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a b s t r a c t

In this paper, minimax principles are explored for elliptic mixed hemivariational–
variational inequalities. Under certain conditions, a saddle-point formulation is
shown to be equivalent to a mixed hemivariational–variational inequality. While
the minimax principle is of independent interest, it is employed in this paper to
provide an elementary proof of the solution existence of the mixed hemivariational–
variational inequality. Theoretical results are illustrated in the applications of two
contact problems.
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1. Introduction

Since the pioneering work of Panagiotopoulos in early 1980s [1], the area of hemivariational inequalities,
including modeling, well-posedness analysis, numerical approximation and simulation, and applications, has
attracted steady attention from the research community. In this paper, we use the terms “hemivariational
inequalities” and the more general “variational–hemivariational inequalities” interchangeably. In recent
years, there has been an explosive growth in the literature on hemivariational inequalities, cf. e.g. [2] for
recent results on theoretical analysis of hemivariational inequalities, and [3] for a survey of numerical analysis
of hemivariational inequalities.

In dealing with constraints in application problems, e.g. the incompressibility constraint for fluid flows,
mixed hemivariational inequalities arise naturally where a hemivariational inequality is coupled with a
variational equation or inequality that reflects the constraint, e.g., [4,5], and the mixed formulations are the
foundation for developing efficient numerical methods such as the mixed finite element method. More gener-
ally, in problems involving inequality relations, especially for applications in contact mechanics, it is possible
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to introduce Lagrange multipliers so that the weak formulation is in the form of a mixed hemivariational–
variational inequality where a hemivariational inequality is supplemented by a variational equation or
inequality. Elliptic mixed hemivariational–variational inequalities have been studied in a number of papers,
e.g., [6–10]. In these references, the main theoretical tools for proving solution existence are fixed-point
results for set-valued mappings. In this paper, we provide a direct approach for the study of a family of elliptic
mixed hemivariational–variational inequalities through consideration of a Lagrangian functional. More
precisely, we introduce a saddle-point formulation corresponding to a mixed hemivariational–variational
inequality and explore the existence of a saddle-point of the Lagrangian functional. We prove the equivalence
between the saddle-point formulation and the mixed hemivariational–variational inequality. In this way, a
minimax principle on the saddle-point formulation provides an elementary proof of the solution existence
on the mixed hemivariational–variational inequality.

The rest of the paper is organized as follows. In Section 2, we review preliminary materials needed later. In
Section 3, we present minimax principles for a general elliptic mixed hemivariational–variational inequality.
In Section 4, we apply the theoretical results in the study of two contact problems.

2. Preliminaries

We first recall the definition of a saddle point for a functional of two arguments and an existence result
on the saddle point. Detailed discussions on saddle points can be found in [11, Chapter VI].

Definition 2.1. Let V and Λ be two linear spaces, let KV ⊂ V and KΛ ⊂ Λ be non-empty subsets of the
spaces, and let L : KV × KΛ → R be a given functional. A pair (u, λ) ∈ KV × KΛ is said to be a saddle
point of L if

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) ∀ v ∈ KV , µ ∈ KΛ.

It can be shown (e.g., [11, Chapter VI, Proposition 1.2]) that (u, λ) ∈ KV ×KΛ is a saddle point of L if
and only if

L(u, λ) = max
µ∈KΛ

inf
v∈KV

L(v, µ) = min
v∈KV

sup
µ∈KΛ

L(v, µ)

We will apply the following existence result (cf. [11, Chapter VI, Proposition 2.4]) in our studies of elliptic
mixed hemivariational–variational inequalities.

Theorem 2.2. Let V and Λ be two Hilbert spaces, let KV be a non-empty, closed, convex subset of V , and
let KΛ be a non-empty, closed, convex subset of Λ. Assume a functional L : KV ×KΛ → R has the following
properties:

∀µ ∈ KΛ, v ↦→ L(v, µ) is convex and l.s.c.;
∀ v ∈ KV , µ ↦→ L(v, µ) is concave and u.s.c.;
either KV is bounded or lim

∥v∥V →∞, v∈KV

L(v, µ∗) = ∞ for some µ∗ ∈ KΛ;

either KΛ is bounded or lim
∥µ∥Λ→∞, µ∈KΛ

inf
v∈KV

L(v, µ) = −∞.

Then, L has at least one saddle point over KV ×KΛ.

Next, we recall definitions of the generalized directional derivative and generalized subdifferential in the
sense of Clarke for a locally Lipschitz continuous function [12]; these notions and their basic properties are

needed in studies of hemivariational inequalities. Let Ψ : V → R be a locally Lipschitz continuous functional
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defined on a real Banach space V . Then its generalized (Clarke) directional derivative at u ∈ V in the
irection v ∈ V is defined by

Ψ0(u; v) := lim sup
w→u, λ↓0

Ψ(w + λv) − Ψ(w)
λ

,

hereas the generalized subdifferential of Ψ at u ∈ V is

∂Ψ(u) :=
{
η ∈ V ∗ | Ψ0(u; v) ≥ ⟨η, v⟩ ∀ v ∈ V

}
.

Detailed discussions of the generalized directional derivative and the generalized subdifferential, including
their properties, can be found in [12]. We mention some of the basic properties that will be needed in this
paper.

Proposition 2.3. Assume V is a real Banach space. If Ψ : V → R is locally Lipschitz continuous and convex,
then the subdifferential ∂Ψ(u) at any u ∈ V in the sense of Clarke coincides with the convex subdifferential
∂Ψ(u).

Let Ψ ,Ψ1,Ψ2 : V → R be locally Lipschitz functions. Then ∂(λΨ)(u) = λ∂Ψ(u) for all λ ∈ R and all
∈ V . Moreover, the inclusion

∂(Ψ1 + Ψ2)(u) ⊂ ∂Ψ1(u) + ∂Ψ2(u) ∀u ∈ V (2.1)

olds, or equivalently,
(Ψ1 + Ψ2)0(u; v) ≤ Ψ0

1 (u; v) + Ψ0
2 (u; v) ∀u, v ∈ V. (2.2)

In our analysis of saddle-point formulations, we will need the notion of strong convexity. A function
: V → R is said to be strongly convex on V with a constant α > 0 if

Φ(λu+ (1 − λ) v) ≤ λΦ(u) + (1 − λ)Φ(v) − αλ (1 − λ) ∥u− v∥2
V ∀u, v ∈ V, ∀λ ∈ [0, 1].

bviously, strong convexity of a functional implies its strict convexity. The next result follows from
roposition 3.1 and Theorem 3.4 in [13], which will be applied later.

emma 2.4. Let V be a real Banach space and let Φ be locally Lipschitz continuous on V . Then the following
statements are equivalent.
(i) The function Φ is strongly convex on V with a constant α > 0.
ii) The generalized subdifferential ∂Φ is strongly monotone on V with a constant 2α, i.e.,

⟨ξ − η, u− v⟩ ≥ 2α ∥u− v∥2
V ∀u, v ∈ V, ξ ∈ ∂Φ(u), η ∈ ∂Φ(v).

iii) There exists a constant α > 0 such that

Φ(v) ≥ Φ(u) + ⟨ξ, v − u⟩ + α ∥v − u∥2
V ∀u, v ∈ V, ξ ∈ ∂Φ(u).

Finally, we recall the concept of a potential operator and some basic facts. Detailed discussion on potential
perators can be found in [14, Section 41.3]. From now on, we will assume V to be a real Hilbert space.
n operator A : V → V ∗ is called a potential operator if there exists a Gâteaux differentiable functional

FA : V → R such that A = F ′
A; the functional FA is called a potential of A.

If A is hemicontinuous, i.e., the function t ↦→ ⟨A(v1 + t v2), v3⟩ is continuous on [0, 1] for all v1, v2, v3 ∈ V ,
hen A is a potential operator if and only if∫ 1

[⟨A(t u), u⟩ − ⟨A(t v), v⟩] dt =
∫ 1

⟨A(v + t (u− v)), u− v⟩ dt ∀u, v ∈ V.

0 0
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A formula to compute a potential of A is

FA(v) =
∫ 1

0
⟨A(t v), v⟩ dt. (2.3)

ny other potential of A differs from FA by a constant.
If A is Gâteaux differentiable and the mapping

(t, s) ↦→ ⟨A′(v1 + t v2 + s v3) v4, v5⟩

s continuous on [0, 1] × [0, 1] for all vi ∈ V , 1 ≤ i ≤ 5, then the operator A is potential if and only if

⟨A′(u) v, w⟩ = ⟨A′(u)w, v⟩ ∀u, v, w ∈ V.

n particular, A ∈ L(V, V ∗) is a potential operator if and only if it is symmetric:

⟨Av1, v2⟩ = ⟨Av2, v1⟩ ∀ v1, v2 ∈ V. (2.4)

Moreover, under the symmetry condition (2.4), a potential functional is

FA(v) = 1
2 ⟨Av, v⟩, v ∈ V.

Throughout the paper, we will use c to denote a generic positive constant whose value may change from
ne place to another but it is independent of other quantities of concern in the context.

. Minimax principles for a general elliptic mixed hemivariational–variational inequality

In this section, we consider an abstract elliptic mixed hemivariational–variational inequality and a
orresponding saddle-point formulation. We show the equivalence between the two formulations, and explore
he solution existence and uniqueness.

Let V and Λ be two real Hilbert spaces. We write V ∗ and Λ∗ for their dual spaces, and use ⟨·, ·⟩ to denote
he duality pairing between V ∗ and V , or between Λ∗ and Λ; it should be clear from the context which

duality pairing is meant by ⟨·, ·⟩. Let KV ⊂ V and KΛ ⊂ Λ.
Given operators and functionals A : V → V ∗, b : V × Λ → R, Φ : V → R, Ψ : V → R, and f ∈ V ∗, we

consider the following mixed inequality problem.

Problem 3.1. Find (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v − u, λ) + Φ(v) − Φ(u) + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ KV , (3.1)
b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (3.2)

We will focus on the case where A is a potential operator and note that this is the case for majority of
applications in mechanics and engineering. We denote by FA the potential of the operator A and introduce
a Lagrangian functional L : VK × VΛ → R by the formula

L(v, µ) = FA(v) + Φ(v) + Ψ(v) − ⟨f, v⟩ + b(v, µ), v ∈ KV , µ ∈ KΛ. (3.3)

Then, we consider a saddle-point problem corresponding to Problem 3.1.

Problem 3.2. Find (u, λ) ∈ KV ×KΛ such that

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) ∀ v ∈ KV , µ ∈ KΛ. (3.4)
4
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Let us introduce conditions on the problem data.

• H(KV ) V is a real Hilbert space, KV ⊂ V is non-empty, closed and convex.
• H(KΛ) Λ is a real Hilbert space, KΛ ⊂ Λ is non-empty, closed and convex.
• H(A) A : V → V ∗ is a Lipschitz continuous, strongly monotone potential operator.
• H(b) b : V × Λ → R is bilinear and bounded.
• H(Φ) Φ : V → R is convex and continuous.
• H(Ψ) Ψ : V → R is locally Lipschitz continuous, and there exists a constant αΨ ≥ 0 such that

Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤ αΨ∥v1 − v2∥2
V ∀ v1, v2 ∈ V. (3.5)

• H(f) f ∈ V ∗.

Related to the condition H(A), we will use MA for the Lipschitz constant:

∥Av1 −Av2∥V ∗ ≤ MA∥v1 − v2∥V ∀ v1, v2 ∈ V, (3.6)

nd use mA for the strong monotonicity constant:

⟨Av1 −Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥2
V ∀ v1, v2 ∈ V. (3.7)

elated to the condition H(b), we will use Mb > 0 for the boundedness constant:

|b(v, µ)| ≤ Mb∥v∥V ∥µ∥Λ ∀ v ∈ V, µ ∈ Λ. (3.8)

ssumption H(b) allows us to define an operator B ∈ L(V ;Λ∗) by the relation

⟨Bv, µ⟩ = b(v, µ) ∀ v ∈ V, µ ∈ Λ.

n H(Φ), the convex function Φ : V → R is assumed to be continuous, instead of l.s.c. As is explained
n [15,16], there is no loss of generality with the stronger assumption of continuity for a vast majority of
pplications.

For αΨ from (3.5) and mA from (3.7), we will assume

• H(s) αΨ < mA.

The condition H(s) is known as a smallness condition in the literature.
In case where KV is a subspace of V , we will assume the bilinear form b(·, ·) satisfies an inf–sup condition:

here exists a constant αb > 0 such that

sup
0 ̸=v∈KV

b(v, µ)
∥v∥V

≥ αb∥µ∥Λ ∀µ ∈ Λ. (3.9)

We will make repeated use of the next result on the Lagrangian L.

roposition 3.3. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ), H(Ψ), H(f), and H(s). Then for each
xed µ ∈ Λ, the mapping v ↦→ L(v, µ) is locally Lipschitz and strongly convex on V , and

⟨v∗
1 − v∗

2 , v1 − v2⟩ ≥ (mA − αΨ ) ∥v1 − v2∥2
V ∀ vi ∈ V, v∗

i ∈ ∂L(vi, µ), i = 1, 2.

oreover, the same statement is valid when L(v, µ) is replaced by L(v, µ) − Φ(v), i.e., for any fixed element
∈ Λ, the mapping v ↦→ L(v, µ) − Φ(v) is locally Lipschitz and strongly convex on V .

The result follows from the proof of Proposition 3.4 in [15], and we skip its proof in this paper.
The relation between Problems 3.1 and 3.2 is presented next.
5
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Theorem 3.4. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ), H(Ψ), H(f), and H(s). Then, Problems 3.1
nd 3.2 are equivalent, i.e., (u, λ) ∈ KV × KΛ is a solution of Problem 3.1 if and only if it is a solution of
roblem 3.2.

roof. First, it is easy to see that (3.2) and the first inequality in (3.4),

L(u, µ) ≤ L(u, λ) ∀µ ∈ KΛ

re equivalent.
It remains to prove the equivalence of (3.1) and the second inequality in (3.4):

L(u, λ) ≤ L(v, λ) ∀ v ∈ KV . (3.10)

Assume (3.1) is valid. By Proposition 3.3, L1(·, λ) = L(·, λ) −Φ(·) is convex. So for any v ∈ KV and any
∈ (0, 1), we have

L1(u+ t (v − u), λ) ≤ t L1(v, λ) + (1 − t)L1(u, λ).

ewrite the inequality as
1
t

[L1(u+ t (v − u), λ) − L1(u, λ)] ≤ L1(v, λ) − L1(u, λ),

.e., after using the definition of the functional L1,
1
t

[FA(u+ t (v − u)) − FA(u)] + 1
t

[Ψ(u+ t (v − u)) − Ψ(u)]

− ⟨f, v − u⟩ + b(v − u, λ) ≤ L1(v, λ) − L1(u, λ).

ake the upper limit of both sides of the above inequality as t → 0+ to obtain

⟨Au, v − u⟩ + Ψ0(u; v − u) − ⟨f, v − u⟩ + b(v − u, λ) ≤ L1(v, λ) − L1(u, λ).

.e.,
⟨Au, v − u⟩ + Φ(v) − Φ(u) + Ψ0(u; v − u) − ⟨f, v − u⟩ + b(v − u, λ) ≤ L(v, λ) − L(u, λ).

he left side of the inequality is non-negative by (3.1). Hence,

0 ≤ L(v, λ) − L(u, λ) ∀ v ∈ KV ,

which is (3.10).
Conversely, assume (3.10). Denote by IKV

(·) the indicator function of the set KV . Then, we have

0 ∈ ∂
(
L(u, λ) + IKV

(u)
)

⊂ ∂L(u, λ) + ∂IKV
(u), (3.11)

here (2.1) is applied for the second inclusion. Since

∂L(u, λ) ⊂ Au+ ∂Φ(u) + ∂Ψ(u) − f +Bu,

e deduce from (3.11) that

⟨Au, v − u⟩ + Φ(v) − Φ(u) + Ψ0(u; v − u) − ⟨f, v − u⟩ + b(v − u, λ) ≥ 0 ∀ v ∈ KV ,

.e., (3.1) holds. ■

We now present existence results on Problem 3.2. We distinguish two cases: first for the case where KΛ

s bounded (Theorem 3.5), and then for the case where KΛ is unbounded (Theorem 3.6).
6
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Theorem 3.5. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ), H(Ψ), H(f), and H(s). Moreover, assume
KΛ is bounded. Then Problem 3.2 has at least one solution (u, λ) ∈ KV ×KΛ.

Proof. By Proposition 3.3, for any µ ∈ KΛ, the function v ↦→ L(v, µ) is strictly convex and continuous.
Evidently, for any v ∈ KV , the function µ ↦→ L(v, µ) is concave and continuous. If KV is bounded, we can
apply Theorem 2.2 directly to conclude that L has at least one saddle point.

Assume now that KV is unbounded. For any µ∗ ∈ Λ chosen and fixed, by Proposition 3.3, v ↦→ L(v, µ∗)
is locally Lipschitz and strongly convex on V . In particular, L(·, µ∗) is coercive on KV ; thus,

lim
∥v∥V →∞, v∈KV

L(v, µ∗) = ∞. (3.12)

gain we can apply Theorem 2.2 to conclude that L has at least one saddle point. ■

heorem 3.6. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ), H(Ψ), H(f), and H(s). Moreover, assume
KΛ is unbounded; KV is a subspace of V ; Φ : V → R is Lipschitz continuous on KV ; there exist non-negative
onstants c0, c1 and κ ∈ [0, 2) such that

∥∂Ψ(v)∥V ∗ ≤ c0 + c1∥v∥κV ∀ v ∈ V ; (3.13)

nd the inf–sup condition (3.9) holds. Then Problem 3.2 has at least one solution (u, λ) ∈ KV ×KΛ.

roof. We comment that the inequality (3.13) is understood in the sense that

∥η∥V ∗ ≤ c0 + c1∥v∥κV ∀ v ∈ V, ∀ η ∈ ∂Ψ(v).

To apply Theorem 2.2 on the existence of a solution to Problem 3.2, the only condition that remains to
be verified is

lim
∥µ∥Λ→∞, µ∈KΛ

inf
v∈KV

L(v, µ) = −∞. (3.14)

Let µ ∈ Λ. From Proposition 3.3, we know that the mapping v ↦→ L(v, µ) is locally Lipschitz and strongly
convex. Therefore, there is a unique element uµ ∈ KV such that

L(uµ, µ) = inf
v∈KV

L(v, µ).

In particular, this implies
⟨u∗
µ, v − uµ⟩ ≥ 0 ∀ v ∈ KV , u

∗
µ ∈ ∂L(uµ, µ). (3.15)

Here, ∂L(uµ, µ) is the generalized gradient of L(·, µ) at uµ. We have the characterization (cf. [15, Theorem
3.5])

⟨Auµ, v − uµ⟩ + Φ(v) − Φ(uµ) + Ψ0(uµ; v − uµ) ≥ ⟨f, v − uµ⟩ − b(v − uµ, µ) ∀ v ∈ KV . (3.16)

Since KV is a linear subspace of V , we can substitute v with uµ + v in (3.16) to get

⟨Auµ, v⟩ + Φ(uµ + v) − Φ(uµ) + Ψ0(uµ; v) ≥ ⟨f, v⟩ − b(v, µ) ∀ v ∈ KV .

Replacing v by −v in the above inequality,

b(v, µ) ≤ −⟨Auµ, v⟩ + Φ(uµ − v) − Φ(uµ) + Ψ0(uµ; −v) + ⟨f, v⟩ ∀ v ∈ KV .

Write

⟨Auµ, v⟩ = ⟨Auµ −A0, v⟩ + ⟨A0, v⟩.

7
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By H(A),
|⟨Auµ, v⟩| ≤ (MA∥uµ∥V + ∥A0∥V ∗) ∥v∥V .

y applying (3.13),
Ψ0(uµ; −v) ≤ (c0 + c1∥uµ∥κV ) ∥v∥V .

enote by MΦ the Lipschitz constant of Φ:

|Φ(v1) − Φ(v2)| ≤ MΦ∥v1 − v2∥V ∀ v1, v2 ∈ KV .

hen,
|Φ(uµ − v) − Φ(uµ)| ≤ MΦ∥v∥V ∀ v ∈ KV .

ence,
b(v, µ) ≤ (MA∥uµ∥V + c1∥uµ∥κV + ∥A0∥V ∗ +MΦ + c0 + ∥f∥V ∗) ∥v∥V ∀ v ∈ KV .

Apply the inf–sup condition (3.9),

αb∥µ∥Λ ≤ sup
0 ̸=v∈KV

b(v, µ)
∥v∥V

≤ MA∥uµ∥V + c1∥uµ∥κV + ∥A0∥V ∗ +MΦ + c0 + ∥f∥V ∗ .

Thus, for some constant c > 0,
∥uµ∥V ≥ c

[
min(∥µ∥Λ, ∥µ∥1/κ

Λ ) − 1
]
. (3.17)

ere, by convention, when κ = 0, the term ∥µ∥1/κ
Λ is dropped from (3.17):

∥uµ∥V ≥ c (∥µ∥Λ − 1) .

Now let us choose an arbitrary element v0 ∈ KV and fix it. Then by Lemma 2.4 and Proposition 3.3, we
ave the relation

L(v0, µ) − L(uµ, µ) ≥ ⟨u∗
µ, v0 − uµ⟩ + mA − αΨ

2 ∥v0 − uµ∥2, u∗
µ ∈ ∂L(uµ, µ).

y making use of (3.15), we obtain

L(uµ, µ) ≤ L(v0, µ) − mA − αΨ

2 ∥v0 − uµ∥2. (3.18)

By the definition (3.3) of L,
L(v0, µ) = c̄0 + b(v0, µ),

where
c̄0 = FA(v0) + Φ(v0) + Ψ(v0) − ⟨f, v0⟩

is a constant independent of µ. Note that

|b(v0, µ)| ≤ Mb∥v0∥ ∥µ∥Λ. (3.19)

Combining (3.17), (3.18) and (3.19), we can derive the inequality

L(uµ, µ) ≤ c
[
1 + ∥µ∥Λ − min(∥µ∥2

Λ, ∥µ∥2/κ
Λ )

]
or some positive constant c. Since κ ∈ [0, 2), (3.14) holds. ■

Since Problems 3.1 and 3.2 are equivalent, we can state the following result on Problem 3.1.
8
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Theorem 3.7. Under the assumptions stated in Theorem 3.5 or in Theorem 3.6, Problem 3.1 has a solution.

Finally, we present a uniqueness result on the first component u of the solution. Similar uniqueness result
an be found in [6,7,10].

heorem 3.8. Keep the assumptions stated in Theorem 3.5 or in Theorem 3.6. Then, the first component
of a solution of Problem 3.1 or Problem 3.2 is unique.

roof. Assume Problem 3.1 has two solutions (u1, λ1), (u2, λ2) ∈ KV ×KΛ. Then in the defining inequalities
3.1) and (3.2) for the solution (u1, λ1), we take v = u2 and µ = λ2 to obtain

⟨Au1, u2 − u1⟩ + b(u2 − u1, λ1) + Φ(u2) − Φ(u1) + Ψ0(u1;u2 − u1) ≥ ⟨f, u2 − u1⟩, (3.20)
b(u1, λ2 − λ1) ≤ 0. (3.21)

Similarly,

⟨Au2, u1 − u2⟩ + b(u1 − u2, λ2) + Φ(u1) − Φ(u2) + Ψ0(u2;u1 − u2) ≥ ⟨f, u1 − u2⟩, (3.22)
b(u2, λ1 − λ2) ≤ 0. (3.23)

Add (3.20) and (3.22) to get

⟨Au1 −Au2, u1 − u2⟩ ≤ b(u2 − u1, λ1 − λ2) + Ψ0(u1;u2 − u1) + Ψ0(u2;u1 − u2). (3.24)

Note that by (3.21) and (3.23),

b(u2 − u1, λ1 − λ2) = b(u2, λ1 − λ2) + b(u1, λ2 − λ1) ≤ 0.

Then from (3.24),
⟨Au1 −Au2, u1 − u2⟩ ≤ Ψ0(u1;u2 − u1) + Ψ0(u2;u1 − u2).

Apply the conditions H(A) and H(Ψ),

mA∥u1 − u2∥2
V ≤ αΨ∥u1 − u2∥2

V .

By the condition H(s), this inequality implies ∥u1 − u2∥V = 0, i.e., u1 = u2. ■

4. Examples arising from contact mechanics

In this section we discuss two examples from contact mechanics to illustrate the application of the
theoretical results shown in Section 3.

We will consider contact problems for the deformation of a deformable body whose initial configuration
is a Lipschitz domain Ω ⊂ Rd (d ≤ 3). Since ∂Ω is Lipschitz continuous, the unit outward normal vector
ν = (ν1, . . . , νd)T is defined a.e. on ∂Ω . For an Rd-valued function u on the boundary, its normal and
tangential components are uν = u · ν and uτ = u − uνν, respectively. Denote by Sd the space of second
order symmetric tensors on Rd or, equivalently, the space of symmetric matrices of order d. For an Sd-valued
function σ on the boundary, we call σν = ν · σν and στ = σν −σνν the normal and tangential components
of σ on the boundary.

We adopt the summation convention over a repeated index. The indices i and j run between 1 and d.
The canonical inner products and norms on Rd and Sd are

u · v = uivi, ∥v∥Rd = (v · v)1/2 for all u = (ui), v = (vi) ∈ Rd,
σ : τ = σijτij , ∥σ∥Sd = (σ : σ)1/2 for all σ = (σij), τ = (τij) ∈ Sd.
9
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Example 4.1. We split the boundary ∂Ω into four mutually disjoint parts: ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 with
Γ1| > 0, |Γ3| + |Γ4| > 0. The classical formulation of the contact problem is to find u : Ω̄ → R3 and

: Ω̄ → S3 such that

Div σ + f0 = 0 in Ω , (4.1)
σ ∈ Eε(u) + ∂ψΩ (ε(u)) in Ω , (4.2)
u = 0 on Γ1, (4.3)
σ ν = f2 on Γ2, (4.4)

uν = 0, ∥στ∥ ≤ g, στ = −g uτ
∥uτ∥

if uτ ̸= 0, on Γ3, (4.5)

− σν = F, ∥στ∥ ≤ k|σν |, στ = −k|σν | uτ
∥uτ∥

if uτ ̸= 0, on Γ4. (4.6)

Let us briefly comment on the equations and conditions in this problem. The equilibrium equation is
epresented by (4.1) where f0 is the density of the body force. The inclusion (4.2) is the constitutive law for
lastic materials in which E represents the elasticity operator and ∂ψΩ stands for the generalized gradient of a
uperpotential function ψΩ (cf. [10]). The condition (4.3) means that the body is fixed on Γ1. The condition
4.4) gives a surface traction condition on Γ2, where f2 is the density of the applied surface traction. On
3 the contact is bilateral, signified by the first condition in (4.5). The second and third relations in (4.5)
epresent a version of static Coulomb’s law of dry friction, g > 0 being a given friction bound. It can be
erified that these two relations are equivalent to

∥στ∥ ≤ g, στ · uτ + g ∥uτ∥ = 0 on Γ3. (4.7)

n Γ4, we have a frictional contact condition with prescribed normal stress, see (4.6). For more details on the
ines (4.5) and (4.6) the reader may consult, for instance, [17,18]. Note that the assumption “|Γ3|+ |Γ4| > 0”
llows the possibility that |Γ3| > 0 and Γ4 = ∅, or |Γ4| > 0 and Γ3 = ∅; in the former case, the contact
roblem contains the contact condition (4.5) only, whereas in the latter case, the contact problem contains
he contact condition (4.6) only.

For simplicity in writing, we assume the elasticity operator E : Ω × Sd → Sd to be linear so that
= (Eijkl)1≤i,j,k,l≤d is symmetric, bounded, and pointwise stable:

Eijkl = Ejikl = Eklij , 1 ≤ i, j, k, l ≤ d, (4.8)
Eijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d, (4.9)
(Eijklϵ) : ϵ ≥ mE∥ϵ∥2

Sd , mE > 0, ∀ ϵ ∈ Sd. (4.10)

or the superpotential ψΩ : Ω × Sd → R, we assume

ψΩ (·, ϵ) is measurable on Ω for all ϵ ∈ Sd, ψΩ (·,0) ∈ L1(Ω); (4.11)
ψΩ (x, ·) is locally Lipschitz continuous on Sd for a.e. x ∈ Ω ; (4.12)
ψ0
Ω (x, ϵ1; ϵ2 − ϵ1) + ψ0

Ω (x, ϵ2; ϵ1 − ϵ2) ≤ αψΩ
∥ϵ1 − ϵ2∥2

Sd ∀ ϵ1, ϵ2 ∈ Sd, a.e. x ∈ Ω , (4.13)

here αψΩ
≥ 0 is a constant. On the external force densities, we assume

f0 ∈ L2(Ω ;Rd), f2 ∈ L2(Γ2;Rd). (4.14)

n addition, we assume that

2
g ∈ L (Γ3), g(x) ≥ 0 a.e. x ∈ Γ3; (4.15)
10
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F ∈ L2(Γ4), F (x) ≥ 0 a.e. x ∈ Γ4;
k ∈ L∞(Γ4), k(x) ≥ 0 a.e. x ∈ Γ4.

We use the space
V =

{
v ∈ H1(Ω ;Rd) | γv = 0 on Γ1, vν = 0 on Γ3

}
(4.16)

or the displacement variable. Here and below, for all v ∈ H1(Ω ;Rd), vν = γv · ν denotes the normal
omponent of the trace γv of v on Γ . Since |Γ1| > 0, Korn’s inequality holds: for some constant c > 0,

∥v∥H1(Ω ;Rd) ≤ c ∥ε(v)∥L2(Ω ;Sd) ∀ v ∈ V

cf. [19, p. 79]), and we can define the norm ∥v∥V = ∥ε(v)∥L2(Ω ;Sd), which is equivalent to the standard
orm ∥v∥H1(Ω ;Rd) on V . For the Lagrange multipliers we use the space

Λ = Z∗, (4.17)

here Z is the closed subspace of H1/2(Γ ;Rd) defined as

Z =
{

z ∈ H1/2(Γ ;Rd) | z = γv for some v ∈ V
}

; (4.18)

ee, e.g., [20] (page 4) for some details. Then we introduce the bilinear form

b(v,µ) = ⟨µ,γv⟩, v ∈ V, µ ∈ Λ, (4.19)

here ⟨·, ·⟩ stands for the duality pairing between Λ = Z∗ and Z.
We also define Φ : V → R,

Φ(v) =
∫
Γ4

k F ∥vτ∥ da ∀ v ∈ V (4.20)

nd introduce the set
KΛ =

{
µ ∈ Λ | ⟨µ, z⟩ ≤

∫
Γ3

g ∥z∥ da ∀ z ∈ Z

}
. (4.21)

ext, we define a Lagrange multiplier λ ∈ KΛ as follows:

⟨λ, z⟩ = −
∫
Γ3

στ · z da. (4.22)

Let us derive a mixed weak formulation for the contact problem (4.1)–(4.6) for the variables u and λ. For
his purpose, we assume the problem has a smooth solution (u,σ) so that each step in the derivation below
s meaningful. We multiply (4.1) by v − u with v ∈ V smooth, integrate over Ω , perform an integration by
arts, and apply (4.4) and boundary conditions of v due to v ∈ V to obtain∫

Ω

σ : ε(v − u) dx−
∫
Γ3

στ · (vτ − uτ ) da−
∫
Γ4

στ · (vτ − uτ ) da = ⟨f , v − u⟩, (4.23)

where
⟨f , v⟩ =

∫
Ω

f0 · v dx+
∫
Γ2

f2 · γv da, v ∈ V. (4.24)

Note that here and below, for all v ∈ V , vτ = γv − vνν.
By the constitutive relation (4.2),∫

σ : ε(v − u) dx ≤
∫

Eε(u) : ε(v − u) dx+
∫

ψ0
Ω (ε(u); ε(v − u)) dx.
Ω Ω Ω

11
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W

a

From the definition (4.19),
−

∫
Γ3

στ · (vτ − uτ ) da = b(v,λ) − b(u,λ).

Hence, from (4.23), we deduce that∫
Ω

Eε(u) : ε(v − u) dx+
∫
Ω

ψ0
Ω (ε(u); ε(v − u)) dx

+ Φ(v) − Φ(u) + b(v,λ) − b(u,λ) ≥ ⟨f , v − u⟩.

From (4.7), we have
⟨λ,γu⟩ =

∫
Γ3

g ∥uτ∥ da.

Hence, for µ ∈ KΛ,
b(u,µ − λ) = ⟨µ,γu⟩ − ⟨λ,γu⟩ ≤ 0.

In summary, the mixed weak formulation of the problem (4.1)–(4.6) is to find (u,λ) ∈ V × KΛ such that
for all v ∈ V and µ ∈ KΛ,

⟨Au, v − u⟩ + b(v − u,λ) + Φ(v) − Φ(u) +
∫
Ω

ψ0
Ω (ε(u); ε(v − u)) dx ≥ ⟨f , v − u⟩, (4.25)

b(u,µ − λ) ≤ 0, (4.26)

where
⟨Au, v⟩ =

∫
Ω

Eε(u) : ε(v) dx, u, v ∈ V. (4.27)

We consider an auxiliary problem: find (u,λ) ∈ V ×KΛ such that

⟨Au, v − u⟩ + b(v − u,λ) + Φ(v) − Φ(u) + Ψ0(u; v − u) ≥ ⟨f , v − u⟩ ∀ v ∈ V, (4.28)
b(u,µ − λ) ≤ 0 ∀ µ ∈ KΛ, (4.29)

where
Ψ(v) =

∫
Ω

ψΩ (ε(v)) dx, v ∈ V. (4.30)

The operator A is potential with
FA(v) = 1

2

∫
Ω

Eε(v) : ε(v) dx.

e introduce the Lagrangian functional

L(v,µ) = FA(v) + b(v,µ) + Φ(v) + Ψ(v) − ⟨f , v⟩, v ∈ V, µ ∈ Λ

nd the related saddle-point problem

(u,λ) ∈ V ×KΛ, L(u,µ) ≤ L(u,λ) ≤ L(v,λ) ∀ (v,µ) ∈ V ×KΛ. (4.31)

The problem (4.28)–(4.29) is a particular case of Problem 3.1, whereas the problem (4.31) is a particular
case of Problem 3.2, with KV = V defined in (4.16), Λ defined in (4.17), KΛ defined by (4.21), A defined by
(4.27), b defined by (4.19), Φ defined by (4.20), Ψ defined by (4.30), and f = f defined by (4.24). Note that
KΛ is a bounded set in Λ, and we are in a position to apply Theorems 3.4, 3.5, 3.7 and 3.8. The conditions
H(KV ), H(KΛ), H(A), H(b), H(Φ), H(Ψ) and H(f) can be verified straightforward. It is easy to see that
(3.7) holds with mA = mE .

According to Proposition 3.37 (i) and Theorem 3.47 (iv) in [21], the following inequality holds true:∫
ψ0
Ω (ε(u); ε(v)) dx ≥ Ψ0(u; v) ∀ v ∈ V. (4.32)
Ω

12
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By using (4.13), we have, for any v1, v2 ∈ V ,

Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤
∫
Ω

[
ψ0
Ω (ε(v1); ε(v2 − v1)) + ψ0

Ω (ε(v2); ε(v1 − v2))
]
dx

≤ αψΩ
∥v1 − v2∥2

V .

Thus, (3.5) holds with αΨ equals αψΩ
from (4.13). Hence, for the problem (4.28)–(4.29) and the problem

(4.31), the smallness condition H(s) becomes

αψΩ
< mE . (4.33)

By applying Theorems 3.4, 3.5, 3.7 and 3.8, we know that under the additional condition (4.33), the
problem (4.31) and the problem (4.28)–(4.29) are equivalent, each problem has a solution (u,λ) ∈ V ×KΛ

and the first component u of the solution is unique.
Because of (4.32), we know that a solution (u, λ) ∈ V ×KΛ of the problem (4.28)–(4.29) is also a solution

of the problem (4.25)–(4.26). Moreover, the uniqueness of u for the problem (4.25)–(4.26) can be verified as
in the proof of Theorem 3.8. ■

Example 4.2. We split the boundary ∂Ω into five mutually disjoint parts: ∂Ω = Γ1 ∪Γ2 ∪Γ3 ∪Γ4 ∪Γ5 with
Γ1| > 0 and |Γ3| + |Γ4| + |Γ5| > 0. The classical formulation of the contact problem is to find u : Ω̄ → R3

nd σ : Ω̄ → S3 such that

Div σ + f0 = 0 in Ω , (4.34)
σ = Eε(u) in Ω , (4.35)
u = 0 on Γ1, (4.36)
σ ν = f2 on Γ2, (4.37)
uν = 0, −στ ∈ ∂ψΓ (uτ ) on Γ3, (4.38)

uν = 0, ∥στ∥ ≤ g, στ = −g uτ
∥uτ∥

if uτ ̸= 0, on Γ4, (4.39)

στ = 0, σν ≤ 0, uν ≤ 0, σν uν = 0 on Γ5. (4.40)

The mechanical significance of (4.34), (4.36), (4.37) and (4.39) is like in the previous example and the
constitutive law (4.35) is a classical one governed by the elastic operator E . In addition, we use a bilateral
rictional contact condition governed by the superpotential ψΓ , on Γ3, see (4.38). Moreover, we use a
rictionless unilateral contact condition on Γ5, see (4.40); for more details on such a contact condition
e refer to e.g. [17] and the references therein. Similar to Example 4.1, the assumption “|Γ1| > 0 and
Γ3|+ |Γ4|+ |Γ5| > 0” allows the possibility that only one or two of the three contact conditions (4.38)–(4.40)
re present.

As working hypotheses we keep (4.8)–(4.10), (4.14), (4.15), and for the superpotential ψΓ : Γ3 ×Rd → R,
e assume

ψΓ (·, v) is measurable on Γ3 for all v ∈ Rd, ψΓ (·,0) ∈ L1(Γ3);
ψΓ (x, ·) is locally Lipschitz continuous on Rd for a.e. x ∈ Γ3;
ψ0
Γ (x, v1; v2 − v1) + ψ0

Γ (x, v2; v1 − v2) ≤ αψ∥v1 − v2∥2
Rd ∀ v1, v2 ∈ Rd, a.e. x ∈ Γ3, (4.41)

where αψΓ
≥ 0 is a constant.

For this example, we use the space{ 1 d
}

V = v ∈ H (Ω ;R ) | γv = 0 on Γ1, vν = 0 on Γ3 ∪ Γ4 , KV = V

13
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for the displacement variable, and define an operator A : V → V and functionals Φ, f : V → R by

⟨Au, v⟩ =
∫
Ω

Eε(u) : ε(v) dx ∀ u, v ∈ V,

Φ(v) =
∫
Γ4

g ∥vτ∥ da ∀ v ∈ V,

⟨f , v⟩ =
∫
Ω

f0 · v dx+
∫
Γ2

f2 · γv da ∀ v ∈ V.

For the Lagrange variable, we use the space
Λ = Z∗

where
Z =

{
z ∈ H1/2(Γ ;Rd) | z = γv for some v ∈ V

}
.

Define the bilinear form b : V × Λ → R by

b(v,µ) = ⟨µ,γv⟩ ∀ v ∈ V, µ ∈ Λ,

and the set
KΛ = {µ ∈ Λ | ⟨µ,γv⟩ ≤ 0 ∀ v ∈ K} ,

where
K = {v ∈ V | vν ≤ 0 a.e. on Γ5}.

Let us define a Lagrange multiplier λ ∈ Λ as follows:

⟨λ, z⟩ = −
∫
Γ5

σνν · z da.

Similar to Example 4.1, we arrive at the following mixed weak formulation for the problem (4.34)–(4.40):
find (u,λ) ∈ V ×KΛ such that for all v ∈ V and µ ∈ KΛ,

⟨Au, v − u⟩ + b(v − u,λ) + Φ(v) − Φ(u) +
∫
Γ3

ψ0
Γ (uτ ; vτ − uτ ) da ≥ ⟨f , v − u⟩, (4.42)

b(u,µ − λ) ≤ 0. (4.43)

In relation to the above mixed weak formulation, we consider an auxiliary problem as follows: find
(u,λ) ∈ V ×KΛ such that

⟨Au, v − u⟩ + b(v − u,λ) + Φ(v) − Φ(u) + Ψ0(u; v − u) ≥ ⟨f , v − u⟩ ∀ v ∈ V, (4.44)
b(u,µ − λ) ≤ 0 ∀ µ ∈ KΛ, (4.45)

where
Ψ(v) =

∫
Γ3

ψΓ (vτ ) da.

The corresponding saddle-point problem is

(u,λ) ∈ V ×KΛ, L(u,µ) ≤ L(u,λ) ≤ L(v,λ) ∀ (v,µ) ∈ V ×KΛ. (4.46)

with the Lagrangian functional

L(v,µ) = 1 ∫
Eε(v) : ε(v) dx+ b(v,µ) +

∫
ψΓ (vτ ) da+ Φ(v) − ⟨f , v⟩.
2 Ω Γ3

14
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T

Similar to (4.32), we have ∫
Γ3

ψ0
Γ (uτ ; vτ ) da ≥ Ψ0(u; v) ∀ v ∈ V. (4.47)

hen by using (4.41), for any v1, v2 ∈ V ,

Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤
∫
Γ3

[
ψ0
Γ (v1,τ ; v2,τ − v1,τ ) + ψ0

Γ (v2,τ ; v1,τ − v2,τ )
]
da

≤ αψΓ
λ−1
Γ3

∥v1 − v2∥2
V ,

where λΓ3 > 0 is the smallest eigenvalue of the eigenvalue problem

w ∈ V,

∫
Ω

ε(w) : ε(v) dx = λ

∫
Γ3

wτ · vτ da ∀ v ∈ V.

Thus, (3.5) holds with αΨ equals αψΓ
λ−1
Γ3

. Hence, for the problem (4.44)–(4.45) and the problem (4.46), the
smallness condition H(s) becomes

αψΓ
< mEλΓ3 . (4.48)

Since the conditions H(KV ), H(KΛ), H(A), H(b), H(Φ), H(Ψ) and H(f) are fulfilled, keeping in mind
(4.48), we apply Theorems 3.4, 3.6, 3.7, 3.8. Note that the inf–sup property of the form b, (3.9), can be
verified as in [20] (see pages 16–17). Also, it is worth underlining that in this example KΛ is an unbounded
set.

Hence, the saddle point problem (4.46) and the auxiliary problem (4.44)–(4.45) are equivalent, each
problem has a solution (u,λ) ∈ V ×KΛ and the first component u of the solution is unique.

Because of (4.47), we know that a solution (u,λ) ∈ V ×KΛ of the problem (4.44)–(4.45) is also a solution
of the problem (4.42)–(4.43). The uniqueness of u for the problem (4.42)–(4.43) can be verified by using a
similar technique with that one used in the proof of Theorem 3.8. ■
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