then the friction bound vanishes, when the penetration is small then the
friction bound is small and, finally, when the penetration is large then the friction
bound is large. Physically, when there is no penetration, there is separation between
the body and the foundation and so there is no friction, justifying a vanishing friction
bound; when the penetration is small, contact takes place at the tips of the asperities,
justifying the small value of the friction bound; when the penetration becomes larger,
the actual contact area increases, justifying a larger value of the friction bound.

In the study of PROBLEM (P¢) we use standard notation for Lebesgue and
Sobolev spaces. For all v € H'(€;R?) we still denote by v the trace of v on T,
and we use the notation v, and v, for the normal and tangential components of v on
I". We introduce spaces V and H defined by

V={v=(v) € H(GER) |v=0 aec. onTy },
HZ{TZ(Tij)GLQ(Q;Sd)‘TijZTji, 1<4,5<d}.

The space H is a real Hilbert space with the canonical inner product given by

(0 7)3 = /Q 043 (@) 73 () d,

and the associated norm || - ||. Since m(T'1) > 0, it is well known that V is a real
Hilbert space with the inner product

(6.7) (u,v)y = (e(u),e(v))y, u,vevV
and the associated norm || - ||y-. By the Sobolev trace theorem,
(63) ol oy < [l loly forallv eV,
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||| being the norm of the trace operator v: V — L?(I'3; R%).
We make the following assumptions on the problem data. For the elasticity op-
erator F, assume

F: QxS — S?is such that
(a) there exists Lx > 0 such that
|F(@.e1) — Fla,e)ll < Lrler — el
for all €1,y € S¢, a.e. x €
(b) there exists mz > 0 such that
(F(z,e1) — F(x,€2)) - (€1 — €2) > mr [le1 — ea?
for all e1,e5 € S%, ae. & € Q;
(c) the mapping @ +— F(x, €) is measurable on €2,
for any € € S%;
(d) F(x,0) =0 ae. x €.

(6.9)

For the friction bound F} and the potential function j,, assume

Fy: T's x R — Ry is such that
(a) there exists Lp, > 0 such that
|Fy(x,r1) = Fy(x,r2)| < L [r1 — 72|
for all ri,79 € R, a.e. x € I's;
(b) the mapping @ — Fy,(x,r) is measurable on I's,
for all r € R;
(¢) Fp(z,r) >0 forallr € R, a.e. & € I's;
(d) Fp(x,0) =0 ae. xcl;.

(6.10)

jv: I's x R — R is such that
(a) 4, (-, ) is measurable on I's for all » € R and there
exists € € L?(I's) such that j,(-,€(-)) € L1(T'3);
(6.11) (b) ju(a, ) is locally Lipschitz on R for a.e. € I's;
(c) |07, (x,7)| < ¢ +7¢1 |r| for a.e. € T's,
for all r € R with ¢y, ¢, > 0;
(d) (@, risre = 1) + (@, 72571 — 12) < Bl —7af?

for a.e. & € I's, all r1, ro € R with g > 0.

For the densities of body forces and surface tractions, assume
(6.12) fo € LA(GRY),  f, € L2(Ty;RY).

Following a standard approach (cf. [14, 21]), we can derive the next variational
formulation for PROBLEM (P¢).

PROBLEM (Pv/). Find a displacement field w € V' such that

(6.13)  (F(e(u)),e(v) —e(u)n +/ Fy(u) (o7 ]| = [Jurl) dT

s
—|—/ 3%uy;v, —u,)dl > (f, v —u)y-xy forallv eV,
s

where f € V* is given by

(6.14) <f, ’l)>v*><v = (anv)L2(Q;Rd) + (f27U)L2(F2;Rd) for all v € V.
18



We have the following existence and uniqueness result for PROBLEM (Py/).
THEOREM 6.1. Assume the hypotheses (6.9)—(6.12) and the smallness condition

(6.15) L, Il + BlIyI* < mz.
Assume moreover that one of the following inequalities hold:
(i) mr>av2|y|?
(i) joUx,r;—r) <d(1+|r]) forallr €R, a.e. © € T3 with d > 0.

Then PROBLEM (Py) has a unique solution u € V.
Proof. We apply Theorem 3.2 with I' =T's C 99, s =d,

(6.16) (Au,v)yxv = (Fe(u),e(v))y for u,v €V,
(6.17) (Fv)(x) = Fy(x,v,(x)) forv eV, ae. x €Ty,
(6.18) jlx, &) = j,(x,&,) for £ €RY ae x €T3,
(6.19) o(x, &) =&, || for £ €RY, ae x €T3,

and f = f € V* defined by (6.14). Then it can be verified that for A defined by
(6.16), (6.9) implies (3.2) with @ = m4 = mg; for F defined by (6.17), (6.10) implies
(3.3) with Ly = Lg,||v]|; the function ¢: I's x R? — R defined by (6.19) satisfies
(3.4) with L, = 1; and (6.12) implies (3.6). For the function j defined by (6.18), the
conditions (3.5)(a) and (b) follow from (6.11)(a) and (b), respectively. The properties
(3.5)(c) and (d) are consequences of the relations

0j(x,€) € Oju(®.&)v, (=.&m) < gy, &iny) forall € neR’ ae xely
combined with the hypothesis (6.11)(c) and (d). Thus, (3.5) holds with 8 = 3 and

c1 = ¢1. Therefore, Theorem 6.1 holds as a corollary of Theorem 3.2. 0

In addition, Theorem 4.1 can be used to study the dependence of the weak so-
lution of PROBLEM (Py ) with respect to perturbations of the data and to prove its
continuous dependence on the friction bound, the normal compliance function, and
the densities of body forces and surface tractions. We omit the detail here. Instead,
we provide an example of functions Fy, Fy, and j,, j,, which satisfies conditions
(6.10) and (6.11), such that the corresponding operators F', F, defined by (6.17) sat-
isfy the condition (4.3) and the coresponding functions j, j, defined by (6.18) satisfy
the condition (4.4). In the following, p is a positive parameter.

Consider the functions p and p, which satisfy

(a) p € L*>(T3), w(ix) >0 ae xely;
(6.20) (b) pp, € L>*(T's), pp(x) >0 ae xels;
(¢) pp = p in L>(I'3) as p— 0.
We define the functions Fy, and Fy, by equalities
Fy(z,r) =p@)r™, Fylx,r)=p,(z)rt foralreR, ae xels,

where 7 represents the positive part of 7. Let F: V — L?(I's) and F,: V — L*(I'3)
be the operators defined by
(Fv)(x) = Fy(z,v,(x)), (Fyv)(x)=Fpp(x,v,(x)) forallveV, ae xels.
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Then, the functions F, and Fy, satisfy conditions (6.10), and it follows from the trace
inequality (6.8) that

(621)  [E0— Follgay) < [l Iy — llz=oy ol for all v € V.

We use inequality (6.21) and assumption (6.20)(c) to see that (4.3) holds.
Define p,: R — R by

0 if r<o,

r if 0<r<l,
(6.22) p(r)=4¢2—r if 1<r<2,

Vr=24+r—-2 if 2<r<86,

r if r>6.

This function is continuous, yet neither monotone nor Lipschitz continuous. Then
define the function j,: R — R by

(6.23) gu(r) = / pu(s)ds for all r € R.
0

Note that j, is not convex. Since j/(r) = p,(r) for all r € R, j,, is a C! function, and
thus is a locally Lipschitz function. Since |p,(r)| < |r| for r € R, we know that j,
satisfies (6.11)(c). The function r — r + p,(r) € R is nondecreasing and therefore,

(pu(r1) = pu(re))(ra — ) < (11 — 7“2)2 for all 71,75 € R.

We combine this inequality with equality jO(r1;72) = p,(r1)r2, valid for all 71, 75 €
R, to see that condition (6.11)(d) is satisfied with 3 = 1. Hence, j, satisfies the
hypothesis (6.11).

Consider now the function p,,: R — R defined by

0 if r <O,
r if 0<r<1—p,
624 Puplr) = p;lrfM lf 1— ST<2,
2 o1 o1 P
Vvr—24+r—2 if 2<r <6,
r if r>6

and define the function j,,: R — R by

Jup(r) = / Pup(s)ds for all r € R.
0

A similar argument shows that j,, satisfies the hypothesis (6.11).
Let j: RY — R and j,: I's x R? — R be the functions given by

3(€) =5u(&),  Jo(€) = jup(&) for all £ € RY
Then

(625) jO(g;,’,,) - .72(57 7]) = (pl/(fu) - pup(gu))nu for all §,m € Rda
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and

2p
+1

(6.26) Dy (1) — pup(r)] < 5 |r| for all r € R.
We now combine inequalities (6.25) and (6.26) to see that (4.4) holds. We conclude
from here that the convergence result in Theorem 4.1 can be used in the study of the
corresponding frictional contact problem.

Finally, we consider numerical approximations of PROBLEM (Py ). Here, the
results in Section 5 apply. Let {V"},-¢ be a family of finite dimensional subspaces
of V. Then we consider the following approximation of PROBLEM (Py ).

PrROBLEM (P{.). Find a displacement field u" € V" such that

(6.27) (J"(E(uh)),e(vh)*E(uh))HJr/F Fy(up) (07|l = ull) d°

+/ GOl ol —ulydr > (f, 0" —ut)yexy  for all oM € VI
s

To apply Theorem 5.1, we verify the assumptions of the theorem. Using (6.9)(a),
we easily establish the Lipschitz continuity of A,

|Au — Av||y« < Lz||lu—v|y forall u,v eV.

So (5.2) holds. In applications, for j, defined by (6.23), without loss of generality,
we may assume p,(r) to be bounded for r > 0 since if the normal component of
the displacement u, becomes too large, then part of the contact surface breaks down
and the formulation of PROBLEM (Py/) is no longer suitable for the contact process.
Hence, it can be assumed that the Lipschitz constant for j, is independent of the
arguments of j,. Thus, Theorem 5.1 can be applied, and we have from (5.3) that

. 1/2
(6.28) lu—wy < inf (Juw=v"lv +lu = r,) -

Hence, if the finite dimensional subspaces {V"};~o are chosen so that any function
in V can be approximated by a sequence of functions from {V"},~q as h — 0, then
we have the convergence of the numerical solutions:

|lu—u"|ly =0 ash— 0.

This is the case when we use the finite element method to construct V*. As a sam-
ple, assume 2 is a polygonal/polyhedral domain and express the three parts of the
boundary, I'y, 1 < k < 3, as unions of closed flat components with disjoint interiors:

T =Ux Thi 1<k<3.

Let {T"} be a regular family of partitions of ) into triangles/tetrahedrons that are
compatible with the partition of the boundary 99 into I, ;, 1 <4 <43, 1 <k <3, in
the sense that if the intersection of one side/face of an element with one set I'y ; has
a positive measure with respect to I'y;, then the side/face lies entirely in I'y ;. Then
use the linear element corresponding to 7"

Vi = {v" e @) |v"|r e Py(T)?, T €T", and v" =0 on Ty}
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Then under additional solution regularity assumptions u € H?(Q;R9) and uy|r,, €
H?(T'3,;;RY), 1 <i < i3, we have the optimal order error bound

| —u"|v < ch.
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