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A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
WITH APPLICATIONS TO FRICTIONAL CONTACT PROBLEMS∗
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Abstract. A class of variational-hemivariational inequalities is studied in this paper. An in-
equality in the class involves two nonlinear operators and two nondifferentiable functionals, of which
at least one is convex. An existence and uniqueness result is proved for a solution of the inequality.
Continuous dependence of the solution on the data is shown. Convergence is established rigorously
for finite element solutions of the inequality. An error estimate is derived which is of optimal order
for the linear finite element method under appropriate solution regularity assumptions. Finally, the
results are applied to a variational-hemivariational inequality arising in the study of some frictional
contact problems.
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1. Introduction. The theory of variational inequalities started in early sixties
and has gone through substantial development since then, see for instance [2, 3, 4,
10, 11, 12, 19, 25] and the references therein. The main ingredients in the study of
variational inequalities are the arguments of monotonicity and convexity, including
properties of the subdifferential of a convex function. In contrast, the theory of
hemivariational inequalities is based on properties of the subdifferential in the sense
of Clarke, defined for locally Lipschitz functions which may be nonconvex. Analysis of
hemivariational inequalities, including existence and uniqueness results, can be found
in [7, 16, 21, 23, 26]. Applications of the variational and hemivariational inequalities
in Mechanics and Engineering Sciences, and in Contact Mechanics in particular, can
be found in [9, 13, 14, 15, 17, 18, 20, 21, 25, 26, 27, 28], among others. Variational-
hemivariational inequalities represent a special class of inequalities, in which both
convex and nonconvex functions are involved. Interest in their study is motivated by
various problems in Mechanics (e.g., [23, 24]).

The aim of this paper is to study a new class of variational-hemivariational in-
equalities and to apply these results in the analysis of an elastic contact problem.
New feature of the problems is reflected by the presence of two nondifferentiable func-
tionals, one convex and the other nonconvex. In addition to the unique solvability of
the inequalities, we also show the continuous dependence of the solution on the data.
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Moreover, we introduce and analyze numerical methods for solving the inequalities.
Novel techniques are employed, leading to desired error estimates for the numerical
solutions. Finally, we apply our abstract results in the study of a new model of con-
tact, which describes the equilibrium of a nonlinear elastic body in frictional contact
with a reactive foundation.

The rest of the paper is organized as follows. In Section 2 we review some pre-
liminary material. In Section 3 we introduce the class of variational-hemivariational
inequalities to be studied, state and prove an abstract existence and uniqueness re-
sult. The proof of the result is based on arguments of surjectivity for pseudomonotone
operators and the Banach fixed point theorem. In Section 4 we study the continuous
dependence of the solution with respect to the data. In Section 5 we study numer-
ical methods for the variational-hemivariational inequalities, prove convergence and
derive error estimates. Finally, in Section 6 we consider a contact problem in which
the material behavior is modeled with a nonlinear elastic constitutive law and the
frictional contact conditions are in a subdifferential form. The contact problem leads
to a variational-hemivariational inequality for the displacement field, and we apply
our abstract results in the analysis of the problem.

2. Preliminaries. We recall some definitions and results related to various
classes of functions and nonlinear operators that are needed in the rest of the pa-
per. More details on the material presented in this section can be found in the books
[6, 7, 8, 21, 23]. All the spaces in this paper are real.

For a normed space X, we denote by ‖ · ‖X its norm, by X∗ its topological dual,
and by 〈·, ·〉X∗×X the duality pairing between X∗ and X. The symbol w-X is used
for the space X endowed with the weak topology, while 2X

∗
represents the set of all

subsets of X∗. For simplicity in exposition, in the following we always assume X is a
Banach space, unless stated otherwise.

Definition 2.1. Let h : X → R be a locally Lipschitz function. The generalized
(Clarke) directional derivative of h at x ∈ X in the direction v ∈ X, denoted by
h0(x; v), is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv)− h(y)

λ
.

The generalized gradient (subdifferential) of h at x, denoted by ∂h(x), is a subset of
the dual space X∗ given by

∂h(x) = { ζ ∈ X∗ | h0(x; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X }.

A locally Lipschitz function h is said to be regular (in the sense of Clarke) at x ∈ X if
for all v ∈ X the one-sided directional derivative h′(x; v) exists and h0(x; v) = h′(x; v).

Recall that a function ϕ : X → R ∪ {+∞} is proper if it is not identically equal
to +∞ and is lower semicontinuous if xn → x in X implies ϕ(x) ≤ lim inf ϕ(xn). The
effective domain of ϕ is denoted by domϕ = {x ∈ X | ϕ(x) < +∞}.

Definition 2.2. Let ϕ : X → R∪{+∞} be a proper, convex and lower semicon-
tinuous function. The mapping ∂ϕ : X → 2X

∗
defined by

∂ϕ(x) = {x∗ ∈ X∗ | 〈x∗, v − x〉X∗×X ≤ ϕ(v)− ϕ(x) for all v ∈ X}

is called the subdifferential of ϕ. An element x∗ ∈ ∂ϕ(x) (if any) is called a subgra-
dient of ϕ in x.
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Let ϕ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous function.
Denote by int domϕ and D(∂ϕ) the interior of the effective domain and the domain
of the subdifferential ∂ϕ, respectively. Then, it is known that ϕ is locally Lipschitz
on int domϕ and int domϕ ⊂ D(∂ϕ) ⊂ domϕ. In particular, if ϕ : Rd → R is convex,
then it is locally Lipschitz on Rd.

Next, we shall consider single-valued operators A : X → X∗ as well as multivalued
operators A : X → 2X

∗
. The following definitions hold for single-valued operators.

Definition 2.3. An operator A : X → X∗ is called:
(a) bounded, if A maps bounded sets of X into bounded sets of X∗;
(b) monotone, if 〈Au−Av, u− v〉X∗×X ≥ 0 for all u, v ∈ X;
(c) maximal monotone, if it is monotone, and 〈Au−w, u−v〉X∗×X ≥ 0 for any u ∈ X
implies that w = Av;
(d) coercive, if there exists a function α : R+ → R with limt→+∞ α(t) = +∞ such
that 〈Au, u〉X∗×X ≥ α(‖u‖X) ‖u‖X for all u ∈ X;
(e) pseudomonotone, if it is bounded and un → u weakly in X together with
lim sup〈Aun, un − u〉X∗×X ≤ 0 imply 〈Au, u − v〉X∗×X ≤ lim inf〈Aun, un − v〉X∗×X
for all v ∈ X.

It can be proved that an operator A : X → X∗ is pseudomonotone, iff it is
bounded and un → u weakly in X together with lim sup 〈Aun, un − u〉X∗×X ≤ 0
imply lim 〈Aun, un − u〉X∗×X = 0 and Aun → Au weakly in X∗.

For a multivalued operator A : X → 2X
∗
, its domain D(A), range R(A) and graph

Gr(A) are defined by

D(A) = {x ∈ X | Ax 6= ∅}, R(A) =
⋃
{Ax | x ∈ X},

Gr(A) = {(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax}.

If u0 ∈ X we define a multivalued operator Au0
by Au0

(v) = A(v+ u0) for all v ∈ X.

Definition 2.4. A multivalued operator A : X → 2X
∗

is called:
(a) monotone, if 〈u∗ − v∗, u− v〉X∗×X ≥ 0 for all (u, u∗), (v, v∗) ∈ Gr(A);
(b) maximal monotone, if it is monotone and maximal in the sense of inclusion of
graphs in the family of monotone operators from X to 2X

∗
;

(c) coercive, if there exists a function c : R+ → R with limt→+∞ c(t) = +∞ such that
〈u∗, u〉X∗×X ≥ c(‖u‖X) ‖u‖X for all (u, u∗) ∈ Gr(A).

The following important result is due to Rockafellar, cf. [8, Theorem 6.3.19].

Theorem 2.5. Let ϕ be a proper, convex and lower semicontinuous function on
X. Then ∂ϕ : X → 2X

∗
is a maximal monotone operator.

The notions of pseudomonotonicity and generalized pseudomonotonicity for mul-
tivalued operators are recalled in the following definitions.

Definition 2.6. Let X be a reflexive Banach space. A multivalued operator
A : X → 2X

∗
is pseudomonotone if:

(a) for every u ∈ X, the set Au ⊂ X∗ is nonempty, closed and convex;
(b) A is upper semicontinuous from each finite dimensional subspace of X into w-X∗;
(c) for any sequences {un} ⊂ X and {u∗n} ⊂ X∗ such that un → u weakly in X,
u∗n ∈ Aun for all n ≥ 1 and lim sup〈u∗n, un − u〉X∗×X ≤ 0, we have that for every
v ∈ X, there exists u∗(v) ∈ Au such that

〈u∗(v), u− v〉X∗×X ≤ lim inf 〈u∗n, un − v〉X∗×X .
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Definition 2.7. Let X be a reflexive Banach space. A multivalued operator
A : X → 2X

∗
is generalized pseudomonotone if for any sequences {un} ⊂ X and

{u∗n} ⊂ X∗ such that un → u weakly in X, u∗n ∈ Aun for n ≥ 1, u∗n → u∗ weakly in
X∗ and lim sup〈u∗n, un − u〉X∗×X ≤ 0, we have u∗ ∈ Au and

lim 〈u∗n, un〉X∗×X = 〈u∗, u〉X∗×X .

The relationship between these notions is given by the following results (cf. [8,
Propositions 6.3.65 and 6.3.66]).

Proposition 2.8. Let X be a reflexive Banach space and A : X → 2X
∗

a pseu-
domonotone operator. Then A is generalized pseudomonotone.

Proposition 2.9. Let X be a reflexive Banach space and A : X → 2X
∗

a bounded
generalized pseudomonotone operator. If for each u ∈ X, Au is a nonempty, closed
and convex subset of X∗, then A is pseudomonotone.

Finally, we recall the following surjectivity result; see [23, Theorem 2.12].

Theorem 2.10. Let X be a reflexive Banach space, T : X → 2X
∗

a maximal
monotone operator, and T : X → 2X

∗
a pseudomonotone operator. Suppose either

Tu0 or Tu0 is bounded for some u0 ∈ D(T ). Assume that there exists a function
c : R+ → R with c(r) → +∞ as r → +∞ such that for all (u, u∗) ∈ Gr(T ), we have
〈u∗, u− u0〉X∗×X ≥ c(‖u‖X) ‖u‖X . Then T + T is surjective, i.e. R(T + T ) = X∗.

3. An existence and uniqueness result. Let Ω ⊂ Rd be an open bounded
subset of Rd with a Lipschitz continuous boundary ∂Ω and let Γ ⊆ ∂Ω be a measurable
subset. We use the notation x for a generic point in Γ and m(Γ) for the (d − 1)
dimensional measure of Γ. Given an integer s ≥ 1 we denote by V a closed subspace of
H1(Ω;Rs) and let H = L2(Ω;Rs). We also use the notation γ : V → L2(Γ;Rs) for the
trace operator, ‖γ‖ for its norm in the space L(V,L2(Γ;Rs)) and γ∗ : L2(Γ;Rs)→ V ∗

for its adjoint operator. It is known that (V,H, V ∗) forms an evolution triple of spaces
and the embedding V ⊂ H is compact.

Given operators A : V → V ∗, F : V → L2(Γ), functions ϕ, j : Γ × Rs → R and a
functional f : V → R, we consider the following problem.

Problem (P). Find an element u ∈ V such that

〈Au, v − u〉V ∗×V +

∫
Γ

(Fu)
(
ϕ(γv)− ϕ(γu)

)
dΓ(3.1)

+

∫
Γ

j0(γu; γv − γu) dΓ ≥ 〈f, v − u〉V ∗×V for all v ∈ V.
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For the study of Problem (P), we introduce the following hypotheses.

A : V → V ∗ is

(a) pseudomonotone and there exists α > 0 such that

〈Av, v〉V ∗×V ≥ α ‖v‖2V for all v ∈ V ;

(b) strongly monotone, i.e., there exists mA > 0 such that

〈Av1 −Av2, v1 − v2〉V ∗×V ≥ mA‖v1 − v2‖2V for all v1, v2 ∈ V.

(3.2)


F : V → L2(Γ) and

(a) there exists LF > 0 such that

‖Fv1 − Fv2‖L2(Γ) ≤ LF ‖v1 − v2‖V for all v1, v2 ∈ V ;

(b) Fv ≥ 0 a.e. on Γ, for all v ∈ V.

(3.3)



ϕ : Γ× Rs → R is such that

(a) ϕ(·, ξ) is measurable on Γ for all ξ ∈ Rs and there

exists ẽ ∈ L2(Γ;Rs) such that ϕ(·, ẽ(·)) ∈ L2(Γ);

(b) ϕ(x, ·) is convex for a.e. x ∈ Γ;

(c) there exists Lϕ > 0 such that for all ξ1, ξ2 ∈ Rs,
|ϕ(x, ξ1)− ϕ(x, ξ2)| ≤ Lϕ‖ξ1 − ξ2‖Rs , a.e. x ∈ Γ.

(3.4)



j : Γ× Rs → R is such that

(a) j(·, ξ) is measurable on Γ for all ξ ∈ Rs and there exists

e ∈ L2(Γ;Rs) such that j(·, e(·)) ∈ L1(Γ);

(b) j(x, ·) is locally Lipschitz on Rs for a.e. x ∈ Γ;

(c) ‖∂j(x, ξ)‖Rs ≤ c0 + c1 ‖ξ‖Rs for a.e. x ∈ Γ,

all ξ ∈ Rs with c0, c1 ≥ 0;

(d) j0(x, ξ1; ξ2 − ξ1) + j0(x, ξ2; ξ1 − ξ2) ≤ β ‖ξ1 − ξ2‖2Rs
for a.e. x ∈ Γ, all ξ1, ξ2 ∈ Rs with β ≥ 0.

(3.5)

(3.6) f ∈ V ∗.

Note that the function ϕ is assumed to be convex and Lipschitz continuous with
respect to its second argument while the function j is locally Lipschitz with respect
to the second argument and may be nonconvex. For this reason, the inequality (3.1)
is a variational-hemivariational inequality.

Remark 3.1. The hypothesis (3.5)(d) has been introduced to guarantee the
uniqueness of the solution to the variational-hemivariational inequality. It can be
verified that for a locally Lipschitz function j : Rs → R, the condition (3.5)(d) is
equivalent to the so-called relaxed monotonicity condition

(3.7) (ζ1 − ζ2) · (ξ1 − ξ2) ≥ −β ‖ξ1 − ξ2‖2Rs

for all ζi, ξi ∈ Rs, ζi ∈ ∂j(ξi), i = 1, 2. The latter was extensively used in the
literature, cf. e.g. [21] and the references therein. For particular problems, condition
(3.7) is easy to verify by showing that the function

Rs 3 ξ 7→ j(ξ) +
β

2
‖ξ‖2Rs ∈ R
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is nondecreasing. Examples of nonconvex functions which satisfy the condition (3.5)
can be found in [22]. We merely remark that when j : Rs → R is convex, (3.5)(b) and
(d) are satisfied with β = 0. Indeed, by convexity,

j0(ξ1; ξ2 − ξ1) ≤ j(ξ2)− j(ξ1) and j0(ξ2; ξ1 − ξ2) ≤ j(ξ1)− j(ξ2)

for all ξ1, ξ2 ∈ Rs which entails j0(ξ1; ξ2 − ξ1) + j0(ξ2; ξ1 − ξ2) ≤ 0. It means that for
a convex function j : Rs → R, condition (3.5)(d) or, equivalently, the condition (3.7)
reduces to monotonicity of the (convex) subdifferential, i.e., β = 0.

Our existence and uniqueness result for Problem (P) is the following.

Theorem 3.2. Assume (3.2)–(3.6) and the smallness condition

(3.8) LFLϕ‖γ‖+ β ‖γ‖2 < mA.

Then, if one of the following two inequalities holds,

(i) α > c1
√

2 ‖γ‖2,

(ii) j0(x, ξ;−ξ) ≤ d (1 + ‖ξ‖Rs) for all ξ ∈ Rs, a.e. x ∈ Γ with d ≥ 0,

Problem (P) has a unique solution u ∈ V .

Proof of Theorem 3.2 is carried out in several steps. In the rest of the section, we
assume the conditions (3.2)–(3.8). For η ∈ V , denote

(3.9) zη = Fη ∈ L2(Γ)

and consider the following auxiliary problem.
Problem (Pη). Find uη ∈ V such that

〈Auη, v − uη〉V ∗×V +

∫
Γ

zη
(
ϕ(γv)− ϕ(γuη)

)
dΓ(3.10)

+

∫
Γ

j0(γuη; γv − γuη) dΓ ≥ 〈f, v − uη〉V ∗×V for all v ∈ V.

We have the following result.

Lemma 3.3. Problem (Pη) has a unique solution uη ∈ V .
Proof. For the existence part, we apply Theorem 2.10. Define a functional

J : L2(Γ;Rs)→ R by

J(v) =

∫
Γ

j(x, v(x)) dΓ, v ∈ L2(Γ;Rs).

Thanks to the hypotheses (3.5) (a)–(c), we have the following statements ([21, Corol-
lary 4.15]).

(3.11)



(i) J is well defined and Lipschitz continuous on bounded
subsets of L2(Γ;Rs);

(ii) J0(u; v) ≤
∫

Γ

j0(x, u(x); v(x)) dΓ for all u, v ∈ L2(Γ;Rs);

(iii) ‖u∗‖L2(Γ;Rs) ≤ c0 + c1 ‖u‖L2(Γ;Rs) for all u ∈ L2(Γ;Rs);

u∗ ∈ ∂J(u) with c0 = c0
√

2m(Γ) and c1 = c1
√

2.

6



Then we define an operator B : V → 2V
∗

by

B(v) = γ∗∂J(γv), v ∈ V.

We claim that the operator A+B is pseudomonotone and bounded from V to 2V
∗
.

To this end, note that the values of ∂J are nonempty, convex and weakly compact
subsets of L2(Γ;Rs) ([21, Proposition 3.23 (iv)]). So for every v ∈ V , the set B(v) is
nonempty, closed and convex in V ∗. Also, by (3.11) (iii), we have

(3.12) ‖v∗‖V ∗ ≤ ‖γ∗‖ ‖∂J(γv)‖L2(Γ;Rs) ≤ ‖γ‖ (c0 + c1‖γ‖‖v‖V )

for all (v, v∗) ∈ Gr(B), implying the boundedness of the operator B. To show the
claim, we apply Proposition 2.9. Then, it is sufficient to prove that B is generalized
pseudomonotone.

Let vn, v ∈ V , vn → v weakly in V , v∗n, v∗ ∈ V ∗, v∗n → v∗ weakly in V ∗, v∗n ∈
B(vn) and lim sup〈v∗n, vn − v〉V ∗×V ≤ 0. We prove that v∗ ∈ Bv and 〈v∗n, vn〉V ∗×V →
〈v∗, v〉V ∗×V . We have v∗n = γ∗ζn with ζn ∈ ∂J(γvn). From the bound (3.11)(iii),
we know that {ζn} is bounded in L2(Γ;Rs). Hence, by passing to a subsequence
if necessary, we can assume that ζn → ζ weakly in L2(Γ;Rs). Since the graph of
∂J(·) is closed in L2(Γ;Rs) × (w−L2(Γ;Rs))-topology and γvn → γv in L2(Γ;Rs),
by the compactness of the trace operator we obtain ζ ∈ ∂J(γv). Furthermore, from
v∗n = γ∗ζn it follows that v∗ = γ∗ζ. Thus v∗ ∈ γ∗∂J(γv) = B(v). Clearly, we have

〈v∗n, vn〉V ∗×V = 〈γ∗ζn, vn〉V ∗×V = 〈ζn, γvn〉L2(Γ;Rs)

→ 〈ζ, γv〉L2(Γ;Rs) = 〈γ∗ζ, v〉V ∗×V = 〈v∗, v〉V ∗×V .

So the operator B is generalized pseudomonotone and, therefore, it is also pseu-
domonotone.

By the hypothesis (3.2)(a), it is clear (cf. Section 3.4 of [21]) that A is pseu-
domonotone and bounded as a multivalued operator from V to 2V

∗
. Since the set

of multivalued pseudomonotone operators is closed under addition of mappings (cf.
Proposition 3.59 of [21]), we deduce that the operator A+B is pseudomonotone and
bounded from V to 2V

∗
. This proves the claim.

We now establish the coercivity of the multivalued operator A+B in the sense of
Definition 2.4(c). First, we assume the hypothesis (i) of Theorem 3.2. From (3.12),
we have

〈v∗, v〉V ∗×V ≥ −c1‖γ‖2‖v‖2V − c0‖γ‖ ‖v‖V for all v ∈ V, v∗ ∈ Bv.

Hence, by (3.2) (a) we obtain

〈Av + v∗, v〉V ∗×V ≥ (α− c1
√

2 ‖γ‖2)‖v‖2V − c0‖γ‖ ‖v‖V(3.13)

for all v ∈ V, v∗ ∈ Bv

which implies that the operator A+B is coercive since α− c1
√

2 ‖γ‖2 > 0.
Next, we show the coercivity under the hypothesis (ii) of Theorem 3.2. In this

case, from the property (3.11) (ii) and (3.5) (c), we have

J0(v;−v) ≤ d1(1 + ‖v‖L2(Γ;Rs)) for all v ∈ L2(Γ;Rs)

with d1 ≥ 0. Therefore, for every v ∈ V and ζ ∈ ∂J(γv), we deduce that

〈ζ, γv〉L2(Γ;Rs) ≥ −J0(γv;−γv) ≥ −d1 − d2 ‖γ‖ ‖v‖V
7



with d1, d2 ≥ 0. Hence, by (3.2) (a), the operator A+B is coercive.
Consider a functional Φη : V → R defined by

(3.14) Φη(v) =

∫
Γ

zη(x)ϕ(x, γv(x)) dΓ, v ∈ V.

We observe that the hypothesis (3.4) implies that ϕ(·, γv(·)) ∈ L2(Γ) for all v ∈ V .
This property together with the fact that zη ∈ L2(Γ) ensures that Φη is well defined.
Moreover, it is clear that dom (Φη) = V . Next, since (3.3)(b) implies that zη ≥ 0
a.e. on Γ, by assumption (3.4) we infer that Φη is a convex continuous function.
Therefore, the operator ∂Φη : V → 2V

∗
is maximal monotone with D(∂Φη) = V (cf.

Theorem 2.5).
In summary, the operator ∂Φη : V → 2V

∗
is maximal monotone with 0V ∈

D(∂Φη), the operator A + B : V → 2V
∗

is pseudomonotone, bounded, and satis-
fies the coercivity condition (3.13). We apply Theorem 2.10 to the operators ∂Φη and
A+B, and deduce the existence of uη ∈ V such that

Auη +Buη + ∂Φη(uη) 3 f.

This means that

(3.15) Auη + γ∗ζη + θη = f,

where ζη ∈ ∂J(γuη) and θη ∈ ∂Φη(uη). Using the property (3.11) (ii) of the functional
J , we have

(3.16) 〈ζη, w〉L2(Γ;Rs) ≤ J0(γuη;w) ≤
∫

Γ

j0(γuη;w) dΓ for all w ∈ L2(Γ;Rs)

and

(3.17) 〈θη, v − uη〉V ∗×V ≤ Φη(v)− Φη(uη) for all v ∈ V.

For any v ∈ V , we get from (3.15) that

〈Auη, v − uη〉V ∗×V + 〈ζη, γv − γuη〉L2(Γ;Rs) + 〈θη, v − uη〉V ∗×V = 〈f, v − uη〉V ∗×V .

We use (3.16) and (3.17) in the equality to find that

〈Auη, v − uη〉V ∗×V +

∫
Γ

j0(γuη; γv − γuη) dΓ +

∫
Γ

zη
(
ϕ(γv)− ϕ(γuη)

)
dΓ

≥ 〈f, v − uη〉V ∗×V ,

which shows that uη is a solution to Problem (Pη).
To show the uniqueness of a solution, let u1, u2 ∈ V be two solutions to Problem

(Pη). We write (3.10) for u1 with v = u2, and then for u2 with v = u1, and add the
resulting inequalities. Use the strong monotonicity of A and assumption (3.5) (d) on
the function j to obtain

mA‖u1 − u2‖2V ≤ β ‖γ‖2‖u1 − u2‖2V .

Applying the smallness condition (3.8), we deduce that u1 = u2. This completes the
proof.
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Lemma 3.3 allows us to define an operator Λ: V → V by

(3.18) Λη = uη, η ∈ V.

We have the following fixed point result.

Lemma 3.4. The operator Λ has a unique fixed point η∗ ∈ V .
Proof. Let η1, η2 ∈ V and let zi be the functions defined by zi = zηi for i = 1,

2. Denote by ui the solution of the variational-hemivariational inequality (3.10) for
η = ηi, i.e., ui = uηi , i = 1, 2. From the definition (3.18) we have

(3.19) ‖Λη1 − Λη2‖V = ‖u1 − u2‖V .

We write (3.10) for η = η1 with v = u2, and then for η = η2 with v = u1. Add the
resulting inequalities and use the strong monotonicity of A together with assumptions
(3.4) and (3.5) on ϕ and j to obtain

mA ‖u1 − u2‖2V ≤ Lϕ‖γ‖ ‖z1 − z2‖L2(Γ)‖u1 − u2‖V + β ‖γ‖2‖u1 − u2‖2V .

Since mA − β ‖γ‖2 > 0 by (3.8), we have

(3.20) ‖u1 − u2‖V ≤
Lϕ‖γ‖

mA − β ‖γ‖2
‖z1 − z2‖L2(Γ).

Next, we use (3.9) and the property (3.3)(a) of the operator F to see that

‖z1 − z2‖L2(Γ) = ‖Fη1 − Fη2‖L2(Γ) ≤ LF ‖η1 − η2‖V .

Use this inequality in (3.20) to yield

(3.21) ‖u1 − u2‖V ≤
LFLϕ‖γ‖

mA − β ‖γ‖2
‖η1 − η2‖V .

We combine (3.19) and (3.21) to deduce that

(3.22) ‖Λη1 − Λη2‖V ≤
LFLϕ‖γ‖

mA − β ‖γ‖2
‖η1 − η2‖V .

Finally, we use (3.22), the smallness assumption (3.8) and the Banach fixed point
theorem to show that the operator Λ has a unique fixed point η∗ ∈ V , which concludes
the proof of the lemma.

Now we complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Existence. Let η∗ ∈ V be the fixed point of the operator
Λ. It follows from (3.9) and (3.18) that the following equalities hold:

(3.23) zη∗ = Fη∗, uη∗ = η∗.

We write the inequality (3.10) for η = η∗ and then use the equalities (3.23) to conclude
that the function η∗ ∈ V is a solution to Problem (P).

Uniqueness. The uniqueness part is a consequence of the uniqueness of the fixed
point of the operator Λ and can be proved as follows. Denote by η∗ ∈ V the solution
of the inequality (3.1) obtained above, and let η ∈ V be another solution of this
inequality. Also, consider the function zη ∈ L2(Γ) defined by (3.9). Then, it follows

9



that η is a solution to the variational inequality (3.10) and, since by Lemma 3.3 this
inequality has a unique solution, denoted uη, we conclude that

(3.24) η = uη.

Equality (3.24) shows that Λη = η where Λ is the operator defined by (3.18). There-
fore, by Lemma 3.4, it follows that η = η∗.

Alternatively, the uniqueness of a solution can be also proved directly.

4. Continuous dependence on data. We now study the continuous depen-
dence of the solution of Problem (P) on the data. Assume in what follows that
(3.2)–(3.8) hold and denote by u the solution of Problem (P) stated in Theorem
3.2. For each ρ > 0 let Fρ, jρ and fρ represent perturbed data corresponding to F , j
and f , which satisfy conditions (3.3), (3.5) and (3.6), respectively. For each ρ > 0 we
denote by LFρ and βρ the constants involved in assumptions (3.3) and (3.5). Assume
that there exists m0 such that

(4.1) LFρLϕ‖γ‖+ βρ‖γ‖2 ≤ m0 < mA for all ρ > 0.

Consider the following perturbed version of Problem (P).

Problem (Pρ). Find uρ ∈ V such that

〈Auρ, v − uρ〉V ∗×V +

∫
Γ

(Fρuρ)
(
ϕ(γv)− ϕ(γuρ)

)
dΓ(4.2)

+

∫
Γ

j0
ρ(γuρ; γv − γuρ) dΓ ≥ 〈fρ, v − uρ〉V ∗×V for all v ∈ V.

It follows from Theorem 3.2 that, for each ρ > 0, Problem (Pρ) has a unique so-
lution uρ ∈ V . To consider the limiting behaviour of {uρ}, we introduce the following
assumptions:

There exist G : R+ → R+ and g ∈ R+ such that

(a) ‖Fρv − Fv‖L2(Γ) ≤ G(ρ)(‖v‖V + g) for all v ∈ V, ρ > 0;

(b) G(ρ)→ 0 as ρ→ 0.

(4.3)


There exist H : R+ → R+ and h ∈ R+ such that

(a) j0(x, ξ; η)− j0
ρ(x, ξ; η) ≤ H(ρ)(‖ξ‖Rs + h)‖η‖Rs

for all ξ, η ∈ Rs, a.e. x ∈ Γ, ρ > 0;

(b) H(ρ)→ 0 as ρ→ 0.

(4.4)

fρ → f in V ∗ as ρ→ 0.(4.5)

We have the following convergence result.

Theorem 4.1. Assume (4.3)–(4.5). Then the solution uρ of Problem (Pρ)
converges in V to the solution u of Problem (P), i.e.,

(4.6) uρ → u in V as ρ→ 0.
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Proof. Let ρ > 0. We take v = u in (4.2) and v = uρ in (3.1) and add the resulting
inequalities to obtain

〈Auρ −Au, uρ − u〉V ∗×V ≤
∫

Γ

(Fρuρ − Fu)
(
ϕ(γu)− ϕ(γuρ)

)
dΓ(4.7)

+

∫
Γ

(
j0
ρ(γuρ; γu− γuρ) + j0(γu; γuρ − γu)

)
dΓ

+ 〈fρ − f, uρ − u〉V ∗×V .

Let us bound each term in the previous inequality. First, it follows from assump-
tion (3.2)(b) that

〈Auρ −Au, uρ − u〉V ∗×V ≥ mA‖uρ − u‖2V .(4.8)

Next, we use the properties (3.3), (3.4) of the operator Fρ and the function ϕ, respec-
tively, combined with assumption (4.3)(a) to see that∫

Γ

(Fρuρ − Fu)
(
ϕ(γu)− ϕ(γuρ)

)
dΓ

≤ Lϕ‖Fρuρ − Fu‖L2(Γ) ‖γuρ − γu‖L2(Γ;Rs)

≤ Lϕ‖γ‖
(
‖Fρuρ − Fρu‖L2(Γ) + ‖Fρu− Fu‖L2(Γ)

)
‖uρ − u‖V

≤ Lϕ‖γ‖
(
LFρ‖uρ − u‖V +G(ρ)(‖u‖V + g)

)
‖uρ − u‖V .

Therefore,∫
Γ

(Fρuρ − Fu)
(
ϕ(γu)− ϕ(γuρ)

)
dΓ ≤ LϕLFρ‖γ‖‖uρ − u‖2V(4.9)

+ LϕG(ρ) ‖γ‖ (‖u‖V + g) ‖uρ − u‖V .

We use the property (3.5)(d) of the function jρ combined with assumption (4.4) to
get ∫

Γ

(
j0
ρ(γuρ; γu− γuρ) + j0(γu; γuρ − γu)

)
dΓ

=

∫
Γ

(
j0
ρ(γuρ; γu− γuρ) + j0

ρ(γu; γuρ − γu)
)
dΓ

+

∫
Γ

(
j0(γu; γuρ − γu)− j0

ρ(γu; γuρ − γu)
)
dΓ

≤ βρ‖γ‖2‖uρ − u‖2V +H(ρ)

∫
Γ

(‖γu‖Rs + h)‖γuρ − γu‖Rs dΓ.

Therefore,∫
Γ

(
j0
ρ(γuρ; γu− γuρ) + j0(γu; γuρ − γu)

)
dΓ(4.10)

≤ βρ‖γ‖2‖uρ − u‖2V +H(ρ) ‖γ‖
(
‖γ‖ ‖u‖V + h

√
m(Γ)

)
‖uρ − u‖V .
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Finally, note that

(4.11) 〈fρ − f, uρ − u〉V ∗×V ≤ ‖fρ − f‖V ∗‖uρ − u‖V .

We combine now inequalities (4.7)–(4.11) to deduce that

mA‖uρ − u‖2V ≤ LϕLFρ‖γ‖‖uρ − u‖2V + LϕG(ρ) ‖γ‖ (‖u‖V + g) ‖uρ − u‖V

+ βρ‖γ‖2‖uρ − u‖2V +H(ρ) ‖γ‖(‖γ‖ ‖u‖V + h
√
m(Γ)) ‖uρ − u‖V

+ ‖fρ − f‖V ∗‖uρ − u‖V

which yields(
mA − βρ‖γ‖2 − LϕLFρ‖γ‖

)
‖uρ − u‖V

≤ LϕG(ρ) ‖γ‖ (‖u‖V + g) +H(ρ) ‖γ‖(‖γ‖ ‖u‖V + h
√
m(Γ)) + ‖fρ − f‖V ∗ .

We apply assumption (4.1) to see that

(mA −m0)‖uρ − u‖V ≤ LϕG(ρ) ‖γ‖ (‖u‖V + g)(4.12)

+H(ρ) ‖γ‖(‖γ‖ ‖u‖V + h
√
m(Γ)) + ‖fρ − f‖V ∗ .

Theorem 4.1 is now a consequence of inequality (4.12) combined with assumptions
(4.3)(b), (4.4)(b) and (4.5).

5. Numerical approximations. In this section, we consider numerical schemes
for solving Problem (P). We make the assumptions stated in Theorem 3.2 so that
a unique solution u ∈ V is guaranteed for Problem (P). Let V h ⊂ V be a finite
dimensional subspace with h > 0 denoting a spatial discretization parameter. We
consider the following approximation of Problem (P).

Problem (Ph). Find an element uh ∈ V h such that

〈Auh, vh − uh〉V ∗×V +

∫
Γ

(Fuh)
(
ϕ(γvh)− ϕ(γuh)

)
dΓ(5.1)

+

∫
Γ

j0(γuh; γvh − γuh) dΓ ≥ 〈f, vh − uh〉V ∗×V for all vh ∈ V h.

The arguments of the proof of Theorem 3.2 can be applied in the setting of
the finite dimensional space V h, and we know that under the assumptions given in
Theorem 3.2, Problem (Ph) has a unique solution uh ∈ V h. The focus of this section
is error analysis for the numerical solution defined by Problem (Ph).

Theorem 5.1. Assume the conditions stated in Theorem 3.2. Moreover, assume
A : V → V ∗ is Lipschitz continuous, i.e., there exists LA > 0 such that

(5.2) ‖Au−Av‖V ∗ ≤ LA‖u− v‖V for all u, v ∈ V,

and, in addition, j(x, ·) is locally Lipschitz on Rs for a.e. x ∈ Γ, with a Lipschitz con-
stant Lj > 0 which does not depend on x. Then, there exists a constant c independent
of h such that

(5.3) ‖u− uh‖V ≤ c inf
vh∈V h

(
‖u− vh‖V + ‖γu− γvh‖1/2L2(Γ;Rs)

)
.
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Proof. By the strong monotonicity of A, (3.2) (b),

(5.4) mA‖u− uh‖2V ≤ 〈Au−Auh, u− uh〉V ∗×V .

Let vh ∈ V h be an arbitrary function from V h. We write

〈Au−Auh, u− uh〉V ∗×V = 〈Au−Auh, u− vh〉V ∗×V + 〈Au, vh − u〉V ∗×V(5.5)

+ 〈Au, u− uh〉V ∗×V + 〈Auh, uh − vh〉V ∗×V .

We take v = uh in (3.1) to obtain

〈Au, u− uh〉V ∗×V ≤
∫

Γ

(Fu)
(
ϕ(γuh)− ϕ(γu)

)
dΓ(5.6)

+

∫
Γ

j0(γu; γuh − γu) dΓ− 〈f, uh − u〉V ∗×V .

By (5.1),

〈Auh, uh − vh〉V ∗×V ≤
∫

Γ

(Fuh)
(
ϕ(γvh)− ϕ(γuh)

)
dΓ(5.7)

+

∫
Γ

j0(γuh; γvh − γuh) dΓ− 〈f, vh − uh〉V ∗×V .

Combining (5.4)–(5.7), we have

(5.8) mA‖u− uh‖2V ≤ E1 + E2 + E3 + E4,

where

E1 = 〈Au−Auh, u− vh〉V ∗×V ,

E2 = 〈Au, vh − u〉V ∗×V +

∫
Γ

(Fu)
(
ϕ(γu)− ϕ(2γu− γvh)

)
dΓ

−
∫

Γ

j0(γu; γu− γvh) dΓ− 〈f, vh − u〉V ∗×V ,

E3 =

∫
Γ

(
Fu− Fuh

) (
ϕ(γuh)− ϕ(γvh)

)
dΓ

+

∫
Γ

(Fu)
(
ϕ(γvh) + ϕ(2γu− γvh)− 2ϕ(γu)

)
dΓ,

E4 =

∫
Γ

[
j0(γu; γuh − γu) + j0(γuh; γvh − γuh) + j0(γu; γu− γvh)

]
dΓ.

Let us bound each of the terms Ej , 1 ≤ j ≤ 4. First, by the Lipschitz continuity
of A,

(5.9) E1 ≤ ‖Au−Auh‖V ∗‖u− vh‖V ≤ LA‖u− uh‖V ‖u− vh‖V .
13



Next, we replace v by 2u− v in (3.1) to get

〈Au, u− v〉V ∗×V +

∫
Γ

(Fu)
(
ϕ(2γu− γv)− ϕ(γu)

)
dΓ

+

∫
Γ

j0(γu; γu− γv) dΓ ≥ 〈f, u− v〉V ∗×V for all v ∈ V.

Then,

(5.10) E2 ≤ 0.

Applying (3.3) (a) and (3.4) (c), we have∫
Γ

(
Fu− Fuh

) (
ϕ(γuh)− ϕ(γvh)

)
dΓ

≤ ‖Fu− Fuh‖L2(Γ)‖ϕ(γuh)− ϕ(γvh)‖L2(Γ;Rs)

≤ LFLϕ‖γ‖ ‖u− uh‖V ‖uh − vh‖V

≤ LFLϕ‖γ‖ ‖u− uh‖2V + LFLϕ‖γ‖ ‖u− uh‖V ‖u− vh‖V ,

and ∫
Γ

(Fu)
(
ϕ(γvh) + ϕ(2γu− γvh)− 2ϕ(γu)

)
dΓ

≤ ‖Fu‖L2(Γ;Rs)‖ϕ(γvh) + ϕ(2γu− γvh)− 2ϕ(γu)‖L2(Γ;Rs)

≤ 2Lϕ‖Fu‖L2(Γ;Rs)‖γu− γvh‖L2(Γ;Rs).

Thus,

E3 ≤ LFLϕ‖γ‖ ‖u− uh‖2V + LFLϕ‖γ‖ ‖u− uh‖V ‖u− vh‖V(5.11)

+ 2Lϕ‖Fu‖L2(Γ;Rs)‖γu− γvh‖L2(Γ;Rs).

Finally, to bound E4, we note that

j0(γuh; γvh − γuh) ≤ j0(γuh; γvh − γu) + j0(γuh; γu− γuh) a.e. on Γ3.

Use the condition (3.5) (d),

j0(γu; γuh − γu) + j0(γuh; γu− γuh) ≤ β ‖γu− γuh‖2Rs a.e. on Γ3.

Also,

j0(γuh; γvh − γu) ≤ Lj‖γvh − γu‖Rs ,

j0(γu; γu− γvh) ≤ Lj‖γu− γvh‖Rs ,

a.e. on Γ3. Hence,

(5.12) E4 ≤ β ‖γ‖2‖u− uh‖2V + 2Lj‖γu− γvh‖L2(Γ;Rs).
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Using (5.9)–(5.12) in (5.8), we have

mA‖u− uh‖2V ≤ (LA + LFLϕ‖γ‖) ‖u− uh‖V ‖u− vh‖V

+
(
LFLϕ‖γ‖+ β ‖γ‖2

)
‖u− uh‖2V

+ 2
(
Lϕ‖Fu‖L2(Γ;Rs) + Lj

)
‖γu− γvh‖L2(Γ;Rs).

Recall the condition (3.8) and bound the first term on the right as follows:

(LA + LFLϕ‖γ‖) ‖u− uh‖V ‖u− vh‖V ≤ δ ‖u− uh‖2V + C(δ) ‖u− vh‖2V
with a sufficiently small δ > 0. Then we derive from the above relation the following
inequality

‖u− uh‖2V ≤ c
(
‖u− vh‖2V + ‖γu− γvh‖L2(Γ;Rs)

)
where c represents a positive constant which does not depend on h. Since vh ∈ V h is
arbitrary, we the conclude the error bound (5.3).

The inequality (5.3) is the basis for convergence analysis and error estimation.
Indeed, let {V h}h>0 be a family of finite dimensional subspaces of V such that

(5.13) for any v ∈ V, there exists vh ∈ V h such that vh → v in V as h→ 0+.

In other words, any function from the space V can be approximated by functions from
V h when h→ 0+. We have the following convergence result.

Corollary 5.2. Assume (5.13) and the conditions stated in Theorem 5.1. Then
we have convergence of the numerical solutions:

(5.14) ‖u− uh‖V → 0 as h→ 0.

To present a result of concrete error estimate, we consider the finite element
method. Let us assume Ω is a polygonal/polyhedral domain and express the parts of
the boundary, Γ and ∂Ω\Γ as unions of closed flat components with disjoint interiors:

Γ = ∪i0i=1Γ(i), ∂Ω\Γ = ∪i1i=i0+1Γ(i).

We introduce a regular family of partitions {T h} of Ω into triangles/tetrahedrons.
The triangulations are compatible with the partition of the boundary ∂Ω into Γ(i),
1 ≤ i ≤ i1, in the sense that if the intersection of one side/face of an element with one
of the sets Γ(i), 1 ≤ i ≤ i1, has a positive measure relative to Γ(i), then the side/face

lies entirely in Γ(i). For the finite dimensional subspace V h, we use the linear element

corresponding to T h:

V h =
{
vh ∈ V | vh|T ∈ P1(T )d for all T ∈ T h

}
,

where P1(T ) is the space of polynomials of degree less than or equal to one over T .
Then the property (5.13) is valid. Using the standard finite element interpolation
error estimates ([1, 5]), we can derive the following error estimate from Theorem 5.1.

Corollary 5.3. Under the assumptions stated in Theorem 5.1 as well as the
solution regularities u ∈ H2(Ω;Rd) and γu|Γ(i)

∈ H2(Γ(i);Rd), 1 ≤ i ≤ i0, we have
the optimal order error bound

(5.15) ‖u− uh‖V ≤ c h.
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6. A frictional contact problem. Several static contact problems with elastic
materials lead to a variational-hemivariational inequality of the form (3.1) in which
the unknown is the displacement field. For a variety of such inequalities, the results in
Section 3–5 can be applied. We illustrate this point here on a representative contact
problem.

The physical setting is the following. An elastic body occupies a regular domain
Ω of Rd (d = 2, 3) with its boundary Γ = ∂Ω that is partitioned into three disjoint
measurable parts Γ1, Γ2 and Γ3, such that the measure of Γ1, denoted m(Γ1), is
positive. The body is clamped on Γ1 and so the displacement field vanishes there.
Surface tractions of density f2 act on Γ2 and volume forces of density f0 act in Ω. The
body is allowed to arrive in contact with an obstacle on Γ3, the so-called foundation.
The contact is modeled with a nonmonotone normal compliance condition associated
with one version of Coulomb’s law of dry friction. We are interested in the equilibrium
process of the mechanical state of the body.

We use the notation x = (xi) for a typical point in Ω ∪ Γ and we denote by
ν = (νi) the outward unit normal at Γ. Here and below, the indices i, j, k, l
run between 1 and d and, unless stated otherwise, the summation convention over
repeated indices is used. An index following a comma indicates a partial derivative
with respect to the corresponding component of the spatial variable x. We denote by
u = (ui), σ = (σij), and ε(u) = (εij(u)) the displacement vector, the stress tensor,
and the linearized strain tensor, respectively. Recall that εij(u) = (ui,j + uj,i)/2,
where ui,j = ∂ui/∂xj . We use Sd for the space of second order symmetric tensors on
Rd or, equivalently, the space of symmetric matrices of order d. The canonical inner
products and the corresponding norms on Rd and Sd are given by

u · v = uivi, ‖v‖ = (v · v)1/2 for all u = (ui), v = (vi) ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for all σ = (σij), τ = (τij) ∈ Sd,

respectively. For a vector field, we use the notation vν and vτ for the normal and
tangential components of v on Γ given by vν = v · ν and vτ = v − vνν. The
normal and tangential components of the stress field σ on the boundary are defined
by σν = (σν) · ν and στ = σν − σνν, respectively.

The classical formulation of the contact problem is stated as follows.

Problem (PC). Find a displacement field u : Ω→ Rd and a stress field σ : Ω→
Sd such that

σ = Fε(u) in Ω,(6.1)

Divσ + f0 = 0 in Ω,(6.2)

u = 0 on Γ1,(6.3)

σν = f2 on Γ2,(6.4)

−σν ∈ ∂jν(uν) on Γ3,(6.5)

‖στ‖ ≤ Fb(uν), −στ = Fb(uν)
uτ
‖uτ‖

if uτ 6= 0 on Γ3.(6.6)

We now present a short description of the equations and conditions in Prob-
lem (PC) and we refer the reader to [14, 21, 28] for more details and mechanical
interpretation. Equation (6.1) is the constitutive law for elastic materials in which F
represents the elasticity operator. Equation (6.2) is the equilibrium equation for the
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static contact process. On Γ1, we have the clamped boundary condition (6.3), and
on Γ2, the surface traction boundary condition (6.4). Relation (6.5) is the contact
condition in which ∂jν denotes the Clarke subdifferential of a given function jν , and
(6.6) represents a version of static Coulomb’s law of dry friction. Here Fb is a given
positive function, the friction bound.

We note that (6.5) represents the nonmonotone contact condition with normal
compliance, which describes the contact with a reactive foundation. In this condition
the scalar uν , when positive, may be interpreted as the interpenetration between
the asperities of the body’s contact surface and the foundation. The condition can
model the contact with an elastic, rigid-perfect plastic and rigid-plastic foundation.
Due to the nonmonotonicity of ∂jν , the condition allows to describe the hardening
of the softening phenomena of the foundation. Various examples and mechanical
interpretation associated with this contact condition can be found in [21].

The friction bound Fb in (6.6) is assumed to depend on the normal displacement
uν . This assumption is reasonable for any version of Coulomb’s friction law when
associated with the normal compliance contact condition. Indeed, in the Coulomb’s
law the friction bound is assumed to depend on the normal stress which, in turn, in
the normal compliance condition, is assumed to depend on the normal displacement.
Consequently, dependence of the friction bound on the normal displacement results,
as is shown in (6.6). This dependence makes sense from the physical point of view,
since it takes into account the influence of the asperities of the contact surface on the
friction law. Assume, for instance, that Fb is an increasing function which vanishes
for a negative argument. We deduce that when there is no penetration (i.e. when
uν < 0) then the friction bound vanishes, when the penetration is small then the
friction bound is small and, finally, when the penetration is large then the friction
bound is large. Physically, when there is no penetration, there is separation between
the body and the foundation and so there is no friction, justifying a vanishing friction
bound; when the penetration is small, contact takes place at the tips of the asperities,
justifying the small value of the friction bound; when the penetration becomes larger,
the actual contact area increases, justifying a larger value of the friction bound.

In the study of Problem (PC) we use standard notation for Lebesgue and
Sobolev spaces. For all v ∈ H1(Ω;Rd) we still denote by v the trace of v on Γ,
and we use the notation vν and vτ for the normal and tangential components of v on
Γ. We introduce spaces V and H defined by

V = { v = (vi) ∈ H1(Ω;Rd) | v = 0 a.e. on Γ1 },

H = { τ = (τij) ∈ L2(Ω; Sd) | τij = τji, 1 ≤ i, j ≤ d }.

The space H is a real Hilbert space with the canonical inner product given by

(σ, τ )H =

∫
Ω

σij(x) τij(x) dx,

and the associated norm ‖ · ‖H. Since m(Γ1) > 0, it is well known that V is a real
Hilbert space with the inner product

(6.7) (u,v)V = (ε(u), ε(v))H, u,v ∈ V

and the associated norm ‖ · ‖V . By the Sobolev trace theorem,

(6.8) ‖v‖L2(Γ3;Rd) ≤ ‖γ‖ ‖v‖V for all v ∈ V,
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‖γ‖ being the norm of the trace operator γ : V → L2(Γ3;Rd).
We make the following assumptions on the problem data. For the elasticity op-

erator F , assume

(6.9)



F : Ω× Sd → Sd is such that
(a) there exists LF > 0 such that

‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(b) there exists mF > 0 such that
(F(x, ε1)−F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω;
(c) the mapping x 7→ F(x, ε) is measurable on Ω,

for any ε ∈ Sd;
(d) F(x,0) = 0 a.e. x ∈ Ω.

For the friction bound Fb and the potential function jν , assume

(6.10)



Fb : Γ3 × R→ R+ is such that
(a) there exists LFb > 0 such that

|Fb(x, r1)− Fb(x, r2)| ≤ LFb |r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) the mapping x 7→ Fb(x, r) is measurable on Γ3,
for all r ∈ R;

(c) Fb(x, r) ≥ 0 for all r ∈ R, a.e. x ∈ Γ3;
(d) Fb(x, 0) = 0 a.e. x ∈ Γ3.

(6.11)



jν : Γ3 × R→ R is such that

(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there
exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(Γ3);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;

(c) |∂jν(x, r)| ≤ c0 + c1 |r| for a.e. x ∈ Γ3,
for all r ∈ R with c0, c1 ≥ 0;

(d) j0
ν(x, r1; r2 − r1) + j0

ν(x, r2; r1 − r2) ≤ β |r1 − r2|2
for a.e. x ∈ Γ3, all r1, r2 ∈ R with β ≥ 0.

For the densities of body forces and surface tractions, assume

(6.12) f0 ∈ L2(Ω;Rd), f2 ∈ L2(Γ2;Rd).

Following a standard approach (cf. [14, 21]), we can derive the next variational
formulation for Problem (PC).

Problem (PV ). Find a displacement field u ∈ V such that

(F(ε(u)), ε(v)− ε(u))H +

∫
Γ3

Fb(uν)(‖vτ‖ − ‖uτ‖) dΓ(6.13)

+

∫
Γ3

j0
ν(uν ; vν − uν) dΓ ≥ 〈f ,v − u〉V ∗×V for all v ∈ V,

where f ∈ V ∗ is given by

(6.14) 〈f ,v〉V ∗×V = (f0,v)L2(Ω;Rd) + (f2,v)L2(Γ2;Rd) for all v ∈ V.
18



We have the following existence and uniqueness result for Problem (PV ).

Theorem 6.1. Assume the hypotheses (6.9)–(6.12) and the smallness condition

(6.15) LFb‖γ‖+ β ‖γ‖2 ≤ mF .

Assume moreover that one of the following inequalities hold:

(i) mF > c1
√

2 ‖γ‖2,

(ii) j0
ν(x, r;−r) ≤ d (1 + |r|) for all r ∈ R, a.e. x ∈ Γ3 with d ≥ 0.

Then Problem (PV ) has a unique solution u ∈ V .
Proof. We apply Theorem 3.2 with Γ = Γ3 ⊂ ∂Ω, s = d,

〈Au,v〉V ∗×V = (Fε(u), ε(v))H for u,v ∈ V,(6.16)

(Fv)(x) = Fb(x, vν(x)) for v ∈ V, a.e. x ∈ Γ3,(6.17)

j(x, ξ) = jν(x, ξν) for ξ ∈ Rd, a.e. x ∈ Γ3,(6.18)

ϕ(x, ξ) = ‖ξτ‖ for ξ ∈ Rd, a.e. x ∈ Γ3,(6.19)

and f ≡ f ∈ V ∗ defined by (6.14). Then it can be verified that for A defined by
(6.16), (6.9) implies (3.2) with α = mA = mF ; for F defined by (6.17), (6.10) implies
(3.3) with LF = LFb‖γ‖; the function ϕ : Γ3 × Rd → R defined by (6.19) satisfies
(3.4) with Lϕ = 1; and (6.12) implies (3.6). For the function j defined by (6.18), the
conditions (3.5)(a) and (b) follow from (6.11)(a) and (b), respectively. The properties
(3.5)(c) and (d) are consequences of the relations

∂j(x, ξ) ⊂ ∂jν(x, ξν)ν, j0(x, ξ;η) ≤ j0
ν(x, ξν ; ην) for all ξ, η ∈ Rd, a.e. x ∈ Γ3

combined with the hypothesis (6.11)(c) and (d). Thus, (3.5) holds with β = β and
c1 = c1. Therefore, Theorem 6.1 holds as a corollary of Theorem 3.2.

In addition, Theorem 4.1 can be used to study the dependence of the weak so-
lution of Problem (PV ) with respect to perturbations of the data and to prove its
continuous dependence on the friction bound, the normal compliance function, and
the densities of body forces and surface tractions. We omit the detail here. Instead,
we provide an example of functions Fb, Fbρ and jν , jνρ which satisfies conditions
(6.10) and (6.11), such that the corresponding operators F , Fρ defined by (6.17) sat-
isfy the condition (4.3) and the coresponding functions j, jρ defined by (6.18) satisfy
the condition (4.4). In the following, ρ is a positive parameter.

Consider the functions µ and µρ which satisfy

(6.20)


(a) µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. x ∈ Γ3;

(b) µρ ∈ L∞(Γ3), µρ(x) ≥ 0 a.e. x ∈ Γ3;

(c) µρ → µ in L∞(Γ3) as ρ→ 0.

We define the functions Fb and Fbρ by equalities

Fb(x, r) = µ(x) r+, Fbρ(x, r) = µρ(x) r+ for all r ∈ R, a.e. x ∈ Γ3,

where r+ represents the positive part of r. Let F : V → L2(Γ3) and Fρ : V → L2(Γ3)
be the operators defined by

(Fv)(x) = Fb(x, vν(x)), (Fρv)(x) = Fbρ(x, vν(x)) for all v ∈ V, a.e. x ∈ Γ3.
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Then, the functions Fb and Fbρ satisfy conditions (6.10), and it follows from the trace
inequality (6.8) that

(6.21) ‖Fρv − Fv‖L2(Γ3) ≤ ‖γ‖ ‖µρ − µ‖L∞(Γ3)‖v‖V for all v ∈ V.

We use inequality (6.21) and assumption (6.20)(c) to see that (4.3) holds.
Define pν : R→ R by

(6.22) pν(r) =



0 if r < 0,

r if 0 ≤ r < 1,

2− r if 1 ≤ r < 2,√
r − 2 + r − 2 if 2 ≤ r < 6,

r if r ≥ 6.

This function is continuous, yet neither monotone nor Lipschitz continuous. Then
define the function jν : R→ R by

(6.23) jν(r) =

∫ r

0

pν(s) ds for all r ∈ R.

Note that jν is not convex. Since j′ν(r) = pν(r) for all r ∈ R, jν is a C1 function, and
thus is a locally Lipschitz function. Since |pν(r)| ≤ |r| for r ∈ R, we know that jν
satisfies (6.11)(c). The function r 7→ r + pν(r) ∈ R is nondecreasing and therefore,

(pν(r1)− pν(r2))(r2 − r1) ≤ (r1 − r2)2 for all r1, r2 ∈ R.

We combine this inequality with equality j0
ν(r1; r2) = pν(r1)r2, valid for all r1, r2 ∈

R, to see that condition (6.11)(d) is satisfied with β = 1. Hence, jν satisfies the
hypothesis (6.11).

Consider now the function pνρ : R→ R defined by

(6.24) pνρ(r) =



0 if r < 0,

r if 0 ≤ r < 1− ρ,
ρ−1
ρ+1r −

2(ρ−1)
ρ+1 if 1− ρ ≤ r < 2,

√
r − 2 + r − 2 if 2 ≤ r < 6,

r if r ≥ 6

and define the function jνρ : R→ R by

jνρ(r) =

∫ r

0

pνρ(s) ds for all r ∈ R.

A similar argument shows that jνρ satisfies the hypothesis (6.11).
Let j : Rd → R and jρ : Γ3 × Rd → R be the functions given by

j(ξ) = jν(ξν), jρ(ξ) = jνρ(ξν) for all ξ ∈ Rd.

Then

(6.25) j0(ξ;η)− j0
ρ(ξ;η) =

(
pν(ξν)− pνρ(ξν)

)
ην for all ξ,η ∈ Rd,
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and

(6.26) |pν(r)− pνρ(r)| ≤
2ρ

ρ+ 1
|r| for all r ∈ R.

We now combine inequalities (6.25) and (6.26) to see that (4.4) holds. We conclude
from here that the convergence result in Theorem 4.1 can be used in the study of the
corresponding frictional contact problem.

Finally, we consider numerical approximations of Problem (PV ). Here, the
results in Section 5 apply. Let {V h}h>0 be a family of finite dimensional subspaces
of V . Then we consider the following approximation of Problem (PV ).

Problem (Ph
V ). Find a displacement field uh ∈ V h such that

(F(ε(uh)), ε(vh)− ε(uh))H +

∫
Γ3

Fb(u
h
ν )(‖vhτ‖ − ‖uhτ‖) dΓ(6.27)

+

∫
Γ3

j0
ν(uhν ; vhν − uhν ) dΓ ≥ 〈f ,vh − uh〉V ∗×V for all vh ∈ V h.

To apply Theorem 5.1, we verify the assumptions of the theorem. Using (6.9)(a),
we easily establish the Lipschitz continuity of A,

‖Au−Av‖V ∗ ≤ LF‖u− v‖V for all u,v ∈ V.

So (5.2) holds. In applications, for jν defined by (6.23), without loss of generality,
we may assume pν(r) to be bounded for r > 0 since if the normal component of
the displacement uν becomes too large, then part of the contact surface breaks down
and the formulation of Problem (PV ) is no longer suitable for the contact process.
Hence, it can be assumed that the Lipschitz constant for jν is independent of the
arguments of jν . Thus, Theorem 5.1 can be applied, and we have from (5.3) that

(6.28) ‖u− uh‖V ≤ c inf
vh∈V h

(
‖u− vh‖V + ‖uν − vhν ‖

1/2
L2(Γ3)

)
.

Hence, if the finite dimensional subspaces {V h}h>0 are chosen so that any function
in V can be approximated by a sequence of functions from {V h}h>0 as h → 0, then
we have the convergence of the numerical solutions:

‖u− uh‖V → 0 as h→ 0.

This is the case when we use the finite element method to construct V h. As a sam-
ple, assume Ω is a polygonal/polyhedral domain and express the three parts of the
boundary, Γk, 1 ≤ k ≤ 3, as unions of closed flat components with disjoint interiors:

Γk = ∪iki=1Γk,i, 1 ≤ k ≤ 3.

Let {T h} be a regular family of partitions of Ω into triangles/tetrahedrons that are
compatible with the partition of the boundary ∂Ω into Γk,i, 1 ≤ i ≤ ik, 1 ≤ k ≤ 3, in
the sense that if the intersection of one side/face of an element with one set Γk,i has
a positive measure with respect to Γk,i, then the side/face lies entirely in Γk,i. Then
use the linear element corresponding to T h:

V h =
{
vh ∈ C(Ω)d | vh|T ∈ P1(T )d, T ∈ T h, and vh = 0 on Γ1

}
.
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Then under additional solution regularity assumptions u ∈ H2(Ω;Rd) and uν |Γ3,i
∈

H2(Γ3,i;Rd), 1 ≤ i ≤ i3, we have the optimal order error bound

‖u− uh‖V ≤ c h.
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