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Summary. We give a relatively complete analysis for the regularization method,
which is usually used in solving non-differentiable minimization problems. The model
problem considered in the paper is an obstacle problem. In addition to the usual
convergence result and a-priori error estimates, we provide a-posteriori error estimates
which are highly desired for practical implementation of the regularization method.
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1. An obstacle problem

The purpose of the paper is to give a relatively complete analysis of the regularization
method for solving non-differentiable minimization problems. In addition to the usual
convergence analysis and a-priori error estimates, we will also provide a-posteriori
error estimates.

The model problem to be solved is an obstacle problem considered in [15]. Let
Ω be a Lipschitz domain. Letg ∈ H1/2(∂Ω) be non-negative. Denote the energy
functional

E(v) =
∫
Ω

(
1
2
|∇v|2 + v

)
dx .(1.1)

Then the obstacle problem is to find

u ∈ H1
g(Ω) : E(u) = inf{E(v) : v ∈ H1

g(Ω), v ≥ 0 in Ω}(1.2)

where,H1
g(Ω) =

{
v ∈ H1(Ω) : v = g on ∂Ω

}
. In this form, the problem is equivelent

to an elliptic variational inequality of the first kind. The existence of a unique solution
of the problem follows from the standard result on the unique solvability of variational
inequalities of the first kind ([7]), see also the proof of Theorem 1.1 below.

To develop the regularization method, we write the obstacle problem in another
form.
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Theorem 1.1. Denote

Ẽ(v) =
∫
Ω

(
1
2
|∇v|2 + |v|

)
dx .(1.3)

Then the problem (1.2) is equivalent to the problem of finding

u ∈ H1
g(Ω), such thatẼ(u) = inf{Ẽ(v) : v ∈ H1

g(Ω)} .(1.4)

Proof. We first show that the problem (1.4) has a unique solution. Sinceg ∈
H1/2(∂Ω), it is the trace of anH1(Ω) function. In this paper, we will use the same
letterg to denote anH1(Ω) function whose trace on the boundary is the given function
g ∈ H1/2(∂Ω). Let us introduce a change of variables

v0 = v − g, for v ∈ H1(Ω) .

Then a solution of the problem (1.4) is

u = u0 + g(1.5)

where,u0 ∈ H1
0(Ω) minimizes the functional∫

Ω

(
1
2
|∇v0|2 +∇v0∇g + |v0 + g|

)
dx

among all the functionsv0 ∈ H1
0(Ω). This problem is equivalent to an elliptic varia-

tional inequality of the second kind,

u0 ∈ H1
0(Ω) : a(u0, v0 − u0) + j(v0)− j(u0) ≥ l(v0 − u0), ∀ v0 ∈ H1

0(Ω)(1.6)

where,

a(u0, v0) =
∫
Ω

∇u0∇v0 dx

j(v0) =
∫
Ω

|v0 + g| dx

l(v0) = −
∫
Ω

∇g∇v0 dx .

Obviously,a is a continuous,H1
0(Ω)-elliptic bilinear form,j : H1

0(Ω) → R is proper,
convex and continuous,l is a continuous linear form onH1

0(Ω). So the variational
inequality (1.6), and thus the problem (1.4), has a unique solution ([7]).

To prove that the problems (1.2) and (1.4) are equivalent, we need the following
result (cf. [6]).

If v ∈ H1(Ω), then|v| ∈ H1(Ω), and

∇|v| =

 ∇v, if v > 0
0, if v = 0
−∇v, if v < 0 .

A simple consequence is the equality,

‖∇|v|‖L2(Ω) = ‖∇v‖L2(Ω) .(1.7)
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For the solutionu of (1.4), we have|u| ∈ H1(Ω), |u| = g on ∂Ω, and by (1.7),

Ẽ(|u|) = Ẽ(u) .

By the uniqueness of a solution of the problem (1.4), we thus haveu = |u| ≥ 0 in Ω.
Hence, the solution of (1.4) is also the unique solution of the problem (1.2).ut

From (1.5), we see that the solutionu of the problem (1.4) satisfies

u ∈ H1
g(Ω) : a(u, v − u) +

∫
Ω

(|v| − |u|) dx ≥ 0, ∀ v ∈ H1
g(Ω) .(1.8)

This relation will be used in Sect. 3.
A major difficulty in solving the problem (1.4) numerically is the treatment of

the non-differentiable term
∫
Ω
|v| dx. In practice, there are several approaches to

circumvent the difficulty. One approach is to introduce a Lagrange multiplier for the
non-differentiable term, and the problem (1.4) (and its discretization) is solved by
an iterative procedure, for detail, see, e.g., [7], [10]. In this paper, we will give a
detailed analysis of another approach, namely, the regularization method. The idea of
the regularization method is to approximate the non-differnetiable term by a sequence
of differentiable ones. The regularization method has been widely used in applications
(cf. [7], [8], [12], [14]). An approximating differentiable sequence in the regularization
method depends on a small parameterε > 0. The convergence is obtained whenε
goes to 0. However, asε→ 0, the conditioning of a regularized problem deteriorates.
So, there is a tradeoff in the selection of the regularization parameter. Theoretically,
to get more accurate approximations, we need to use smallerε. On the other hand, if
ε is too small, the numerical solution of the regularized problem cannot be computed
accurately. Thus, it is highly desirable to have a-posteriori error estimates which can
give us computable error bounds once we have solutions of regularized problems.
We can use the a-posteriori error estimates in devising a stopping criterion in actual
computations: if the estimated error is within the given error tolerance, we accept the
solution of the regularized problem as the exact solution; and if the estimated error
is large, then we need to use a smaller value for the regularization parameterε. An
adaptive algorithm can be developed based on the a-posteriori error analysis. We will
discuss such an adaptive algorithm elsewhere.

We remark that for a direct finite dimensional discretization of the problem (1.4),
an efficient solution method is the nonlinear SOR method; for detail, cf. [7], [8].

In [13], the regularization technique is combined with the finite element method in
solving a general class of free boundary problems. In particular, for the problem (1.4)
considered in this paper, the regularization sequence in [13] corresponds to the choice
1 in the next section. Whereas in [13] no specific form of the non-differentiable term
is needed, here we are satisfied with the explicit formulation of the problem (1.4), for
the main purpose of the paper is to show how to derive a-posteriori error estimates
for solutions of the regularized problems. The same technique presented in this paper
can be used to derive a-posteriori error estimates for the regularization method for
other variational inequality problems.

In the next section, we will introduce various forms of the regularization method,
mention some convergence results and a-priori error estimates. In Sect. 3, we provide
a-posteriori error estimates for the regularization methods. In the last section, we
consider the regularization method for the discretizations of the obstacle problem, and
present in particular the corresponding a-posteriori error estimates for the solutions
of the regularized discrete problems.
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2. The regularization method

As mentioned in the last section, in a regularization method, we approximate the non-
differentiable termj(v0) by a sequence of differentiable ones,jε(v0) =

∫
Ω
φε(v0+g) dx.

The regularized problem is

u0,ε ∈ H1
0(Ω) : a(u0,ε, v0 − u0,ε) + jε(v0)− jε(u0,ε)

≥ l(v0 − u0,ε), ∀ v0 ∈ H1
0(Ω)(2.1)

or

uε ∈ H1
g(Ω) : a(uε, v − uε) +

∫
Ω

(φε(v)− φε(uε)) dx ≥ 0, ∀ v ∈ H1
g(Ω) .(2.2)

The relation between the solutions of the two problems isuε = u0,ε + g. We expect,
under certain conditions,u0,ε → u0 (equivalently,uε → u) as ε → 0. See the
discussion below.

For a given non-differentiable term, there are many ways to construct sequences
of differentiable approximations. Let us list five natural choices of a regularizing
sequence for the obstacle problem considered in this paper (the first two choices are
taken from [12]).

Choice 1.jε(v0) =
∫
Ω

φ1
ε(v0 + g) dx, where,

φ1
ε(t) =


t− ε

2
, if t ≥ ε

1
2ε

t2, if |t| ≤ ε

−t− ε

2
, if t ≤ −ε

.

Choice 2.jε(v0) =
∫
Ω

φ2
ε(v0 + g) dx, where,

φ2
ε(t) =

ε

ε + 1

( |t|
ε

)ε+1

.

Choice 3.jε(v0) =
∫
Ω

φ3
ε(v0 + g) dx, where,

φ3
ε(t) =

|t|ε+1

ε + 1
.

Choice 4.jε(v0) =
∫
Ω

φ4
ε(v0 + g) dx, where,

φ4
ε(t) =

√
t2 + ε2 .

Choice 5.jε(v0) =
∫
Ω

φ5
ε(v0 + g) dx, where,
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φ5
ε(t) =


t, if t ≥ ε
1
2

(
t2

ε
+ ε

)
, if |t| ≤ ε

−t, if t ≤ −ε .
Let us first consider convergence of the regularization method. We follow a frame-

work given in [8].

Lemma 2.1. Let V be a Hilbert space,a : V × V → R a continuous,V -elliptic
bilinear form,j : V → R proper, non-negative, convex, weakly continuous,f a linear
continuous form onV . Assumejε : V → R is proper, non-negative, convex and weakly
l.s.c. (lower semi-continuous). Assume further that

jε(v) → j(v), ∀ v ∈ V(2.3)

uε → u weakly inV =⇒ j(u) ≤ lim inf
ε→0

jε(uε) .(2.4)

Let u, uε ∈ V be the solutions of the variational inequalities

a(u, v − u) + j(v)− j(u) ≥ f (v − u), ∀ v ∈ V(2.5)

and
a(uε, v − uε) + jε(v)− jε(uε) ≥ f (v − uε), ∀ v ∈ V(2.6)

respectively. Then,uε → u in V , asε→ 0.

The proof is standard, so we will only give a sketch. From the assumptions made,
both problems have unique solutions. Using the natural assumption thatjε(v) ≥ 0 (we
can achieve this by adjustingf ), we see that{uε} is bounded inV . So a subsequence,
still denoted by{uε}, converges weakly tou in V . The inequality

a(uε, v − uε) + jε(v)− jε(uε) ≥ f (v − uε), ∀ v ∈ V

implies

a(uε, v) + jε(v)− f (v − uε) ≥ a(uε, uε) + jε(uε), ∀ v ∈ V .

Then use the assumptions (2.3) and (2.4) to obtain

a(u, v) + j(v)− f (v − u) ≥ a(u, u) + j(u), ∀ v ∈ V

i.e., the limitu is a solution of the problem (2.5). Since a solution of (2.5) is unique, the
whole sequence{uε} converges weakly tou in V . To show the strong convergence,
we takev = uε in (2.5) andv = u in (2.6), and add the two resulting inequalities to
obtain

a(u− uε, u− uε) ≤ [jε(u)− j(u)] + [j(uε)− j(u)] + [j(u)− jε(uε)] .(2.7)

It is then easy to seeu− uε → 0 in V asε→ 0.
To verify the conditions (2.3) and (2.4), we have

Lemma 2.2. Assumej(v) =
∫
Ω

φ(v) dx, jε(v) =
∫
Ω

φε(v) dx, andj is weakly l.s.c. If

φε(t) → φ(t) uniformly in t, asε→ 0(2.8)

then both (2.3) and (2.4) are true.
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The proof of (2.3) is immediate, and the proof of (2.4) can be made from the
relation

jε(uε)− j(u) = [jε(uε)− j(uε)] + [j(uε)− j(u)] .

We also notice that a sufficient condition for (2.8) is

|φε(t)− φ(t)| ≤ c ε, ∀ t ∈ R .(2.9)

For the choices 1, 4, and 5, the inequality (2.9) holds. So the regularization method
based on each of the three choices is convergent.

For the choices 2 and 3, the condition (2.8) is not satified. However, we can
prove (2.3) and (2.4) of Lemma 2.1 directly. Weak convergence inH1(Ω) implies
a.e. pointwise convergence. So the inequality (2.4) follows from Fatou’s Lemma. For
a fixedλ > 0, denote

f (ε) =
1

λ + 1
λε+1 .

It can be proved easily that there exists anε0 > 0, such that

f (ε) ≤ max
{
λ,

1
2
λ2
}
, if ε ≤ ε0 .

Thus, for the choice 3, (2.3) follows from the Lebesgue Dominated Convergence
Theorem. Similar argument applies to the choice 2.

In conclusion, we have shown the convergence of the regularization method using
any one of the five choices for the regularization sequence.

As for a-priori error estimates, we have, from (2.7),

a(u− uε, u− uε) ≤ [j(uε)− jε(uε)] + [jε(u)− j(u)] .(2.10)

Thus, since the inequality (2.9) is true for the choices 1, 4, and 5, for a solution of
the corresponding regularized problem, we have

‖u0 − u0,ε‖H1(Ω) ≤ c
√
ε(2.11)

or, equivalently,
‖u− uε‖H1(Ω) ≤ c

√
ε .(2.12)

We notice that for the choices 2 and 3, the above a-priori error estimates are not
available.

3. A-posteriori error estimates

As far as practical computation is concerned, a convergence result and an a-priori
error estimate are not enough for a complete numerical analysis with the regularization
method. As explained in Sect. 1, a-posteriori error estimates are much needed, which
will provide a quantitative error bound once a solution of the regularized problem
is computed. We will use the duality theory from the convex analysis (cf. [4]) to
derive the a-posteriori error estimates. The idea was used in analyzing a particular
regularization method for a simplified friction problem ([9]) and a holonomic elastic-
plastic problem ([10]). Here, we will first give an analysis in the framework of a
general regularization method, and then discuss the applications to the regularization



The regularization method for an obstacle problem 161

method with various choices of the regularization sequence. We notice that similar
ideas can be employed in analyzing modelling errors, see e.g., [11].

Now we present some needed results from convex analysis (cf. [4]).
Let V , Q be two normed spaces,V ∗, Q∗ their dual spaces. Assume there exists a

linear continuous operatorΛ ∈ L (V,Q), with transposeΛ∗ ∈ L (Q∗, V ∗). Let J be
a function mappingV ×Q into R – the extended real line. Consider the minimization
problem:

inf
v∈V

J(v, Λv) .(3.1)

Define the conjugate function ofJ by:

J∗(v∗, q∗) = sup
v∈V,q∈Q

[〈v, v∗〉 + 〈q, q∗〉 − J(v, q)
]
.(3.2)

Theorem 3.1. Assume
(1) V is a reflexive Banach space,Q a normed space.
(2) J : V ×Q→ R is a proper, l.s.c., strictly convex function.
(3) ∃u0 ∈ V , such thatJ(u0, Λu0) <∞ andq 7→ J(u0, q) is continuous atΛu0.
(4) J(v, Λv) → +∞, as‖v‖ → ∞, v ∈ V .

Then problem (3.1) has a unique solutionu ∈ V , and

− J(u,Λu) ≤ J∗(Λ∗q∗,−q∗), ∀ q∗ ∈ Q∗ .(3.3)

In computing conjugate functions, we need the following result. LetΩ be an open
set ofRn, g : Ω ×Rl → R. Assume∀ ξ ∈ Rl, x 7→ g(x, ξ) is a measurable function,
and for a.e.x ∈ Ω, ξ 7→ g(x, ξ) is a continuous function. Then the conjugate of the
function

G(v) =
∫
Ω

g(x, v(x)) dx

(assumingG is well-defined over some function spaceV ) is

G∗(v∗) =
∫
Ω

g∗
(
x, v∗(x)

)
dx, ∀ v∗ ∈ V ∗,

where,V ∗ is the dual ofV , and

g∗(x, y) = sup
ξ∈Rl

[ y · ξ − g(x, ξ) ] .

For the obstacle problem (1.4) considered in this paper, we take (n is the dimension
of the domainΩ)

V = H1(Ω)

Q = Q∗ =
(
L2(Ω)

)n × L2(Ω)

Λv = (∇v, v)

J(v, Λv) = F (v) +G(Λv)

F (v) =

{
0, if v = g on ∂Ω
∞, otherwise

G(q) =
∫
Ω

(
1
2
|q1|2 + |q2|

)
dx
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where and in what follows, we use the notationq = (q1, q2) for q ∈ Q, with q1 ∈(
L2(Ω)

)n
andq2 ∈ L2(Ω). A similar notation is used forq∗ ∈ Q∗.

With the above notations, the obstacle problem (1.4) can be rewritten in the form
of (3.1). To apply Theorem 3.1, we first compute the conjugate of the functionalJ .
We have

F ∗(Λ∗q∗) = sup
v∈V

{〈Λv, q∗〉 − F (v)}

= sup
v∈H1

g(Ω)

∫
Ω

(∇v q∗1 + v q∗2 ) dx

=
∫
Ω

(∇g q∗1 + g q∗2 ) dx + sup
v∈H1

0 (Ω)

∫
Ω

(∇v q∗1 + v q∗2 ) dx

=


∫
Ω

(∇g q∗1 + g q∗2 ) dx, if − divq∗1 + q∗2 = 0 in Ω

∞, otherwise
.

and

G∗(−q∗) = sup
q∈Q

{〈q,−q∗〉 −G(q)}

= sup
q∈Q

∫
Ω

(
−q∗1q1 − q∗2q2 − 1

2
|q1|2 − |q2|

)
dx

=


∫
Ω

1
2
|q∗1 |2 dx, if |q∗2 | ≤ 1 in Ω

∞, otherwise

Hence,

J∗(Λ∗q∗,−q∗)

=


∫
Ω

(
1
2
|q∗1 |2 +∇g q∗1 + g q∗2

)
dx, if − divq∗1 + q∗2 = 0 and|q∗2 | ≤ 1 in Ω

∞, otherwise

(3.4)

Now let us consider the energy difference

J(uε, Λuε)− J(u,Λu) =
∫
Ω

(
1
2
|∇uε|2 − 1

2
|∇u|2 + |uε| − |u|

)
dx .

Using (1.8) withv = uε, we find that

J(uε, Λuε)− J(u,Λu) ≥ 1
2
‖∇(uε − u)‖2

L2(Ω) .(3.5)

On the other hand, applying Theorem 3.1 and using (3.4), we have

J(uε, Λuε)− J(u,Λu) ≤
∫
Ω

(
1
2
|∇uε|2 + |uε| +

1
2
|q∗1 |2 +∇g q∗1 + g q∗2

)
dx

∀ q∗ = (q∗1 , q
∗
2 ) ∈ Q∗, such that− divq∗1 + q∗2 = 0, |q∗2 | ≤ 1 in Ω .
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Hence, we have the important inequality for a-posteriori error analysis:

1
2
‖∇(uε − u)‖2

L2(Ω) ≤
∫
Ω

(
1
2
|∇uε|2 + |uε| +

1
2
|q∗1 |2 +∇g q∗1 + g q∗2

)
dx

∀ q∗ = (q∗1 , q
∗
2 ) ∈ Q∗, such that− divq∗1 + q∗2 = 0, |q∗2 | ≤ 1 in Ω .

(3.6)

Let us then study the regularized problem (2.2). Sinceφε is differentiable, the
variational inequality (2.2) is equivalent to the relation

uε ∈ H1
g(Ω) : a(uε, v) +

∫
Ω

(φε)′(uε) v = 0, ∀ v ∈ H1
0(Ω) .(3.7)

Thus,uε is the weak solution of the elliptic boundary value problem{ −∆uε + (φε)′(uε) = 0, in Ω
uε = g, on ∂Ω .

(3.8)

From (3.7), we observe that if the regularizing functionφ satifies the inequality

|(φε)′(t)| ≤ 1, ∀ t ∈ R(3.9)

then, a natural selection of an auxiliary fieldq∗ in the basic inequality (3.6) is

q∗1 = −∇uε, q∗2 = −(φε)′(uε) .(3.10)

And then, an a-posteriori error estimate is obtained from (3.6),

1
2
‖∇(uε − u)‖2

L2(Ω) ≤
∫
Ω

(∇uε∇(uε − g) + |uε| − g (φε)′(uε)
)
dx .

Taking v = uε − g ∈ H1
0(Ω) in (3.7), we find that∫

Ω

(∇uε∇(uε − g) + (φε)′(uε) (uε − g)
)
dx = 0 .

Therefore, we can write the a-posteriori error estimate in the form of

1
2
‖∇(uε − u)‖2

L2(Ω) ≤
∫
Ω

(|uε| − uε (φε)′(uε)
)
dx .(3.11)

The regularizing functions in the choices 1, 4, and 5 indeed satisfies the inequality
(3.9). Hence, we have the following a-posteriori error estimates.

For the choice 1, we have

(φ1
ε)′(t) =


1, if t ≥ ε
1
ε
t, if |t| ≤ ε

−1, if t ≤ −ε .
Thus, the a-posteriori error estimate is

1
2
‖∇(uε − u)‖2

L2(Ω) ≤
∫
|uε|≤ε

|uε|
(

1− |uε|
ε

)
dx .(3.12)

For the choice 4, we have
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(φ4
ε)′(t) =

t√
t2 + ε2

.

Thus, the a-posteriori error estimate is

1
2
‖∇(uε − u)‖2

L2(Ω) ≤
∫
Ω

|uε| ε2

u2
ε + ε2 + |uε|

√
u2
ε + ε2

dx .(3.13)

For the choice 5, we have

(φ5
ε)′(t) =


1, if t ≥ ε
1
ε
t, if |t| ≤ ε

−1, if t ≤ −ε .
So we have the same form of a-posteriori error estimate as that given in (3.12).

For the choices 2 and 3, the regularizing functions do not satisfy the (3.9). It is
still possible to construct an admissible fieldq∗ from uε to produce a good error
bound, but the procedure will be complicated. From the practical point of view, the
computation of the a-posteriori error bound will then cost quite a bit of time. So it is
doubtful if these choices of the regularizing function will be preferable than the other
choices (choices 1, 4, and 5).

4. A-posteriori error estimates for regularized discrete problems

In actual computations, the obstacle problem (1.4) is first discretized, e.g. by the
finite element method, and then the discretized problem is solved using, e.g. the
regularization method.

Let Vh be a finite element space approximatingH1(Ω), letSh be the finite element
subspace ofVh consisting all the functions inVh which are zero on the boundary of
the domain. We haveSh ⊂ H1

0(Ω). For simplicity of exposition, assume the boundary
condition functiong can be represented exactly by a function fromVh. Then, a finite
element solutionuh ∈ Vh for the obstacle problem (1.8) is determined from the
following problem,

uh = g on ∂Ω, such that

a(uh, vh − uh) +
∫
Ω

(|vh| − |uh|) dx ≥ 0, ∀ vh ∈ Vh, vh = g on ∂Ω .
(4.1)

Or, if we write uh = u0,h + g, thenu0,h is the solution of the problem (cf. (1.6))

u0,h ∈ Sh : a(u0,h, v0,h − u0,h) + j(v0,h)− j(u0,h) ≥ l(v0,h − u0,h),

∀ v0,h ∈ Sh .(4.2)

Convergence of the finite element approximations can be proved similarly as
in [7] and [8]. For a-priori error estimates, one can proceed similarly as in the just-
mentioned references or in [10] to prove the following useful inequality (if we assume
∆u ∈ L2(Ω)):

‖u0,h − u0‖H1(Ω) ≤ c inf
v0,h∈Sh

{‖v0,h − u0‖H1(Ω)

+‖v0,h − u0‖L1(Ω) + ‖∆u‖L2(Ω)‖v0,h − u0‖L2(Ω)

}
(4.3)
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where,c is an absolute constant, i.e., it does not depend onu0. From (4.3), the usual
finite element approximation theory (cf. [1], [3]) can be applied to give optimal order
a-priori error estimates.

Like for the continuous problems, a major difficulty in solving the discretized
problems (4.1) and/or (4.2) lies in the fact that there is a non-differentiable term. So
let us replace the problem (4.1) or (4.2) by a sequence of regularized problems,

uh,ε ∈ Vh, uh,ε = g on ∂Ω, such that

a(uh,ε, vh − uh,ε) +
∫
Ω

(φε(vh)− φε(uh,ε)) dx ≥ 0, ∀ vh ∈ Vh, vh = g on ∂Ω

(4.4)

or

u0,h,ε ∈ Sh : a(u0,h,ε, v0,h − u0,h,ε) + jε(v0,h)− jε(u0,h,ε)

≥ l(v0,h − u0,h,ε), ∀ v0,h ∈ Sh .(4.5)

We can similarly prove that problems (4.4) and (4.5) are uniquely solvable, and
under the assumptions (2.3) and (2.4), their solutions converge to the corresponding
solutions of the problems (4.1) and (4.2). Finally, we can apply the duality theory on
the discrete problems to prove the following a-posteriori error estimates.

For the choices 1 and 5,

1
2
‖∇(uh,ε − uh)‖2

L2(Ω) ≤
∫
|uh,ε|≤ε

|uh,ε|
(

1− |uh,ε|
ε

)
dx .(4.6)

For the choice 4, we have

1
2
‖∇(uh,ε − uh)‖2

L2(Ω) ≤
∫
Ω

|uh,ε| ε2

u2
h,ε + ε2 + |uh,ε|

√
u2
h,ε + ε2

dx .(4.7)

A complete adaptive algorithm can be developed for solving the obstacle problem
(1.4) by combining the a-posteriori error estimates for the regularization method and
a-posteriori error estimates for the finite element solutions, for the latter, one can
consult [2], [5], and references therein.
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