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Abstract

In this paper, we consider elliptic hemivariational inequalities arising in applications in

semipermeable media. In its general form, the model includes both interior and boundary

semipermeability terms. Detailed study is given on the hemivariational inequality in the

case of isotropic and homogeneous semipermeable media. Solution existence and unique-

ness of the problem are explored. Convergence of the Galerkin method is shown under

the basic solution regularity available from the existence result. An optimal order error

estimate is derived for the linear finite element solution under suitable solution regularity

assumptions. The results can be readily extended to the study of more general hemivaria-

tional inequalities for non-isotropic and heterogeneous semipermeable media with interior

semipermeability and/or boundary semipermeability. Numerical examples are presented

to show the performance of the finite element approximations; in particular, the theoreti-

cally predicted optimal first order convergence in H1 norm of the linear element solutions

is clearly observed.

Mathematics subject classification: 65N30, 49J40
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1. Introduction

Variational inequalities for flow problems through porous media are studied in [9]. Such vari-

ational inequality problems adopt monotone semipermeability relations for the media. In [19],

extension of the problems is made for semipermeable media to allow non-monotone semiper-

meability relations, leading to hemivariational inequalities. In both these references, semiper-

meability on the boundary or in the domain is considered.
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Since the pioneering work by Panagiotopoulos in early 1980s ([18]) on variational problems

with nonconvex and generally nondifferentiable super-potentials, hemivariational inequalities

have attracted steady attention from the research communities in mathematics, physical sciences

and engineering. The formulation of hemivariational inequalities provides a useful framework

to both theoretically and numerically treat application problems involving non-monotone, non-

smooth and multivalued constitutive laws, forces, and boundary conditions. Hemivariational

inequalities have been shown very useful across a variety of subjects. Mathematical theory, nu-

merical approximations and applications of hemivariational inequalities can be found in several

monographs, e.g., [4,15–17,20]. The number of research papers on hemivariational inequalities

is growing rapidly. The reference [15] discusses finite element approximations of hemivariational

inequalities, including their convergence; however, no error estimates are provided. Recently,

optimal order error estimates are derived for numerical solutions of hemivariational inequalities.

The first paper along this direction is [12] where optimal order error estimates for the linear finite

element solutions for some stationary hemivariational and variational-hemivariational inequal-

ities are derived. This paper is followed by numerous papers on optimal order error estimates

of the linear finite element solutions for various hemivariational inequalities of different form,

e.g., [3] for the numerical solution of a hyperbolic hemivariational inequality, and [2] for the

numerical solution of an evolutionary variational–hemivariational inequality. A general frame-

work is presented on convergence analysis and error estimation for internal approximations of

elliptic hemivariational inequalities in [13], and that for variational–hemivariational inequalities

in [14]. In [11], a comprehensive convergence analysis and error estimation are given for both

internal and external approximations of stationary variational–hemivariational inequalities and

hemivariational inequalities. In all these references on numerical analysis of hemivariational

inequalities, the application background is contact mechanics.

The purpose of this paper is to study and approximate elliptic hemivariational inequalities

for the semipermeable media. The general hemivariational inequality incorporates both the

interior and boundary semipermeability. Let Ω ⊂ R
d be a Lipschitz domain, i.e., Ω is an

open, bounded and connected region in R
d with a Lipschitz continuous boundary ∂Ω. Here

the positive integer d is the dimension of the problem under consideration. Since the boundary

is Lipschitz continuous, the unit outward normal vector ν is defined a.e. on ∂Ω. We split the

boundary ∂Ω into two non-overlapping and measurable parts Γ0 and Γ1 with meas (Γ0) > 0:

∂Ω = Γ0 ∪ Γ1. (1.1)

We will specify a Dirichlet boundary condition on Γ0 and a Neumann inclusion condition on

Γ1. The pointwise formulation of the model problem is as follows:

−∆u = f in Ω, (1.2)

u = 0 on Γ0, (1.3)

−
∂u

∂ν
∈ ∂j2(u) on Γ1. (1.4)

The differential equation (1.2) corresponds to the case of isotropic and homogeneous media

(cf. [9,19]). Here, ∂j2 is the generalized subdifferential of a locally Lipschitz continuous function

j2 (cf. Section 2). For simplicity, we let the Dirichlet boundary value to be zero in (1.3). The

problem with a nonzero Dirichlet boundary value on Γ0 can be handled with the standard

technique (cf. e.g., [1, Subsection 8.4.2]). To allow the interior semipermeability condition, we
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write the right hand side of (1.2) as

f = f0 + f1, f0 ∈ L2(Ω), −f1 ∈ ∂j1(u). (1.5)

To introduce the weak formulation of the boundary value problem (1.2)–(1.5), we will need

a function space

V =
{

v ∈ H1(Ω) | v = 0 on Γ0

}

(1.6)

and a bilinear form

a(u, v) =

∫

Ω

∇u·∇v dx, u, v ∈ V. (1.7)

By a standard procedure, we can derive from (1.2)–(1.5) the following weak formulation.

Problem (Pmodel). Find u ∈ V such that

a(u, v) +

∫

Ω

j01(u; v) dx+

∫

Γ1

j02(u; v) ds ≥

∫

Ω

f0v dx ∀ v ∈ V. (1.8)

In (1.8), j01 and j02 denote generalized directional derivatives of j1 and j2, cf. Section 2. We

note that Problem (Pmodel) contains as special cases the model with the interior semipermeable

term only (e.g. j2 is a differentiable function in the classical sense), and the model with the

boundary semipermeable term only (e.g. j1 is a differentiable function in the classical sense).

The rest of the paper is organized as follows. In Section 2, we present necessary preliminary

materials. In Section 3, we introduce an abstract hemivariational inequality, explore its solution

existence and uniqueness. In Section 4, we consider a general Galerkin approximation of the

abstract hemivariational inequality, prove the convergence of the Galerkin solution under the

minimal solution regularity available from Section 3, and derive a Céa inequality for the nu-

merical solution error. Compared with numerical analysis of hemivariational inequalities in the

existing literature, in this paper, we provide a more thorough convergence analysis; moreover,

the hemivariational inequality considered contains two generalized directional derivatives, one

is defined through an integral in the problem domain, and the other an integral on part of

the boundary. In Section 5, we apply the results for the abstract hemivariational inequality

to Problem (Pmodel) and derive an optimal order error estimate for the linear finite element

solution of the problem. In Section 6, we comment on the extension of the analysis to hemi-

variational inequalities for the case of non-isotropic and heterogeneous semipermeable media.

Finally, we provide numerical examples to show the performance of the finite element method,

and present numerical evidence of the theoretically predicted optimal first order convergence of

the linear element solutions.

2. Preliminaries

We only use real spaces in this paper. As usual, for a normed space X , we denote by ‖ · ‖X
its norm, by X∗ its topological dual, and by 〈·, ·〉X∗×X the duality pairing of X and X∗. When

no confusion may arise, we simply write 〈·, ·〉 for 〈·, ·〉X∗×X . We use 2X
∗

to denote the collection

of all the subsets of X∗. Weak convergence is indicated by the symbol ⇀. Given two normed

spaces X and Y , L(X,Y ) is the space of all linear continuous operators from X to Y .

We deal with both single-valued and multivalued operators defined on a normed space X .

We start by recalling several definitions for single-valued operators.
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Definition 2.1. An operator A : X → X∗ is bounded if it maps bounded sets of X to bounded

sets of X∗. The operator A is monotone if 〈Au−Av, u− v〉 ≥ 0 for all u, v ∈ X. It is maximal

monotone if it is monotone and 〈Au− w, u− v〉 ≥ 0 for any u ∈ X implies that w = Av. It is

pseudomonotone if it is bounded and un ⇀ u in X with lim supn→∞〈Aun, un − u〉 ≤ 0 imply

Aun ⇀ Au in X∗ and limn→∞〈Aun, un〉 = 〈Au, u〉.

For a multivalued operator T : X → 2X
∗

, its graph G(T ) is

G(T ) := {(x, x∗) ∈ X ×X∗ | x∗ ∈ Tx}.

Definition 2.2. An operator T : X → 2X
∗

is monotone if 〈u∗ − v∗, u− v〉 ≥ 0 for all (u, u∗),

(v, v∗) ∈ G(T ). It is maximal monotone if it is monotone and maximal in the sense of inclusion

of graphs in the family of monotone operators from X to 2X
∗

.

Definition 2.3. Let X be a reflexive Banach space. A multivalued operator T : X → 2X
∗

is

generalized pseudomonotone if for any sequences {un} ⊂ X and {u∗n} ⊂ X∗ such that un ⇀ u

in X, u∗n ∈ Tun for n ≥ 1, u∗n ⇀ u∗ in X∗ and lim sup〈u∗n, un − u〉 ≤ 0, we have u∗ ∈ Tu and

lim
n→∞

〈u∗n, un〉 = 〈u∗, u〉.

The following surjectivity result, derived from [17, Theorem 2.12], will be applied in studying

the elliptic hemivariational inequalities.

Theorem 2.1. Let X be a reflexive Banach space, T1 : X → 2X
∗

bounded and generalized

pseudomonotone, and T2 : X → 2X
∗

maximal monotone. Assume u0 ∈ X is such that T2(u0) 6=

∅ and there exists a function c0 : R+ → R with c0(r) → ∞ as r → ∞ and

〈u∗, u− u0〉 ≥ c0(‖u‖X) ‖u‖X ∀ (u, u∗) ∈ G(T1). (2.1)

Then T1 + T2 is surjective.

Finally, we recall the definitions of the convex and the Clarke subdifferentials.

Definition 2.4. Let ϕ : X → R∪{+∞} be a proper, convex and lower semicontinuous function.

The mapping ∂cϕ : X → 2X
∗

defined by

∂cϕ(x) := {x∗ ∈ X∗ | 〈x∗, v − x〉 ≤ ϕ(v)− ϕ(x) ∀ v ∈ X}

is called the (convex) subdifferential of ϕ. An element x∗ ∈ ∂cϕ(x) (if it is non-empty) is called

a subgradient of ϕ at x.

Definition 2.5. Let ψ : X → R be a locally Lipschitz functional. The generalized (Clarke)

directional derivative of ψ at x ∈ X in the direction v ∈ X is defined by

ψ0(x; v) := lim sup
y→x, λ↓0

ψ(y + λv)− ψ(y)

λ
.

The generalized gradient (subdifferential) of ψ at x is defined by

∂ψ(x) :=
{

ζ ∈ X∗ | ψ0(x; v) ≥ 〈ζ, v〉 ∀ v ∈ X
}

.

Properties of the subdifferential mappings, both in the convex and Clarke sense, can be found

in several books, e.g. [6–8,16,17,20]. In particular, knowing the generalized subdifferential, we

can compute the generalized directional derivative through the formula ( [6])

ψ0(x; v) = max {〈ζ, v〉 | ζ ∈ ∂ψ(x)} . (2.2)
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3. An Abstract Elliptic Hemivariational Inequality

In this section, we study an abstract elliptic hemivariational inequality of a general form. In

the discussion of the abstract hemivariational inequality, we use X , X1, X2 for function spaces.

We first introduce the following data and assumptions.

(A1) X is a reflexive Banach space, and K is a non-empty, closed and convex subset of X .

(A2) For i = 1, 2, Xi is a Banach space, γi ∈ L(X,Xi): for a constant ci > 0,

‖γiv‖Xi
≤ ci‖v‖X ∀ v ∈ X. (3.1)

(A3) A : X → X∗ is bounded, continuous and strongly monotone: for a constant mA > 0,

〈Av1 −Av2, v1 − v2〉 ≥ mA‖v1 − v2‖
2
X ∀ v1, v2 ∈ X. (3.2)

(A4) For i = 1, 2, Ji : Xi → R is locally Lipschitz continuous, and there exist constants

ci,0, ci,1, αi ≥ 0 such that

‖∂Ji(z)‖X∗

j
≤ ci,0 + ci,1‖z‖Xi

∀ z ∈ Xi, (3.3)

J0
i (z1; z2 − z1) + J0

i (z2; z1 − z2) ≤ αi‖z1 − z2‖
2
Xi

∀ z1, z2 ∈ Xi. (3.4)

(A5)

α1c
2
1 + α2c

2
2 < mA. (3.5)

(A6)

f ∈ X∗. (3.6)

The inequality (3.4) is usually called the relaxed monotonicity condition, so named since if

Ji is convex, then (3.4) holds with αi = 0. The assumption (A5) is known as the smallness

condition; it imposes a restriction on the sizes of the relaxed monotonicity coefficients α1 and

α2. This assumption is essential in ensuring the uniqueness of a solution of the problem below.

Problem (Pabs). Find an element u ∈ K such that

〈Au, v − u〉+ J0
1 (γ1u; γ1v − γ1u) + J0

2 (γ2u; γ2v − γ2u) ≥ 〈f, v − u〉 ∀ v ∈ K. (3.7)

We have the following existence and uniqueness result on Problem (Pabs).

Theorem 3.1. Under Assumptions (A1)–(A6), Problem (Pabs) has a unique solution u ∈ K.

The proof of the result is similar to and extends the argument found in [13]. For this reason,

we will only sketch the main points of the proof, emphasizing the part that is different from

the proof in [13].

Proof. Recall the definition of the indicator function

IK(v) =

{

0 if v ∈ K,

+∞ if v ∈ X\K.

We can express Problem (Pabs) equivalently as the problem of finding u ∈ X such that

〈Au, v − u〉+ IK(v)− IK(u) + J0
1 (γ1u; γ1v − γ1u) + J0

2 (γ2u; γ2v − γ2u) ≥ 〈f, v − u〉

∀ v ∈ X, (3.8)
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or

u ∈ X, T1u+ T2u ∋ f, (3.9)

where

T1v = Av + γ∗1∂J1(γ1v) + γ∗2∂J2(γ2v), T2v = ∂cIK(v)

for v ∈ X , ∂J1 and ∂J2 are the generalized gradients of J1 and J2, ∂cIK is the convex sub-

differential of IK , and γ∗1 ∈ L(X∗
1 , X

∗), γ∗2 ∈ L(X∗
2 , X

∗) are the adjoint operators of γ1 and

γ2.

The operator T1 is bounded by (A2), (A3) and (A4). By [21, Proposition 27.6], (A3) implies

that A : X → X∗ is pseudomonotone. Following the argument in [13, p. 646], we can show that

T1 is generalized pseudomonotone. Fix an element u0 ∈ K. Then from (3.2),

〈Av, v − u0〉 ≥ mA‖v − u0‖
2
X + 〈Au0, v − u0〉.

This, together with (3.4) and (3.5), implies (2.1). Since IK is proper, convex and lower semi-

continuous due to the assumptions on K from (A1), the operator T2 : X → 2X
∗

is maximal

monotone with its effective domain D(T2) = K (cf. [8, Theorem 1.3.19]). Thus, we can apply

Theorem 2.1 to deduce the existence of an element u ∈ X such that

Au+ ξ∗1 + ξ∗2 + ζ∗ = f (3.10)

with ξ∗1 ∈ γ∗1∂J1(γ1u), ξ
∗
2 ∈ γ∗2∂J2(γ2u) and ζ

∗ ∈ ∂cIK(u). For all v ∈ X , we have

〈ξ∗1 , v − u〉 ≤ J0
1 (γ1u; γ1v − γ1u), (3.11)

〈ξ∗2 , v − u〉 ≤ J0
2 (γ2u; γ2v − γ2u), (3.12)

〈ζ∗, v − u〉 ≤ IK(v) − IK(u). (3.13)

Combine (3.10) with (3.11)–(3.13),

〈Au, v − u〉+ J0
1 (γ1u; γ1v − γ1u) + J0

2 (γ2u; γ2v − γ2u) + IK(v)− IK(u) ≥ 〈f, v − u〉.

Therefore, u ∈ K is a solution of Problem (Pabs).

For uniqueness, let ũ ∈ K be another solution of Problem (Pabs). Take v = ũ in (3.7),

〈Au, ũ− u〉+ J0
1 (γ1u; γ1ũ− γ1u) + J0

2 (γ2u; γ2ũ− γ2u) ≥ 〈f, ũ− u〉.

Switch the roles played by ũ and u,

〈Aũ, u− ũ〉+ J0
1 (γ1ũ; γ1u− γ1ũ) + J0

2 (γ2ũ; γ2u− γ2ũ) ≥ 〈f, u− ũ〉.

Add the two inequalities,

〈Au −Aũ, u− ũ〉 ≤ J0
1 (γ1u; γ1ũ− γ1u) + J0

1 (γ1ũ; γ1u− γ1ũ)

+ J0
2 (γ2u; γ2ũ− γ2u) + J0

2 (γ2ũ; γ2u− γ2ũ).

Apply (3.2), (3.4) and (3.1):

mA‖u− ũ‖2X ≤
(

α1c
2
1 + α2c

2
2

)

‖u− ũ‖2X .

By the condition (3.5), we conclude the uniqueness ũ = u. �

Similar to [11, Theorem 3.2], we have the following result, useful in convergence analysis of

numerical solutions. Recall that the operator A : X → X∗ is said to be radially continuous if

the function t 7→ 〈A(u + tv), v〉 is continuous on [0, 1] for any u, v ∈ X .



Numerical Analysis of Elliptic Hemivariational Inequalities for Semipermeable Media 549

Theorem 3.2. Assume K ⊂ X is convex, A : X → X∗ is monotone and radially continuous.

Then u ∈ K is a solution of Problem (Pabs) if and only if it satisfies

〈Av, v − u〉+ J0
1 (γ1u; γ1v − γ1u) + J0

2 (γ2u; γ2v − γ2u) ≥ 〈f, v − u〉 ∀ v ∈ K. (3.14)

4. Numerical Analysis of the Abstract Hemivariational Inequality

In this section, we assume (A1)–(A6) so that Problem (Pabs) has a unique solution u ∈ K.

We now introduce and analyze a Galerkin method to solve Problem (Pabs). In the rest of the

paper, we will use c for a generic positive constant that is independent of the discretization

parameter h, and its value may vary from one place to another.

Let Xh ⊂ X be a finite dimensional subspace with h > 0 denoting a spatial discretization

parameter. We use some convex subset Kh ⊂ Xh to approximate the convex set K in the

following sense:

vh ∈ Kh and vh ⇀ v in X imply v ∈ K; (4.1)

∀ v ∈ K, ∃ vh ∈ Kh such that vh → v in X as h→ 0. (4.2)

We remark that the assumptions (4.1)–(4.2) are standard in the finite element approximations

of inequality problems (cf. [10]).

The Galerkin method for Problem (Pabs) is the following.

Problem (P h
abs). Find u

h ∈ Kh such that

〈Auh, vh − uh〉+ J0
1 (γ1u

h; γ1v
h − γ1u

h) + J0
2 (γ2u

h; γ2v
h − γ2u

h) ≥ 〈f, vh − uh〉

∀ vh ∈ Kh. (4.3)

By a discrete analogue of Theorem 3.1, we know that under the assumptions (A1)–(A6),

Problem (P h
abs) has a unique solution uh ∈ Kh. Let us show that the numerical solutions uh

are uniformly bounded.

Proposition 4.1. The numerical solutions are uniformly bounded in X independent of h.

Proof. Since K is non-empty, we can find an element u0 ∈ K. By (4.2), there exists uh0 ∈ Kh

such that uh0 → u0 in X as h→ 0. By (3.2),

mA‖u
h − uh0‖

2
X ≤ 〈Auh, uh − uh0〉 − 〈Auh0 , u

h − uh0 〉.

We let vh = uh0 in (4.3) to get

〈Auh, uh0 − uh〉+ J0
1 (γ1u

h; γ1u
h
0 − γ1u

h) + J0
2 (γ2u

h; γ2u
h
0 − γ2u

h) ≥ 〈f, uh0 − uh〉.

Then,

mA‖u
h − uh0‖

2
X ≤ J0

1 (γ1u
h; γ1u

h
0 − γ1u

h) + J0
2 (γ2u

h; γ2u
h
0 − γ2u

h)

+ 〈f −Auh0 , u
h − uh0〉.

By (3.4), (3.3) and (2.2), for i = 1, 2, we have

J0
i (γiu

h; γiu
h
0 − γiu

h) ≤ αi‖γiu
h
0 − γiu

h‖2Xi
− J0

i (γiu
h
0 ; γiu

h − γiu
h
0),

−J0
i (γiu

h
0 ; γiu

h − γiu
h
0 ) ≤

(

ci,0 + ci,1‖γiu
h
0‖Xi

)

‖γiu
h − γiu

h
0‖Xi

.
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Consequently,

mA‖u
h − uh0‖

2
X ≤ α1‖γ1u

h
0 − γ1u

h‖2X1
+ α2‖γ2u

h
0 − γ2u

h‖2X2

+

2
∑

i=1

(

ci,0 + ci,1‖γiu
h
0‖Xi

)

‖γiu
h − γiu

h
0‖Xi

+ 〈f −Auh0 , u
h − uh0 〉.

Thus, recalling (3.1),

(

mA − α1c
2
1 − α2c

2
2

)

‖uh − uh0‖
2
X

≤

(

2
∑

i=1

ci
(

ci,0 + ci,1ci‖u
h
0‖X

)

+ ‖f −Auh0‖X∗

)

‖uh − uh0‖X ,

or

(

mA − α1c
2
1 − α2c

2
2

)

‖uh − uh0‖X ≤
2
∑

i=1

ci
(

ci,0 + ci,1ci‖u
h
0‖X

)

+ ‖f −Auh0‖X∗ . (4.4)

Since uh0 → u0 in X and A : X → X∗ is bounded, we know that ‖uh0‖X and ‖Auh0‖X∗ are

uniformly bounded with respect to h. Finally, by the smallness condition, we conclude from

(1.2) that {‖uh − uh0‖X}, and then also {‖uh‖X} is uniformly bounded in h. �

For convergence and error analysis of Problem (P h
abs), we will assume A : X → X∗ is

Lipschitz continuous, i.e. for some constant LA > 0,

‖Au−Av‖X∗ ≤ LA‖u− v‖X ∀u, v ∈ X. (4.5)

Obviously, (4.5) implies that A is radially continuous. For convergence but not for error esti-

mation, we will further assume that

γi ∈ L(X ;Xi) is compact, i = 1, 2. (4.6)

In our applications, (4.6) is trivially satisfied since γ1 is an embedding operator from a subspace

of H1(Ω) to L2(Ω) and γ2 is a trace operator from a subspace of H1(Ω) to L2(Γ1), cf. Sect. 5.

We now prove the convergence of the numerical solutions to u ∈ K without assuming any

solution regularity.

Theorem 4.1. Assume (A1)–(A6), (4.1), (4.2), (4.5), and (4.6). Then,

uh → u in X as h→ 0. (4.7)

Proof. We first show the weak convergence of the numerical solutions. By a discrete analogue

of Theorem 3.2, uh ∈ Kh is a solution of Problem (P h
abs) if and only if

〈Avh, vh − uh〉+ J0
1 (γ1u

h; γ1v
h − γ1u

h) + J0
2 (γ2u

h; γ2v
h − γ2u

h) ≥ 〈f, vh − uh〉

∀ vh ∈ Kh. (4.8)

By Proposition 4.1, {‖uh‖X}h is bounded. Since X is reflexive and the operators γi : X → Xi,

i = 1, 2, are compact, there exist a subsequence {uh
′

} ⊂ {uh} and an element w ∈ X such that

uh
′

⇀ w in X, γiu
h′

→ γiw in Xi, i = 1, 2.
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We have w ∈ K following (4.1).

Let v ∈ K be an arbitrarily fixed element. By (4.2), there exists a sequence {vh
′

}, vh
′

∈ Kh′

,

such that vh
′

→ v in X as h′ → 0. Then, as h′ → 0,

Avh
′

→ Av, 〈Avh
′

, vh
′

− uh
′

〉 → 〈Av, v − w〉,

J0
i (γiw; γiv − γiw) ≥ lim sup

h′→0
J0
i (γiu

h′

; γiv
h′

− γiu
h′

), i = 1, 2,

〈f, vh
′

− uh
′

〉 → 〈f, v − w〉.

From (4.8) with h = h′,

〈Avh
′

, vh
′

− uh
′

〉+ J0
1 (γ1u

h′

; γ1v
h′

− γ1u
h′

) + J0
2 (γ2u

h′

; γ2v
h′

− γ2u
h′

) ≥ 〈f, vh
′

− uh
′

〉. (4.9)

Taking the upper limit in (4.9) as h′ → 0, we find

〈Av, v − w〉 + J0
1 (γ1w; γ1v − γ1w) + J0

2 (γ2w; γ2v − γ2w) ≥ 〈f, v − w〉. (4.10)

Since (4.10) holds for an arbitrary v ∈ K, by Theorem 3.2, we know that w is a solution of

Problem (Pabs). Since a solution of Problem (Pabs) is unique, w = u. So uh
′

⇀ u in X . Since

the limit u does not depend on the subsequence {uh
′

}, the entire family of numerical solutions

converges weakly to u.

We proceed to prove the strong convergence (4.7). By (4.2), there exists a sequence {ūh},

ūh ∈ Kh, such that ūh → u in X as h→ 0. Using (3.2),

mA‖u− uh‖2X ≤ 〈Au−Auh, u− uh〉

= 〈Au, u− uh〉 − 〈Auh, u− ūh〉 − 〈Auh, ūh − uh〉.

Take vh = ūh in (4.3),

−〈Auh, ūh − uh〉 ≤ J0
1 (γ1u

h; γ1ū
h − γ1u

h) + J0
2 (γ2u

h; γ2ū
h − γ2u

h)− 〈f, ūh − uh〉.

Combining the above inequalities, we have

mA‖u− uh‖2X ≤ 〈Au, u− uh〉 − 〈Auh, u− ūh〉+ J0
1 (γ1u

h; γ1ū
h − γ1u

h)

+ J0
2 (γ2u

h; γ2ū
h − γ2u

h)− 〈f, ūh − uh〉. (4.11)

Since uh ⇀ u in X and ūh → u in X , we have ūh − uh ⇀ 0 and for i = 1, 2, ‖γiuh‖Xi
is

uniformly bounded and γiū
h − γiu

h → 0 in Xi. Thus, from (4.11),

lim sup
h→0

‖u− uh‖2X ≤ 0.

This implies the strong convergence uh → u in X . �

For error estimation, we will derive a Céa type inequality. Let v ∈ K and vh ∈ Kh be

arbitrary. By (3.2),

mA‖u− uh‖2X ≤ 〈Au −Auh, u− uh〉.

Then we have

mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+ 〈Au, vh − u〉+ 〈Au, v − uh〉

+ 〈Au, u− v〉+ 〈Auh, uh − vh〉. (4.12)
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Using (3.7) gives

〈Au, u− v〉 ≤ J0
1 (γ1u; γ1v − γ1u) + J0

2 (γ2u; γ2v − γ2u)− 〈f, v − u〉.

Using (4.3) gives

〈Auh, uh − vh〉 ≤ J0
1 (γ1u

h; γ1v
h − γ1u

h) + J0
2 (γ2u

h; γ2v
h − γ2u

h)− 〈f, vh − uh〉.

Using these inequalities in (4.12), after some rearrangement of the terms, we have

mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+Ru(v
h − u) +Ru(v − uh) + Iu(u

h, v, vh), (4.13)

where

Ru(v) := 〈Au, v〉+ J0
1 (γ1u; γ1v) + J0

2 (γ2u; γ2v)− 〈f, v〉, (4.14)

Iu(u
h, v, vh) := J0

1 (γ1u; γ1v − γ1u) + J0
1 (γ1u

h; γ1v
h − γ1u

h)− J0
1 (γ1u; γ1v

h − γ1u)

− J0
1 (γ1u; γ1v − γ1u

h) + J0
2 (γ2u; γ2v − γ2u) + J0

2 (γ2u
h; γ2v

h − γ2u
h)

− J0
2 (γ2u; γ2v

h − γ2u)− J0
2 (γ2u; γ2v − γ2u

h). (4.15)

The first term on the right hand side of (4.13) is bounded through an application of (4.5),

〈Au−Auh, u− vh〉 ≤ LA‖u− uh‖X‖u− vh‖X .

So for any ε > 0 arbitrarily small,

〈Au −Auh, u− vh〉 ≤ ε ‖u− uh‖2X + c ‖u− vh‖2X (4.16)

for some constant c depending on ε. To bound the term Iu(u
h, v, vh) of (4.15), we apply the

subadditivity of the generalized directional derivative to write, for i = 1, 2,

J0
i (γiu; γiv − γiu) ≤ J0

i (γiu; γiv − γiu
h) + J0

i (γiu; γiu
h − γiu),

J0
i (γiu

h; γiv
h − γiu

h) ≤ J0
i (γiu

h; γiv
h − γiu) + J0

i (γiu
h; γiu− γiu

h).

Thus,

Iu(u
h, v, vh) ≤ J0

1 (γ1u
h; γ1v

h − γ1u)− J0
1 (γ1u; γ1v

h − γ1u) + J0
1 (γ1u; γ1u

h − γ1u)

+ J0
1 (γ1u

h; γ1u− γ1u
h) + J0

2 (γ2u
h; γ2v

h − γ2u)− J0
2 (γ2u; γ2v

h − γ2u)

+ J0
2 (γ2u; γ2u

h − γ2u) + J0
2 (γ2u

h; γ2u− γ2u
h).

By (3.4), for i = 1, 2,

J0
i (γiu; γiu

h − γiu) + J0
i (γiu

h; γiu− γiu
h) ≤ αi‖γiu− γiu

h‖2Xj
.

By (3.3), for i = 1, 2,

∣

∣J0
i (γiu

h; γiv
h − γiu)

∣

∣ ≤
(

ci,0 + ci,1‖γiu
h‖Xi

)

‖γiv
h − γiu‖Xi

,
∣

∣J0
i (γiu; γiv

h − γiu)
∣

∣ ≤ (ci,0 + ci,1‖γiu‖Xi
) ‖γiv

h − γiu‖Xi
.

Recall that ‖γiuh‖Xi
is uniformly bounded by Proposition 4.1. We combine the above four

inequalities to find a constant c > 0 independent of h such that

Iu(u
h, v, vh) ≤

2
∑

i=1

αi‖γiu− γiu
h‖2Xi

+ c

2
∑

i=1

‖γiu− γiv
h‖Xi

. (4.17)
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Using (4.16) and (4.17) in (4.13), we have

(

mA − α1c
2
1 − α2c

2
2 − ε

)

‖u− uh‖2X ≤ c ‖u− vh‖2X + c

2
∑

i=1

‖γiu− γiv
h‖Xi

+Ru(v
h − u) +Ru(v − uh). (4.18)

By (3.5), α1c
2
1 + α2c

2
2 < mA. We take ε = (mA − α1c

2
1 − α2c

2
2)/2 > 0 in (4.18) and get the

inequality

‖u− uh‖2X ≤ c
[

‖u− vh‖2X + ‖γ1u− γ1v
h‖X1

+ ‖γ2u− γ2v
h‖X2

+Ru(v
h − u) +Ru(v − uh)

]

.

In summary, we have proved the following result.

Theorem 4.2. Assume (A1)–(A6) and (4.5). Then for the numerical solution uh of Problem

(P h
abs), we have the Céa type inequality

‖u− uh‖X ≤ c inf
vh∈Kh

[

‖u− vh‖X + ‖γ1u− γ1v
h‖

1/2
X1

+ ‖γ2u− γ2v
h‖

1/2
X2

+ |Ru(v
h − u)|1/2

]

+ c inf
v∈K

|Ru(v − uh)|1/2. (4.19)

In the special case where K = X , we let Kh = Xh. Then we have the simplified Céa type
inequality:

‖u− u
h‖X ≤ c inf

vh∈Xh

[

‖u− v
h‖X + ‖γ1u− γ1v

h‖
1/2
X1

+ ‖γ2u− γ2v
h‖

1/2
X2

+ |Ru(v
h − u)|1/2

]

. (4.20)

This is the starting point of error estimation for the numerical solution of the model problem

(Pmodel). To get an actual convergence order, we need to bound the residual-type term defined

by (4.14). We do this for (Pmodel) in the next section.

5. Analysis of the Model Problem for Semipermeable Media

Now we apply the results of the previous sections to the model problem (Pmodel). We use

the function space V of (1.6) for X (and for K as well). In addition, choose V1 = L2(Ω) for

X1, V2 = L2(Γ1) for X2, and let γ1 : V → V1 be the embedding operator, γ2 : V → V2 the trace

operator. Corresponding to the bilinear form a(·, ·) of (1.7), we define an operator

A : V → V ∗, 〈Au, v〉 = a(u, v) ∀u, v ∈ V. (5.1)

Obviously, (4.5) holds with LA = 1. On the functions ji : R → R, i = 1, 2, we assume



























(a) j1 and j2 are locally Lipschitz continuous;

(b) there exist constants ci,0, ci,1 ∈ R such that

|∂ji(t)| ≤ c̄i,0 + c̄i,1|t| ∀ t ∈ R, i = 1, 2;

(c) there exist constants αi such that

j0i (t1; t2 − t1) + j0i (t2; t1 − t2) ≤ αi|t1 − t2|2 ∀ t ∈ R, i = 1, 2.

(5.2)

We observe that (A1) is valid. The assumption (A2) is satisfied with

c1 = λ
−1/2
1 , c2 = µ

−1/2
1
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where λ1 > 0 is the smallest eigenvalue of the problem

−∆u = λu in Ω,

u = 0 on Γ0,

∂u

∂ν
= 0 on Γ1,

whereas µ1 > 0 is the smallest eigenvalue of the problem

−∆u = 0 in Ω,

u = 0 on Γ0,

∂u

∂ν
= µu on Γ1.

For the assumption (A3), we have

mA = 1.

Introduce two functionals

J1 : V1 → R, J1(v) =

∫

Ω

j1(v) dx, (5.3)

J2 : V2 → R, J2(v) =

∫

Γ1

j2(v) ds. (5.4)

Notice that (cf. e.g., [16, Theorem 3.47]),

J0
1 (v;w) ≤

∫

Ω

j01(v;w) dx, v, w ∈ V1, (5.5)

J0
2 (v;w) ≤

∫

Γ1

j02(v;w) ds, v, w ∈ V2. (5.6)

Then, J1 and J2 satisfy (A4) with constants ci,0 depending on c̄i,0 and |Ω|, and ci,1 depending

on c̄i,1 and |Γ1|. The assumption (A5) becomes

α1λ
−1
1 + α2µ

−1
1 < 1. (5.7)

Applying Theorem 3.1, we know that under the condition (5.7), there is a unique solution

to the problem

u ∈ V, 〈Au, v〉+ J0
1 (γ1u; γ1v) + J0

2 (γ2u; γ2v) ≥

∫

Ω

f0v dx ∀ v ∈ V. (5.8)

By (5.5)–(5.6), a solution of (5.8) is also a solution of Problem (Pmodel). The same kind of

argument as in the proof of Theorem 3.1 shows that a solution of Problem (Pmodel) is unique.

Turn now to the finite element approximation of Problem (Pmodel). For simplicity in expo-

sition, assume Ω is a polygonal/polyhedral domain. We express Γ0 and Γ1 as unions of closed

flat components with disjoint interiors:

Γk = ∪ik
i=1Γk,i, k = 0, 1.

Let {T h} be a regular family of partitions of Ω into triangles/tetrahedrons that are compatible

with the partition of the boundary ∂Ω into Γk,i, 1 ≤ i ≤ ik, k = 0, 1, in the sense that if the
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intersection of one side/face of an element with one set Γk,i has a positive measure with respect

to Γk,i, then the side/face lies entirely in Γk,i. We use the linear element space corresponding

to T h:

V h =
{

vh ∈ C(Ω) | vh|T ∈ P1(T ), T ∈ T h, vh = 0 on Γ1

}

,

where P1(T ) is the space of polynomials of degree less than or equal to 1 on T . The finite

element method for Problem (Pmodel) is: Find u
h ∈ V h, such that

a(uh, vh) +

∫

Ω

j01(u
h; vh) dx+

∫

Γ1

j02(u
h; vh) ds ≥

∫

Ω

f0v
hdx ∀ vh ∈ V h. (5.9)

Under the stated assumptions on the data, like for Problem (Pmodel), we have a unique solution

uh ∈ V h of (5.9). All the arguments in Section 4 can be applied on the finite element approx-

imation (5.9) of Problem (Pmodel), with J0
1 (·; ·) replaced by

∫

Ω
j01(·; ·) dx and J0

2 (·; ·) replaced

by
∫

Γ1

j02 (·; ·) ds. Thus, similar to Theorem 4.1, we have the convergence of the finite element

method (5.9):

‖uh − u‖V → 0 as h→ 0. (5.10)

For error estimation, similar to (4.20), we have

‖u− u
h‖V ≤ c inf

vh∈V h

[

‖u− v
h‖V + ‖u− v

h‖
1/2

L2(Ω)
+ ‖u− v

h‖
1/2

L2(Γ1)
+ |Ru(v

h − u)|1/2
]

, (5.11)

where

Ru(v) =

∫

Ω

(

∇u·∇v − f0v + j01(u; v)
)

dx+

∫

Γ1

j02(u; v) ds.

To proceed further, we make the solution regularity assumption

u ∈ H2(Ω), u|Γ1,i
∈ H2(Γ1,i), 1 ≤ i ≤ i1. (5.12)

Note that (5.12) implies ‖∂u/∂ν‖L2(Γ1) ≤ c ‖u‖H2(Ω) <∞ and for any v ∈ V ,
∫

Ω

∇u·∇v dx =

∫

Γ1

∂u

∂ν
v ds−

∫

Ω

∆u v dx.

Thus,

Ru(v) =

∫

Ω

(

−∆u v − f0v + j01(u; v)
)

dx+

∫

Γ1

(

∂u

∂ν
v + j02(u; v)

)

ds.

From this formula and (5.2), we can bound Ru(v) as follows:

|Ru(v)| ≤ c(u)
(

‖v‖L2(Ω) + ‖v‖L2(Γ1)

)

(5.13)

for a constant c(u) depending on ‖u‖H2(Ω). Using (5.13) in (5.11), we find that

‖u− uh‖V ≤ c(u) inf
vh∈V h

[

‖u− vh‖V + ‖u− vh‖
1/2
L2(Ω) + ‖u− vh‖

1/2
L2(Γ1)

]

, (5.14)

where the constant c(u) depends on ‖u‖H2(Ω). Recalling the solution regularity condition (5.12),

we can apply the finite element interpolation error estimates ([1,5]) to find that, with vh = Πhu

being the finite element interpolant of u,

‖u− vh‖V ≤ c h ‖u‖H2(Ω),

‖u− vh‖L2(Ω) ≤ c h2‖u‖H2(Ω),

‖u− vh‖L2(Γ1) ≤ c h2

(

i1
∑

i=1

‖u‖2H2(Γ1,i)

)1/2

.
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Therefore, we deduce from (5.14) the optimal order error estimate

‖u− uh‖V ≤ c(u)h, (5.15)

where the constant c(u) depends on ‖u‖H2(Ω) and ‖u‖H2(Γ1,i), 1 ≤ i ≤ i1.

6. General Hemivariational Inequality for Non-isotropic and

Heterogeneous Semipermeable Media

For non-isotropic and heterogeneous semipermeable media, we use a general second-order

differential operator

Lu = −
d
∑

i,j=1

∂

∂xj

(

aij
∂u

∂xi

)

+ a0u. (6.1)

The coefficients are allowed to be functions of x ∈ Ω and we assume (cf. [1, Subsection 8.4.5])

aij , a0 ∈ L∞(Ω), (6.2)

d
∑

i,j=1

aijξiξj ≥ θ |ξ|2 ∀ ξ = (ξi) ∈ R
d, a.e. in Ω, (6.3)

a0 ≥ 0 a.e. in Ω, (6.4)

where the constant θ > 0. In the case of isotropic and homogeneous media, after a scaling

argument,

Lu = −∆u.

Corresponding to the differential operator L of (6.1), we define the co-normal operator on the

boundary

∂u

∂νL
=

d
∑

i,j=1

aij
∂u

∂xi
νj . (6.5)

The pointwise formulation of the boundary value problem we consider is the following:

Lu = f in Ω, (6.6)

u = 0 on Γ0, (6.7)

−
∂u

∂νL
∈ ∂j2(u) on Γ1. (6.8)

Again, to allow the interior semipermeability condition, we write the right hand side of (1.2) as

f = f0 + f1, f0 ∈ L2(Ω), −f1 ∈ ∂j1(u). (6.9)

To study the problem (6.6)–(6.9), we continue to use the function space V defined by (1.6).

The bilinear form of (1.7) is changed to a general one:

ag(u, v) =

∫

Ω





d
∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+ a0u v



 dx, u, v ∈ V. (6.10)

The weak formulation of the problem is then the following.
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Problem (Pg). Find u ∈ V such that

ag(u, v) +

∫

Ω

j01(u; v) dx+

∫

Γ1

j02 (u; v) ds ≥

∫

Ω

f0v dx ∀ v ∈ V. (6.11)

For this more general hemivariational inequality problem, we have mA = θ. All the discus-

sions and results from Sections 4 and 5 can be extended to Problem (Pg) in a straight-forward

fashion, and are hence omitted.

7. Numerical Examples

In this section, we report simulation results on numerical examples, paying particular at-

tention on the numerical convergence orders. The differential equation is the Possion equation

over the square Ω = (0, 1) × (0, 1). In the numerical examples, we use uniform triangulation

finite element partitions of Ω with the unit interval [0, 1] being divided into 1/h equal parts;

one representative finite element mesh is shown in Figure 7.1. We use the corresponding con-

tinuous linear finite element space for V h. To compute the numerical solution errors, we use

the numerical solution with h = 1
512 as the reference “true” solution.

Fig. 7.1. A representative finite element mesh for numerical examples

For positive parameters a and b, we let

j(t) =

{

0 if t < 0,

−e−a t + b t+ 1 if t ≥ 0.

Its generalized subdifferential is

∂j(t) =







0 if t < 0,

[0, a+ b] if t = 0,

a e−a t + b if t > 0.

Observe that (5.2) (b) is valid. It can be verified that for this choice of j, (5.2) (c) is satisfied

with α = a. Graphs of j and ∂j for a = 0.5 and b = 0.5 are shown in Figure 7.2.
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Fig. 7.2. Sample graphs of j(t) and ∂j(t).

Example 7.1. The pointwise formulation of the problem is

−∆u = f in Ω,

u = 0 on Γ0,

−
∂u

∂n
∈ ∂j(u) on Γ1,

where f(x, y) = −40 sin(3πx) e2y. Here the boundary of the domain is decomposed into Γ1 =

(0, 1)× {0} and Γ0 = Γ\Γ1. We take a = b = 0.5 for the function j. The smallness condition

(5.7) for this problem is

a < λ1 =
5

4
π2,

which is satisfied with a = 0.5. The numerical results are reported in Table 7.1. Clearly, the

numerical convergence order in H1(Ω)-norm is close to one.

Example 7.2. The pointwise formulation of the problem is

−∆u = f + f0 in Ω,

u = 0 on Γ,

where f(x, y) = −40 sin(3πx) e2y and −f0 ∈ ∂j(u). We take a = b = 0.5 for the function j.

The smallness condition (5.7) for this problem is reduced to

a < λ̃1 = 8 π2,

which is satisfied with a = 0.5. Here λ̃1 is the smallest eigenvalue of the problem

−∆u = λu in Ω,

u = 0 on Γ.

Table 7.1: Numerical convergence orders for Example 7.1.

h 1/8 1/16 1/32 1/64 1/128

‖u− uh‖H1(Ω) 9.7614e-01 5.2665e-01 2.6811e-01 1.3495e-01 6.7440e-02

order - 0.89 0.97 0.99 1.00
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Table 7.2: Numerical convergence orders for Example 7.2.

h 1/8 1/16 1/32 1/64 1/128

‖u− uh‖H1(Ω) 9.6750e-01 5.2402e-01 2.6728e-01 1.3431e-01 6.7242e-02

order - 0.88 0.97 0.99 1.00

Table 7.3: Numerical convergence orders for Example 7.3.

h 1/8 1/16 1/32 1/64 1/128

‖u− uh‖H1(Ω) 1.0163e+00 5.3127e-01 2.6980e-01 1.3494e-01 6.7434e-02

order - 0.94 0.98 1.00 1.00

The numerical results are reported in Table 7.2. Again, the numerical convergence order in

H1(Ω)-norm is close to one.

Example 7.3. The pointwise formulation of the problem is

−∆u = f + f0 in Ω,

u = 0 on Γ0,

−
∂u

∂n
∈ ∂j2(u) on Γ1,

where f(x, y) = −40 sin(2πx) e2y and−f0 ∈ ∂j1(u). The boundary decomposition ∂Ω = Γ0∪Γ1

is the same as in Example 7.1. We take a = b = 0.5 for the function j1 and a = b = 1 for the

function j2. It can be shown that

λ1 =
5

4
π2, µ1 =

π
(

e2π + 1
)

e2π − 1
.

The smallness condition (5.7) for this problem

α1
4

5 π2
+ α2

e2π − 1

π (e2π + 1)
< 1

is satisfied since α1 = 0.5 and α2 = 1. The numerical results are reported in Table 7.3. Once

more, we observe that the numerical convergence order in H1(Ω)-norm is close to one.
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