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This paper is concerned with the analysis and numerical solution of an H(curl)-elliptic hemivariational
inequality (HVI). One source of the HVI is through a temporal semidiscretization of a related hyperbolic
Maxwell equation problem. An equivalent minimization principle is introduced, and the solution
existence and uniqueness of the H(curl)-elliptic HVI are proved. Numerical analysis of the HVI is
provided with a general Galerkin approximation, including a Céa’s inequality for convergence and error
estimation. When the linear edge finite element method is employed, an optimal-order error estimate is
derived under a suitable solution regularity assumption. A fully discrete scheme based on the backward
Euler difference in time and a mixed finite element method in space is also analyzed, and stability
estimates are derived for first-order terms of the fully discrete solution. Numerical results are reported on
linear edge finite element solutions of the H(curl)-elliptic HVI for numerical evidence of the theoretically
predicted convergence order.

Keywords: H(curl)-elliptic hemivariational inequality; minimization principle; finite element method;
optimal-order error estimate.

1. Introduction

Bean (1962, 1964) proposed a critical state model that describes an irreversible and hysteretic
magnetization process of high-temperature superconductors in a temporally varying applied magnetic
field. The Bean model employs a nonsmooth constitutive relation between the current density J and the
electric field E: the current density strength cannot exceed a critical value; the electric field vanishes
if the current density strength is strictly less than the critical value; otherwise, the electric field is
parallel to the current density. Denoting by g the critical value, the constitutive relation can be stated
mathematically as follows:

|J| ≤ g; |J| < g ⇒ E = 0; |J| = g ⇒ J = κ E for some κ ≥ 0, (1.1)

valid in the domain where the electromagnetism process is studied. It is possible to eliminate the
unknown parameter κ . Indeed, (1.1) can be equivalently written as

|J| ≤ g, J · E = g |E|. (1.2)
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Using the notion of the convex subdifferential we can further express (1.2) concisely as

J ∈ ∂ (g |E|) . (1.3)

Note that the function E �→ g |E| is nonsmooth and convex. In the eddy current approximation
that eliminates the displacement current, the Bean critical state model (1.1) with magnetic induction
dependence g = g(B) leads to a parabolic quasi-variational inequality (Prigozhin, 1996a,b; Barrett &
Prigozhin, 2006, 2015; Elliott & Kashima, 2007). In the full three-dimensional Maxwell system the
Bean critical state model (1.1) with g = g(x) leads to a hyperbolic Maxwell variational inequality of the
second kind (Yousept, 2017, 2020a; Winckler & Yousept, 2019).

In Winckler et al. (2020) an adaptive edge element method is developed to solve a corresponding
H(curl)-elliptic variational inequality. To describe the H(curl)-elliptic variational inequality and for
use later in this paper we need to introduce some function spaces. Let Ω ⊂ R

3 be a Lipschitz domain.
Denote by Γ the boundary of Ω . Let

H(curl, Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)},

which is a Hilbert space with the norm ‖ · ‖curl,Ω defined through

‖v‖2
curl,Ω = ‖v‖2

0,Ω + ‖curl v‖2
0,Ω ,

where the curl-operator is understood in the sense of distributions. Let C∞
0 (Ω) be the space of all

infinitely differentiable functions with compact support contained in Ω . Then define

V = H0(curl, Ω)

to be the closure of C∞
0 (Ω) with respect to the H(curl, Ω) norm. The following characterization holds:

V = {v ∈ H(curl, Ω) : n × v = 0 on Γ } .

The H(curl)-elliptic variational inequality studied in Winckler et al. (2020) is the following: find E ∈ V
such that

a(E, v − E) +
∫

Ω

g (|v| − |E|) dx ≥
∫

Ω

f · (v − E) dx ∀ v ∈ V, (1.4)

where the bilinear form is

a(E, v) =
∫

Ω

(
ε E · v + μ−1curlE · curlv

)
dx, (1.5)

ε, μ are material property parameters and f ∈ L2(Ω).
In Bean’s original model the critical value g is a positive constant and it is a physically reasonable

assumption where the magnetic field is not strong. However, experiments show that in the presence of
strong external fields, the critical value can depend on the magnetic field (Kim et al., 1963). In the case
where the critical value depends on the strength of the magnetic field, the mathematical models may
be quasi-variational inequalities; see Barrett & Prigozhin (2006) for analysis of an associated parabolic
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quasi-variational inequality in a scalar two-dimensional setting, and Barrett & Prigozhin (2015) on a
nonconforming finite element method for the problem. In this paper we consider an H(curl)-elliptic
problem in which the constitutive relation is a generalization of (1.3), i.e.,

J ∈ ∂ψ(E), (1.6)

where the function ψ is again nonsmooth but is allowed to be nonconvex. For a locally Lipschitz
continuous function ψ , ∂ψ stands for the subdifferential in the sense of Clarke (cf. Section 2). Instead
of a variational inequality of the form (1.4) the weak formulation of the H(curl)-elliptic problem subject
to the constitutive relation (1.6) is a hemivariational inequality (HVI): find E ∈ V such that

a(E, v) +
∫

Ω

ψ0(E; v) dx ≥
∫

Ω

f · v dx ∀ v ∈ V, (1.7)

where the bilinear form a(·, ·) is defined by (1.5), and ψ0(E; v) denotes the generalized directional
derivative of ψ at E in the direction v (cf. Section 2). In the recent papers by Yousept (2020a,b),
well-posedness results are proved for hyperbolic Maxwell variational inequalities of the second kind
and obstacle-type hyperbolic Maxwell variational inequalities. In this paper we will present a solution
existence and uniqueness result for the H(curl)-elliptic HVI and apply the edge finite element method
to solve it.

The framework of HVIs is useful for analyzing and solving some families of nonsmooth and
nonconvex problems. It is closely related to the development of the concept of the generalized gradient of
a locally Lipschitz function provided by Clarke (1975, 1983). Studies of HVIs started in the early 1980s
(Panagiotopoulos, 1983), responding to needs in engineering applications. Through HVIs, problems
involving nonsmooth, nonmonotone and set-valued relations among physical quantities can be modeled
and analyzed. Comprehensive references on modeling and mathematical analysis of HVIs include
Carl et al. (2007), Migórski et al. (2013), Naniewicz & Panagiotopoulos (1995), Panagiotopoulos
(1993), Sofonea & Migórski (2018). A comprehensive reference on the finite element method for
HVIs is Haslinger et al. (1999). In recent papers, e.g., Han (2018), Han & Sofonea (2019), Han
et al. (2017, 2018), optimal-order error estimates are derived for the linear finite element solutions
of some hemivariational inequalities.

The rest of the paper is organized as follows. In Section 2 we review the notions of the generalized
directional derivative and the subdifferential in the sense of Clarke, as well as that of strongly convex
functions. In Section 3 we introduce the H(curl)-elliptic HVI as a result of a temporally semidiscrete
approximation of a hyperbolic Maxwell equation problem, (3.1)–(3.2). In Section 4 we establish a
minimization principle and prove the solution existence and uniqueness of the H(curl)-elliptic HVI.
In Section 5 we introduce a Galerkin approximation of the H(curl)-elliptic HVI; the existence and
uniqueness of a discrete solution follow from the argument in Section 4 for the finite-dimensional
case. We establish Céa’s inequality, which is the basis for convergence analysis and error estimation of
numerical solutions. In Section 6 we use the linear edge finite elements for numerical approximation and
derive an optimal-order error estimate for the linear edge finite element solution under certain solution
regularity assumptions. In Section 7 we consider a fully discrete scheme based on the backward Euler
difference in time and a mixed finite element method in space consisting of Nédélec’s edge elements for
the electric field and piecewise constant elements for the magnetic induction. We also derive stability
estimates for the first-order terms of the fully discrete solution. In Section 8 we report simulation results
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NUMERICAL SOLUTION OF AN H(curl)-ELLIPTIC HEMIVARIATIONAL INEQUALITY 979

on linear edge finite element solutions of the H(curl)-elliptic HVI, illustrating numerical evidence of
the theoretically predicted convergence order.

2. Preliminaries

In this section we review some basic notions and results that will be needed later.
We first recall the definitions of the generalized directional derivative and generalized subdifferential

in the sense of Clarke for a locally Lipschitz function and quote some properties. For details the reader
is referred to Clarke (1983), Migórski et al. (2013).

Definition 2.1 Let V be a Banach space and denote by V∗ its dual. Let ψ : V → R be a locally
Lipschitz functional. The generalized (Clarke) directional derivative of ψ at u ∈ V in the direction
v ∈ V is defined by

ψ0(u; v) = lim sup
w→u, λ↓0

ψ(w + λv) − ψ(w)

λ
.

The generalized gradient (subdifferential) of ψ at u is defined by

∂ψ(u) = {ζ ∈ V∗ : ψ0(u; v) ≥ 〈ζ , v〉 ∀ v ∈ V}.

Given the generalized subdifferential we can compute the generalized directional derivative through
the formula (Clarke, 1983, Proposition 2.1.2)

ψ0(u; v) = max{〈ξ , v〉 : ξ ∈ ∂ψ(u)} ∀ u, v ∈ V . (2.8)

The following subadditivity rule holds (Clarke, 1983, Proposition 2.1.1):

ψ0(u; v1 + v2) ≤ ψ0(u; v1) + ψ0(u; v2) ∀ u, v1, v2 ∈ V . (2.9)

Moreover, if ψ1, ψ2 : V → R are locally Lipschitz continuous, then (Clarke, 1983, Proposition 2.3.3)

∂(ψ1 + ψ2)(u) ⊂ ∂ψ1(u) + ∂ψ2(u) ∀ u ∈ V , (2.10)

or equivalently,

(ψ1 + ψ2)
0(u; v) ≤ ψ0

1 (u; v) + ψ0
2 (u; v) ∀ u, v ∈ V .

Then we recall that a function g : V → R defined on a normed space V is said to be strongly convex
on V with a constant α > 0 if

g(λ u + (1 − λ) v) ≤ λ g(u) + (1 − λ) g(v) − α λ (1 − λ) ‖u − v‖2
V ∀ u, v ∈ V , ∀ λ ∈ [0, 1].

In the analysis of the HVI in this paper we will need the following result (Fan et al., 2003, Theorem 3.4).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/43/2/976/6550476 by U
niversity of Iow

a Libraries/Serials Acquisitions user on 30 M
arch 2023



980 W. HAN ET AL.

Lemma 2.2 Let V be a real Banach space, and let g : V → R be locally Lipschitz continuous. Then g is
strongly convex on V with a constant α > 0 if and only if ∂g is strongly monotone on V with a constant
2 α, i.e.,

〈ξ − η, u − v〉 ≥ 2 α ‖u − v‖2
V ∀ u, v ∈ V , ξ ∈ ∂g(u), η ∈ ∂g(v).

A proof of the next result can be found in Han (2020, Proposition 2.5).

Proposition 2.3 Let V be a real Hilbert space, and let g : V → R be a locally Lipschitz continuous
and strongly convex functional on V with a constant α > 0. Then there exist two constants c0 and c1
such that

g(v) ≥ α ‖v‖2
V + c0 + c1‖v‖V ∀ v ∈ V . (2.11)

Consequently, g(·) is coercive on V .

3. H(curl)-elliptic hemivariational inequality

In this section we derive the H(curl)-elliptic HVI (1.7) as a result of a temporal semidiscretization of a
hyperbolic Maxwell equation problem.

Let the Lipschitz domain Ω ⊂ R
3 be the region for the electromagnetism process. Denote by n

the unit outward normal on the boundary Γ . Let the time interval of interest be [0, T]. Consider an
initial-boundary value problem of the Maxwell equations:

ε̃Et − curl (μ̃−1B) + J = l in Ω × (0, T), (3.1a)

Bt + curl E = 0 in Ω × (0, T), (3.1b)

n × E = 0 on Γ × (0, T), (3.1c)

E(·, 0) = E0 in Ω , (3.1d)

B(·, 0) = B0 in Ω , (3.1e)

with the current density

J ∈ ∂ψ(E) in Ω × (0, T). (3.2)

Here, the unknowns are the electric field E and the magnetic induction B; l is a given applied current
source, ε̃ and μ̃ represent the electric permittivity and the magnetic permeability, respectively. The
boundary condition (3.1c) is known as the perfectly conducting condition; more general boundary
conditions can also be considered. The function ψ : Ω × R

3 → R is assumed to be locally Lipschitz
continuous with respect to its second argument. To simplify the notation we write ψ(E) for ψ(x, E) and
denote by ∂ψ Clarke’s generalized subdifferential of ψ with respect to its second argument.
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NUMERICAL SOLUTION OF AN H(curl)-ELLIPTIC HEMIVARIATIONAL INEQUALITY 981

We assume ε̃ and μ̃ are of class L∞(Ω) and satisfy

ε̃0 ≤ ε̃ ≤ ε̃1 and μ̃0 ≤ μ̃ ≤ μ̃1 a.e. in Ω ,

for some positive constants 0<ε̃0 ≤ ε̃1 < ∞ and 0<μ̃0 ≤ μ̃1 < ∞. For the function ψ : Ω ×R
3 → R

we assume

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) ψ(·, ξ) is measurable on Ω for all ξ ∈ R
3 and ψ(·, 0) ∈ L1(Ω);

(b) ψ(x, ·) is locally Lipschitz on R
3 for a.e. x ∈ Ω;

(c) there exist constants c0, c1 > 0 such that

|∂ψ(x, ξ)| ≤ c0 + c1|ξ | a.e. x ∈ Ω , ∀ ξ ∈ R
3;

(d) there exists a constant m such that for a.e. x ∈ Ω ,

ψ0(x, ξ1; ξ2 − ξ1) + ψ0(x, ξ2; ξ1 − ξ2) ≤ m|ξ1 − ξ2|2 ∀ ξ1, ξ2 ∈ R
3.

(3.3)

The inequality in (3.3)(c) stands for

|η| ≤ c0 + c1|ξ | a.e. x ∈ Ω , ∀ ξ ∈ R
3, η ∈ ∂ψ(x, ξ).

By (2.8), (3.3)(c) implies

∣∣∣ψ0(ξ1; ξ2)

∣∣∣ ≤ (
c0 + c1|ξ1|

) |ξ2| ∀ ξ1, ξ2 ∈ R
3. (3.4)

It is known (Migórski et al., 2013) that (3.3)(d) is equivalent to

(η1 − η2) · (ξ1 − ξ2) ≥ −m|ξ1 − ξ2|2 a.e. x ∈ Ω , ∀ ξ i ∈ R
3, ηi ∈ ∂ψ(x, ξ i), i = 1, 2. (3.5)

Let us consider a semidiscretization of problem (3.1)–(3.2) with respect to the temporal variable t.
For simplicity in exposition we use a uniform partition of the time interval [0, T], and we comment that
the discussion can be directly extended to the case of general nonuniform partitions. Let k = T/N be the
time-step size for a positive integer N, and denote the node points by tn = nk, 0 ≤ n ≤ N. We assume

l ∈ C([0, T]; L2(Ω))

is a continuous function of t ∈ [0, T], and write ln for l(tn), 0 ≤ n ≤ N. Then a backward semidiscrete
scheme for problem (3.1)–(3.2) is to find {(En, Bn)}N

n=1 such that for n = 1, . . . , N,

ε̃
En − En−1

k
− curl (μ̃−1Bn) + Jn = ln in Ω , (3.6)

Bn − Bn−1

k
+ curl En = 0 in Ω , (3.7)

n × En = 0 on Γ , (3.8)
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982 W. HAN ET AL.

where

Jn ∈ ∂ψ(En) in Ω , (3.9)

and

E0 = E0 in Ω , (3.10)

B0 = B0 in Ω . (3.11)

Assuming (En−1, Bn−1) is known we derive from (3.7) that

Bn = Bn−1 − k curl En, (3.12)

and use this relation in (3.6) to obtain

k−1ε̃ En + curl
(

kμ̃−1curl En
)

+ Jn = l̃
n

in Ω , (3.13)

where

l̃
n = ln + curl (μ̃−1Bn−1) + k−1ε̃ En−1. (3.14)

In the derivation of the weak formulation of the unknown En we assume the problem defined
by (3.13) and (3.8)–(3.9) has a smooth solution En so that all the steps in the derivation below are
meaningful. We multiply both sides of (3.13) by an arbitrary test function v ∈ V = H0(curl, Ω) and
integrate over Ω:

∫
Ω

[
k−1ε̃ En · v + curl

(
kμ̃−1curl En

)
· v + Jn·v

]
dx =

∫
Ω

l̃
n · v dx.

Perform an integration by parts on the integral of the second term on the left-hand side and make use of
the inequality

∫
Ω

Jn · v dx ≤
∫

Ω

ψ0(En; v) dx,

thanks to (3.9). Then we have the following weak formulation:

En ∈ V,
∫

Ω

(
k−1ε̃ En · v + kμ̃−1curl En · curl v

)
dx +

∫
Ω

ψ0(En; v) dx

≥
∫

Ω

l̃
n · v dx ∀ v ∈ V. (3.15)

Once the electric field En is found we can compute the magnetic induction Bn by (3.12).
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NUMERICAL SOLUTION OF AN H(curl)-ELLIPTIC HEMIVARIATIONAL INEQUALITY 983

To simplify the notation in the study of (3.15) we define

ε = k−1ε̃, μ = k−1μ̃. (3.16)

We comment that these definitions depend on the time step k. We further use the symbol E for En and
define f ∈ V∗ by

〈f , v〉 =
∫

Ω

l̃
n · v dx, v ∈ V.

Then we rewrite (3.15) as

E ∈ V, a(E, v) +
∫

Ω

ψ0(E; v) dx ≥ 〈f , v〉 ∀ v ∈ V, (3.17)

which is the HVI studied in this paper. Here, the bilinear form

a(E, v) =
∫

Ω

εE · v dx +
∫

Ω

μ−1curl E · curl v dx.

From the assumptions on ε̃ and μ̃ we know that ε and μ are of class L∞(Ω) and

ε0 ≤ ε ≤ ε1 and μ0 ≤ μ ≤ μ1 a.e. in Ω ,

for some positive constants 0 < ε0 ≤ ε1 < ∞ and 0 < μ0 ≤ μ1 < ∞. Indeed, due to (3.16), we may
take

ε0 = k−1ε̃0, ε1 = k−1ε̃1, μ0 = k−1μ̃0, μ1 = k−1μ̃1.

4. Existence and uniqueness

In this section we present a unique solvability result for the H(curl)-elliptic HVI (3.17). We adopt the
idea presented in Han (2020) and study the solution existence of (3.17) through consideration of an
equivalent minimization problem. Define an energy functional

E(v) = 1

2
a(v, v) +

∫
Ω

ψ(v) dx − 〈f , v〉, v ∈ V. (4.1)

We consider a corresponding minimization problem

E ∈ V, E(E) = inf {E(v) : v ∈ V} . (4.2)

Let us explore properties of the energy functional.

Lemma 4.1 Assume (3.3) and m < ε0. Then the functional E(·) is locally Lipschitz continuous, strongly
convex and coercive on V.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/43/2/976/6550476 by U
niversity of Iow

a Libraries/Serials Acquisitions user on 30 M
arch 2023



984 W. HAN ET AL.

Proof. The local Lipschitz continuity of E is obvious. Let us prove the strong convexity. For this purpose
define a linear operator A : V → V∗ by

〈Au, v〉 = a(u, v) ∀ u, v ∈ V. (4.3)

Then A ∈ L(V, V∗) and it is strongly monotone. Define a functional Ψ : L2(Ω) → R by

Ψ (v) =
∫

Ω

ψ(v) dx ∀ v ∈ L2(Ω).

Then by Migórski et al. (2013, Theorem 3.47), under assumption (3.3), Ψ is well defined and locally
Lipschitz continuous on L2(Ω), and

∂Ψ (v) ⊂
∫

Ω

∂ψ(v) dx (4.4)

in the sense that for ξ ∈ ∂Ψ (v), there exists a function ζ ∈ L2(Ω) such that ζ (x) ∈ ∂ψ(x, v(x)) for a.e.
x ∈ Ω and

〈ξ , w〉L2(Ω)×L2(Ω) =
∫

Ω

ζ (x) · w(x) dx ∀ w ∈ L2(Ω).

For v ∈ V and η ∈ ∂E(v), by (2.10) we can write

η = Av + ξ − f , ξ ∈ ∂Ψ (v). (4.5)

Thus, for i = 1, 2, with vi ∈ V and ηi ∈ ∂E(vi), by (4.4) we have ζ i ∈ L2(Ω) such that ζ i(x) ∈
∂ψ(x, vi(x)) for a.e. x ∈ Ω and

〈ηi, w〉 = 〈Avi, w〉 +
∫

Ω

ζ i(x) · w(x) dx − 〈f , w〉 ∀ w ∈ L2(Ω).

Thus from (3.5),

〈η1 − η2, v1 − v2〉 = 〈Av1 − Av2, v1 − v2〉 +
∫

Ω

(
ζ 1 − ζ 2

) · (
v1 − v2

)
dx

≥
∫

Ω

[
(ε − m) |v1 − v2|2 + μ−1|curl(v1 − v2)|2

]
dx

≥ min{ε0 − m, μ−1
1 } ‖v1 − v2‖2

curl,Ω .

Thus, by Lemma 2.2, E(·) is strongly convex. Moreover, by Proposition 2.3, E(·) is coercive
on V. �

An assumption of the form m < ε0 is called a smallness condition in the literature (e.g., Migórski
et al., 2013). This condition is equivalent to km < ε̃0, which is always satisfied if the step size k is
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NUMERICAL SOLUTION OF AN H(curl)-ELLIPTIC HEMIVARIATIONAL INEQUALITY 985

sufficiently small. In this sense the assumption m < ε0 in Lemma 4.1 and in the other results of the
paper does not impose a constraint of practical significance.

Proposition 4.2 Assume (3.3) and m < ε0. Then the minimization problem (4.2) has a unique solution
E ∈ V.

Proof. Since E(·) is continuous, strictly convex and coercive on V , the minimization problem (4.2) has
a unique solution E ∈ V (cf. Atkinson & Han, 2009, §3.3.2). �

We are ready to prove an existence and uniqueness result for (3.17).

Theorem 4.3 Assume (3.3) and m < ε0. Then for any f ∈ V∗, the HVI (3.17) has a unique solution
E ∈ V, which is also the unique solution of the minimization problem (4.2).

Proof. Applying (4.5) we see that E satisfies the relation

〈AE, v〉 +
∫

Ω

ζ (x) · v(x) dx − 〈f , v〉 ≥ 0

for a function ζ ∈ L2(Ω) such that ζ (x) ∈ ∂ψ(x, E(x)) for a.e. x ∈ Ω . Since

ψ0(x, E(x); v(x)) ≥ ζ (x) · v(x) a.e. x ∈ Ω ,

we see that E is a solution of problem (3.17).
The uniqueness of a solution to problem (3.17) is proved by a standard approach. Assume Ẽ ∈ V is

another solution of problem (3.17). Then

a(Ẽ, v) +
∫

Ω

ψ0(Ẽ; v) dx ≥ 〈f , v〉 ∀ v ∈ V. (4.6)

Take v = Ẽ − E in (3.17), v = E − Ẽ in (4.6) and add the two resulting inequalities to get

ε0‖Ẽ − E‖2
0,Ω + μ−1

1 ‖curl(Ẽ − E)‖2
0,Ω ≤ a(Ẽ − E, Ẽ − E)

≤
∫

Ω

[
ψ0(E; Ẽ − E) + ψ0(Ẽ; E − Ẽ)

]
dx

≤ m ‖Ẽ − E‖2
0,Ω .

By the smallness condition m < ε0 we deduce that Ẽ = E. �

5. Galerkin approximation

We consider the Galerkin approximation for problem (3.17). Let {Vh}h>0 be a family of finite-
dimensional subspaces of V that approximates V in the sense that for any v ∈ V, there exists vh ∈ Vh
such that

‖vh − v‖curl,Ω → 0 as h → 0.
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986 W. HAN ET AL.

The discretization parameter h can be identified with the mesh size if Vh is a finite element space. Then
the Galerkin approximation of the H(curl)-elliptic HVI problem (3.17) is

Eh ∈ Vh, a(Eh, vh) +
∫

Ω

ψ0(Eh; vh) dx ≥ 〈f , vh〉 ∀ vh ∈ Vh. (5.1)

Similar to (4.2) we can introduce a corresponding minimization problem for (5.1):

Eh ∈ Vh, E(Eh) = inf
{
E(vh) : vh ∈ Vh

}
, (5.2)

where the energy functional E is defined in (4.1).
The discrete analogue of Theorem 4.3 and Proposition 4.2 is the following.

Theorem 5.1 Assume (3.3) and m < ε0. Then problem (5.1) is equivalent to problem (5.2), and both
problems admit the same unique solution Eh ∈ Vh.

Let us show that the solution Eh is uniformly bounded in h.

Lemma 5.2 Keep the assumptions of Theorem 5.1. Then the solution Eh of problem (5.1) is uniformly
bounded independent of h.

Proof. We let vh = −Eh in (5.1) to get

a(Eh, Eh) ≤
∫

Ω

ψ0(Eh; −Eh) dx + 〈f , Eh〉. (5.3)

From (3.3)(d),

ψ0(Eh; −Eh) ≤ m |Eh|2 − ψ0(0; Eh).

From (3.4),

− ψ0(0; Eh) ≤ c0|Eh|.

So ∫
Ω

ψ0(Eh; −Eh) dx ≤
∫

Ω

(
m |Eh|2 + c0|Eh|

)
dx.

Thus from (5.3),

∫
Ω

[
ε |Eh|2 + μ−1|curlEh|2

]
dx ≤

∫
Ω

(
m |Eh|2 + c0|Eh|

)
dx + ‖f‖V∗‖Eh‖curl,Ω ,

which is rewritten as∫
Ω

[
(ε − m) |Eh|2 + μ−1|curlEh|2

]
dx ≤

∫
Ω

c0|Eh| dx + ‖f‖V∗‖Eh‖curl,Ω .
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NUMERICAL SOLUTION OF AN H(curl)-ELLIPTIC HEMIVARIATIONAL INEQUALITY 987

Hence,

min{ε0 − m, μ−1
1 } ‖Eh‖2

curl,Ω ≤
(

c0|Ω|1/2 + ‖f‖V∗
)

‖Eh‖curl,Ω

and then

‖Eh‖curl,Ω ≤ c0|Ω|1/2 + ‖f‖V∗

min{ε0 − m, μ−1
1 } ,

i.e., ‖Eh‖curl,Ω is uniformly bounded with respect to h. �
We now establish Céa’s inequality for the numerical solution.

Theorem 5.3 Assume (3.3), m < ε0 and Vh ⊂ V. Let E ∈ V and Eh ∈ Vh be the solutions of problems
(3.17) and (5.1), respectively. Then Céa’s inequality holds:

‖E − Eh‖curl,Ω ≤ c inf
vh∈Vh

(
‖E − vh‖curl,Ω + ‖E − vh‖1/2

0,Ω

)
. (5.4)

Proof. Let vh ∈ Vh be arbitrary. Write

a(E − Eh, E − Eh) = a(E − Eh, E − vh) + a(E, vh − Eh) + a(Eh, Eh − vh).

From (3.17) with v = Eh − vh,

a(E, vh − Eh) ≤
∫

Ω

ψ0(E; Eh − vh) dx + 〈f , vh − Eh〉.

From (5.1) with vh replaced by vh − Eh,

a(Eh, Eh − vh) ≤
∫

Ω

ψ0(Eh; vh − Eh) dx + 〈f , Eh − vh〉.

Hence,

a(E − Eh, E − Eh) ≤ I1 + I2, (5.5)

where

I1 = a(E − Eh, E − vh), (5.6)

I2 =
∫

Ω

[
ψ0(E; Eh − vh) + ψ0(Eh; vh − Eh)

]
dx. (5.7)

Note that

a(E − Eh, E − vh) ≤ a(E − Eh, E − Eh)
1/2a(E − vh, E − vh)

1/2.
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988 W. HAN ET AL.

By the modified Cauchy inequality with an arbitrarily small ε > 0,

a b ≤ εa2 + C b2, C = 1/(4 ε) ∀ a, b ∈ R,

we have

I1 ≤ ε a(E − Eh, E − Eh) + C a(E − vh, E − vh). (5.8)

By the subadditivity (2.9) for the generalized directional derivative,

ψ0(E; Eh − vh) ≤ ψ0(E; Eh − E) + ψ0(E; E − vh),

ψ0(Eh; vh − Eh) ≤ ψ0(Eh; E − Eh) + ψ0(Eh; vh − E).

By (3.3)(d),

ψ0(E; Eh − E) + ψ0(Eh; E − Eh) ≤ m |E − Eh|2.

By (3.4),

ψ0(E; E − vh) ≤ (
c0 + c1|E|) |E − vh|,

ψ0(Eh; vh − E) ≤ (
c0 + c1|Eh|

) |E − vh|.
Thus,

I2 ≤
∫

Ω

m |E − Eh|2 dx +
∫

Ω

(
2c0 + c1|E| + c1|Eh|

) |E − vh| dx. (5.9)

Combine (5.5), (5.8) and (5.9) to get∫
Ω

[(
ε0 − m − ε

) |E − Eh|2 +
(
μ−1

1 − ε
)

|curl(E − Eh)|2
]

dx

≤ c ‖E − vh‖2
curl,Ω +

∫
Ω

(
2c0 + c1|E| + c1|Eh|

) |E − vh| dx. (5.10)

By the Cauchy–Schwarz inequality and the uniform boundedness of ‖Eh‖0,Ω ,

∫
Ω

(
2c0 + c1|E| + c1|Eh|

) |E − vh| dx ≤ c
(
1 + ‖E‖0,Ω + ‖Eh‖0,Ω

) ‖E − vh‖0,Ω

≤ c ‖E − vh‖0,Ω .

By taking ε > 0 sufficiently small, e.g., ε = min{ε0 − m, μ−1
1 }/2, we derive from (5.10) that

‖E − Eh‖2
curl,Ω ≤ c

(
‖E − vh‖2

curl,Ω + ‖E − vh‖0,Ω

)
.

Since vh ∈ Vh is arbitrary we obtain Céa’s inequality (5.4). �
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NUMERICAL SOLUTION OF AN H(curl)-ELLIPTIC HEMIVARIATIONAL INEQUALITY 989

Remark 5.4 The Galerkin method (5.1) provides an approximation of problem (3.17), which originates
from (3.15). In terms of the data in the original form (3.15) of the problem, Céa’s inequality (5.4) reads

‖E − Eh‖0,Ω + k ‖curl(E − Eh)‖0,Ω

≤ c inf
vh∈Vh

[
‖E − vh‖0,Ω + k1/2‖E − vh‖1/2

0,Ω + k ‖curl(E − vh)‖0,Ω

]
,

where the constant c does not depend on the time-step size k.

Céa’s inequality (5.4) is the starting point for convergence analysis and error estimation.

Corollary 5.5 Assume (3.3), m < ε0, Vh ⊂ V and {Vh}h>0 approximates V. Let Eh ∈ Vh be the
numerical solution defined by (5.1). Then we have convergence:

‖E − Eh‖curl,Ω → 0 as h → 0. (5.11)

Proof. Since {Vh}h>0 approximates V we can find a sequence {ṽh}h>0 such that

‖E − ṽh‖curl,Ω → 0 as h → 0.

By Céa’s inequality (5.4),

‖E − Eh‖curl,Ω ≤ c
(
‖E − ṽh‖curl,Ω + ‖E − ṽh‖1/2

0,Ω

)
.

Hence, the convergence (5.11) is valid. �

6. Linear edge finite element approximation

In this section we consider the particular case where Vh is constructed from the linear edge finite
element. For simplicity we assume Ω is a bounded polyhedral domain. Let {Th}h be a shape-regular
family of decompositions of Ω into tetrahedral elements. For a generic element K ∈ Th denote
hK = diam(K) and h = max{hK : K ∈ Th}. Since the solution of the HVI (3.17) is not expected to
have high regularity, we use low-degree elements. Let P1 be the space of polynomials of degree ≤ 1,
and use P1 = (P1)

3 for the corresponding vector-valued polynomial space. We choose the space of
lowest-order edge elements of Nédélec’s second family (Nédélec, 1986):

Vh = {
vh ∈ V : vh|K ∈ P1(K) ∀ K ∈ Th

}
.

In the error estimation we will need the quasi-interpolation operator J c
h0 : L1(Ω) → Vh introduced in

Ern & Guermond (2016, Definition 6.4), where the reader can find the details. Using Ern & Guermond
(2016, Theorem 6.5) together with Ern & Guermond (2017, Corollary 5.3) we have the following
approximation result.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/43/2/976/6550476 by U
niversity of Iow

a Libraries/Serials Acquisitions user on 30 M
arch 2023



990 W. HAN ET AL.

Lemma 6.1 Let {Th}h be a shape-regular family of decompositions of Ω into tetrahedral elements. Let
v ∈ V ∩ Hs(Ω), with s ∈ [0, 2]. Then there exists a constant c > 0 such that

‖v − J c
h0v‖0,Ω ≤ chs|v|s,Ω . (6.1)

Moreover, let v ∈ V ∩ Hs(Ω) and curl v ∈ Hs(Ω), with s ∈ (0, 2]. Then there exists a constant c > 0
such that

‖v − J c
h0v‖curl,Ω ≤ chs(|v|s,Ω + |curl v|s,Ω). (6.2)

As an application of Corollary 5.5 we have convergence of the linear edge finite element solutions.

Theorem 6.2 Assume (3.3) and m < ε0. Let Eh ∈ Vh be the linear edge finite element solution defined
by (5.1). Then we have convergence:

‖E − Eh‖curl,Ω → 0 as h → 0. (6.3)

Proof. Let ε > 0 be an arbitrary but fixed number. Since V is the closure of C∞
0 (Ω) with respect to the

H(curl, Ω) norm there exists Ẽ ∈ C∞
0 (Ω) such that

‖E − Ẽ‖curl,Ω ≤ ε

2
.

Applying Lemma 6.1 we know that there exists hε > 0 such that for h ≤ hε,

‖Ẽ − J c
h0Ẽ‖curl,Ω ≤ ε

2
.

Hence, for h ≤ hε,

‖E − J c
h0Ẽ‖curl,Ω ≤ ‖E − Ẽ‖curl,Ω + ‖Ẽ − J c

h0Ẽ‖curl,Ω ≤ ε.

By Céa’s inequality (5.4),

‖E − Eh‖curl,Ω ≤ c
(
‖E − J c

h0Ẽ‖curl,Ω + ‖E − J c
h0Ẽ‖1/2

0,Ω

)
≤ c

(
ε + ε1/2

)
.

Since ε > 0 is arbitrary we conclude the convergence (6.3). �
Theorem 6.3 Assume (3.3) and m < ε0. Let Eh ∈ Vh be the linear edge finite element solution defined
by (5.1). Assume E ∈ Hs(Ω) and curl E ∈ Hs(Ω), with s ∈ (0, 1]. Then

‖E − Eh‖curl,Ω ≤ c hs/2
(
|E|s,Ω + |curl E|s,Ω + |E|1/2

s,Ω

)
. (6.4)

Moreover, assume E ∈ H2(Ω); we have an optimal-order error estimate

‖E − Eh‖curl,Ω ≤ c h
(
|E|1,Ω + |curl E|1,Ω + |E|1/2

2,Ω

)
. (6.5)
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Proof. By Céa’s inequality (5.4),

‖E − Eh‖curl,Ω ≤ c
(
‖E − J c

h0E‖curl,Ω + ‖E − J c
h0E‖1/2

0,Ω

)
.

Then the error bounds (6.4) and (6.5) follow from an application of the interpolation error bounds
(6.1)–(6.2). �

7. Fully discrete scheme

In this section we consider a fully discrete scheme of the problem defined by (3.1a)–(3.1e) and
(3.2) through discretizing the semidiscrete problem (3.15) with a mixed Galerkin approximation in
space based on Nédélec’s edge elements for the electric field E and piecewise constant elements
for the magnetic induction B. We assume the continuous initial data (E0, B0) satisfies the following
compatibility system:

∫
Ω

(
ε̃E0 · v + μ̃−1B0 · w

)
dx +

∫
Ω

(
μ̃−1curl E0 · w − μ̃−1B0 · curl v

)
dx

+
∫

Ω

ψ0(E0; v) dx ≥
∫

Ω

l(0) · v dx ∀ (v, w) ∈ V × L2(Ω). (7.1)

In addition to the partition of the time interval [0, T] in Section 3 and the finite element space Vh
introduced in Section 6 we let

Wh =
{

wh ∈ L2(Ω) : wh|K ∈ P0(K) ∀ K ∈ Th

}
.

Note that curl Vh ⊂ Wh.
Then the fully discrete scheme is to find {(En

h, Bn
h)}N

n=1 ⊂ Vh × Wh such that

(E0
h, B0

h) = (E0h, B0h) (7.2)

and for 1 ≤ n ≤ N,

∫
Ω

(
ε̃

En
h − En−1

h

k
· vh + μ̃−1 Bn

h − Bn−1
h

k
· wh

)
dx

+
∫

Ω

(
μ̃−1curl En

h · wh − μ̃−1Bn
h · curl vh

)
dx

+
∫

Ω

ψ0(En
h; vh) dx ≥

∫
Ω

ln · vh dx ∀ (vh, wh) ∈ Vh × Wh, (7.3)
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where (E0h, B0h) ∈ Vh × Wh is the finite element approximation of (E0, B0), which satisfies

∫
Ω

(
ε̃E0h · vh + μ̃−1B0h · wh

)
dx +

∫
Ω

(
μ̃−1curl E0h · wh − μ̃−1B0h · curl vh

)
dx

+
∫

Ω

ψ0(E0h; vh) dx ≥
∫

Ω

l(0) · vh dx ∀ (vh, wh) ∈ Vh × Wh. (7.4)

Let vh = 0 in (7.4) to get

∫
Ω

μ̃−1(B0h + curl E0h) · wh dx = 0 ∀ wh ∈ Wh.

Since curl Vh ⊂ Wh we have

B0h = −curl E0h. (7.5)

Thus, B0h ∈ curl Vh holds for all h > 0. Next we choose wh = 0 in (7.4) to get

∫
Ω

(
ε̃E0h · vh + μ̃−1curl E0h · curl vh

)
dx +

∫
Ω

ψ0(E0h; vh) dx

≥
∫

Ω

l(0) · vh dx ∀ vh ∈ Vh. (7.6)

Similar to (7.5), by taking vh = 0 we can derive from (7.3) that

Bn
h = Bn−1

h − k curl En
h. (7.7)

Thanks to (7.5) and (7.7), Bn
h ∈ curl Vh holds for all h > 0 and 1 ≤ n ≤ N. Using (7.7) and taking

wh = 0 in (7.3), we obtain

a(En
h, vh) +

∫
Ω

ψ0(En
h; vh) dx ≥ 〈f n, vh〉 ∀ vh ∈ Vh, (7.8)

where

〈f n, vh〉 =
∫

Ω

(
ln · vh + k−1ε̃ En−1

h · vh + μ̃−1Bn−1
h · curl vh

)
dx.

Under the assumption (3.3) and the smallness condition m < ε̃0, problem (7.6) has a unique solution
E0h ∈ Vh. In view of (7.5), problem (7.4) has a unique solution (E0h, B0h) ∈ Vh × curlVh. We then
apply Theorem 6.2 and deduce that (E0h, B0h) ∈ Vh × curlVh converges strongly to (E0, B0) as h → 0.
Moreover, the condition k m < ε̃0 is always satisfied if the step size k is sufficiently small; then problem
(7.8) has a unique solution En

h ∈ Vh (cf. the proof of Theorem 4.3). Inserting the solution En
h of problem

(7.8) into (7.7), we finally obtain a unique solution {(En
h, Bn

h)}N
n=1 ⊂ Vh × curl Vh of problem (7.3).
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Remark 7.1 The idea of using the compatibility condition (7.1) was employed in Winckler & Yousept
(2019) in the case of a hyperbolic Maxwell variational inequality. However, the compatibility condition
leads to an undesired restriction since the given initial data (E0, B0) may not necessarily satisfy (7.1).
The issue with the restrictive compatibility assumption on the initial data was circumvented in the recent
work Yousept (2021) for a hyperbolic Maxwell quasi-variational inequality through the introduction
of an auxiliary initial current density and appropriate initial difference quotients (not enforced to be
the initial discrete values). This new idea of Yousept (2021) may be adapted and extended to the
hemivariational inequalities considered in this paper, a topic for future work.

In stability estimates for the fully discrete solution to the inequality problem (7.3) we will need a
discrete Gronwall inequality (Han & Sofonea, 2002).

Lemma 7.2 For a fixed T and a positive integer N let k = T/N. Assume {gn}N
n=1 and {en}N

n=1 are two
sequences of non-negative numbers satisfying

en ≤ cgn + ck
n−1∑
i=1

ei, n = 1, . . . , N,

for a constant c > 0, independent of T and k. Then, for a possibly different constant c > 0, independent
of T and k,

max
1≤n≤N

en ≤ c max
1≤n≤N

gn.

Theorem 7.3 Assume m < ε̃0 and l ∈ H1(0, T; L2(Ω)). Then there is a constant C > 0 such that

max
1≤n≤N

‖δEn
h‖2

0,Ω + max
1≤n≤N

‖δBn
h‖2

0,Ω

+
N∑

n=1

‖δEn
h − δEn−1

h ‖2
0,Ω +

N∑
n=1

‖δBn
h − δBn−1

h ‖2
0,Ω ≤ C (7.9)

and

max
1≤n≤N

‖curl En
h‖2

0,Ω ≤ C, (7.10)

where δE0
h = E0h, δB0

h = B0h and, for n = 1, . . . , N,

δEn
h = En

h − En−1
h

k
and δBn

h = Bn
h − Bn−1

h

k
.

Proof. We comment that with the definitions δE0
h = E0h and δB0

h = B0h, we can extend (7.3) to include
the case n = 0 since this is exactly (7.4). With an argument similar to that in Lemma 5.2 we can derive
that E0h and B0h are uniformly bounded in h.
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994 W. HAN ET AL.

Take (vh, wh) = (En−1
h − En

h, Bn−1
h − Bn

h) in (7.3) with index n, (vh, wh) = (En
h − En−1

h , Bn
h − Bn−1

h )

in (7.3) with index (n − 1) and add the two resulting inequalities to get∫
Ω

[
ε̃(δEn

h − δEn−1
h ) · δEn

h + μ̃−1(δBn
h − δBn−1

h ) · δBn
h

]
dx

≤ 1

k

∫
Ω

[
ψ0(En

h; En−1
h − En

h) + ψ0(En−1
h ; En

h − En−1
h )

]
dx

+
∫

Ω

(ln − ln−1) · δEn
h dx. (7.11)

From (3.3)(d),

1

k

∫
Ω

[
ψ0(En

h; En−1
h − En

h) + ψ0(En−1
h ; En

h − En−1
h )

]
dx ≤ 1

k

∫
Ω

m|En
h − En−1

h |2 dx

= k m ‖δEn
h‖2

0,Ω .

In addition, for any small ε > 0 to be determined later, there is a constant C inversely proportional to ε

such that ∫
Ω

(ln − ln−1) · δEn
h dx ≤ k ε ‖δEn

h‖2
0,Ω + C k−1‖ln − ln−1‖2

0,Ω .

Notice that

(δEn
h − δEn−1

h ) · δEn
h = 1

2

[
|δEn

h|2 − |δEn−1
h |2 + |δEn

h − δEn−1
h |2

]
.

Then from (7.11) we can derive∫
Ω

ε̃
[
|δEn

h|2 − |δEn−1
h |2 + |δEn

h − δEn−1
h |2

]
dx

+
∫

Ω

μ̃−1
[
|δBn

h|2 − |δBn−1
h |2 + |δBn

h − δBn−1
h |2

]
dx

≤ 2(m + ε)k‖δEn
h‖2

0,Ω + C k−1‖ln − ln−1‖2
0,Ω . (7.12)

We replace n with i in (7.12) and sum over i from 1 to n:

∫
Ω

ε̃
[
|δEn

h|2 − |E0h|2 +
n∑

i=1

|δEi
h − δEi−1

h |2
]

dx

+
∫

Ω

μ̃−1
[
|δBn

h|2 − |B0h|2 +
n∑

i=1

|δBi
h − δBi−1

h |2
]

dx

≤ 2(m + ε)k
n∑

i=1

‖δEi
h‖2

0,Ω + C k−1
n∑

i=1

‖li − li−1‖2
0,Ω , (7.13)
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where we have used (δE0
h, δB0

h) = (E0h, B0h). Then we rewrite (7.13) as

ε̃0‖δEn
h‖2

0,Ω + μ̃−1
1 ‖δBn

h‖2
0,Ω + ε̃0

n∑
i=1

‖δEi
h − δEi−1

h ‖2
0,Ω + μ̃−1

1

n∑
i=1

‖δBi
h − δBi−1

h ‖2
0,Ω

≤ 2(m + ε)k
n∑

i=1

‖δEi
h‖2

0,Ω + C k−1
n∑

i=1

‖li − li−1‖2
0,Ω + ε̃1‖E0h‖2

0,Ω + μ̃−1
0 ‖B0h‖2

0,Ω . (7.14)

From

li − li−1 =
∫ ti

ti−1

l̇(t) dt,

where l̇ denotes the time derivative of l, we find

‖li − li−1‖2
0,Ω ≤ k

∫ ti

ti−1

‖l̇(t)‖2
0,Ω dt.

Hence,

k−1
n∑

i=1

‖li − li−1‖2
0,Ω ≤ ‖l‖2

H1(0,T;L2(Ω))
.

Together with the uniform boundedness of ‖E0h‖0,Ω and ‖B0h‖0,Ω we derive from (7.14) that

‖δEn
h‖2

0,Ω ≤ C + 2ε̃−1
0 (m + ε)k

n∑
i=1

‖δEi
h‖2

0,Ω . (7.15)

Since m < ε̃0 we can choose ε = (ε̃0 − m)/2 > 0 and k < 1/2 to get

‖δEn
h‖2

0,Ω ≤ C + Ck
n−1∑
i=1

‖δEi
h‖2

0,Ω . (7.16)

Applying Lemma 7.2 we get

‖δEn
h‖2

0,Ω ≤ C. (7.17)

Since n is arbitrary applying the above estimate to (7.14) yields (7.9). Finally, (7.10) follows from (7.7)
and (7.9). �

8. Numerical examples

In this section we report numerical results on linear edge finite element solutions of the H(curl)-
elliptic HVI (3.17), both in two and in three dimensions, and we pay particular attention to the
numerical convergence orders. The discussion in previous sections was for three-dimensional problems.
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Consideration of the numerical method for two-dimensional problems can be converted to that for three-
dimensional problems through the following procedure: we extend vectors u(x, y) = (u1(x, y), u2(x, y))
and n = (n1, n2) into three dimensions by u(x, y, z) = (u1(x, y), u2(x, y), 0) and n = (n1, n2, 0). Then

curl u =
(

0, 0,
∂u2

∂x
− ∂u1

∂y

)
,

n × u = (0, 0, n1u2 − n2u1).

For three-dimensional problems the spatial variable x = (x, y, z), and for two-dimensional problems,
x = (x, y).

For the numerical examples we let Ω = (0, 1)d (d = 2, 3), and use uniform triangular partitions in
two dimensions and tetrahedral partitions in three dimensions. The uniform partitions start with splitting
the unit interval [0, 1] into 1/h equal-size subintervals and we use h as the mesh size in reporting the
numerical results. The physical parameters ε and μ are both taken to be 1. The source function is
chosen as

f (x, y) = (π + 2π3)

[−cos(πx) sin(πy)
sin(πx) cos(πy)

]

for two dimensions, or

f (x, y, z) = 1 + π2

π

⎡
⎣sin(πy) − sin(πz)

sin(πz) − sin(πx)
sin(πx) − sin(πy)

⎤
⎦

for three dimensions. For positive parameters a > b and α we let

ω(t) = (a − b) e−αt + b, ψ(E) =
∫ |E|

0
ω(t) dt.

Then J ∈ ∂ψ(E) from (1.6) is equivalent to

|J| ≤ ω(0) if E = 0, J = ω(|E|) E
|E| if E �= 0, in Ω . (8.1)

It can be verified that for this choice of ψ , (3.3)(d) is satisfied with m = α(a − b). Since ω(t) is a
decreasing function, ψ is nonconvex. Note that ψ is Lipschitz continuous and nonsmooth. We take
a = 0.004, b = 0.002 and α = 100 for the function ψ in the numerical tests.

Discrete problem (5.1) is solved by an algorithm based on a sequence of convex programming
problems; cf. Barboteu et al. (2013). The main idea of the iterative algorithm is to update the value of
the function ω at each iteration with the numerical solution found in the previous iteration.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/43/2/976/6550476 by U
niversity of Iow

a Libraries/Serials Acquisitions user on 30 M
arch 2023



NUMERICAL SOLUTION OF AN H(curl)-ELLIPTIC HEMIVARIATIONAL INEQUALITY 997

Table 1 Numerical errors of the linear edge finite element method in two dimensions

h ‖E∗ − Eh‖0,Ω Order ‖E∗ − Eh‖curl,Ω Order

2−2 2.4919e−01 − 2.4836 −
2−3 5.3835e−02 2.2107 1.2142 1.0324
2−4 1.2677e−02 2.0863 5.9858e−01 1.0204
2−5 3.0879e−03 2.0375 2.9627e−01 1.0146
2−6 7.5058e−04 2.0406 1.4625e−01 1.0185

Table 2 Numerical errors of the linear edge finite element method in three dimensions

h ‖E∗ − Eh‖0,Ω Order ‖E∗ − Eh‖curl,Ω Order

2−2 1.0509e−02 − 1.3826e−01 −
2−3 2.9857e−03 1.8155 7.4189e−02 0.8981
2−4 7.6382e−04 1.9667 3.7808e−02 0.9725
2−5 1.8604e−04 2.0376 1.9100e−02 0.9851

For initialization choose a small value ε used in a stopping criterion of the iteration and choose an
initial guess E0

h ∈ Vh. Then for � = 0, 1, . . ., find E�+1
h ∈ Vh as the solution of the following problem:

a(E�+1
h , vh) +

∫
Ω

λ�+1
h · vh dx = 〈f , vh〉 ∀ vh ∈ Vh, (8.2)

with

λ�+1
h ∈ ω(|E�

h|)∂|E�+1
h | (8.3)

until

‖E�+1
h − E�

h‖0,Ω ≤ ε‖E�
h‖0,Ω and ‖λ�+1

h − λ�
h‖0,Ω ≤ ε‖λ�

h‖0,Ω .

The sequence {λ�
h} can be viewed as a sequence approximating a Lagrange multiplier λh.

In the numerical experiment we let ε = 10−7 and determine the initial guess E0
h ∈ Vh as the solution

of the problem

a(E0
h, vh) = 〈f , vh〉 ∀ vh ∈ Vh.

Because the true solution is not known, the linear edge finite element solution on a sufficiently
refined mesh is used as the reference solution E∗; here, we use the finite element solution with h = 2−8

for two dimensions and that with h = 2−7 for three dimensions. Then we compare the numerical
solutions Eh on coarser meshes with h = 2−n for 2 ≤ n ≤ 6 in two dimensions and for 2 ≤ n ≤ 5 in
three dimensions with E∗. We compute the errors ‖E∗ − Eh‖0,Ω and ‖E∗ − Eh‖curl,Ω . The numerical
results for the linear edge finite element method are reported in Tables 1–2. We observe that the
numerical convergence orders in the H(curl, Ω)-norm are around 1, which matches the theoretical result
in Theorem 6.3. The numerical solutions Eh on meshes with h = 2−4 and h = 2−5 in two dimensions,
with h = 2−3 and h = 2−4 in three dimensions, are also shown in Figs 1 and 2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/43/2/976/6550476 by U
niversity of Iow

a Libraries/Serials Acquisitions user on 30 M
arch 2023



998 W. HAN ET AL.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Numerical solutions Eh on meshes with h = 2−4 and h = 2−5 in two dimensions.
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Fig. 2. Numerical solutions Eh on meshes with h = 2−3 and h = 2−4 in three dimensions.
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