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a b s t r a c t

In this paper, we provide a comprehensive stability analysis for stationary varia-
tional inequalities, hemivariational inequalities, and variational-hemivariational in-
equalities. With contact mechanics as application background, stability is analyzed
for solutions with respect to combined or separate perturbations in constitutive
relations, external forces, constraints, and non-smooth contact boundary conditions
of the inequality problems. The stability result is first proved for a general
variational-hemivariational inequality. Then, stability results are obtained for
various variational inequalities and hemivariational inequalities as special cases.
Finally, we illustrate applications of the theoretical results for the stability analysis
of model problems in contact mechanics.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In many complicated physical processes and engineering applications, mathematical models of the prob-
lems are formulated as inequalities instead of the more commonly seen equations. Two types of inequality
problems have been studied: variational inequalities and hemivariational inequalities. Variational inequalities
refer to those inequality problems with a convex structure. They have been studied extensively for over half
a century since 1960s, both theoretically and numerically. Some representative references include [1–4] on
mathematical theories and [5–8] on numerical solutions. Since the early 1980s, hemivariational inequalities
have been introduced, analyzed and applied to a variety of engineering problems involving non-monotone
and possibly multi-valued constitutive or interface laws for deformable bodies. Studies of hemivariational
inequalities can be found in the comprehensive references [9–15]. The inequality problems from applications
can only be solved by numerical methods. The book [16] is devoted to the finite element approximations of
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hemivariational inequalities, where convergence of the numerical methods is discussed but no error estimates
are derived. In the recent years, there have been much effort from numerous researchers to derive error
estimates for numerical solutions of hemivariational inequalities. In particular, optimal order error estimates
have been derived for linear finite element solutions of various hemivariational inequalities, starting with [17]
for a stationary variational-hemivariational inequality modeling stationary frictional contact, followed by [18]
for a hyperbolic hemivariational inequality arising in dynamic frictional contact, along with several more
publications. More recently, general frameworks are presented for error analysis, on internal numerical
approximations of hemivariational inequalities in [19], on internal numerical approximations of variational-
hemivariational inequalities in [20], and on convergence and error analysis for both internal and external
approximations of elliptic variational-hemivariational inequalities in [21].

In addition to solution existence and uniqueness of an inequality problem, the data continuous depen-
dence, or the stability, is an important property, since in applications, one cannot expect to know the
problem data exactly. The stability is especially significant from the view-point of numerical approximations
since a numerical solution is meaningful only if the problem being solved is stable with respect to the
data (for some ill-posed problems, the regularization technique may be employed for numerical treatment).
The stability is also useful in optimal control of the hemivariational inequalities [22,23]. In the literature,
only partial stability results are available. In this paper, we perform a more systematic stability analysis
to include continuous dependence of the solution on other data as well. For inequality problems arising
in contact mechanics, our general result provides stability of the solution with respect to constitutive
relations, external forces, constraints, and non-smooth contact boundary conditions; in comparison, in
existing references on hemivariational inequalities only the stability of the solution with respect to non-
smooth contact boundary conditions (e.g. [15,24]) or the stability of the solution with respect to the external
forces and a proportionality constant of a constraint set (e.g. [22,23]) is shown. Our general stability result
in this paper will be useful in the study of general optimal control problems for inequality problems.

The rest of the paper is organized as follows. In Section 2 we review some preliminary material needed
in the study of inequality problems. In Section 3, we introduce a variational-hemivariational inequality,
state and prove a general result on its stability. The stability result on the variational-hemivariational
inequality leads to corresponding ones on hemivariational inequalities and variational inequalities under
simplified conditions. In Section 4, we present stability results for hemivariational inequalities and variational
inequalities constraints, and in Section 5, we present stability results for hemivariational inequalities and
variational inequalities without constraints, as consequences of the general result shown in Section 3. In
Section 6 we illustrate the application of the stability results on two contact problems.

2. Preliminaries

Only real spaces are used in this paper. For a normed space X, we denote by ∥ · ∥X its norm, by X∗ its
topological dual, and by ⟨·, ·⟩X∗×X the duality pairing of X and X∗. When no confusion may arise, we simply
write ⟨·, ·⟩ instead of ⟨·, ·⟩X∗×X . Strong convergence is indicated by the symbol →, whereas weak convergence
by ⇀. The space of all linear continuous operators from one normed space X to another normed space Y is
denoted by L(X,Y ).

An operator A : X → X∗ is said to be pseudomonotone if it is bounded and un ⇀ u in X together with
lim sup ⟨Aun, un − u⟩X∗×X ≤ 0 imply

⟨Au, u− v⟩X∗×X ≤ lim inf ⟨Aun, un − v⟩X∗×X ∀ v ∈ X.

A function φ : X → R ∪ {+∞} is said to be lower semicontinuous (l.s.c.) if for any sequence {xn} ⊂ X and
any x ∈ X, xn → x in X implies φ(x) ≤ lim inf φ(xn). For a convex function φ, the set

∂̃φ(x) := {x∗ ∈ X∗ | φ(v) − φ(x) ≥ ⟨x∗, v − x⟩X∗×X ∀ v ∈ X}
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is called the subdifferential of φ at x ∈ X. If ∂̃φ(x) is non-empty, any element x∗ ∈ ∂̃φ(x) is called a
subgradient of φ at x.

Assume ψ : X → R is locally Lipschitz continuous. The generalized (Clarke) directional derivative of ψ
at x ∈ X in the direction v ∈ X is defined by

ψ0(x; v) := lim sup
y→x, λ↓0

ψ(y + λv) − ψ(y)
λ

.

The generalized subdifferential of ψ at x is a subset of the dual space X∗ given by

∂ψ(x) :=
{
ξ ∈ X∗ | ψ0(x; v) ≥ ⟨ξ, v⟩X∗×X ∀ v ∈ X

}
.

The function (x, v) ↦→ ψ0(x; v) is upper semicontinuous on X ×X [25]; in other words,

xn → x and vn → v in X =⇒ lim sup
n→∞

ψ0(xn; vn) ≤ ψ0(x; v). (2.1)

Details on properties of convex functions can be found in [26], whereas that of the subdifferential in the
Clarke sense can be found in the books [10,13,25,27].

The following two properties of convex functions will be useful later in this paper.

Lemma 2.1 ([26, p. 13]). A l.s.c. convex function φ : X → R on a Banach space X is continuous.

Lemma 2.2 ([28, Lemma 11.3.5], [27, Prop. 5.2.25]). Let X be a normed space and let φ : X → R be proper,
convex and l.s.c. Then there exist a continuous linear functional ℓφ ∈ X∗ and a constant c ∈ R such that

φ(x) ≥ ℓφ(x) + c ∀x ∈ X.

Consequently, there exist two constants c and c̃ such that

φ(x) ≥ c+ c̃ ∥x∥X ∀x ∈ X. (2.2)

3. Stability result on a general variational-hemivariational inequality

The aim of this section is to provide a stability result on a general variational-hemivariational inequality.
We will first introduce the variational-hemivariational inequality, then a family of perturbed variational-
hemivariational inequalities, and finally we state and prove the convergence of solutions of the perturbed
inequalities to the solution of the variational-hemivariational inequality. In the context of applications in
contact mechanics, the perturbations are with respect to the material constitutive relations, external forces,
constraints, and non-smooth contact boundary conditions.

The assumptions to be made on the data for the abstract variational-hemivariational inequality and its
perturbations involve positive constants mA, cφ and cj , as well as non-negative constants c0, c1, αφ and αj .
These constants are independent of the perturbation parameter ε > 0; in other words, the corresponding
properties will be assumed valid uniformly with respect to the perturbation parameter.

3.1. The variational-hemivariational inequality

We will need the following data and assumptions in the study of the abstract variational-hemivariational
inequality.

(HV ) V is a reflexive Banach space.
(HK) K ⊂ V is non-empty, closed and convex.
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(HA) A : V → V ∗ is pseudomonotone and strongly monotone with the constant mA > 0:

⟨Av1 −Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥2
V ∀ v1, v2 ∈ V, (3.1)

(Hφ) Vφ is a Banach space and γφ ∈ L(V, Vφ) with its norm bounded by cφ. φ : Vφ ×Vφ → R is such that
φ(z, ·) : Vφ → R is convex and l.s.c. for all z ∈ Vφ, and

φ(z1, z4) − φ(z1, z3) + φ(z2, z3) − φ(z2, z4)
≤ αφ∥z1 − z2∥Vφ∥z3 − z4∥Vφ ∀ z1, z2, z3, z4 ∈ Vφ. (3.2)

(Hj) Vj is a Banach space and γj ∈ L(V, Vj) with its norm bounded by cj . j : Vj → R is locally Lipschitz
continuous and

∥∂j(z)∥V ∗
j

≤ c0 + c1∥z∥Vj
∀ z ∈ Vj , (3.3)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ αj∥z1 − z2∥2
Vj

∀ z1, z2 ∈ Vj . (3.4)

(Hs)
αφc

2
φ + αjc

2
j < mA. (3.5)

(Hf )
f ∈ V ∗. (3.6)

The abstract variational-hemivariational inequality is as follows.
Problem (P). Find an element u ∈ K such that

⟨Au, v − u⟩ + φ(γφu, γφv) − φ(γφu, γφu)
+ j0(γju; γjv − γju) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (3.7)

Note that from (Hφ) and (Hj), we have the inequalities

∥γφv∥Vφ ≤ cφ∥v∥V ∀ v ∈ V, (3.8)
∥γjv∥Vj

≤ cj∥v∥V ∀ v ∈ V. (3.9)

In the statement of Problem (P), the function φ(z, ·) is assumed to be convex for any z ∈ Vφ whereas the
function j is allowed to be nonconvex. Thus, (3.7) represents a variational-hemivariational inequality. The
spaces Vφ and Vj are introduced to facilitate error analysis of numerical solutions of Problem (P) [19–21]
as well as for stability analysis in this paper. For applications in contact mechanics, the functionals φ(·, ·)
and j(·) are integrals over the contact boundary Γ3. In such a situation, Vφ and Vj can be chosen to be
L2(Γ3)d and/or L2(Γ3), and V is a subspace of H1(Ω)d. The operators γφ ∈ L(V, Vφ) and γj ∈ L(V, Vj) are
trace operators, and are in fact compact. For a locally Lipschitz function j : Vj → R, the inequality (3.4) is
equivalent to

⟨ξ1 − ξ2, z1 − z2⟩V ∗
j

×Vj
≥ −αj∥z1 − z2∥2

Vj
∀ z1, z2 ∈ Vj , ξ1 ∈ ∂j(z1), ξ2 ∈ ∂j(z2), (3.10)

known as a relaxed monotonicity condition. Note that if j : Vj → R is convex, (3.10) is satisfied with αj = 0.
By slightly modifying the proof in [24], we have the following existence and uniqueness result.

Theorem 3.1. Under assumptions (HV ), (HK), (HA), (Hφ), (Hj), (Hs) and (Hf ), Problem (P) has a
unique solution u ∈ K.
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The following Minty-type lemma for variational-hemivariational inequalities is shown in [21] where it is
applied in convergence analysis of numerical solutions. In this paper, we will need it in proving the general
stability result stated in Theorem 3.4. Recall that the operator A is said to be radially continuous if the
function t ↦→ ⟨A(u+ t v), v⟩ is continuous on [0, 1] for any u, v ∈ V .

Lemma 3.2. Assume K ⊂ V is convex, A : V → V ∗ is monotone and radially continuous, and for all
z ∈ Vφ, φ(z, ·) is convex on Vφ. Then u ∈ K is a solution of Problem (P) if and only if it satisfies

⟨Av, v − u⟩ + φ(γφu, γφv) − φ(γφu, γφu)
+ j0(γju; γjv − γju) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (3.11)

3.2. The perturbed variational-hemivariational inequalities

Denote by ε > 0 a small perturbation parameter. To describe the perturbed problems, we keep (HV ) and
(Hs) from Section 3.1, and introduce perturbed versions of other data and assumptions for each ε > 0.

(HKε) Kε ⊂ V is non-empty, closed and convex.
(HAε) Aε : V → V ∗ is pseudomonotone and uniformly strongly monotone with the constant mA > 0:

⟨Aεv1 −Aεv2, v1 − v2⟩ ≥ mA∥v1 − v2∥2
V ∀ v1, v2 ∈ V. (3.12)

(Hφε) Vφ is a Banach space and γφ ∈ L(V, Vφ) with its norm bounded by cφ. φε : Vφ × Vφ → R is such
that φε(z, ·) : Vφ → R is convex and l.s.c. for all z ∈ Vφ, and

φε(z1, z4) − φε(z1, z3) + φε(z2, z3) − φε(z2, z4)
≤ αφ∥z1 − z2∥Vφ∥z3 − z4∥Vφ ∀ z1, z2, z3, z4 ∈ Vφ. (3.13)

(Hjε) Vj is a Banach space and γj ∈ L(V, Vj) with its norm bounded by cj . jε : Vj → R is locally Lipschitz
and

∥∂jε(z)∥V ∗
j

≤ c0 + c1∥z∥Vj
∀ z ∈ Vj , (3.14)

j0
ε (z1; z2 − z1) + j0

ε (z2; z1 − z2) ≤ αj∥z1 − z2∥2
Vj

∀ z1, z2 ∈ Vj . (3.15)

(Hfε)
fε ∈ V ∗. (3.16)

Then, the perturbed variational-hemivariational inequality is the following.
Problem (Pε). Find an element uε ∈ Kε such that

⟨Aεuε, v − uε⟩ + φε(γφuε, γφv) − φε(γφuε, γφuε)
+ j0

ε (γjuε; γjv − γjuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ Kε. (3.17)

Similar to Theorem 3.1, we have the existence and uniqueness result for the perturbed variational-
hemivariational inequality.

Theorem 3.3. Under assumptions (HV ), (HKε), (HAε), (Hφε), (Hjε), (Hs) and (Hfε), Problem (Pε) has
a unique solution uε ∈ Kε.
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3.3. A general stability result

We explore a general stability result that under certain approximation conditions on the data,

uε → u in V as ε → 0.

For this purpose, we will assume convergence of the data defined as follows.
(HAε→A): For any v ∈ V , Aεv → Av in V ∗.
Note that since {Aε}ε>0 ⊂ L(V, V ∗), by the principle of uniform boundedness (cf. [28, p. 75]), we know

that if (HAε→A) holds, then {Aε} is uniformly bounded in L(V, V ∗).
(Hφε→φ): There exists a non-negative valued function bφ(ε) with bφ(ε) → 0 as ε → 0 such that

|φε(z1, z2) − φε(z1, z1) − φ(z1, z2) + φ(z1, z1)| ≤ bφ(ε)
(
1 + ∥z1∥Vφ

)
∥z1 − z2∥Vφ ∀ z1, z2 ∈ Vφ. (3.18)

(Hjε→j): There exists a non-negative valued function bj(ε) with bj(ε) → 0 as ε → 0 such that⏐⏐j0
ε (z1; z2) − j0(z1; z2)

⏐⏐ ≤ bj(ε)
(

1 + ∥z1∥Vj

)
∥z2∥Vj

∀ z1, z2 ∈ Vj . (3.19)

(Hfε→f ): ∥fε − f∥V ∗ → 0 as ε → 0.
(HKε→K): (i) If vε ∈ Kε and vε ⇀ v in V , then v ∈ K.

(ii) For any v ∈ K, there exist vε ∈ Kε such that vε → v in V .
(Hc) γφ ∈ L(V, Vφ) and γj ∈ L(V, Vj) are compact.
We comment that in applications of contact mechanics, (Hc) is automatically satisfied, cf. the paragraph

between (3.9) and (3.10).

Theorem 3.4. Keep the assumptions stated in Theorems 3.1 and 3.3. Assume (HAε→A), (Hφε→φ), (Hjε→j),
(Hfε→f ), (HKε→K) and (Hc). Then for the solution u of Problem (P) and the solution uε of Problem (Pε),
we have the convergence:

uε → u in V as ε → 0. (3.20)

Proof. The proof consists of three steps.
Step 1. We prove that the set {∥uε∥V } is uniformly bounded.
Since K is nonempty, there exists an element u0 ∈ K. By the assumption (HKε→K), there exist u0,ε ∈ Kε

with the property
u0,ε → u0 in V.

In particular, this implies the set {∥u0,ε∥V } is uniformly bounded.
Take v = u0,ε in (3.17),

⟨Aεuε, u0,ε − uε⟩ + φε(γφuε, γφu0,ε) − φε(γφuε, γφuε)
+ j0

ε (γjuε; γju0,ε − γjuε) ≥ ⟨fε, u0,ε − uε⟩.

Then using (3.12),
mA∥uε − u0,ε∥2

V ≤ ⟨Aεuε, uε − u0,ε⟩ − ⟨Aεu0,ε, uε − u0,ε⟩.

Thus,

mA∥uε − u0,ε∥2
V ≤ φε(γφuε, γφu0,ε) − φε(γφuε, γφuε) + j0

ε (γjuε; γju0,ε − γjuε)
+ ⟨fε −Aεu0,ε, uε − u0,ε⟩. (3.21)
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By (3.13) with z1 = z3 = γφuε and z2 = z4 = γφu0,ε, we have

φε(γφuε, γφu0,ε) − φε(γφuε, γφuε) + φε(γφu0,ε, γφuε) − φε(γφu0,ε, γφu0,ε) ≤ αφc
2
φ∥uε − u0,ε∥2

V .

So,

φε(γφuε, γφu0,ε) − φε(γφuε, γφuε) ≤ αφc
2
φ∥uε − u0,ε∥2

V + φε(γφu0,ε, γφu0,ε) − φε(γφu0,ε, γφuε). (3.22)

By (3.18) with z1 = γφu0,ε and z2 = γφuε,

φε(γφu0,ε, γφu0,ε) − φε(γφu0,ε, γφuε) ≤ bφ(ε)
(
1 + ∥γφu0,ε∥Vφ

)
∥γφ(uε − u0,ε)∥Vφ

+ φ(γφu0,ε, γφu0,ε) − φ(γφu0,ε, γφuε). (3.23)

By (3.2) with z1 = z4 = γφu0,ε, z2 = γφu0 and z3 = γφuε,

φ(γφu0,ε, γφu0,ε) − φ(γφu0,ε, γφuε) ≤ αφ∥γφ(u0,ε − u0)∥Vφ∥γφ(u0,ε − uε)∥Vφ

+ φ(γφu0, γφu0,ε) − φ(γφu0, γφuε).

Applying Lemma 2.2, we have two constants c3 and c4, depending only on φ and u0, such that

φ(γφu0, z) ≥ c3 + c4∥z∥Vφ ∀ z ∈ Vφ.

Then,

φ(γφu0,ε, γφu0,ε) − φ(γφu0,ε, γφuε) ≤ αφ∥γφ(u0,ε − u0)∥Vφ∥γφ(u0,ε − uε)∥Vφ

+ φ(γφu0, γφu0,ε) −
(
c3 + c4∥γφuε∥Vφ

)
. (3.24)

Combining (3.22)–(3.24), we have

φε(γφuε, γφu0,ε) − φε(γφuε, γφuε) ≤ αφc
2
φ∥uε − u0,ε∥2

V + αφ∥γφ(u0,ε − u0)∥Vφ∥γφ(u0,ε − uε)∥Vφ

+ bφ(ε)
(
1 + ∥γφu0,ε∥Vφ

)
∥γφ(uε − u0,ε)∥Vφ

+ φ(γφu0, γφu0,ε) −
(
c3 + c4∥γφuε∥Vφ

)
. (3.25)

By (3.15),
j0

ε (γjuε; γju0,ε − γjuε) + j0
ε (γju0,ε; γjuε − γju0,ε) ≤ αj∥γj(uε − u0,ε)∥2

Vj

and so
j0

ε (γjuε; γju0,ε − γjuε) ≤ αjc
2
j∥uε − u0,ε∥2

V − j0
ε (γju0,ε; γjuε − γju0,ε).

Further, use the bound (3.14),

j0
ε (γjuε; γju0,ε − γjuε) ≤ αjc

2
j∥uε − u0,ε∥2

V + c (1 + ∥u0,ε∥V ) ∥γj(uε − u0,ε)∥Vj
.

Summarizing, we deduce from (3.21) that

mA∥uε − u0,ε∥2
V ≤

(
αφc

2
φ + αjc

2
j

)
∥uε − u0,ε∥2

V + αφ∥γφ(u0,ε − u0)∥Vφ∥γφ(u0,ε − uε)∥Vφ

+ bφ(ε)
(
1 + ∥γφu0,ε∥Vφ

)
∥γφ(uε − u0,ε)∥Vφ + φ(γφu0, γφu0,ε)

−
(
c3 + c4∥γφuε∥Vφ

)
+ c (1 + ∥u0,ε∥V ) ∥γj(uε − u0,ε)∥Vj

+ ∥fε −Aεu0,ε∥V ∗∥uε − u0,ε∥V . (3.26)
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Recalling the smallness condition (3.5), we use the modified Cauchy–Schwarz inequality and elementary
manipulations to find

αφ∥γφ(u0,ε − u0)∥Vφ∥γφ(u0,ε − uε)∥Vφ + bφ(ε)
(
1 + ∥γφu0,ε∥Vφ

)
∥γφ(uε − u0,ε)∥Vφ

−
(
c3 + c4∥γφuε∥Vφ

)
+ c (1 + ∥u0,ε∥V ) ∥γj(uε − u0,ε)∥Vj

+ ∥fε −Aεu0,ε∥V ∗∥uε − u0,ε∥V

≤ 1
2

(
mA − αφc

2
φ − αjc

2
j

)
∥uε − u0,ε∥2

V

+ c
(
1 + ∥u0,ε − u0∥2

V + bφ(ε)4 + ∥u0,ε∥2
V + ∥u0,ε∥4

V + ∥fε −Aεu0,ε∥2
V ∗

)
.

So from (3.26), we have

1
2

(
mA − αφc

2
φ − αjc

2
j

)
∥uε − u0,ε∥2

V

≤ c
(
1 + ∥u0,ε − u0∥2

V + bφ(ε)4 + ∥u0,ε∥2
V + ∥u0,ε∥4

V + ∥fε −Aεu0,ε∥2
V ∗

)
+ φ(γφu0, γφu0,ε).

Using the boundedness of bφ(ε), ∥u0,ε∥V , ∥fε∥V ∗ , uniform boundedness of the operators Aε ∈ L(V, V ∗), and
noting that φ(γφu0, γφu0,ε) → φ(γφu0, γφu0) (cf. Lemma 2.1), we conclude that {∥uε − u0,ε∥V }, and then
{∥uε∥V }, is uniformly bounded.

Step 2. We prove the weak convergence:

uε ⇀ u in V as ε → 0.

Since {∥uε∥V } is uniformly bounded, and γφ and γj are compact, there exist a subsequence, still denoted
by {uε}, and an element w ∈ V such that as ε → 0,

uε ⇀ w in V,
γφuε → γφw in Vφ,

γjuε → γjw in Vj .

By (HKε→K) (i), w ∈ K.
Now fix an arbitrary v ∈ K. Then by (HKε→K) (ii), there exist vε ∈ Kε such that

vε → v in V as ε → 0.

We start with the following inequality (cf. Lemma 3.2)

⟨Aεvε, vε − uε⟩ + φε(γφuε, γφvε) − φε(γφuε, γφuε)
+ j0

ε (γjuε; γjvε − γjuε) ≥ ⟨fε, vε − uε⟩. (3.27)

Write
⟨Aεvε, vε − uε⟩ = ⟨Aε(vε − v), vε − uε⟩ + ⟨(Aε −A) v, vε − uε⟩ + ⟨Av, vε − uε⟩.

We have
|⟨Aε(vε − v), vε − uε⟩| ≤ ∥Aε∥ ∥vε − v∥V ∥vε − uε∥V → 0,

since ∥Aε∥ and ∥vε − uε∥V are uniformly bounded, and ∥vε − v∥V → 0. Similarly,

|⟨(Aε −A) v, vε − uε⟩| ≤ ∥ (Aε −A) v∥V ∗∥vε − uε∥V → 0

and
⟨Av, vε − uε⟩ → ⟨Av, v − w⟩.
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Hence,
⟨Aεvε, vε − uε⟩ → ⟨Av, v − w⟩ as ε → 0. (3.28)

By (Hφε→φ),

φε(γφuε, γφvε) − φε(γφuε, γφuε) ≤ φ(γφuε, γφvε) − φ(γφuε, γφuε)
+ bφ(ε)

(
1 + ∥γφuε∥Vφ

)
∥γφ(uε − vε)∥Vφ .

Since ∥γφuε∥Vφ and ∥γφ(uε − vε)∥Vφ are uniformly bounded, bφ(ε) → 0 as ε → 0, we have

bφ(ε)
(
1 + ∥γφuε∥Vφ

)
∥γφ(uε − vε)∥Vφ → 0 as ε → 0.

By (3.2) with z1 = z3 = γφuε, z2 = γφw and z4 = γφvε,

φ(γφuε, γφvε) − φ(γφuε, γφuε) ≤ φ(γφw, γφvε) − φ(γφw, γφuε)
+ αφ∥γφ(uε − w)∥Vφ∥γφ(uε − vε)∥Vφ .

Here, ∥γφ(uε − vε)∥Vφ is uniformly bounded and ∥γφ(uε − w)∥Vφ → 0. Thus,

αφ∥γφ(uε − w)∥Vφ∥γφ(uε − vε)∥Vφ → 0 as ε → 0.

By (Hφ) and Lemma 2.1, φ(γφw, ·) is continuous on Vφ. Then as ε → 0,

φ(γφw, γφvε) → φ(γφw, γφv),
φ(γφw, γφuε) → φ(γφw, γφw).

By (Hjε→j),

j0
ε (γjuε; γjvε − γjuε) ≤ j0(γjuε; γjvε − γjuε) + bj(ε)

(
1 + ∥γjuε∥Vj

)
∥γj(vε − uε)∥Vj

.

Due to the uniform boundedness of ∥γjuε∥Vj
and ∥γj(vε − uε)∥Vj

, and condition on bj(ε),

bj(ε)
(

1 + ∥γjuε∥Vj

)
∥γj(vε − uε)∥Vj

→ 0 as ε → 0.

Moreover,
j0(γjw; γjv − γjw) ≥ lim sup

ε→0
j0(γjuε; γjvε − γjuε).

Therefore, taking the upper limit in (3.27), we obtain

⟨Av, v − w⟩ + φ(γφw, γφv) − φ(γφw, γφw) + j0(γjw; γjv − γjw) ≥ ⟨f, v − w⟩.

This inequality is valid for any v ∈ K. By Lemma 3.2, w ∈ K is a solution of Problem (P). Since the solution
u to Problem (P) is unique, we have w = u.

Step 3. We prove the strong convergence:

uε → u as ε → 0.

Apply the condition (3.12),

mA∥uε − u∥2
V ≤ ⟨Aεuε −Aεu, uε − u⟩.

Thus,
mA∥uε − u∥2

V ≤ ⟨Aεuε, uε − u⟩ + ⟨(A−Aε)u, uε − u⟩ − ⟨Au, uε − u⟩. (3.29)
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First, we have, as ε → 0,

|⟨(A−Aε)u, uε − u⟩| ≤ ∥(A−Aε)u∥V ∗∥uε − u∥V → 0, (3.30)
|⟨Au, uε − u⟩| → 0. (3.31)

By (HKε→K), there exists wε ∈ Kε such that

wε → u in V.

Write
⟨Aεuε, uε − u⟩ = ⟨Aεuε, uε − wε⟩ + ⟨Aεuε, wε − u⟩. (3.32)

Note that
|⟨Aεuε, wε − u⟩| ≤ ∥Aε∥ ∥uε∥V ∥wε − u∥V → 0. (3.33)

By (3.17) with v = wε,

⟨Aεuε, uε − wε⟩ ≤ φε(γφuε, γφwε) − φε(γφuε, γφuε) + j0
ε (γjuε; γjwε − γjuε) − ⟨fε, wε − uε⟩. (3.34)

By (Hφε→φ) with z1 = γφuε and z2 = γφwε,

φε(γφuε, γφwε) − φε(γφuε, γφuε) ≤ φ(γφuε, γφwε) − φ(γφuε, γφuε)
+ bφ(ε)

(
1 + ∥γφuε∥Vφ

)
∥γφ(uε − wε)∥Vφ .

Note that since uε ⇀ u in V , wε → u in V , and γφ : V → Vφ is compact, we have

∥γφ(uε − wε)∥Vφ → 0 as ε → 0

and since {∥uε∥V }ε>0 is uniformly bounded, bφ(ε) → 0 as ε → 0, it follows that

bφ(ε)
(
1 + ∥γφuε∥Vφ

)
∥γφ(uε − wε)∥Vφ → 0 as ε → 0.

By (3.2) with z1 = z3 = γφuε, z2 = γφu and z4 = γφwε,

φ(γφuε, γφwε) − φ(γφuε, γφuε) ≤ φ(γφu, γφwε) − φ(γφu, γφuε)
+ αφ∥γφ(uε − u)∥Vφ∥γφ(uε − wε)∥Vφ ,

where
αφ∥γφ(uε − u)∥Vφ∥γφ(uε − wε)∥Vφ → 0 as ε → 0.

By the continuity of φ(γφu, ·) on Vφ,

φ(γφu, γφwε) − φ(γφu, γφuε) → φ(γφu, γφu) − φ(γφu, γφu) = 0.

From (Hjε→j),

j0
ε (γjuε; γjwε − γjuε) ≤ j0(γjuε; γjwε − γjuε) + bj(ε)

(
1 + ∥γjuε∥Vj

)
∥γj(uε − wε)∥Vj

.

Due to the uniform boundedness of ∥γjuε∥Vj
, ∥γj(uε − wε)∥Vj

→ 0, and bj(ε) → 0, we have

bj(ε)
(

1 + ∥γjuε∥Vj

)
∥γj(uε − wε)∥Vj

→ 0 as ε → 0.

Moreover, by (2.1),
lim sup

ε→0
j0(γjuε; γjwε − γjuε) ≤ j0(γju; γju− γju) = 0.
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Finally,
⟨fε, wε − uε⟩ = ⟨fε − f, wε − uε⟩ + ⟨f, wε − uε⟩ → 0.

Summarizing, from (3.34), we deduce that

lim sup
ε→0

⟨Aεuε, uε − wε⟩ ≤ 0. (3.35)

Therefore, from (3.29)–(3.33) and (3.35), we conclude that

mA∥uε − u∥2
V → 0,

i.e., we have the strong convergence uε → u as ε → 0. ■

4. Stability results for special constrained inequality problems

Problem (P) contains as special cases various problems studied in the literature. In this section, we apply
Theorem 3.4 to deduce stability results for several special inequality problems with K ̸= V . The inclusion
u ∈ K represents a constraint on the solution u. The unconstrained special cases are discussed in the next
section.

Special case 1. When φ(z1, z2) ≡ φ(z2) is a function of the second argument z2 only, the problem (3.7) has
the form

u ∈ K, ⟨Au, v − u⟩ + φ(γφv) − φ(γφu) + j0(γju; γjv − γju) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.1)

The condition (3.2) is trivially satisfied since the left side of (3.2) is identically zero. We introduce the
following assumptions to replace (Hφ) and (Hs):

(H ′
φ) Vφ is a Banach space and γφ ∈ L(V, Vφ) with its norm bounded by cφ. φ : Vφ → R is convex and

l.s.c.
(H ′

s)
αjc

2
j < mA. (4.2)

Then by Theorem 3.1, under the assumptions (HV ), (HK), (HA), (H ′
φ), (Hj), (H ′

s) and (Hf ), the
inequality (4.1) has a unique solution u ∈ K.

The perturbed inequality problem is

uε ∈ Kε, ⟨Aεuε, v − uε⟩ + φε(γφv) − φε(γφuε) + j0
ε (γjuε; γjv − γjuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ Kε. (4.3)

The assumption (Hφε) is to be replaced by
(H ′

φε
) Vφ is a Banach space and γφ ∈ L(V, Vφ) with its norm bounded by cφ. φε : Vφ → R is convex and

l.s.c.
Then by Theorem 3.3, under the assumptions (HV ), (HKε), (HAε), (H ′

φε
), (Hjε), (H ′

s) and (Hfε), the
inequality (4.3) has a unique solution u ∈ K.

For stability analysis, we replace (Hφε→φ) by
(H ′

φε→φ): There exists a non-negative valued function bφ(ε) with bφ(ε) → 0 as ε → 0 such that

|φε(z2) − φε(z1) − φ(z2) + φ(z1)| ≤ bφ(ε) ∥z1 − z2∥Vφ ∀ z1, z2 ∈ Vφ. (4.4)

Then, by applying Theorem 3.4, we conclude the convergence

uε → u in V as ε → 0
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for the solutions u of (4.1) and uε of (4.3), under the additional assumptions (HAε→A), (H ′
φε→φ), (Hjε→j),

(Hfε→f ), (HKε→K) and (Hc).

Special case 2. When φ ≡ 0, we have a “pure” hemivariational inequality from (3.7) [19]:

u ∈ K, ⟨Au, v − u⟩ + j0(γju; γjv − γju) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.5)

Then by Theorem 3.1, under the assumptions (HV ), (HK), (HA), (Hj), (H ′
s) and (Hf ), the inequality

(4.5) has a unique solution u ∈ K.
The perturbed inequality problem is

uε ∈ Kε, ⟨Aεuε, v − uε⟩ + j0
ε (γjuε; γjv − γjuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ Kε. (4.6)

By Theorem 3.3, under the assumptions (HV ), (HKε), (HAε), (Hjε), (H ′
s) and (Hfε), the inequality (4.6)

has a unique solution uε ∈ Kε.
For stability, we apply Theorem 3.4 to conclude

uε → u in V as ε → 0

for the solutions u of (4.5) and uε of (4.6), under the additional assumptions (HAε→A), (Hjε→j), (Hfε→f ),
(HKε→K) and (H ′

c). Here,
(H ′

c) γj ∈ L(V, Vj) is compact.

Special case 3. When j ≡ 0, we have a quasi-variational inequality from (3.7) [8]:

u ∈ K, ⟨Au, v − u⟩ + φ(γφu, γφv) − φ(γφu, γφu) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.7)

The smallest condition (Hs) is modified to
(H ′′

s )
αφc

2
φ < mA. (4.8)

By Theorem 3.1, under the assumptions (HV ), (HK), (HA), (Hφ), (H ′′
s ) and (Hf ), the inequality (4.7) has

a unique solution u ∈ K.
The perturbed quasi-variational inequality is

uε ∈ Kε, ⟨Aεuε, v − uε⟩ + φε(γφuε, γφv) − φε(γφuε, γφuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ Kε. (4.9)

By Theorem 3.3, under the assumptions (HV ), (HKε), (HAε), (Hφε), (H ′′
s ) and (Hfε), the inequality (4.9)

has a unique solution uε ∈ Kε.
For stability, we apply Theorem 3.4 to conclude

uε → u in V as ε → 0

for the solutions u of (4.7) and uε of (4.9), under the additional assumptions (HAε→A), (Hφε→φ), (Hfε→f ),
(HKε→K) and (H ′′

c ). Here,
(H ′′

c ) γφ ∈ L(V, Vφ) is compact.

Special case 4. When j ≡ 0 and φ(z1, z2) ≡ φ(z2), we have the variational inequality [1,29]

u ∈ K, ⟨Au, v − u⟩ + φ(γφv) − φ(γφu) ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.10)

By Theorem 3.1, under the assumptions (HV ), (HK), (HA), (H ′
φ), (H ′′

s ) and (Hf ), the inequality (4.10) has
a unique solution u ∈ K.
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The perturbed inequality problem is

uε ∈ Kε, ⟨Aεuε, v − uε⟩ + φε(γφv) − φε(γφuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ Kε. (4.11)

By Theorem 3.3, under the assumptions (HV ), (HKε), (HAε), (H ′
φε

), (H ′′
s ) and (Hfε), the inequality (4.11)

has a unique solution uε ∈ Kε.
For stability, we apply Theorem 3.4 to conclude

uε → u in V as ε → 0

for the solutions u of (4.10) and uε of (4.11), under the additional assumptions (HAε→A), (H ′
φε→φ), (Hfε→f ),

(HKε→K) and (H ′′
c ).

Special case 5. When j ≡ 0 and φ ≡ 0, we have the variational inequality of the first kind [1]

u ∈ K, ⟨Au, v − u⟩ ≥ ⟨f, v − u⟩ ∀ v ∈ K. (4.12)

By Theorem 3.1, under the assumptions (HV ), (HK), (HA) and (Hf ), the variational inequality (4.12) has
a unique solution u ∈ K.

The perturbed inequality problem is

uε ∈ Kε, ⟨Aεuε, v − uε⟩ ≥ ⟨fε, v − uε⟩ ∀ v ∈ Kε. (4.13)

By Theorem 3.3, under the assumptions (HV ), (HKε), (HAε) and (Hfε), the inequality (4.13) has a unique
solution uε ∈ Kε.

For stability, we apply Theorem 3.4 to conclude

uε → u in V as ε → 0

for the solutions u of (4.12) and uε of (4.13), under the additional assumptions (HAε→A), (Hfε→f ) and
(HKε→K).

5. Stability results for special inequality problems without constraints

When K = V , we have the special cases of unconstrained problems. The general variational
-hemivariational inequality (3.7) is reduced to

u ∈ V, ⟨Au, v − u⟩ + φ(γφu, γφv) − φ(γφu, γφu)
+ j0(γju; γjv − γju) ≥ ⟨f, v − u⟩ ∀ v ∈ V (5.1)

with the corresponding perturbed problem

uε ∈ V, ⟨Aεuε, v − uε⟩ + φε(γφuε, γφv) − φε(γφuε, γφuε)
+ j0

ε (γjuε; γjv − γjuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ V. (5.2)

We can apply Theorems 3.1, 3.3 and 3.4 and conclude that under assumptions (HV ), (HA), (Hφ), (Hj),
(Hs) and (Hf ), the problem (5.1) has a unique solution u ∈ V ; under assumptions (HV ), (HAε), (Hφε),
(Hjε), (Hs) and (Hfε), the problem (5.2) has a unique solution uε ∈ Kε; and under additional assumptions
(HAε→A), (Hφε→φ), (Hjε→j), (Hfε→f ) and (Hc), we have the convergence result

uε → u in V as ε → 0.
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The unconstrained counterparts of the five special cases in Section 4 are as follows.

Special case 1′. When K = V and φ(z1, z2) ≡ φ(z2) is a function of the second argument z2 only, the problem
is

u ∈ V, ⟨Au, v − u⟩ + φ(γφv) − φ(γφu) + j0(γju; γjv − γju) ≥ ⟨f, v − u⟩ ∀ v ∈ V. (5.3)

The corresponding perturbed problem is

uε ∈ V, ⟨Aεuε, v − uε⟩ + φε(γφv) − φε(γφuε) + j0
ε (γjuε; γjv − γjuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ V. (5.4)

Then, applying Theorems 3.1, 3.3 and 3.4, we know that the problem (5.3) has a unique solution u ∈ V

under assumptions (HV ), (HA), (H ′
φ), (Hj), (H ′

s) and (Hf ); the problem (5.4) has a unique solution uε ∈ V

under assumptions (HV ), (HAε), (H ′
φε

), (Hjε), (H ′
s) and (Hfε); and

uε → u in V as ε → 0

under additional assumptions (HAε→A), (H ′
φε→φ), (Hjε→j), (Hfε→f ) and (Hc).

Special case 2′. When K = V and φ ≡ 0, we have the simplest form hemivariational inequality [10]:

u ∈ V, ⟨Au, v⟩ + j0(γju; γjv) ≥ ⟨f, v⟩ ∀ v ∈ V. (5.5)

The corresponding perturbed problem is

uε ∈ V, ⟨Aεuε, v − uε⟩ + j0
ε (γjuε; γjv − γjuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ V. (5.6)

By Theorems 3.1, 3.3 and 3.4, the problem (5.5) has a unique solution u ∈ V under assumptions (HV ), (HA),
(Hj), (H ′

s) and (Hf ); the problem (5.6) has a unique solution uε ∈ V under assumptions (HV ), (HAε), (Hjε),
(H ′

s) and (Hfε); and
uε → u in V as ε → 0

under additional assumptions (HAε→A), (Hjε→j), (Hfε→f ) and (H ′
c).

Special case 3′. When K = V and j ≡ 0, we have a quasi-variational inequality [29]:

u ∈ V, ⟨Au, v − u⟩ + φ(γφu, γφv) − φ(γφu, γφu) ≥ ⟨f, v − u⟩ ∀ v ∈ V. (5.7)

The corresponding perturbed problem is

uε ∈ V, ⟨Aεuε, v − uε⟩ + φε(γφuε, γφv) − φε(γφuε, γφuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ V. (5.8)

By Theorems 3.1, 3.3 and 3.4, the problem (5.7) has a unique solution u ∈ V under assumptions (HV ),
(HA), (Hφ), (H ′′

s ) and (Hf ); the problem (5.8) has a unique solution uε ∈ V under assumptions (HV ),
(HAε), (Hφε), (Hjε), (H ′′

s ) and (Hfε); and

uε → u in V as ε → 0

under additional assumptions (HAε→A), (H ′
φε→φ), (Hfε→f ) and (H ′′

c ).

Special case 4′. When K = V , j ≡ 0 and φ(z1, z2) ≡ φ(z2), we have the variational inequality [1,8]

u ∈ V, ⟨Au, v − u⟩ + φ(γφv) − φ(γφu) ≥ ⟨f, v − u⟩ ∀ v ∈ V. (5.9)

The corresponding perturbed problem is

uε ∈ V, ⟨Aεuε, v − uε⟩ + φε(γφv) − φε(γφuε) ≥ ⟨fε, v − uε⟩ ∀ v ∈ V. (5.10)
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By Theorems 3.1, 3.3 and 3.4, we know that the problem (5.9) has a unique solution u ∈ V under assumptions
(HV ), (HA), (H ′

φ), (H ′′
s ) and (Hf ); the problem (5.10) has a unique solution uε ∈ V under assumptions

(HV ), (HAε), (H ′
φε

), (H ′′
s ) and (Hfε); and

uε → u in V as ε → 0

under additional assumptions (HAε→A), (H ′
φε→φ), (Hfε→f ) and (H ′′

c ).

Special case 5′. When K = V , j ≡ 0 and φ ≡ 0, we have the variational equation:

u ∈ V, ⟨Au, v⟩ = ⟨f, v⟩ ∀ v ∈ V. (5.11)

The corresponding perturbed problem is

uε ∈ V, ⟨Aεuε, v⟩ = ⟨fε, v − uε⟩ ∀ v ∈ V. (5.12)

By Theorems 3.1, 3.3 and 3.4, we know that the problem (5.11) has a unique solution u ∈ V under
assumptions (HV ), (HA) and (Hf ); the problem (5.12) has a unique solution uε ∈ V under assumptions
(HV ), (HAε) and (Hfε); and

uε → u in V as ε → 0

under additional assumptions (HAε→A) and (Hfε→f ).

6. Applications in sample contact problems

In this section, we take stability analysis of two static contact problems as examples to illustrate the
application of the theoretical results presented in previous sections. The physical setting of a contact problem
is as follows: the reference configuration of a deformable body is an open, bounded, connected set Ω ⊂ Rd

(d = 2 or 3 in applications) with a Lipschitz boundary Γ = ∂Ω partitioned into three disjoint and measurable
parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. The body is fixed on Γ1, is in contact on Γ3 with a foundation,
and is in equilibrium under the action of a volume force of density f0 in Ω and a surface traction of density
f2 on Γ2. The material of the deformable body is assumed to be elastic.

To describe the contact problems, we use u : Ω → Rd for the displacement field, ε(u) :=
(
∇u + (∇u)T

)
/2

for the linearized strain tensor, and σ : Ω → Sd for the stress field. Here, the symbol Sd denotes the space
of second order symmetric tensors on Rd. We use “·” and “∥ · ∥” for the canonical inner product and norm
on the spaces Rd and Sd.

Let ν be the unit outward normal vector on the boundary Γ , which is defined a.e. For a vector field v,
vν := v · ν and vτ := v − vνν are the normal and tangential components of v on Γ . For the stress field σ,
σν := (σν) · ν and στ := σν − σνν are its normal and tangential components on the boundary. For the
stress and strain fields, we will use the Hilbert space Q = L2(Ω ;Sd) with the canonical inner product

(σ, τ )Q :=
∫
Ω

σij(x) τij(x) dx, σ, τ ∈ Q.

The function space for the displacement field is

V =
{

v = (vi) ∈ H1(Ω ;Rd) | v = 0 a.e. on Γ1
}
.

Since meas (Γ1) > 0, an application of Korn’s inequality shows that V is a Hilbert space with the inner
product

(u, v)V :=
∫
Ω

ε(u) · ε(v) dx, u, v ∈ V.

We will use the same symbol v for the trace of a function v ∈ H1(Ω ;Rd) on Γ .
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6.1. A contact problem with unilateral constraint

The equations and conditions for this contact problem are

σ = Fε(u) in Ω , (6.1)
Div σ + f0 = 0 in Ω , (6.2)
u = 0 on Γ1, (6.3)
σν = f2 on Γ2, (6.4)

supplemented by the following contact conditions [24]:

uν ≤ g, σν + ξν ≤ 0, (uν − g) (σν + ξν) = 0, ξν ∈ ∂jν(uν) on Γ3, (6.5)

∥στ ∥ ≤ Fb(uν), −στ = Fb(uν) uτ

∥uτ ∥
if uτ ̸= 0 on Γ3. (6.6)

In these equations and conditions, (6.1) is the elastic constitutive law, (6.2) represents the equilibrium
equation, (6.3) is the displacement boundary condition, and (6.4) describes the traction boundary condition.
In (6.1), F : Ω × Sd → Sd is the elasticity operator and is assumed to have the following properties:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) there exists LF > 0 such that for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,
∥F(x, ε1) − F(x, ε2)∥ ≤ LF ∥ε1 − ε2∥;

(b) there exists mF > 0 such that for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,
(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ∥ε1 − ε2∥2;

(c) F(·, ε) is measurable on Ω for all ε ∈ Sd;
(d) F(x,0) = 0 for a.e. x ∈ Ω .

(6.7)

The densities of the body force and the surface traction are assumed to satisfy

f0 ∈ L2(Ω ;Rd), f2 ∈ L2(Γ2;Rd). (6.8)

We define f ∈ V ∗ by the relation

⟨f , v⟩V ∗×V = (f0, v)L2(Ω ;Rd) + (f2, v)L2(Γ2;Rd) ∀ v ∈ V. (6.9)

In the normal contact condition (6.5), the relation uν ≤ g restricts the allowed penetration, where g
represents the thickness of the elastic layer. We assume g : Γ3 → R satisfies

g ∈ L2(Γ3), g(x) ≥ 0 a.e. on Γ3. (6.10)

The contact condition (6.5) represents a combination of the Signorini contact condition for contact with
a rigid foundation and the normal compliance condition for contact with a deformable foundation. Details
on the normal compliance and Signorini contact conditions can be found in [13,30]. The tangential contact
condition (6.6) describes a version of Coulomb’s law of dry friction. The friction bound Fb : Γ3 × R → R+
may depend on the normal displacement uν , and we assume⎧⎪⎪⎨⎪⎪⎩

(a) There exists LFb
> 0 such that

|Fb(x, r1) − Fb(x, r2)| ≤ LFb
|r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) Fb(·, r) is measurable on Γ3, for all r ∈ R;
(c) Fb(x, r) = 0 for r ≤ 0, Fb(x, r) ≥ 0 for r ≥ 0, a.e. x ∈ Γ3.

(6.11)

For the potential function jν : Γ3 × R → R, we assume⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there
exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(Γ3);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;
(c) |∂jν(x, r)| ≤ c0 + c1|r| for a.e. x ∈ Γ3 ∀ r ∈ R with c0, c1 ≥ 0;
(d) j0

ν(x, r1; r2 − r1) + j0
ν(x, r2; r1 − r2) ≤ αjν |r1 − r2|2

for a.e. x ∈ Γ3, all r1, r2 ∈ R with αjν ≥ 0.

(6.12)
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The displacement will be sought from the following subset of the space V :

K := {v ∈ V | vν ≤ g on Γ3} .

The weak formulation of the contact problem is the following.
Problem (P1). Find a displacement field u ∈ K such that

(F(ε(u)), ε(v − u))Q +
∫
Γ3

Fb(uν) (∥vτ ∥ − ∥uτ ∥) ds

+
∫
Γ3

j0
ν(uν ; vν − uν) ds ≥ ⟨f , v − u⟩V ∗×V ∀ v ∈ K. (6.13)

We can apply the results of the previous sections on Problem (P1). Let Vφ = L2(Γ3)d with γφ the trace
operator from V to Vφ, Vj = L2(Γ3) with γjv = vν for v ∈ V . Define

⟨Au, v⟩ = (F(ε(u)), ε(v))Q,

φ(γφu, γφv) =
∫
Γ3

Fb(uν) ∥vτ ∥ ds,

j(γjv) =
∫
Γ3

jν(vν) ds.

Then (3.2) is satisfied with αφ = LFb
:

φ(z1, z4) − φ(z1, z3) + φ(z2, z3) − φ(z2, z4) =
∫
Γ3

(Fb(z1,ν) − Fb(z2,ν)) (∥z4,τ ∥ − ∥z3,τ ∥) ds

≤ LFb

∫
Γ3

|z1,ν − z2,ν | ∥z3,τ − z4,τ ∥ ds

≤ LFb
∥z1 − z2∥L2(Γ3)d∥z3 − z4∥L2(Γ3)d .

Moreover, αj = αjν . Applying Theorem 3.1, we know that Problem (P1) has a unique solution u ∈ K under
the stated assumptions, and (3.5) takes the form

LFb
λ−1

1,V + αjνλ
−1
1ν,V < mF , (6.14)

where λ1,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫
Ω

ε(u)·ε(v) dx = λ

∫
Γ3

u·v ds ∀ v ∈ V,

and λ1ν,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫
Ω

ε(u)·ε(v) dx = λ

∫
Γ3

uνvνds ∀ v ∈ V.

The perturbation of Problem (P1) is the following.
Problem (P1,ε). Find a displacement field uε ∈ Kε such that

(Fε(ε(uε)), ε(v − uε))Q +
∫
Γ3

Fb,ε(uν) (∥vτ ∥ − ∥uε,τ ∥) ds

+
∫
Γ3

j0
ε,ν(uε,ν ; vν − uε,ν) ds ≥ ⟨fε, v − uε⟩V ∗×V ∀ v ∈ Kε. (6.15)

We assume (6.7) with F replaced by Fε, (6.11) with Fb replaced by Fb,ε, (6.12) with jν replaced by jε,ν ,
(6.8) with f0 and f2 replaced by f0,ε and f2,ε, and (6.10) with g replaced by gε. The linear functional fε and
the constraint set Kε are defined by

⟨fε, v⟩V ∗×V = (f0,ε, v)L2(Ω ;Rd) + (f2,ε, v)L2(Γ2;Rd) ∀ v ∈ V,

Kε = {v ∈ V | vν ≤ gε on Γ3} .

Then Problem (P1,ε) has a unique solution uε ∈ Kε under the condition (6.14).
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Applying Theorem 3.4, we have the stability result

∥uε − u∥V → 0 as ε → 0

under the assumptions (HAε→A), (Hφε→φ), (Hjε→j), (Hfε→f ) and (HKε→K) adapted to the notation of
Problem (P1) and Problem (P1,ε).

As an example of perturbations of the constraint set K, consider

Kε := {v ∈ V | vν ≤ (1 + δε) g on Γ3} ,

i.e., gε = (1 + δε) g, where δε = δε(x) is Lipschitz continuous in x ∈ Ω , for some constant c > 0,

|δε(x)| ≤ c ε, x ∈ Ω ,

and
∥∇δε∥L2(Ω)d → 0 as ε → 0.

In the verification of condition (HKε→K) (i), we note that if {vε} ⊂ Kε and vε ⇀ v in V , then vε → v in
L2(Γ3)d and for a subsequence, vε(x) → v(x) a.e. x ∈ Γ3. Thus, from

vε ν(x) ≤ (1 + δε(x)) g(x), a.e. x ∈ Γ3

we have
vν(x) ≤ g(x), a.e. x ∈ Γ3.

Therefore, the limit v ∈ K. To verify the condition (HKε→K) (ii), for v ∈ K, we can simply choose
vε = v/(1 + δε). Thus, (HKε→K) is satisfied.

As an example of perturbations of A, consider

⟨Aεu, v⟩ = (Fε(ε(u)), ε(v))Q.

Assume
Fε(ε(v)) ⇀ F(ε(v)) in Q for v ∈ V.

Then, (HAε→A) is satisfied.
As an example of perturbations of φ, consider

φε(z1, z2) =
∫
Γ3

Fb,ε(z1,ν) ∥z2,τ ∥ ds

and assume, for some constant c > 0,

|Fb,ε(t) − Fb(t)| ≤ c ε (1 + |t|) .

Then from

φε(z1, z2) − φε(z1, z1) − φ(z1, z2) + φ(z1, z1) =
∫
Γ3

(Fb,ε(z1,ν) − Fb(z1,ν)) (∥z2,τ ∥ − ∥z1,τ ∥) ds,

we conclude

|φε(z1, z2) − φε(z1, z1) − φ(z1, z2) + φ(z1, z1)| ≤
∫
Γ3

|Fb,ε(z1,ν) − Fb(z1,ν)| ∥z1,τ − z2,τ ∥ ds

≤
∫
Γ3

c ε (1 + |z1,ν |) ∥z1,τ − z2,τ ∥ ds

≤ c̃ ε
(
1 + ∥z1∥Vφ

)
∥z1 − z2∥Vφ

for possibly a different constant c̃ > 0 in the last upper bound. Thus, (3.18) is satisfied with bφ(ε) = c̃ ε.
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For a concrete choice of jν , we consider [18]

jν(x; t) = S(x)
∫ |t|

0
µ(r) dr,

where S(x) : Γ3 → R+ is a continuous function of x ∈ Γ3, µ : [0,∞) → R is continuous and

|µ(r)| ≤ c (1 + r) ∀ r ≥ 0, (6.16)
µ(r1) − µ(r2) ≥ −λ (r1 − r2) , λ > 0, ∀ r1 > r2 ≥ 0. (6.17)

Then,

|τ | ≤ S c (1 + |t|) ∀ t ∈ R, τ ∈ ∂jν(t),
(τ1 − τ2) (t1 − t2) ≥ −S λ |t1 − t2|2 ∀ ti ∈ R, τi ∈ ∂jν(ti), i = 1, 2.

Following from [18, Lemma 3.2],

j0
ν(t1; t2) =

{
sgn(t1)S µ(|t1|) t2 if t1 ̸= 0,
S µ(0) |t2| if t1 = 0, (6.18)

and
j0(γjv; γjw) =

∫
Γ3

j0
ν(vν ;wν) ds, v,w ∈ V. (6.19)

As an example of perturbations of j, let

jν,ε(x; t) = Sε(x)
∫ |t|

0
µ(r) dr,

where Sε(x) : Γ3 → R+ is a continuous function of x ∈ Γ3, and

max
Γ3

|Sε − S| → 0 as ε → 0. (6.20)

Then by (6.18), ⏐⏐j0
ν,ε(t1; t2 − t1) − j0

ν(t1; t2 − t1)
⏐⏐ ≤ |Sε − S|µ(|t1|) |t2 − t1| ∀ t1, t2 ∈ R,

and combined with (6.19),⏐⏐j0
ε (γjv; γjw) − j0(γjv; γjw)

⏐⏐ ≤ c max
Γ3

|Sε − S|
(

1 + ∥vν∥L2(Γ3)

)
∥wν∥L2(Γ3), v,w ∈ V.

Thus, (Hjε→j) is satisfied in lieu of (6.20).
Finally, to satisfy the condition (Hfε→f ), we only need to assume

∥f0,ε − f0∥L2(Ω ;Rd) + ∥f2,ε − f2∥L2(Γ2;Rd) → 0 as ε → 0.

6.2. A contact problem without unilateral constraint

For this contact problem, the equations and conditions (6.1)–(6.4) are supplemented by the following
contact conditions [17]:

− σν ∈ ∂jν(uν), ∥στ ∥ ≤ Fb(uν), −στ = Fb(uν) uτ

∥uτ ∥
if uτ ̸= 0 on Γ3. (6.21)

The potential function jν is assumed to satisfy (6.12), whereas the friction bound Fb is assumed to satisfy
(6.11).
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The contact condition in (6.21) does not involve the unilateral constraint and it can be viewed as a limiting
case of the condition (6.5) as g → ∞. The weak formulation of the corresponding contact problem is the
following.

Problem (P2). Find a displacement field u ∈ V such that

(F(ε(u)), ε(v − u))Q +
∫
Γ3

Fb(uν) (∥vτ ∥ − ∥uτ ∥) ds

+
∫
Γ3

j0
ν(uν ; vν − uν) ds ≥ ⟨f , v − u⟩V ∗×V ∀ v ∈ V.

This problem can be viewed as a special case of Problem (P1) where K = V . Thus, for the stability
analysis of Problem (P2), the discussion in Section 6.1 carries over verbatim with any reference to K or Kε

removed.

References

[1] J.-L. Lions, G. Stampacchia, Variational. inequalities, Comm. Pure Appl. Math, Variational inequalities, Comm. Pure
Appl. Math. 20 (1967) 493–519.
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[17] W. Han, S. Migórski, M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact

problems, SIAM J. Math. Anal. 46 (2014) 3891–3912.
[18] M. Barboteu, K. Bartosz, W. Han, T. Janiczko, Numerical analysis of a hyperbolic hemivariational inequality arising

in dynamic contact, SIAM J. Numer. Anal. 53 (2015) 527–550.
[19] W. Han, M. Sofonea, M. Barboteu, Numerical analysis of elliptic hemivariational inequalities, SIAM J. Numer. Anal.

55 (2017) 640–663.
[20] W. Han, M. Sofonea, D. Danan, Numerical analysis of stationary variational-hemivariational inequalities, Numer. Math.

139 (2018) 563–592.
[21] W. Han, Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics,

Math. Mech. Solids 23 (2018) 279–293.
[22] M. Sofonea, A. Benraouda, H. Hechaichi, Optimal control of a two-dimensional contact problem, Appl. Anal. 97 (2018)

1281–1298.
[23] M. Sofonea, Optimal control of a class of variational-hemivariational inequalities in reflexive Banach spaces, Appl. Math.

Optim. (2017) http://dx.doi.org/10.1007/s00245-017-9450-0.
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