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ABSTRACT 

We study the extrapolation method for the numerical solution of elliptic bound- 
ary value problems on corner domains. Most papers on the extrapolation method for 
solving differential equations require smoothness assumptions on exact solutions, 
which do not hold for boundary value problems on corner domains. We conjecture 
that  asymptotic error expansions exist as long as there is enough smoothness on the 
input data except the domain. This is confirmed by our theoretical result on 
asymptotic error expansions for model problems on a rectangle. Numerical examples 
suggest that  similar results hold for problems on more general corner domains, 
although it seems very difficult to prove them. © Elsevier Science Inc., 1997 

1. I N T R O D U C T I O N  

The  Richa rdson  ex t r apo la t ion  technique  is an  efficient approach  to  in- 
crease the  accuracy  of numer ica l  solut ions  of m a t h e m a t i c a l  problems.  The  
success of the  ex t r apo l a t i on  technique  relies on the  exis tence of a sympto t i c  
error  expansions.  The  survey pape r  [1] summar izes  m a n y  i m p o r t a n t  results ,  
ava i lab le  up  to  1971, on the  app l i ca t ion  of ex t r apo la t ion  in numerica l  
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integration and numerical ODEs. The monograph [2] presents a systematic 
treatment of the application of the extrapolation technique on the finite 
difference method for solving ordinary and partial differential equations, as 
well as on methods for solving singular linear systems and integral equa- 
tions. The extrapolation technique is also useful in accelerating the conver- 
gence of rootfinding methods, cf. [3, 4]. 

In the context of the finite element method, a first step was made in [5] 
on using the extrapolation technique for convergence acceleration and a 
posteriori error estimates. There, asymptotic error expansions are proved 
under assumptions that  the triangulation is uniform and the solution is 
smooth. Numerical results indicate the existence of asymptotic error expan- 
sions for numerical solutions of problems on re-entrant corner domains. In 
[6], asymptotic error expansions for finite element solutions over arbitrary 
initial triangulations are proved, under assumptions that  exact solutions are 
sufficiently smooth and mesh refinement follows certain patterns. Subse- 
quent work in this direction focused on decreasing the smoothness require- 
ment on exact solutions. In most papers on this topic, however, asymptotic 
error expansions are proved under the assumption of extra degree smooth- 
ness on exact solution than actual problems allow. A typical result is the 
following (cf. [7]). Assume the solution domain ~ is a polygon which can be 
triangulated by line segments parallel to three fixed directions. Assume the 
solution of the problem 

- A u = f  i n l )  
(1.1) 

u = g on 01-I 

is smooth: u E C 4, "(f~), for some • ~ (0, 1] (for the definition of C 4' ~(1~), 
see Section 2). Then the linear finite element solution u a admits the 
expansion 

uh(x) = u(x)  + e( x, h 2 + o (h4)  

at every nodal point x, where h is the meshsize. We notice that the 
smoothness of the solution of (1.1) depends on the largest internal angle of 
the polygon 1~, and in general, we do not have the smoothness u E C ~, ~(1~), 
no matter  how smooth are the input data f and g. Indeed, let o ~ (0, 21r] 
be the largest internal angle of l~, and denote a = 7r/ca >/ 1/2.  Then for 
smooth functions f and g, the solution u ~ H"+1-8(I~) for any small 

> 0, and in general, u ~ H "+ 1(~) (cfi [8]). 
The dilemma on the smoothness requirement was circumvented in [9]. 

The main result of that  paper is presented in the following. Consider solving 
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a Dirichlet problem for Poisson's equation by linear finite elements. Assume 
[l  is a polygon, and %, 1 ~< j ~< n, axe its internal angles. Under assump- 
tions on the smoothness of the given data  and certain local uniform 
condition on mesh refinement, at every nodal point x, there is an asymp- 
totic error expansion 

u h ( x )  = u ( x )  + ~ ek( x, u)hZk ~ /~ '  + O(h2[log hi), (1.2) 
k = l  

where, hk, 1 ~< k ~< n, are local meshsize parameters,  h = max l~  k~ nhk. 
Numerical experiments suggest that  the extrapolation technique can be 

successfully applied without extra smoothness assumptions on exact solu- 
tions. Furthermore, in asymptotic  error expansions, higher order terms 
exist, depending on the smoothness of the given data  other than the domain. 
The main theoretical result of the paper is asymptotic  error expansions of 
numerical solutions of Poisson's equation problem (1.1) on rectangles. We 
only assume the smoothness of l a n d  g, and do not require any smoothness 
assumptions on exact solutions (which exhibit singularities of the form 
r 2 In r around corners). Error expansions of numerical solutions contain as 
many terms as is allowed by the smoothness of the given f and g. The 
result is proved only for the model problem (1.1) on a rectangle. However, 
the importance of the result is that  it shows what one might expect on the 
form of asymptotic  error expansions and when the asymptotic error expan- 
sions might be true, for numerical solutions of more general problems with 
more general meshes. In the next section, we present some preliminary 
results to be used later. The main result is proved in Section 3. In the last 
section, we give some numerical examples to show that  similar asymptotic 
error expansions are likely to exist for problems on more general re-entrant 
corner domains. 

2. PRELIMINARIES 

Our model problem is (1.1), with l)  a rectangle whose sides are parallel to 
the coordinate axes. Without  loss of generality, we may assume l I  to be the 
unit square, I I  -- (0, 1) 2. We denote its four sides by e/, 1 <~ i <~ 4, i.e., 

4 - 012 = U/= 1 e/. We need a result from [10] on the error expansion for the 
five-point finite difference approximation of a harmonic function. To state 
the result, let N be a positive integer, h = 1/N,__~ h --- {(ih, jh) h 1 <<. i, j <~ 
N -  1}, a l l  A = {(ih, jh) ~ 01~ I 0 < i, j <<. N}, l l  h = IIh t.) c~llh, and (ei)  h 
= e ~ N  c~[I~, 1 ~< i ~ 4 .  
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THEOREM 2.1. ([10]) Consider the problem 

- A U = O  i n l ~ ,  
(2.1) U =  ¢ on at),, 

where ¢ is continuous on each of the four sides of the square. Define a finite 
difference solution U h by 

- A h U  h = 0  i n ~ h ,  

U h = ~b on a t l h ,  
(2.2) 

where A h is the five-point finite difference operator. Assume 

fo' ~b(x,O)sin n l r x d x -  h ~--1 ¢ - ~ , 0  sin N 

t 

E d,(n)nP, h"+ O(h~'+O, Vn>~l (2.3) 
i=1 

and similar relations on the other three sides e2, e3, and e 4. Here, Pi >1 O, 
0 = ~0 < T1 < "",  t a positive integer, and di(n) bounded functions of 
n >1 1. Then, at each mesh point x ~ t l  h, 

U(x) - Uh(x) = ~ s~(x) h ~' + O(h~r+l), (2.4) 
i=1 

where, si( x) are bounded for x E ~ ,  { ~ i } = { 2 J + 7  k l j , k > t 0 , j +  k >  
0 , 2 j  + 7 k ~< Tt+ 1} and o-i+ 1 > O" i ( i  /> 1). 

We  also need the  following discrete m a x i m u m  principle. 

LEMMA 2.2. 

satisfies 

([2]) The solution of the finite difference problem 

{ --AhV h = ~  in t~h ,  

7/h = 0 on al~ h 

ma~l~nl < cma~l~l. 
11 h ll~ 
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For I = (0, 1), l >/0 an integer, 0 < a ~< 1, we denote the space 

c', ~( I) = { v e  C( I)  l v (j) ~ C ( I ) , I  ~<j~< l, 

Iv")(~) - e f t  y)l 
sup < ~ ] ~ y  I x -  YI" 

with the norm 

Iv")(~) - e f t  y)l 
Ilvllc'.~(z) = E suplv(/)( x)l + sup 

j=o x~I x~y I x -  yl" 

We will use [ x] to denote the integer part  of x. 

(2.5) 

(2.6) 

LEMMA 2.3. I f  f E C l'"( I), 1 >1 2, h = l / N ,  then 

-~ f(O) + 2  ~., f (  ih) + f (1)  - x )dx  
i=1 

U/2] B2 ~ h2J[ f(2J-1)(1) _ f(2J-1)(0)] 
j=l  

where, { Be j} are Bernoulli numbers. 

+ O ( h ' + ° ) ,  ( 2 . 7 )  

PROOF. 

where 

When l is odd, l = 2k + 1, we have ([11]), 

h i  N-1 ] f o l f ( x )  dx -~ f(O) + 2 ~_, f ( i h )  + f (1 )  - 
i=1 

[~1 B:j . 
= j=l  ~ h2~[ f(2j-1)(1) -- f(2j-1)(O)] + R k , 

oo 

Rk  = h2k+lfol ( - -1)k-1  E 2 
j = l  

sin 2qr jNx  . . . . . . . . .  x) dx. 
(2--j)2k----~r I, . . . .  ,( 

(2.8) 
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oo 

Rk = h2k+l( -- 1) k-1 E 2 g - ,  fohsin(21rjNt) t + j=l  (27rJ) 2k+l i=0E f(2k+l)( ih) dt 

oo 
= h Z k + l ( _ l ) k _ l  ]~2 2 N-1fohsin(27rjNt)  j=, (21rj) 2k+' i=OE (f(2k+l)(t + ih) 

"(ih)) dt 

Thus,  

oo 
IRk[ < h 2~+1 ~ N - l f h c t " d t  

2 

j=l ( 2 ~ J )  2k+1 i=o ~o 

When  l = 2 k is even, we have the  relat ion (2.8) with 

:~ cos2~'jNx (2k) 
R k ---- h 2 k f  1 ( - -  1) k-1 E 2 (3)'2"ff-'2k f (Z) dx. 

"o j=l 

W e  can prove  similarly t ha t  I Rkl <~ ch 2k+ ~ 
The  following extension result  can be found in [12]. 

LEMMA 2.4. Assume D is an open set in R ~, 1 >t 0 is an integer, and 
a ~ ( 0 , 1 ] .  Then, there exists a bounded mapping E from CI'~(D) to 
C l' "(R~),  such that Ell-~ = f, for a n y f e  C t' "(D).  

In L e m m a  2.4, the  space C ~' " ( D )  is defined similarly as C l' " ( I )  in (2.5), 
i.e, C ~, " ( D )  contains  all the functions v whose der ivat ives  up to order l are 
cont inuous on D, and the derivat ives DZv of order l satisfy the  H51der 
condition with exponent  a ,  

ID%( z)  - D%( y)[ 
sup < ¢~. 
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3. A S Y M P T O T I C  E R R O R  E X P A N S I O N S  

W e  consider numerical  solutions of the  prob lem (1.1) on the  unit  square 
1~. Assume,  for some integer I t> 2, and a • (0, 1], 

S•  C',"(n), g •  n~=lC~'"(e,). (3.1) 

Assume the numerical  scheme for solving (1.1) can be wri t ten  in the form 

[t/2l 
- -Ah uh = E h2JF~t°-)2j, + hl+'~R(°) 

j=0 
[ t~ 21 

uh --= E h2JGl-2j, a + ht+"St,,, 
j=o 

in ~ h ,  

on Ol'~ h. 

(3.2) 

o) In (3.2), b-~l, O = f, at, . = g  are the  given data .  For  j >/ 1, F~z°2j,. • 
Ct- 2J'~(,(~), Gl_ 2j, a • f) 4=lel- 2J'a( ei). Usually, F~l°)2j,. is some linear 
combina t ion  of (2j)~th der ivat ives  of f, and on each side, e~, 1 < i ~< 4, 
Gl_2j ' ~ is some linear combina t ion  of (2 j ) - th  der ivat ives  of g. The  remain-  
der coefficients R~°). and Sl, .  satisfy R~° ) • C ( ~ )  and Sz, ,~ ~- N ai= 1C(-ei) • 

Let us write 

.h = + h2 Vo (3.3) 

where u0 h and v0 h are defined by  the problems 

{ --AhUo h = f  in12h,  

u~ = 9 on 012h, 
(3.4) 

and 

[ t / 2 ] -  1 

--AhVho = ~_. h2/~(°) ht-2+~R(0) 
'~ x l - 2 - 2 j ,  a -['- l , a  

j=O 
[ t~ 21- a 

Vho y" h2JGt_z_zj, + hl-2+'~ S a l ,  ot 
j = O  

in ~ h ,  

on 01~ h. 

(3.5) 
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We consider the problem (3.4) first. Let C be a circular region containing 
~ .  We extend f ~  C I' "(12) to f ~  C '  " (C)  (cf. Lemma 2.4). The problem 

{ - A ~ = f  in  C,  ( 3 . 6 )  

~ = 0  on OC 

has a unique solution ~ ~ C 1+2' " ( ~ )  (cf. [13]). Denote 5 = u - ~. Then 

{ - A g  = 0 in 1), 
(3.7) 

~ = g -  ~ o n O ~ .  

Let 5h and gh be the five-point finite difference solutions of 5 and ~ on 
~ ,  respectively. Using Theorem 2.1 and Lemma 2.3, we get the expansion 

Hence, 

[ l/2l 
~_. 8!°)h 2i + O( h l+'~) in ~h.  
i=l 

Writing 

- u = - + 

[1/21 
(0) 2i si h + O( h z+'~) i n a  h. (3.8) 

i=l 

~t h =  ~ + hew h (3.9) 

and using the following relation 

{ - A h ~  h = f  i n l l h ,  

~ = ~ on 0f~ h, 

we find that  w h satisfies 

[//21-1 
_ A h w h  ~ /~2ir(0) + hl-2+~/~ (°) in ~h, t~ ~Jl-2-2i, a l,a 

i=0 

w ~ -- 0 on dish, 

(3.10) 

where, L(l°_ ) 2- 2 i, ~ is some linear combination of (2 i + 4)-th derivatives of ~. 
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Since 5 ~ Cl+2'a(ll), we have L(~°)2_2,,, ~ CI-2-2i '"(11) and 
c ( ~ ) .  

Combining (3.3), (3.8), (3.9), and (3.10), we then have 

U/21 
u h - u = h~u~ + E s{ °~h~i + O ( h ' + ° ) ,  

i = l  
(3.11) 

where u, h solves 

[I/2]/j~=l [ 1 - A h u  ~ = h2J~'_)2_2j,~ + h'-2+~n?2~ ~ 

[l 

U h = h 2 J G l _ 2 _ 2 j ,  + h l - 2 + a S  l: vt 
j=O 

in ~h, 

on 0~h ,  

(3.12) 

(I) = R(o) with ~1)_2, .~ = ~°)2_2j,~ + L (°) ~ CI-2-2J '~(fl) ,  R1-2,~ l,~ 

, 

Applying the same technique, a mathematical induction leads to the 
following result. 

THEOREM 3.1. Under the smoothness assumption (3.1) on the input 
data, we have the asymptotic error expansion 

[1/21 
u h = u + ~ sih2~+ O(h  t+~) in l~lh, (3.13) 

i = 1  

where, si( x) are finite for x ~ 1~. 

The error expansion (3.13) holds as long as the assumption (3.1) is true. 
We observe that  the boundary value g is allowed to have jumps at the 
corners. 

An immediate consequence of Theorem 3.1 is 

COROLLARY 3.2. For the five-point finite difference solution u h, we have 
the error expansion (3.13). 

Now consider uniform triangulations of the types shown in Figure 1. 
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/ / / /  
/ / / /  
/ / / /  
/ / / /  

FIG. I. 

or 

\ \ \ \  
\ 

\ \ \ \  
Uniform triangulations of the square. 

Denote h the meshsize. After quite a bit of manipulation, it can be shown 
that  the linear finite element solution u ~ solves a finite difference scheme of 
the form 

[ I/21 

-A u E 
j=O 

u ~ -- g on O~h, 

+ ht+"R (°) in ~h ,  l , a  
(3.14) 

where, T~t, °) = f, F~t°)j,, ~ C t-2j' "(12), j >/ 1. Hence, from Theorem 3.1, we 
obtain 

COROLLARY 3.3. Assume (3.1). For linear finite element solutions over 
the above shown uniform meshes, we have 

[t/21 
uh( x) = U( X) + Z si( x) h 2i+ O(h '+ ~) at any nodal pointx. (3.15) 

i = l  

In practice, actual computation of the load vector involves numerical 
integrations. As long as the employed numerical quadrature has certain 
symmetry property to allow an evenpower term expansion for components 
of the load vector as in (3.14), we have the asymptotic error expansion 
(3.15). 

Notice that the number of terms in the error expansion (3.13) is deter- 
mined by the smoothness of the input data. Although we proved the result 
only for the special case of a square, numerical experiments show that for 
problems on general corner domains, we still have asymptotic error expan- 
sions which contain as many terms as the smoothness of the input data 
allow. 
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We remark  t ha t  since the solution of the model  p rob lem has singularities 
of the form r 2 In r near  each corner, the opt imal  m a x i m u m  norm error 
es t imate  for linear finite element solutions is O(h 2 Iln hi). On the other  hand,  
at  any  fixed nodal  point,  the a sympto t i c  error expansion (3.15) shows tha t  
the pointwise error is O(h2). 

4. N U M E R I C A L  E X A M P L E S  

We recall a s tandard  ext rapola t ion  procedure based on an asympto t ic  
error expansion.  Assume T o is a desired quant i ty ,  T h is its numerical  
approx imat ion  depending on a discret izat ion pa rame te r  h. Assume we have 
the relat ion 

T h =  T o +  c~h ~ + c 2h ~ + ' "  + c ~ h  ~ + - . - ,  (4.1) 

where, {a  i} is a sequence of increasing posit ive numbers .  Assume we have a 
sequence of numerical  approx imat ions  Th, T2-1h, . . . ,  T2-~ h. Denote  ~r(0)~2 Jh = 
T2-jh, 0 ~< j ~< n. For  i -- 1 , . . . ,  n, we compute  

2%•(i-1) 1 2 _ ( j + l ) h -  T(2~_~h 1) 
T (~) = 0~< j~<  n - i .  (4.2) 

2-J~ 2 ~ - 1 ' 

Then  we have 

Tt = To + O( h (4.3) 

EXAMPLE 4.1. In the first example,  we consider the  problem 

- A u =  1 i n • =  ( 0 , 1 )  2 
(4.4)  

u =  0 on c~t2. 

We  have a formula  for the exact  solution, 

16 ~ s i n [ ( 2 i  + 1 )~rx l s in [ (2  j + 1)~" Yl 

u ( z , y )  = ~ .4 ,  j~o, = ( 2 i +  1 ) ( 2 j +  1 ) [ ( 2 i +  1) 2 + ( 2 j +  1)2] " 

We  divide the  unit  interval  [0, 1] into N equal par ts ,  and set h = 1/N.  
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Then we solve the problem by using linear finite elements on the meshes 
shown in Figure 1. We have the asymptotic error expansion (3.15), where 1 
can be an arbitrarily large positive integer. So in the extrapolation algorithm 
(4.2), we use a~ = 2 i. We then compute solution errors at various nodal 
points. The numerical results completely agree with the theory. For in- 
stance, at the point (0.25, 0.75), we have Table 1, where we denote u h' k the 
numerical solution after k steps of extrapolation. 

We see that extrapolating from the three solutions corresponding to 
h = 1/4,  1 /8  and 1/16, we get a numerical solution with error .9781 X 10 -6, 
which is smaller than the numerical solution error (.2505 X 10 -5) corre- 
sponding to h = 1/128. At other nodal points, we have the similar improve- 
ment on the numerical solution accuracy by using extrapolation. 

EXAMPLE 4.2. Next, we consider a crack domain problem. The domain is 
shown in Figure 2. 

When we impose Dirichlet boundary conditions along the two folds of the 
crack OA, the leading singularity of the solution of a Poisson equation is of 
the type r1/2sin(9/2),  where (r, O) is the local polar coordinate system at 
the crack tip O (cf. [8]). We solve the following problem 

- A u - - 0  i n l l ,  (4.5) 
u =  g on c~ll 

such that the exact solution u = r l /2s in(9/2) .  Because the problem is 
symmetric with respect to the central horizontal line, we only need to solve 
a half problem, and we use linear finite elements on uniform meshes 
"sketched in Figure 1. From (1.2), we see that the leading term in the error 
expansion is c 1 h. Numerical experiments show that at any nodal point, we 
have the asymptotic error expansion 

u h =  u +  c l h +  c 2h 2 + c 3h 3 + . . . .  

TABLE 1 

U -  U h ~ t -  I t  h' 1 U -  ~t h ' 2  

h = 1/4 .2317 X 10 -2 .5791 × 10 -4 .9781 × 10 -6 
h = 1/8 .6228 x 10 -3 .4536 × 10 -~ 
h = 1/16 .1591 X 10 -3 
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O A 

( - 1 , - l )  (1,-I) 

FIG. 2. A crack domain. 

Indeed,  a t  a typ ica l  po in t  in the  domain ,  say (0.5, 0.5), we have  Tab le  2 for 

numer ica l  results .  
W i t h  h = 1 /128 ,  the  l inear  f inite e lement  solut ion gives ( u -  

uhX0.5, 0.5) = .2257 × 10 .3 which is larger  t han  the  error  of the  ex t rapo-  
la ted  solut ion ob ta ined  from the  th ree  solut ions  corresponding to h = 1 /4 ,  
1 /8 ,  and  1 /16 .  

EXAMPLE 4.3. W e  then  solve the  p rob lem (4.5) over the  L-shape  domain  
shown in F igure  3. 

W e  select the  funct ion g so t h a t  the  solut ion of the  b o u n d a r y  value  
p rob lem is u = r 2 / 3 s i n ( 2 0 / 3 ) ,  which is the  leading s ingular i ty  associa ted  
wi th  an L-shape  corner  (when a same type  of b o u n d a r y  condi t ion  is specified 
a round  the  corner). Once again,  because  of the  s y m m e t r y  of the  p rob lem 
wi th  respect  to  the  line x + y = 0, we only need solve a half  problem.  W e  
use l inear  finite e lements  on uniform meshes s imilar  to  those  in F igure  1. 
Numer ica l  resul ts  show tha t  a t  any  nodal  point ,  we have the  a sympto t i c  
error  expans ion  

u h = u + c 1 h 4/3 + c 2 h 2 + c 3 h s/3 + c 4 h 4 + ... , 

TABLE 2 

U -  U h U -  ~h, 1 U -  U h'2 U -  U h'3 

h = 1 /4  .6674 × 10 -2 .3320 × 10 -3 - .2470 × 10 -4 - .6558 × 10 -6 
h =  1 /8  .3503× 10 -2 .6446× 10 -4 - . 3 6 6 1 ×  10 5 
h = 1/'16 .1784 × 10 -2 .1337 × 10 -4 
h =  1/32 .8986× 10 -3 
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(-1,1) 

0 

(1,1) 

/ 
(1,0) 

( - 1 , - 1 )  (0, -1)  

FIG. 3. An L-shape domain. 

i.e., the error expansion contains all the terms of the form h 2j and h 4j/3, for 
any positive integer j. As in the last example, we list some numerical results 
at the nodal point  (0.5, 0.5). 

For  the linear element solution on a mesh with h = 1/128,  the error is 
.3642 × 10 -4 at (0.5, 0.5). We observe dramat ic  improvement  on the accu- 
racy of numerical solutions using the extrapolat ion technique. 

In the previous examples, we used uniform meshes for the numerical 
computat ions,  which was possible due to the special shapes of the domains 
of the problems. In the case of a boundary  value problem with a polygonal 
domain, it is no longer possible to use uniform meshes. W h a t  can be done for 
solving the problem is first to  construct  an initial mesh with certain degree 
of refinement in neighborhoods of corners, and then to uniformly refine the 
mesh subsequently. Numerical  experiments in [5] still suggest the existence 
of asymptot ic  error expansions and, as is shown in the numerical examples 
presented here, in the error expansions the exponents of the meshsize are 
positive integers and positive integer multiples of numbers  of the form 
2 ¢ r / w ,  where oJ is an internal angle of the polygonal domain.  

T h e  w o r k  was  s u p p o r t e d  by R e s e a r c h  G r a n t s  C o u n c i l  o f  the  H o n g  K o n g  

U P G C .  

TABLE 3 

u -  u h u -  u h' 1 u -  u h'2 u -  u h'3 

h =  1/4  .3074× 10 -2 .1904× 10 -3 - . 9 2 2 4 ×  10 -5 - .5144X 10 6 
h = 1/8  .1335 X 10 - 2  .4067 × 10 -4 -.1019 × 10 -5 
h = 1/16 .5543 × 10 -3 .940,1 x 10 -5 
h =  1/32 .2256× 10 -3 
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