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Abstract
In this paper, pressure projection stabilized low-order mixed finite element meth-
ods are studied to solve a Navier-Stokes hemivariational inequality for a boundary
value problem of the Navier-Stokes equations involving a non-smooth non-monotone
boundary condition. A new abstract mixed hemivariational inequality is introduced for
the purpose of analyzing stabilized mixed finite element methods to solve the Navier-
Stokes hemivariational inequality using velocity-pressure pairs without the discrete
inf-sup condition. The well-posedness of the abstract problem is established through
considerations of a related saddle-point formulation and fixed-point arguments. Then
the results on the abstract problem are applied to the study of the Navier-Stokes hemi-
variational inequality and its stabilized mixed finite element approximations. Optimal
order error estimates are derived for finite element solutions of the pressure projection
stabilized lowest-order conforming pair and lowest equal order pair under appropriate
solution regularity assumptions. Numerical results are reported on the performance
of the pressure projection stabilized mixed finite element methods for solving the
Navier-Stokes hemivariational inequality.
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1 Introduction

Hemivariational inequalities are a family of non-smooth problems arising in science
and engineering applications that involve non-smooth, non-monotone and set-valued
relations among physical quantities. The framework of hemivariational inequalities
is more general than that of variational inequalities. The notion of hemivariational
inequalities was introduced by Panagiotopoulos four decades ago [34]. Since then,
modeling, analysis, numerical solution and applications of hemivariational inequali-
ties have attracted increasing attention from the research community, and the number of
publications on hemivariational inequalities grows substantially these years. As repre-
sentative recent comprehensive references in the area, [37] focuses on well-posedness
analysis of hemivariational inequalities, and [21] provides a survey of numerical anal-
ysis of hemivariational inequalities.

A large number of publications on hemivariational inequalities is devoted to appli-
cation problems in solid mechanics. Meanwhile, hemivariational inequalities are also
studied for applications in fluid mechanics, especially boundary or initial-boundary
value problems associated with the Stokes equations or the Navier-Stokes equations
involving non-smooth non-monotone slip or leak boundary conditions of friction type.
Consideration of viscous incompressible fluid flows with non-smooth yet monotone
slip or leak boundary conditions of friction type started in early 1990s [14, 15]. Weak
formulations of such problems are variational inequalities and they are studied inmany
papers, e.g., [24–26] on Stokes variational inequalities, and [9, 27, 28, 35] on Navier-
Stokes variational inequalities, just to mention a few. When the slip or leak boundary
conditions are allowed to express more general non-smooth non-monotone relations,
the corresponding mathematical problems are Stokes hemivariational inequalities or
Navier-Stokes hemivariational inequalities. Some references on well-posedness anal-
ysis of such hemivariational inequalities are [13, 31]. Mixed finite element methods
using velocity-pressure pairs satisfying the discrete inf-sup condition are analyzed in
[12] for Stokes hemivariational inequalities and in [19] for Navier-Stokes hemivaria-
tional inequalities. Although the lowest-order velocity-pressure pairs of finite element
spaces do not satisfy the discrete inf-sup condition, they are attractive for simulations
of incompressible flow problems due to, e.g., a local mass conservation property by
the lowest-order conforming pair of continuous piecewise linear, bilinear or trilinear
velocities and piecewise constant pressures, simple and uniform data structures for
lowest equal order pair of continuous piecewise linear, bilinear or trilinear elements
for both velocities and pressures, and favorable size and bandwidth properties of dis-
crete systems for these element pairs [5, 36]. For solving variational inequalities or
hemivariational inequalities, low-order element pairs are even more preferred since
the smoothness of the true solutions of the inequalities is quite limited and moreover,
for inequality problems, even if the true solution is assumed to be smooth, it is not
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possible to have an optimal order error bound for high-order element solutions due
to the inequality feature of the problems. In the literature, several stabilization tech-
niques have been introduced to stabilize low-order element pairs that do not satisfy
the discrete inf-sup condition. For instance, consistent stabilized methods [2, 6], local
and global stabilized methods [23], pressure projection based stabilization methods
[5, 29], and local pressure gradient projection stabilized methods [3, 4].

In this paper, following [5], we consider pressure projection stabilized mixed finite
element methods for solving the Navier-Stokes hemivariational inequality. We start
with the well-posedness analysis of a new abstract hemivariational inequality that is
particularly suitable for the study of stabilized mixed finite element methods to solve
Navier-Stokes hemivariational inequalities as well as Stokes hemivariational inequali-
ties. The well-posedness of the abstract problem is established through considerations
of a related saddle-point formulation and fixed-point arguments. This approach ismore
accessible to applied mathematicians and engineers. In comparison, a local pressure
projection stabilized mixed method for a Stokes hemivariational inequality is studied
in [30] using continuous piecewise linear approximations for both the velocity and
pressure, and there, proving the existence of a stabilized mixed solution needs the
rather complicated Knaster-Kuratowski-Mazurkiewicz principle. We comment that in
addition, results on the new abstract hemivariational inequality can also be applied to
study Navier-Stokes hemivariational inequalities and Stokes hemivariational inequal-
ities, as well as their mixed finite element solutions using velocity-pressure pairs with
the discrete inf-sup condition. For the stabilized mixed methods for the Navier-Stokes
hemivariational inequality, we then derive optimal order error estimates of the velocity
and pressure for both the lowest-order conforming pairs and the lowest equal order
pairs, under appropriate solution regularity conditions.

Description of hemivariational inequalities requires the notions of the generalized
directional derivative and generalized subdifferential in the sense ofClarke for a locally
Lipschitz continuous function [8]. Let Ψ : V → R be a locally Lipschitz continuous
functional defined on a real Banach space V . Then its generalized (Clarke) directional
derivative at u ∈ V in the direction v ∈ V is defined by

Ψ 0(u; v) := lim sup
w→u, λ↓0

Ψ (w + λ v) − Ψ (w)

λ
,

whereas the generalized subdifferential of Ψ at u ∈ V is

∂Ψ (u) :=
{
ξ ∈ V ∗ | Ψ 0(u; v) ≥ 〈ξ, v〉 ∀ v ∈ V

}
.

Given the generalized subdifferential, the generalized directional derivative can be
determined by

Ψ 0(u; v) = max{〈ξ, v〉 | ξ ∈ ∂Ψ (u)} ∀ u, v ∈ V .

If the locally Lipschitz continuous function Ψ : V → R is also convex, then the
subdifferential ∂Ψ (u) at any u ∈ V in the sense of Clarke coincides with the convex
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subdifferential ∂Ψ (u). Hence, the notion of the Clarke subdifferential can be viewed
as a generalization of that of the convex subdifferential. Two basic properties are

∂(λ Ψ )(u) = λ ∂Ψ (u) ∀ λ ∈ R, ∀ u ∈ V , (1.1)

Ψ 0(u; v1 + v2) ≤ Ψ 0(u; v1) + Ψ 0(u; v2) ∀ λ ∈ R, ∀ u, v1, v2 ∈ V . (1.2)

For locally Lipschitz functions Ψ1, Ψ2 : V → R, the inclusion

∂(Ψ1 + Ψ2)(u) ⊂ ∂Ψ1(u) + ∂Ψ2(u) ∀ u ∈ V (1.3)

holds, which is equivalent to the inequality

(Ψ1 + Ψ2)
0(u; v) ≤ Ψ 0

1 (u; v) + Ψ 0
2 (u; v) ∀ u, v ∈ V . (1.4)

Detailed discussions of the generalized directional derivative and the generalized
subdifferential for locally Lipschitz continuous functionals, including their properties,
can be found in several references, e.g. [8, 32].

The rest of the paper is organized as follows. InSect. 2,we introduce the newabstract
mixed hemivariational inequality and study its well-posedness. This abstract frame-
work is especially suitable for the studyof stabilizationofmixedfinite elementmethods
for solving the Navier-Stokes hemivariational inequality considered in this paper. In
Sect. 3, we apply the theoretical results in the study of the Navier-Stokes hemivaria-
tional inequality. In Sect. 4, we introduce pressure projection stabilized mixed finite
element methods to solve the Navier-Stokes hemivariational inequality, and derive
optimal order error estimates for the pressure projection stabilized mixed finite ele-
ment solutions of both the lowest-order conforming pairs and the lowest equal order
pairs under appropriate solution regularity assumptions. In Sect. 5, we present simu-
lation results on a numerical example to illustrate the performance of the numerical
methods, paying particular attention on the numerical convergence orders.

2 A new abstract mixed hemivariational inequality

Let V and Q be two real Hilbert spaces. Their dual spaces are denoted by V ∗ and Q∗.
The symbol 〈·, ·〉 denotes the duality pairing between V ∗ and V , or between Q∗ and
Q; it should be clear from the context which duality pairing is meant by 〈·, ·〉. Let there
be given a : V × V → R, d : V × V × V → R, b : V × Q → R, S : Q × Q → R,
and f ∈ V ∗. Denote by Δ the spatial domain of the problem, or a sub-domain, or
the boundary or part of the boundary of the domain. Let ψ be a real-valued function
defined on Δ × R

m for some positive integer m, and let γψ be a linear continuous
operator from V to L2(Δ;Rm). For applications in mechanics, the operator γψ is
either the normal trace operator and then m = 1, or the tangential component trace
operator and then m is the dimension of the spatial domain.

Let us introduce assumptions on the data.
H(a) a : V × V → R is a bounded and V -elliptic bilinear form.
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We will use Ma > 0 for the boundedness constant andma > 0 for the V -ellipticity
constant:

|a(u, v)| ≤ Ma‖u‖V ‖v‖V ∀ u, v ∈ V , (2.1)

a(v, v) ≥ ma‖v‖2V ∀ v ∈ V . (2.2)

From the bilinear form a(·, ·), we can define an operator A : V → V ∗ by

〈Au, v〉 = a(u, v), u, v ∈ V . (2.3)

The properties (2.1) and (2.2) can be equivalently expressed in terms of A:

‖A‖ ≤ Ma, (2.4)

〈Av, v〉 ≥ ma‖v‖2V ∀ v ∈ V . (2.5)

H(d) d : V × V × V → R is a bounded trilinear form such that

d(u, v, v) = 0 ∀ u, v ∈ V . (2.6)

We will use cd > 0 for the boundedness constant:

|d(u, v, w)| ≤ cd‖u‖V ‖v‖V ‖w‖V ∀ u, v, w ∈ V . (2.7)

H(ψ) γψ ∈ L(V ; L2(Δ;Rm)); ψ : Δ × R
m → R; ψ(·, z) is measurable on Δ for

all z ∈ R
m ; for a function z0 ∈ L2(Δ;Rm), ψ(·, z0(·)) ∈ L1(Δ); ψ(x, ·) is locally

Lipschitz continuous on Rm for a.e. x ∈ Δ; and for non-negative constants c1, c1 and
αψ ,

|∂ψ(z)| ≤ c0 + c1|z|Rm ∀ z ∈ R
m, a.e. on Δ, (2.8)

ψ0(z1; z2 − z1) + ψ0(z2; z1 − z2) ≤ αψ |z1 − z2|2Rm ∀ z1, z2 ∈ R
m, a.e. on Δ.

(2.9)

Note that to simplify the notation, we usually write ψ(z) by suppressing its first
argument. The relation (2.8) is a short-hand notation for

|η| ≤ c0 + c1|z|Rm ∀ z ∈ R
m, η ∈ ∂ψ(z), a.e. on Δ,

and it is equivalent to

∣∣∣ψ0(z1; z2)
∣∣∣ ≤ (c0 + c1|z1|Rm ) |z2|Rm ∀ z1, z2 ∈ R

m, a.e. on Δ.

The inequality (2.9) is equivalent to [37, p. 124]

〈η1 − η2, z1 − z2〉 ≥ −αψ |z1 − z2|2Rm ∀ zi ∈ R
m, ηi ∈ ∂ψ(zi ), i = 1, 2, a.e. on Δ.
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Let IΔ stand for the integration operator over Δ. Denote by cΔ > 0 the smallest
constant in the inequality

IΔ(|γψv|2
Rm ) ≤ c2Δ‖v‖2V ∀ v ∈ V . (2.10)

From the assumptions (2.8), (2.9), we can deduce that

ψ0(z;−z) ≤ c0|z|Rm + αψ |z|2
Rm ∀ z ∈ R

m, a.e. on Δ. (2.11)

Then

IΔ(ψ0(γψv;−γψv)) ≤ c0cΔ|Δ|1/2‖v‖V + αψc
2
Δ‖v‖2V ∀ v ∈ V , (2.12)

where |Δ| := IΔ(1) is the measure of Δ. Define the functional

Ψ (v) = IΔ(ψ(γψv)), v ∈ V . (2.13)

Then under the assumption H(ψ), similar to the results and arguments in [32, Section
3.3], it can be shown that Ψ (·) is well-defined and locally Lipschitz on V , and

Ψ 0(u; v) ≤ IΔ(ψ0(γψu; γψv)) ∀ u, v ∈ V . (2.14)

H( f ) f ∈ V ∗.
H(S) S : Q × Q → R is bilinear, bounded, symmetric, and non-negative:

S(q, q) ≥ 0 ∀ q ∈ Q. (2.15)

It is easy to derive the following two inequalities from (2.15):

S(q, r)2 ≤ S(q, q) S(r , r) ∀ q, r ∈ Q, (2.16)

|S(q, r)| ≤ 1

2
S(q, q) + 1

2
S(r , r) ∀ q, r ∈ Q. (2.17)

Introduce an extended bilinear form

b̃((u, p); (v, q)) := a(u, v)−b(v, p)+b(u, q)+ S(p, q) ∀ (u, p), (v, q) ∈ V ×Q.

(2.18)
H(b) b : V × Q → R is bilinear, bounded, and there exists a constant αb̃ > 0 such
that

sup
(v,q)∈V×Q

b̃((u, p); (v, q))

‖v‖V + ‖q‖Q ≥ αb̃

(‖u‖V + ‖p‖Q
) ∀ (u, p) ∈ V × Q. (2.19)

We will use Mb > 0 for the boundedness constant of b(·, ·):

|b(v, q)| ≤ Mb‖v‖V ‖q‖Q ∀ v ∈ V , q ∈ Q. (2.20)
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We can introduce an operator B ∈ L(V ; Q∗) and its dual B∗ ∈ L(Q; V ∗) by

〈Bv, q〉 = 〈B∗q, v〉 = b(v, q) ∀ (v, q) ∈ V × Q,

and we have ‖B‖ ≤ Mb.
The abstract mixed hemivariational inequality is the following.

Problem 2.1 Find (u, p) ∈ V × Q such that

a(u, v) + d(u, u, v) − b(v, p) + IΔ(ψ0(γψu; γψv)) ≥ 〈 f , v〉 ∀ v ∈ V , (2.21)

b(u, q) + S(p, q) = 0 ∀ q ∈ Q. (2.22)

In the well-posedness analysis of Problem 2.1, we need to assume

αψc
2
Δ < ma . (2.23)

Then, it is convenient to introduce a constant

M f = c0cΔ|Δ|1/2 + ‖ f ‖V ∗

ma − αψc2Δ
(2.24)

and a subset of V :
K f = {

v ∈ V | ‖v‖V ≤ M f
}
. (2.25)

We will further assume
αψc

2
Δ + cdM f < ma . (2.26)

Conditions such as (2.23) and (2.26) are known as smallness conditions in the literature
[32].

To prepare for the well-posedness analysis of Problem 2.1, we first present a bound-
edness result.

Lemma 2.1 Assume H(a), H(d), H(ψ), H( f ), H(S), H(b), and (2.23). If Prob-
lem 2.1 has a solution (u, p) ∈ V × Q, then u ∈ K f .

Proof We take v = −u in (2.21) to obtain

a(u, u) ≤ −d(u, u, u) + b(u, p) + IΔ(ψ0(γψu;−γψu)) + 〈 f , v〉. (2.27)

By (2.2),a(u, u) ≥ ma‖u‖2V . By (2.6),d(u, u, u) = 0.By (2.22) and (2.15),b(u, p) =
−S(p, p) ≤ 0. The term IΔ(ψ0(γψu;−γψu)) is bounded with (2.12). In addition,
〈 f , v〉 ≤ ‖ f ‖V ∗‖u‖V . Hence, from (2.27), we know that

(
ma − αψc

2
Δ

)
‖u‖2V ≤ c0cΔ|Δ|1/2‖u‖V + ‖ f ‖V ∗‖u‖V ,

from which, we derive that ‖u‖ ≤ M f . �
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Denote byJ : V ∗ → V the Riesz mapping from the Riesz representation theorem:

〈g, v〉 = (J g, v) ∀ g ∈ V ∗, v ∈ V .

We have the next result which is easy to prove (e.g., [1, p. 337]).

Lemma 2.2 Under the assumption H(a), we have the bound

‖I − θ J A‖ ≤ (1 − 2 θ ma + θ2M2
a )1/2 ∀ θ ≥ 0, (2.28)

where I is the identity operator.

Let ũ ∈ K f be arbitrary and fixed. We introduce an auxiliary problem for Prob-
lem 2.1.

Problem 2.2 Find (u, p) ∈ V × Q such that

a(u, v) + d(ũ, u, v) − b(v, p) + IΔ(ψ0(γψu; γψv)) ≥ 〈 f , v〉 ∀ v ∈ V , (2.29)

b(u, q) + S(p, q) = 0 ∀ q ∈ Q. (2.30)

Theorem 2.1 Assume H(a), H(d), H(ψ), H( f ), H(S), H(b), (2.23) and (2.26).
Then Problem 2.2 has a solution (u, p) ∈ V × Q, u being unique and u ∈ K f .

Proof Let θ > 0 be sufficiently small. For anyw ∈ V , consider the problem of finding
(u, p) ∈ V × Q such that

(u, v)V − θ b(v, p) + θ IΔ(ψ0(γψu; γψv)) ≥ �θ (w; v) + θ 〈 f , v〉 ∀ v ∈ V ,

(2.31)

b(u, q) + S(p, q) = 0 ∀ q ∈ Q. (2.32)

where
�θ (w; v) = (w, v)V − θ (a(w, v) + d(ũ, w, v)) . (2.33)

Introduce a Lagrangian functional

Lθ (v, q)= 1

2
‖v‖2V − θ b(v, q) − θ

2
S(q, q)+θ Ψ (v) − �θ (w; v) − θ 〈 f , v〉, (v, q) ∈ V × Q.

(2.34)

This functional has the following four properties.
(P1) For any fixed q ∈ Q, Lθ (·, q) is locally Lipschitz continuous and strongly

convex on V .
(P2) For any fixed v ∈ V , Lθ (v, ·) is continuous and concave on Q.
(P3) lim‖v‖V →∞ Lθ (v, 0) = ∞.
(P4) lim‖q‖Q→∞ infv∈V Lθ (v, q) = −∞.
The strong convexity in (P1) is proved as follows. Denote by ∂Lθ (v, q) the gener-

alized sub-differential of Lθ with respect to v. For v1, v2 ∈ V and v∗
1 ∈ ∂Lθ (v1, q),
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v∗
2 ∈ ∂Lθ (v2, q), similar to the proof of [18, Proposition 3.4], we write

v∗
i = J −1vi − θ B∗q + θ ηi − �θ (w; ·) − θ f , ηi ∈ ∂Ψ (vi ), i = 1, 2,

where J −1vi is the sub-differential of the term ‖vi‖2V /2 = 〈J −1vi , vi 〉/2, B∗q is the
sub-differential of b(vi , q) = 〈B∗q, vi 〉with respect to vi , and note that �θ (w; vi ) and
〈 f , vi 〉 are linear with respect to vi . By using (2.9) and (2.14), we have

〈v∗
1−v∗

2 , v1−v2〉≥‖v1−v2‖2V −θ IΔ(αψ |γψv1−γψv2|2Rm )≥(
1−θ αψc

2
Δ

) ‖v1−v2‖2V .

(2.35)

For θ > 0 sufficiently small, 1 − θ αψc2Δ > 0 and Lθ (·, q) is strongly convex [11,
Proposition 3.1].

Property (P4) is proved as follows. For each fixed q ∈ Q, we know from (P1)
that the mapping v �→ Lθ (v, q) is locally Lipschitz and strongly convex on V . Thus,
Lθ (·, q) has a unique minimizer uq on V . Then,

0 ∈ ∂Lθ (uq , q). (2.36)

By making use of Lemma 2.4 and Proposition 3.3 in [20], we have

Lθ (0, q) − Lθ (uq , q) ≥ 1 − θ αψc2Δ
2

‖uq‖2V .

As is commented in [20], Lemma 2.4 there follows from a combination of Proposition
3.1 and Theorem 3.4 in [11], whereas Proposition 3.3 there follows from the second
paragraph of the proof of Proposition 3.4 in [18]. Hence,

Lθ (uq , q) ≤ θ IΔ(ψ(0)) − θ

2
S(q, q) − 1 − θ αψc2Δ

2
‖uq‖2V . (2.37)

Apply (2.19) with u = 0 and p replaced by q,

αb̃‖q‖Q ≤ sup
‖v‖V +‖r‖Q=1

[−b(v, q) + S(q, r)] . (2.38)

Now from (2.36) and (2.14),

−b(v, q) ≤ −θ−1(uq , v)V+IΔ(ψ0(γψuq ;−γψv))+θ−1�θ (w; v)+〈 f , v〉 ∀ v ∈ V .

(2.39)
By (2.8), the Cauchy-Schwarz inequality, and (2.10),

∣∣∣ψ0(γψuq;−γψv)

∣∣∣ ≤ (
c0 + c1|γψuq |Rm

) |γψv|Rm ,
∣∣∣IΔ(ψ0(γψuq;−γψv))

∣∣∣ ≤
(
c0cΔ|Δ|1/2 + c1c

2
Δ‖uq‖V

)
‖v‖V .
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Hence, from (2.39),

− b(v, q) ≤ Mb(uq) ‖v‖V ∀ v ∈ V (2.40)

where

Mb(uq)=
(
θ−1+c1c

2
Δ

) ‖uq‖V +c0cΔ|Δ|1/2+(
θ−1+Ma+cd‖ũ‖V

) ‖w‖V +‖ f ‖V ∗ .
(2.41)

Use (2.40) and (2.17) in (2.38),

αb̃‖q‖Q ≤ 1

2
S(q, q) + sup

‖v‖V +‖r‖Q=1

[
Mb(uq) ‖v‖ + 1

2
S(r , r)

]
.

Then, for some constant c2 depending on the boundedness constant of S(·, ·), we have
the inequality

αb̃‖q‖Q ≤ 1

2
S(q, q) + Mb(uq) + c2 ∀ q ∈ Q. (2.42)

By the definition (2.41) for Mb(uq), we deduce from (2.42) the implication

‖q‖Q → ∞ �⇒ S(q, q) + ‖uq‖V → ∞. (2.43)

By (2.37), we conclude that Lθ (uq , q) → −∞ as ‖q‖Q → ∞.
Properties (P2) and (P3) are obvious, and so is the local Lipschitz continuity of

Lθ (·, q) in (P1).With the properties (P1)–(P4) established,we are in a position to apply
[10, Chapter VI, Proposition 2.4] and conclude that Lθ has a saddle-point (u, p) ∈
V × Q:

Lθ (u, q) ≤ Lθ (u, p) ≤ Lθ (v, p) ∀ v ∈ V , q ∈ Q. (2.44)

Note that the first inequality in (2.44) is equivalent to

−b(u, q) − 1

2
S(q, q) ≤ −b(u, p) − 1

2
S(p, p) ∀ q ∈ Q,

which is equivalent to (2.32). The second inequality in (2.44) implies 0 ∈ ∂Lθ (u, p),
or

(u, v)V − θ b(v, p) + θ Ψ 0(u; v) − �θ (w; v) − θ 〈 f , v〉 ≥ 0 ∀ v ∈ V .

Since Ψ 0(u; v) ≤ IΔ(ψ0(γψu; γψv)), we see that (2.31) is satisfied. In conclusion,
we have shown that the saddle-point of Lθ is a solution of the problem (2.31)–(2.32).

Now, let (u1, p1) and (u2, p2) both satisfy (2.31)–(2.32): for i = 1, 2,

(ui , v)V − θ b(v, pi ) + θ IΔ(ψ0(γψui ; γψv)) ≥ �θ (w; v) + θ 〈 f , v〉 ∀ v ∈ V ,

(2.45)

b(ui , q) + S(pi , q) = 0 ∀ q ∈ Q. (2.46)
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Take v = u2 − u1 in (2.45) for i = 1, v = u1 − u2 in (2.45) for i = 2, and add the
two inequalities,

‖u1 − u2‖2V ≤ θ b(u1 − u2, p1 − p2) + θ IΔ(ψ0(γψu1; γψu2 − γψu1) + ψ0(γψu2; γψu1 − γψu2)).
(2.47)

From (2.46) for i = 1, 2, we can deduce that

b(u1 − u2, p1 − p2) = −S(p1 − p2, p1 − p2) ≤ 0.

Then from (2.47), (2.9), and (2.10),

‖u1 − u2‖2V ≤ θ IΔ(αψ |γψ(u1 − u2)|2Rm ) ≤ θ αψc
2
Δ‖u1 − u2‖2V .

For θ > 0 sufficiently small, the above inequality implies u1 = u2.
Therefore, for θ > 0 sufficiently small, we can define an operator Pθ : V → V by

Pθ (w) = u where u is the first component of a solution of the problem (2.31)–(2.32).
Let’s prove that Pθ is contractive. For this purpose, for i = 1, 2, letwi ∈ V and denote
ui = Pθ (wi ). Then for some element pi ∈ Q, we have

(ui , v)V − θ b(v, pi ) + θ IΔ(ψ0(γψui ; γψv)) ≥ �θ (wi ; v) + θ 〈 f , v〉 ∀ v ∈ V ,

(2.48)

b(ui , q) + S(pi , q) = 0 ∀ q ∈ Q. (2.49)

Take v = u2 − u1 in (2.48) for i = 1, take v = u1 − u2 in (2.48) for i = 2, and add
to obtain

‖u1 − u2‖2V ≤ θ b(u1 − u2, p1 − p2) + θ IΔ(ψ0(γψu1; γψu2 − γψu1) + ψ0(γψu2; γψu1 − γψu2))

+ �θ (w1 − w2; u1 − u2). (2.50)

By (2.49) for i = 1, 2,

b(u1 − u2, p1 − p2) = −S(p1 − p2, p1 − p2) ≤ 0.

Write

�θ (w1 − w2; u1 − u2) = (w1 − w2, u1 − u2)V
− θ (a(w1 − w2, u1 − u2) + d(ũ, w1 − w2, u1 − u2))

= ((I − θ J A) (w1 − w2), u1 − u2) − θ d(ũ, w1 − w2, u1 − u2)

≤ (‖I − θ J A‖ + θ cdM f
) ‖w1 − w2‖V ‖u1 − u2‖V .

We apply the bound (2.28) for ‖I − θ J A‖. Then from (2.50) and

IΔ(ψ0(γψu1; γψu2 − γψu1) + ψ0(γψu2; γψu1 − γψu2)) ≤ αψc
2
Δ‖u1 − u2‖2V ,
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we find that

‖u1 − u2‖V ≤ κθ‖w1 − w2‖V , κθ := (1 − 2 θ ma + θ2M2
a )1/2 + θ cdM f

1 − θ αψc2Δ
.

For θ > 0 sufficiently small, due to (2.26),

κθ = 1 − θ
(
ma − (αψc

2
Δ + cdM f )

)
+ O(θ2) < 1,

and consequently, Pθ : V → V is a contraction. By the Banach fixed-point theorem,
Pθ has a unique fixed-point u ∈ K f . It is easy to see that for the fixed-point u, there is
an element p ∈ Q such that (u, p) is a solution of Problem 2.2. Similar to Lemma 2.1,
we can show that u ∈ K f . �

Finally, we consider the well-posedness of Problem 2.1.

Theorem 2.2 Assume H(a), H(d), H(ψ), H( f ), H(S), H(b), (2.23) and (2.26).
Then Problem 2.1 has a solution (u, p) ∈ V × Q, u being unique and u ∈ K f .
Moreover, u depends Lipschitz continuously on f .

Proof ByTheorem2.1, we can define an operator P : K f → K f such that for ũ ∈ K f ,
u = P(ũ) is the unique first component of a solution to Problem 2.2. For i = 1, 2, let
ũi ∈ K f and let ui = P(ũi ). Then for some element pi ∈ Q,

a(ui , v) + d(ũi , ui , v) − b(v, pi ) + IΔ(ψ0(γψui ; γψv)) ≥ 〈 f , v〉 ∀ v ∈ V ,

(2.51)

b(ui , q) + S(pi , q) = 0 ∀ q ∈ Q. (2.52)

We take v = u2 − u1 in (2.51) for i = 1, take v = u1 − u2 in (2.51) for i = 2, and
add to obtain

a(u1 − u2, u1 − u2) ≤ d(ũ1, u1, u2 − u1) + d(ũ2, u2, u1 − u2)

+ b(u1 − u2, p1 − p2) + IΔ(ψ0(γψu1; γψu2 − γψu1)

+ ψ0(γψu2; γψu1 − γψu2)). (2.53)

Recalling (2.6), we can write

d(ũ1, u1, u2 − u1) + d(ũ2, u2, u1 − u2) = d(ũ1, u2, u2 − u1) + d(ũ2, u2, u1 − u2)

= d(ũ1 − ũ2, u2, u2 − u1)

and then bound:

d(ũ1, u1, u2 − u1) + d(ũ2, u2, u1 − u2) ≤ cdM f ‖ũ1 − ũ2‖V ‖u1 − u2‖V .
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By (2.52) for i = 1, 2,

b(u1 − u2, p1 − p2) = −S(p1 − p2, p1 − p2) ≤ 0.

So we derive from (2.53) the inequality

ma‖u1 − u2‖2V ≤ cdM f ‖ũ1 − ũ2‖V ‖u1 − u2‖V + αψc
2
Δ‖u1 − u2‖2V .

Thus,

‖u1 − u2‖V ≤ κ ‖ũ1 − ũ2‖V , κ := cdM f

ma − αψc2Δ
.

By the assumption (2.26), κ < 1. Hence, P : K f → K f is a contraction, admitting
a unique fixed-point u ∈ K f . Together with some element p ∈ Q, (u, p) solves
Problem 2.1.

Finally, with i = 1, 2, for fi ∈ V ∗, let (ui , pi ) ∈ V × Q solve Problem 2.1:

a(ui , v) + d(ui , ui , v) − b(v, pi ) + IΔ(ψ0(γψui ; γψv)) ≥ 〈 fi , v〉 ∀ v ∈ V ,

(2.54)

b(ui , q) + S(pi , q) = 0 ∀ q ∈ Q. (2.55)

Take v = u2 − u1 in (2.54) for i = 1, take v = u1 − u2 in (2.55) for i = 2, and add
to obtain

a(u1 − u2, u1 − u2) ≤ d(u1, u1, u2 − u1)+d(u2, u2, u1 − u2)+b(u1−u2, p1− p2)

+ IΔ(ψ0(γψu1; γψu2 − γψu1) + ψ0(γψu2; γψu1 − γψu2)) + 〈 f1 − f2, u1 − u2〉.

The terms on the right-hand side of the above inequality can be bounded as previously
and we deduce that

ma‖u1 − u2‖2V ≤ cdM f ‖u1 − u2‖2V + αψc2Δ‖u1 − u2‖2V + ‖ f1 − f2‖V ∗‖u1 − u2‖V .

Then,

‖u1 − u2‖V ≤ 1

ma − (αψc2Δ + cdM f )
‖ f1 − f2‖V ∗ .

Thus, u depends Lipschitz continuously on f . �
We comment that Theorem 2.2 is rather general. It can be applied to studies of

Navier-Stokes hemivariational inequalities by taking S ≡ 0 in Problem 2.1, of Stokes
hemivariational inequalities by taking S ≡ 0 and d ≡ 0 in Problem 2.1. We can also
apply Theorem 2.2 in the finite-dimensional settings to study mixed finite element
methods for solving the hemivariational inequalities using velocity-pressure pairs with
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the discrete inf-sup condition by taking S ≡ 0 or stabilized mixed finite element
methods using velocity-pressure pairs without the discrete inf-sup condition. Since
the generalized subdifferential reduces to the (convex) subdifferential when the locally
Lipschitz function is convex, a slight variation of Theorem2.2 can be applied to studied
of Stokes or Navier-Stokes variational inequalities and their mixed finite element
approximations.

3 A Navier-Stokes Hemivariational Inequality

In this section we consider a hemivariational inequality for the Navier-Stokes equa-
tions. Let Ω ⊂ R

d (d ≤ 3 in applications) be an open bounded connected set with
a Lipschitz boundary. The boundary is split into two parts: ∂Ω = ΓD ∪ ΓS with
|ΓD| > 0, |ΓS| > 0, and ΓD ∩ ΓS = ∅. We will impose a Dirichlet boundary condi-
tion on ΓD and a no-leak slip boundary condition of friction type on ΓS . Since Ω is
a Lipschitz domain, the unit outward normal ν exists a.e. on ∂Ω . For a vector-valued
function u defined on the boundary, the normal component and the tangential com-
ponent are uν = u · ν and uτ = u − uνν, respectively. With the velocity field u and
the pressure p, we define the strain tensor ε(u) = 1

2 (∇u + (∇u)T ) and the stress
tensor σ = −p I + 2με(u), where I is the identity matrix, μ > 0 is the viscosity
coefficient. The normal component and the tangential component of σ are σν = ν ·σν

and σ τ = σν − σνν. The identities

u · v = uνvν + uτ · vτ , (σν) · v = σνvν + σ τ · vτ

are useful in derivation of the hemivariational inequality of the following boundary
value problem of the Navier-Stokes equations

− div(2μ ε(u)) + (u·∇)u + ∇ p = f in Ω, (3.1)

div u = 0 in Ω, (3.2)

supplemented by the boundary conditions

u = 0 on ΓD, (3.3)

uν = 0, −σ τ ∈ ∂ψ(uτ ) on ΓS . (3.4)

Here, f and ψ are given functions, ψ : ΓS ×R
d → R is locally Lipschitz continuous

with respect to its second argument. To simplify the notation, we write ψ(uτ ) for
ψ(x, uτ ), and ∂ψ is the subdifferential of ψ in the sense of Clarke with respect to its
second argument. The condition (3.4) is a no-leak slip boundary condition of friction
type. The first part uν = 0 reflects the fact that the fluid can not pass throughΓS outside
the domain. The second part represents a friction condition, relating the frictional force
σ τ with the tangential velocity uτ .
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For the study of the problem (3.1)–(3.4), we introduce function spaces

V = {v ∈ H1(Ω) | v = 0 on ΓD, vν = 0 on ΓS}, (3.5)

Q = L2
0(Ω) =

{
q ∈ L2(Ω) | IΩ(q) = 0

}
(3.6)

for the velocity and pressure variables. As a consequence of Korn’s inequality [33, p.
79],

V � v �→ ‖ε(v)‖0,Ω :=
⎛
⎝

∫

Ω

d∑
i, j=1

|εi j (v)|2 dx
⎞
⎠

1
2

defines a normwhich is equivalent to the standard H1(Ω)-norm on V .We use ‖·‖V =
‖ε(·)‖0,Ω for the norm on V and use the standard L2(Ω) norm for Q. Then we
introduce forms

a(u, v) = 2μ
∫

Ω

ε(u) : ε(v) dx ∀ u, v ∈ V , (3.7)

b(v, q) =
∫

Ω

q divv dx ∀ v ∈ V , q ∈ Q, (3.8)

d(u, v,w) =
∫

Ω

(u·∇)v·w dx ∀ u, v ∈ V . (3.9)

Note that the bilinear form a(·, ·) is continuous and coercive on V × V :

|a(u, v)| ≤ 2μ‖u‖V‖v‖V , a(v, v) = 2μ‖v‖2V ∀ u, v ∈ V . (3.10)

The bilinear form b(·, ·) is bounded on V × Q:

|b(v, q)| ≤ c ‖v‖V‖q‖Q ∀ v ∈ V , q ∈ Q. (3.11)

The trilinear form d(·, ·, ·) is continuous on V × V × V :

|d(u, v,w)| ≤ cd‖u‖V‖v‖V‖w‖V ∀ u, v,w ∈ V . (3.12)

Moreover,
d(u, v, v) = 0 ∀ u, v ∈ V . (3.13)

Concerning the super-potential ψ , we assume the following properties:
H(ψ). ψ : ΓS × R

d → R is such that

(i) ψ(·, z) is measurable on ΓS for all z ∈ R
d and ψ(·, 0) ∈ L1(ΓS);

(ii) ψ(x, ·) is locally Lipschitz on R
d for a.e. x ∈ ΓS ;

(iii) |η|Rd ≤ c0 + c1|z|Rd ∀ z ∈ R
d , η ∈ ∂ψ(x, z) a.e. x ∈ ΓS with c0, c1 ≥ 0;

(iv) ψ0(x, z1; z2 − z1) + ψ0(x, z2; z1 − z2) ≤ αψ |z1 − z2|2
Rd ∀ z1, z2 ∈ R

d a.e.
x ∈ ΓS with αψ ≥ 0.
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We assume f ∈ V ∗. By a standard procedure, we can derive the following Navier-
Stokes hemivariational inequality for the problem (3.1)–(3.4).

Problem 3.1 Find u ∈ V and p ∈ Q such that

a(u, v) + d(u, u, v) − b(v, p) + IΓS (ψ
0(uτ ; vτ )) ≥ 〈 f , v〉 ∀ v ∈ V , (3.14)

b(u, q) = 0 ∀ q ∈ Q. (3.15)

Problem 3.1 is a special case of the abstract Problem 2.1 with the spaces and forms
defined by (3.5)–(3.9), Δ = ΓS , γψv = vτ for v ∈ V , m = d, and S ≡ 0. For the

constant cΔ occurring in (2.10), we have cΔ = λ
−1/2
0 , λ0 > 0 being the smallest

eigenvalue of the eigenvalue problem:

u ∈ v,

∫

Ω

d∑
i, j=1

εi j (u) εi j (v) dx = λ

∫

ΓS

uτ ·vτ ds ∀ v ∈ V .

We verify that H(a) is valid with A ∈ L(V ; V ∗), Ma = 2μ, ma = 2μ; H(ψ) is
valid by assumption; H( f ) is valid since f ∈ V ∗; H(S) is trivial since S ≡ 0; H(b)
is valid and (2.19) follows from the standard inf-sup condition [16, 38]

sup
v∈V 0

b(v, p)

‖v‖V ≥ αb‖p‖Q ∀ p ∈ Q, (3.16)

where V 0 = H1
0(Ω) is a subspace of V . From (3.16), it can be shown that there exists

a constant αb̃ > 0 such that

sup
(v,q)∈V×Q

a(u, v) − b(v, p) + b(u, q)

‖v‖V + ‖q‖Q ≥ αb̃

(‖u‖V + ‖p‖Q
) ∀ (u, p) ∈ V × Q.

(3.17)
Let

M f := c0λ
−1/2
0 |ΓS|1/2 + ‖ f ‖V∗

2μ − αψλ−1
0

. (3.18)

Theorem 3.1 Assume H(ψ) and

αψλ−1
0 < 2μ, αψλ−1

0 + cdM f < 2μ. (3.19)

Then, Problem 3.1 has a unique solution (u, p) ∈ V × Q, ‖u‖V ≤ M f , and (u, p) ∈
V × Q depends Lipschitz continuously on f ∈ V ∗.

Proof We can apply Theorem 2.2 for the special case S ≡ 0 to conclude that Prob-
lem 3.1 has a solution (u, p) ∈ V×Q, u is unique and depends Lipschitz continuously
on f , and ‖u‖V ≤ M f .
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Uniqueness of p is proved by applying the inf-sup condition (3.16). Suppose both
(u, p1) and (u, p2) are solutions of Problem 3.1. Then from (3.14),

a(u, v) + d(u, u, v) − b(v, p1) = 〈 f , v〉 ∀ v ∈ V 0,

a(u, v) + d(u, u, v) − b(v, p2) = 〈 f , v〉 ∀ v ∈ V 0.

Subtract the two equalities,

b(v, p1 − p2) = 0 ∀ v ∈ V 0.

Apply the inf-sup condition (3.16),

αb‖p1 − p2‖Q ≤ sup
v∈V 0

b(v, p1 − p2)

‖v‖V = 0.

We conclude that p1 = p2.
To prove the Lipschitz continuous dependence of p on f , let f 1, f 2 ∈ v∗ and let

(u1, p1), (u2, p2) ∈ V × Q be the corresponding solutions of Problem 3.1. Then,
from (3.14),

a(u1, v) + d(u1, u1, v) − b(v, p1) = 〈 f 1, v〉 ∀ v ∈ V 0,

a(u2, v) + d(u2, u2, v) − b(v, p2) = 〈 f 2, v〉 ∀ v ∈ V 0.

Subtract the two equalities to obtain

b(v, p1−p2) = a(u1−u2, v)+d(u1, u1, v)−d(u2, u2, v)−〈 f 1− f 2, v〉 ∀ v ∈ V 0.

(3.20)
Since v ∈ V 0,

d(u1, u1, v) − d(u2, u2, v) = −d(u1, v, u1) + d(u2, v, u2)

= d(u2 − u1, v, u2) + d(u1, v, u2 − u1).

Thus, by the Sobolev embedding v ↪→ L4(Ω) and boundedness of u1 and u2 in V ,

|d(u1, u1, v) − d(u2, u2, v)| ≤ c
(
‖u1‖L4(Ω) + ‖u2‖L4(Ω)

)
‖u1 − u2‖L4(Ω)‖v‖V

≤ c ‖u1 − u2‖V‖v‖V .

Then we derive from (3.20) that

b(v, p1 − p2) ≤ c
(‖u1 − u2‖V + ‖ f 1 − f 2‖V ∗

) ‖v‖V .

This inequality and the inf-sup condition (3.16) together imply

‖p1 − p2‖Q ≤ c
(‖u1 − u2‖V + ‖ f 1 − f 2‖V∗

)
.
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Since u depends Lipschitz continuously on f , we deduce from the above inequality
that p also depends Lipschitz continuously on f . �

We comment that solution existence and uniqueness can also be proved by applying
the theory of pseudomonotone operators (cf. [19]). Nevertheless, the approach pre-
sented here is more accessible and more general, and it can be naturally applied in the
study of stabilized mixed finite element methods to solve Navier-Stokes hemivaria-
tional inequalities.

4 Stabilizedmixed finite element method for the Navier-Stokes
hemivariational inequality

We now consider stabilizedmixed finite element methods for solving Problem 3.1. For
simplicity, we assumeΩ is a polygonal/polyhedral domain in this section. We express
ΓS as the union of closed flat components with disjoint interior: ΓS = ∪lS

l=1ΓS,l .
Let {T h} be a regular family of partitions of Ω into triangles or quadrilaterals in
two-dimensions, or tetrahedrons or hexahedrons in three-dimensions. We assume the
partitions are compatible with the boundary splitting Γ = ΓD ∪ ΓS in the sense that
each face of any element on the boundary lies entirely in ΓD or ΓS . For a generic
element K ∈ T h , denote by hK = diam(K ) the diameter of K . The mesh-size of T h

is h = max{hK | K ∈ T h}. For a triangular or tetrahedral element K , let Pk(K ) be
the space of the polynomials of degree ≤ k on K . Corresponding to the partition T h

into triangular or tetrahedral elements, we introduce the finite element spaces

V h = {vh ∈ C0(Ω) | vh |K ∈ P1(K )d ∀ K ∈ T h} ∩ V , (4.1)

Qh
1 = {qh ∈ C0(Ω) | qh |K ∈ P1(K ) ∀ K ∈ T h}, (4.2)

Qh
0 = {qh ∈ L2(Ω) | qh |K ∈ P0(K ) ∀ K ∈ T h}. (4.3)

For quadrilateral or hexahedral partitions, let K̂ be a reference element, and let Qk(K̂ )

be the space of polynomials of individual degrees ≤ k on K̂ . For a quadrilateral or
hexahedral element K , denote by FK ∈ Q1(K̂ ) the one-to-one mapping from K̂ to
K . We then introduce the corresponding finite element spaces

V h = {vh ∈ C0(Ω) | vh |K ◦ FK ∈ Q1(K̂ )d ∀ K ∈ T h} ∩ V , (4.4)

Qh
1 = {qh ∈ C0(Ω) | qh |K ◦ FK ∈ Q1(K̂ ) ∀ K ∈ T h}, (4.5)

and Qh
0 as in (4.3). In the following, we let Qh = Qh

1 ∩ Q for Qh
1 defined by (4.2) or

(4.5), or Qh = Qh
0 ∩ Q for Qh

0 defined by (4.3).
The stabilizing term Sh(p, q) is defined by

Sh(p, q) = IΩ((p − Πh p)(q − Πhq)) ∀ p, q ∈ Q, (4.6)

where the projection operator Πh has the following property.
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H(Πh) Πh ∈ L(L2(Ω); L2(Ω)); Πh = Πh
0 : L2(Ω) → Qh

0 for Q
h = Qh

1 ∩ Q with
Qh

1 defined by (4.2) or (4.5), and Πh = Πh
1 : L2(Ω) → Qh

1 for Qh = Qh
0 ∩ Q with

Qh
0 defined by (4.3).
Introduce the extended bilinear form for (uh, ph), (vh, qh) ∈ V h × Qh :

b̃h((uh, ph); (vh, qh)) = a(uh, vh) − b(vh, ph) + b(uh, qh) + Sh(ph, qh). (4.7)

The following inf-sup condition result for the bilinear form (4.7) is shown in [30]; see
[5] in the case V h is replaced by V h

0 = V h ∩ H1
0(Ω).

Lemma 4.1 There exists a positive constant c independent of h such that

sup
(vh ,qh)∈V h×Qh

b̃h((uh, ph); (vh, qh))

‖vh‖V + ‖qh‖Q ≥ c
(
‖uh‖V + ‖ph‖Q

)
∀ (uh, ph) ∈ V h × Qh,

(4.8)

sup
(vh ,qh)∈V h

0×Qh

b̃h((0, ph); (vh, qh))

‖vh‖V + ‖qh‖Q ≥ c ‖ph‖Q ∀ ph ∈ Qh . (4.9)

We now consider the stabilized mixed finite element method for Problem 3.1.

Problem 4.1 Find (uh, ph) ∈ V h × Qh such that

a(uh, vh) + d(uh, uh, vh) − b(vh, ph) + IΓS (ψ
0(uhτ ; vhτ )) ≥ 〈 f , vh〉 ∀ vh ∈ V h,

(4.10)

b(uh, qh) + Sh(ph, qh) = 0 ∀ qh ∈ Qh .

(4.11)

Theorem 4.1 Assume H(ψ), (3.19), and H(Πh). Then, there is a unique solution
(uh, ph) ∈ V h × Qh to Problem 4.1, ‖uh‖V ≤ M f , and (uh, ph) ∈ V h × Qh

depends Lipschitz continuously on f ∈ V ∗.

Proof Similar to the proof of Theorem 3.1, we can apply Theorem 2.2 in the finite-
dimensional setting and conclude that under the stated conditions, Problem 4.1 has a
solution (uh, ph) ∈ V h ×Qh , uh is unique, ‖uh‖V ≤ M f with M f defined by (3.18),
and uh depends Lipschitz continuously on f ∈ V ∗. To show the uniqueness of ph ,
let (uh, ph1 ), (u

h, ph2 ) ∈ V h × Qh be solutions of Problem 4.1. Then,

b(uh, qh) + Sh(ph1 , q
h) = 0 ∀ qh ∈ Qh,

b(uh, qh) + Sh(ph2 , q
h) = 0 ∀ qh ∈ Qh .

Thus,

Sh(ph1 − ph2 , q
h) = 0 ∀ qh ∈ Qh .
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In particular, Sh(ph1 − ph2 , p
h
1 − ph2 ) = 0 and hence,

ph1 − ph2 = Πh(ph1 − ph2 ). (4.12)

In the case Qh = Qh
1 ∩ Q, we have Πh = Πh

0 : L2(Ω) → Qh
0, and in the case

Qh = Qh
0 ∩ Q, we have Πh = Πh

1 : L2(Ω) → Qh
1. In either case, ph1 − ph2 is a

continuous piecewise constant function with a vanishing integral over Ω . Therefore,
ph1 = ph2 .

For the Lipschitz continuous dependence of ph on f , let f 1, f 2 ∈ V ∗ and let
(uh1, p

h
1 ), (u

h
2, p

h
2 ) ∈ V h × Qh be the corresponding solutions of Problem 4.1. Then

we can derive from the defining relations for the solutions that

a(uh1 − uh2, v
h) + d(uh1, u

h
1, v

h) − d(uh2, u
h
2, v

h) − b(vh, ph1 − ph2 )

= 〈 f 1 − f 2, v
h〉 ∀ vh ∈ V h

0, (4.13)

b(uh1 − uh2, q
h) + Sh(ph1 − ph2 , q

h) = 0 ∀ qh ∈ Qh . (4.14)

From (4.9),

‖ph1 − ph2‖Q ≤ c sup
(vh ,qh)∈V h

0×Qh

−b(vh, ph1 − ph2 ) + Sh(ph1 − ph2 , q
h)

‖vh‖V + ‖qh‖Q .

By making use of (4.13) and (4.14), we can rewrite the numerator of the fraction in
the above inequality as

〈 f 1 − f 2, v
h〉−a(uh1 − uh2, v

h)−
[
d
(
uh1, u

h
1, v

h) − d
(
uh2, u

h
2, v

h)]−b
(
uh1 − uh2, q

h),

which can be bounded by

c
(
‖uh1 − uh2‖V + ‖ f 1 − f 2‖V ∗

)
‖vh‖V + c ‖uh1 − uh2‖V‖qh‖Q

as in the last part of the proof of Theorem 3.1. Therefore,

‖ph1 − ph2‖Q ≤ c
(
‖uh1 − uh2‖V + ‖ f 1 − f 2‖V ∗

)
,

and ph depends Lipschitz continuously on f . �
Now we turn to an error analysis. Define a bilinear form

b̃((u, p); (v, q)) = a(u, v) − b(v, p) + b(u, q), (u, p), (v, q) ∈ V × Q. (4.15)

Then (3.14)–(3.15) are equivalent to

b̃((u, p); (v, q)) + d(u, u, v) + IΓS (ψ
0(uτ ; vτ )) ≥ 〈 f , v〉 ∀ (v, q) ∈ V × Q,

(4.16)
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whereas (4.10)–(4.11) are equivalent to

b̃h((uh, ph); (vh, qh)) + d(uh, uh, vh) + IΓS (ψ
0(uhτ ; vhτ )) ≥ 〈 f , vh〉∀ (vh, qh) ∈ V h × Qh .

(4.17)

For (vh, qh) ∈ V h × Qh arbitrary, we write

2μ ‖uh − vh‖2V ≤ b̃h((uh − vh, ph − qh); (uh − vh, ph − qh))

= b̃h((uh, ph); (uh − vh, ph − qh))

+ b̃h((−vh,−qh); (uh − vh, ph − qh))

= b̃h((uh, ph); (uhvh, ph − qh)) − b̃((u, p); (uh − vh, ph − qh))

+ b̃((u − vh, p − qh); (uh − vh, ph − qh)) − Sh(qh, ph − qh).
(4.18)

From (4.17),

b̃h((uh, ph); (uh − vh, ph − qh)) ≤ d(uh, uh, vh − uh)

+IΓS (ψ
0(uhτ ; vhτ − uhτ )) − 〈 f , vh − uh〉.

From (4.16),

−b̃((u, p); (uh − vh, ph − qh)) ≤ d(u, u, uh − vh)

+IΓS (ψ
0(uτ ; uhτ − vhτ )) − 〈 f , uh − vh〉.

Use these two relations in (4.18) to obtain

2μ ‖uh − vh‖2V ≤ I1 + I2 + I3 + I4, (4.19)

where

I1 = d(u, u, uh − vh) + d(uh, uh, vh − uh),

I2 = IΓS (ψ
0(uτ ; uhτ − vhτ ) + ψ0(uhτ ; vhτ − uhτ )),

I3 = b̃((u − vh, p − qh); (uh − vh, ph − qh)),

I4 = −Sh(qh, ph − qh).

Let us bound each of these four terms. Write

I1 = d(u, u − uh, uh − vh) + d(u − uh, uh, uh − vh)

= d(u, u − uh, u − vh) + d(u − uh, uh, uh − vh),
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where we used the equality d(u, u − uh, uh − u) = 0. Then

I1 ≤ cd‖u‖V‖u − uh‖V‖u − vh‖V + cd‖u − uh‖V‖uh‖V‖uh − vh‖V
≤ cdM f ‖u − uh‖V‖u − vh‖V + cdM f ‖u − uh‖V‖uh − vh‖V .

We then use the triangle inequality

‖u − uh‖V ≤ ‖u − vh‖V + ‖uh − vh‖V (4.20)

and the modified Cauchy-Schwarz inequality

a b ≤ ε a2 + (4 ε)−1b2 ∀ a, b ∈ R, ∀ ε > 0, (4.21)

and find that for some ε-dependent constant c > 0,

I1 ≤ (
cdM f + 2 ε

) ‖uh − vh‖2V + c ‖u − vh‖2V .

To bound the term I2, we first notice that by (1.2),

ψ0(uτ ; uhτ − vhτ ) ≤ ψ0(uτ ; uhτ − uτ ) + ψ0(uτ ; uτ − vhτ ),

ψ0(uhτ ; vhτ − uhτ ) ≤ ψ0(uhτ ; uτ − uhτ ) + ψ0(uhτ ; vhτ − uτ ).

By H(ψ) (iv),

ψ0(uτ ; uhτ − uτ ) + ψ0(uhτ ; uτ − uhτ ) ≤ αψ |uτ − uhτ |2Rd .

By H(ψ) (iii),

ψ0(uτ ; uτ − vhτ ) ≤ (
c0 + c1|uτ |Rd

) |uτ − vhτ |Rd ,

ψ0(uhτ ; vhτ − uτ ) ≤
(
c0 + c1|uhτ |Rd

)
|uτ − vhτ |Rd .

Hence, using the Cauchy-Schwarz inequality and the bounds ‖u‖V ≤ M f , ‖uh‖V ≤
M f ,

I2 ≤ αψ‖uτ − uhτ‖2L2(ΓS)
+ IΓS ((2 c0 + c1|uτ |Rd + c1|uhτ |Rd )|uτ − vhτ |Rd )

≤ αψ‖uτ − uhτ‖2L2(ΓS)
+ c ‖uτ − vhτ‖L2(ΓS)

≤ αψλ−1
0 ‖u − uh‖2V + c ‖uτ − vhτ‖L2(ΓS)

.

Applying the triangle inequality (4.20) and the modified Cauchy-Schwarz inequality
(4.21) to the first term on the right side, we obtain

I2 ≤
(
αψλ−1

0 + ε
)

‖uh − vh‖2V + c
(
‖u − vh‖2V + ‖uτ − vhτ‖L2(ΓS)

)
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for some ε-dependent constant c > 0. For

I3 = a(u − vh, uh − vh) − b(uh − vh, p − qh) + b(u − vh, ph − qh),

we use the boundedness of the bilinear forms a(·, ·) and b(·, ·), and apply the modified
Cauchy-Schwarz inequality (4.21) to the term

a(u − vh, uh − vh) ≤ 2μ ‖uh − vh‖V‖u − vh‖V .

As a result, for some ε-dependent constant c > 0,

I3 ≤ ε ‖uh − vh‖2V + c
(
‖u − vh‖2V + ‖p − qh‖2Q + ‖u − vh‖V‖ph − qh‖Q

)
.

Write

I4 = Sh(p − qh, ph − qh) − Sh(p, ph − qh)

and bound the term as follows:

I4 ≤
(
‖p − qh‖Q + ‖p − Πh p‖Q

)
‖ph − qh‖Q .

Summarizing, from (4.19) and the above inequalities,

(
2μ − αψλ−1

0 − cdM f − 4 ε
)

‖uh − vh‖2V
≤ c

(
‖u − vh‖2V + ‖p − qh‖2Q + ‖uτ − vhτ‖L2(ΓS)

)

+ c
(
‖u − vh‖V + ‖p − qh‖Q + ‖p − Πh p‖Q

)
‖ph − qh‖Q .

Then take ε =
(
2μ − αψλ−1

0 − cdM f

)
/8 to get

‖uh − vh‖2V ≤ c
(
‖u − vh‖2V + ‖p − qh‖2Q + ‖uτ − vhτ‖L2(ΓS)

)

+ c
(
‖u − vh‖V + ‖p − qh‖Q + ‖p − Πh p‖Q

)
‖ph − qh‖Q .

From this inequality and the triangle inequality (4.20), we obtain

‖u − uh‖2V ≤ c
(
‖u − vh‖2V + ‖p − qh‖2Q + ‖uτ − vhτ‖L2(ΓS)

)

+ c
(
‖u − vh‖V + ‖p − qh‖Q + ‖p − Πh p‖Q

)
‖ph − qh‖Q .

(4.22)
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By (4.9),

c ‖ph − qh‖Q ≤ sup
(vh ,rh)∈V h

0×Qh

−b(vh, ph − qh) + Sh(ph − qh, rh)

‖vh‖V + ‖rh‖Q . (4.23)

Take v = vh ∈ V h
0 arbitrary in (3.14) and (4.10):

a(u, vh) + d(u, u, vh) − b(vh, p) = 〈 f , vh〉,
a(uh, vh) + d(uh, uh, vh) − b(vh, ph) = 〈 f , vh〉.

Then,

b(vh, p − ph) = a(u − uh, vh) + d(u, u, vh) − d(uh, uh, vh)

= a(u − uh, vh) + d(u − uh, u, vh) + d(uh, u − uh, vh).

From (3.15) and (4.11), for any qh ∈ Qh ,

b(u, qh) = 0,

b(uh, qh) + Sh(ph, qh) = 0.

Thus,

Sh(ph, rh) = −b(uh, rh) = b(u − uh, rh) ∀ rh ∈ Qh .

So we can write

− b(vh, ph − qh) + Sh(ph − qh, rh)

= −b(vh, ph − p) − b(vh, p − qh) + b(u − uh, rh) − Sh(qh, rh)

= a(u − uh, vh) + d(u − uh, u, vh) + d(uh, u − uh, vh)

− b(vh, p − qh) + b(u − uh, rh) + Sh(p − qh, rh) − Sh(p, rh).

Note that

d(u − uh, u, vh) + d(uh, u − uh, vh) ≤ cd
(
‖u‖V + ‖uh‖V

)
‖u − uh‖V‖vh‖V

≤ c ‖u − uh‖V‖vh‖V
since ‖u‖V and ‖uh‖V are bounded by M f . Therefore,

− b(vh, ph − qh) + Sh(ph − qh, rh)

≤ c
(
‖u − uh‖V + ‖p − qh‖Q

)
‖vh‖V

+ c
(
‖u − uh‖V + ‖p − qh‖Q + ‖p − Πh p‖Q

)
‖rh‖Q .
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Use this inequality in (4.23) to obtain

‖ph − qh‖Q ≤ c
(
‖u − uh‖V + ‖p − qh‖Q + ‖p − Πh p‖Q

)
. (4.24)

This inequality, combined with the triangle inequality ‖p − ph‖Q ≤ ‖p − qh‖Q +
‖ph − qh‖Q , leads to

‖p − ph‖Q ≤ c
(
‖u − uh‖V + ‖p − qh‖Q + ‖p − Πh p‖Q

)
. (4.25)

From (4.22) and (4.24),

‖u− uh‖V ≤ c
(
‖u − vh‖V + ‖uτ − vhτ ‖1/2

L2(ΓS)
+ ‖p − qh‖Q + ‖p − Πh p‖Q

)
. (4.26)

Then from (4.25),

‖p − ph‖Q ≤ c
(
‖u − vh‖V + ‖uτ − vhτ‖1/2L2(ΓS)

+ ‖p − qh‖Q + ‖p − Πh p‖Q
)

.

(4.27)
Based on (4.26)–(4.27), we can then derive optimal order error estimates for the

pressure projection stabilized P1-P1 and P1-P0 mixed finite element solutions by an
application of the standard finite element interpolation error bounds [7], under certain
solution regularity assumptions. We summarize the results in the form of a theorem.

Theorem 4.2 Assume H(ψ), (3.19), and H(Πh). Let (u, p) and (uh, ph) be the solu-
tions of Problems 3.1 and 4.1. Then for any (vh, qh) ∈ V h × Qh,

‖u − uh‖V + ‖p − ph‖Q
≤ c

(
‖u − vh‖V + ‖uτ − vhτ‖1/2L2(ΓS)

+ ‖p − qh‖Q + ‖p − Πh p‖Q
)

.

Assume the solution regularities u ∈ H2(Ω)d , uτ |ΓS,l ∈ H2(ΓS,l)
d , 1 ≤ l ≤ lS,

p ∈ H1(Ω), and assume the projection error bound

‖q − Πhq‖Q ≤ c h ‖q‖H1(Ω) ∀ q ∈ H1(Ω). (4.28)

Then we have the error bound

‖u − uh‖V + ‖p − ph‖Q ≤ c h. (4.29)

Following [5, Section 6], we can choose Πh
0 as the piecewise L2-projection oper-

ator: Πh
0 |K = ΠK

0 for K ∈ T h and

ΠK
0 q = 1

|K |
∫

K
q dx ∀ q ∈ L2(K ),
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and we can choose Πh
1 : L2(Ω) → Qh

1 as a Clément-like interpolant. For both pro-
jection operators, the error bound (4.28) holds.

5 Numerical results

In the numerical example, the domain Ω is two-dimensional. We consider the super-
potential function of the form

ψ(vτ ) =
∫ |vτ |

0
g(t) dt, g(t) = (a − b)e−αt + b, α > 0, a > b > 0.

Then the boundary condition

−σ τ ∈ ∂ψ(uτ ) on ΓS

is equivalent to

|σ τ | ≤ g(0) if uτ = 0, σ τ = −g(|uτ |) uτ

|uτ | if uτ �= 0, on ΓS . (5.1)

For the purpose of introducing Algorithm 1 below for solving Problem 4.1, let us
reformulate Problem 3.1 and its finite element approximation. From (5.1), we know
that σ τ ∈ L∞(ΓS). Introduce a Lagrangian multiplier λ = −σ τ /g(|uτ |), which
belongs to the set

Λ = {
λ ∈ L∞(ΓS) | ‖λ‖L∞(ΓS) ≤ 1

}
.

Then another weak formulation of the problem (3.1)–(3.4) is the following.

Problem 5.1 Find u ∈ V , p ∈ Q, and λ ∈ Λ such that
⎧
⎪⎨
⎪⎩

a(u, v) + d(u; u, v) − b(v, p) + IΓS (g(|uτ |)λ · vτ )=〈 f , v〉 ∀ v ∈ V , (5.2a)
b(u, q) = 0 ∀ q ∈ Q, (5.2b)
λ · uτ = |uτ | a.e. on ΓS . (5.2c)

Here, (5.2a) is derived from (3.1) together with the boundary conditions and the
definition of λ, whereas λ ∈ Λ and (5.2c) are equivalent to (5.1) for λ and σ τ related
by λ = −σ τ /g(|uτ |). The stabilized mixed finite element method for Problem 5.1 is
the following.

Problem 5.2 Find uh ∈ V h , ph ∈ Qh , and λh ∈ Λ such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(uh, vh) + d(uh; uh, vh) − b(vh, ph) + IΓS (g(|uhτ |)λh · vhτ )

= 〈 f , vh〉 ∀ vh ∈ V h, (5.3a)

b(uh, qh) + Sh(ph, qh) = 0 ∀ qh ∈ Qh, (5.3b)

λh · uhτ = |uhτ | a.e. on ΓS . (5.3c)
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Note that λh ∈ Λ and (5.3c) together imply g(|uhτ |)λh ∈ ∂ψ(uhτ ). Hence, we can
eliminate λh and derive Problem 4.1 from Problem 5.2. In other words, (uh, ph) ∈
V h × Qh obtained from Problem 5.2 is the solution of Problem 4.1.

We use the following iterative algorithm to solve Problem 5.2 [17].

Algorithm 1
Step 1. Choose uh0 ∈ Vh , λh1 ∈ L∞(ΓS) and ρ > 0, n := 1.

Step 2. With λhn known, compute (uhn , phn ) ∈ Vh × Qh from

{
a(uhn , vh) + d(uhn−1; uhn−1, v

h) − b(vh , phn ) + IΓS (g(|uhn−1,τ |) λhn ·vhτ ) = 〈 f , vh〉 ∀ vh ∈ Vh ,

b(uhn , qh) + Sh(phn , qh) = 0 ∀ qh ∈ Qh .

(5.4)
Step 3. Set n := n + 1 and compute λhn+1 = P(λhn + ρuhn,τ ).

Step 4. Go to Steps 2 and 3 until ‖uhn − uhn−1‖V < εtol .

In Step 3, P is the component-wise operator projecting each component to [−1, 1].
Algorithm 1 is known as the projection method, also called the Uzawa algorithm, cf.
[17] for similar algorithms in solving elliptic variational inequalities. In our simula-
tions, the trapezoidal rule is adopted for the term IΓS (·), we choose uh0 = 0, λh

1 = 0,
and εtol = 10−6.

In the numerical experiment, we let Ω = (0, 1) × (0, 1) be the unit square and
we take the parameter μ = 1. The impermeability and slip boundary conditions are
imposed along the bottom of the domain ΓS = (0, 1) × {0} and a homogeneous

Table 1 Errors of stabilized P1–P1 FE solutions

h a = 0.255 b = 0.25 a = 0.85 b = 0.8 a = 5.01 b = 5.0

Eu
L2 Eu

H1 E p
L2 Eu

L2 Eu
H1 E p

L2 Eu
L2 Eu

H1 E p
L2

2−3 1.65e−02 1.30e−01 3.87e−01 1.64e−02 1.30e−01 4.01e−01 1.78e−02 2.46e−01 3.67e−01

2−4 4.59e−03 4.42e−02 1.20e−01 4.60e−03 4.45e−02 1.22e−01 4.77e−03 1.12e−01 1.13e−01

2−5 1.19e−03 1.44e−02 3.61e−02 1.19e−03 1.57e−02 3.80e−02 1.23e−03 5.26e−02 3.48e−02

2−6 2.87e−04 4.63e−03 1.03e−02 2.89e−04 5.45e−03 1.12e−02 3.10e−04 2.55e−02 1.08e−02

Order 2.05 1.64 1.81 2.05 1.53 1.76 1.99 1.04 1.69

Table 2 Errors of stabilized P1-P0 FE solutions

h a = 0.255 b = 0.25 a = 0.85 b = 0.8 a = 5.01 b = 5.0

Eu
L2 Eu

H1 E p
L2 Eu

L2 Eu
H1 E p

L2 Eu
L2 Eu

H1 E p
L2

2−3 6.33e−02 4.38e−01 1.37e+00 6.09e−02 4.75e−01 1.51e+00 6.21e−02 5.28e−01 1.36e+00

2−4 2.43e−02 1.86e−01 5.66e−01 2.41e−02 2.05e−01 6.24e−01 2.46e−02 3.45e−01 5.57e−01

2−5 7.23e−03 6.61e−02 2.15e−01 7.27e−03 7.26e−02 2.33e−01 7.51e−03 9.10e−02 1.94e−01

2−6 1.87e−03 2.11e−02 7.87e−02 1.89e−03 2.29e−02 8.37e−02 2.05e−03 3.55e−02 6.29e−02

Order 1.95 1.65 1.45 1.94 1.66 1.48 1.87 1.36 1.62
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Fig. 1 Errors of velocity and pressure for stabilized P1-P1 (a–c) and P1-P0 (d–f) FE solutions

Fig. 2 Mesh (left), velocity field (middle), pressure isobars (right)

Dirichlet boundary condition along the remaining portion of the boundary. The source
function is defined by f 0 = −div(2ε(u0)) + (u0·∇)u0 + ∇ p0 with

u0(x, y) =
(

20x2(1 − x)2y(1 − y)(1 − 2y)
−20x(1 − x)(1 − 2x)y2(1 − y)2

)
, p0(x, y)=10(2x − 1)(2y − 1).

We use a sequence of uniform triangular meshes with the interval [0, 1] being split
into h−1 equal sub-intervals for h = 1/8, 1/16, · · · . The pressure stabilized P1-P1
and P1-P0 finite element pairs on triangular meshes are used to solve the problem.
In computing the numerical solution errors, we use u∗ = u1/256 and p∗ = p1/256 as
the reference solution. The numerical convergence order of the numerical solution is
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Fig. 3 Tangential components uτ and σ τ , and |u| for different thresholds:C1 (left),C2 (middle),C3 (right)
with stabilized P1-P1 FE pair

computed by the log function in MATLAB as follows:

Order = log(eh/eh/2)/ log(2),

where eh = ‖uh − u∗‖L2 for Eu
L2(h), eh = |uh − u∗|H1 for Eu

H1(h), and eh =
‖ph − p∗‖L2 for E p

L2(h).
We let α = 10 and experiment on three sets of a and b: (C1) a = 0.255, b = 0.25;

(C2) a = 0.85, b = 0.8; (C3) a = 5.01, b = 5.0.
Errors of different finite element approximations are reported in Tables 1 and 2 and

Figs. 1, 2 and 3. For the numerical results in Table 1, we used the iteration parameter
ρ = 100; for the numerical results in Table 2, we used ρ = 200 and ρ = 10. For
these choices of the value of ρ, the Uzawa algorithm converges in at most one or
two dozens of steps. The results are consistent with the theoretical results derived in
Sect. 4. The friction function g(|uτ |), the tangential component of velocity along the
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slip boundary ΓS , the tangential component of stress tensor σ are drawn in Fig. 3, all
with the mesh-size h = 1/32.
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