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a b s t r a c t

This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution
of a quasistatic contact problem is considered for an elastic body in frictional contact
with a moving foundation. The model takes into account wear of the contact surface
of the body caused by the friction. Some preliminary error analysis for a fully discrete
approximation of the contact problem was provided in Jureczka and Ochal (2019). In
this paper, we consider a more general fully discrete numerical scheme for the contact
problem, derive optimal order error bounds and present computer simulation results
showing that the numerical convergence orders match the theoretical predictions.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Contact phenomenon is common in engineering applications. Mathematical studies and numerical analysis of contact
problems are most suitably carried out within the frameworks of variational inequalities or hemivariational inequalities,
which have attracted the attention of many researchers. The related mathematical literature grows rapidly. Some
representative comprehensive references in this area are [1–8] in the context of variational inequalities and [9–13] in
the context of hemivariational inequalities.

For a contact problem, the mathematical model is constructed based on considerations of various aspects of the
contact process. Factors to be taken into account include the type of the contact process (static, quasistatic or dynamic),
constitutive relations of the deformable bodies, contact conditions of various application-specific forms. In certain
applications, it is important to consider heating or thermal effects [14], or piezoelectricity effects [15]. Since the contact
process inevitably causes material wear or even damage, it is not surprising that the wear effect has been built into
mathematical models for a variety of contact processes, cf. [16–22]. In a recent paper [23], a mathematical model is
proposed and studied for contact with wear described by Archard’s law of surface wear. In this model, the friction between
a deformable body and the foundation leads to wear of the contact surface of the body over time. Solution existence and
uniqueness for the model are provided in [23]. Numerical approximation of the contact problem is the subject of [24]
where some error bounds are derived for a fully discrete scheme. In this paper, we take a further step by considering
a more general fully discrete numerical scheme for the contact problem that allows an arbitrary partition of the time
interval, providing optimal order error estimates of the fully discrete scheme to solve the contact problem. Moreover,
we present numerical results showing deformation of the contact body and numerical convergence orders of the fully
discrete solutions that confirm the theoretical error bounds.
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The remainder of this paper is organized as follows. In Section 2 we introduce the contact problem and its variational
formulation. In Section 3, we study a fully discrete numerical scheme and derive optimal order error bounds. In Section 4,
we present computational simulation results for numerical convergence orders that match the theoretical predictions.

2. The contact problem and its variational formulation

First, we describe the physical setting of the contact problem. Consider a deformable body that occupies a domain
Ω ⊂ Rd, d = 2, 3 in application. The body is subject to the action of volume forces with a total density f0. The boundary
Γ of the domain Ω is assumed to be Lipschitz continuous and is divided into three disjoint measurable parts ΓD, ΓN
and ΓC , with meas (ΓD) > 0. Denote by ν the unit outward normal vector on Γ that is defined a.e. on Γ . The body is
clamped on ΓD, i.e., the displacement is equal to 0 on ΓD. Surface tractions of a total density fN act on the boundary ΓN .
The contact boundary is ΓC where the contact is modeled by a normal compliance condition with a unilateral constraint
and Coulomb’s law of dry friction. Following [23], we assume that the body is elastic, in contact with a moving obstacle
(foundation) made of a hard perfectly rigid material, and assume that the contact surface of the body ΓC is covered by a
layer of soft material. This layer is deformable and the foundation may penetrate it. Frictional contact with the foundation
may cause this layer to wear over time.

We assume that the acceleration of the body is negligible and so the problem is quasistatic. In our model, the framework
of the small strain theory is employed. We are interested in the body displacement and foundation wear in a time interval
[0, T ], with T > 0. We denote by ‘‘·’’ and ∥·∥ the scalar product and the Euclidean norm in Rd or Sd, respectively, where Sd

is the space of symmetric matrices of order d. The indices i and j run from 1 to d and the index after a comma represents
the partial derivative with respect to the corresponding component of the independent variable. Summation convention
over repeated indices is adopted. We denote the divergence operator by Divσ = (σij,j) for an Sd-valued field σ. Standard
Lebesgue and Sobolev spaces will be used, such as L2(Ω)d = L2(Ω;Rd) and H1(Ω)d = H1(Ω;Rd). Recall that the linearized
strain tensor of a displacement field u ∈ H1(Ω)d is

ε(u) = (εij(u)), εij(u) =
1
2

(
ui,j + uj,i

)
.

Let uν = u · ν and σν = σν · ν be the normal components of u and σ, respectively, and let uτ = u − uνν and
στ = σν−σνν be their tangential components, respectively. To simplify the notation, we will usually not indicate explicitly
the dependence of various functions on the spatial variable x.

Denote by v∗(t) ̸= 0 the velocity of the foundation. Let

n∗(t) = −v∗(t)/∥v∗(t)∥, α(t) = κ ∥v∗(t)∥, (2.1)

where κ represents the wear coefficient, and let µ be the friction coefficient. The classical formulation of the contact
problem with wear is as follows.

Problem 1. Find a displacement field u:Ω × [0, T ] → Rd, a stress field σ:Ω × [0, T ] → Sd, and a wear function
w:ΓC × [0, T ] → R+ = [0, ∞) such that for all t ∈ [0, T ],

σ(t) = Fε(u(t)) in Ω, (2.2)

Div σ(t) + f0(t) = 0 in Ω, (2.3)

u(t) = 0 on ΓD, (2.4)

σ(t)ν = fN (t) on ΓN , (2.5)

uν(t) ≤ g, σν(t) + p(uν(t) − w(t)) ≤ 0,
(uν(t) − g)(σν(t) + p(uν(t) − w(t))) = 0

}
on ΓC , (2.6)

−στ (t) = µ p(uν(t) − w(t)) n∗(t) on ΓC , (2.7)

w′(t) = α(t) p(uν(t) − w(t)) on ΓC , (2.8)

w(0) = 0 on ΓC . (2.9)

In Problem 1, Eq. (2.2) represents an elastic constitutive law with an elasticity operator F . Eq. (2.3) is the equilibrium
equation. The equality (2.4) describes the fact that body is clamped on ΓD and (2.5) represents the traction boundary
condition in which fN denotes the density of external forces acting on ΓN . The relations in (2.6) describe the damping
response of the foundation, g > 0 being the thickness of a soft layer covering ΓC and p ≥ 0 being a normal compliance
function which represents the reaction of the soft layer depending on the current value of the penetration. The friction is
modeled by Eq. (2.7). Here, the size of v∗ is assumed to be significantly larger than that of the tangential body velocity u′

τ .
Eqs. (2.8) and (2.9) govern the evolution of the wear function. Detailed derivation of this model is presented in [23]. We
remark that when uν = w = g , the frictional force vanishes and the value of µ does not play a role. To change this, (2.6)
and (2.7) can be replaced by more complicated relations, and analysis of such contact models may present substantial
difficulty.
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The contact problem will be studied in its variational formulation. For this purpose, we introduce function spaces and
hypotheses on the problem data. We recall that for a normed space X , C([0, T ]; X) is the space of continuous functions
from [0, T ] to X . We will use the following Hilbert spaces:

H = L2(Ω; Sd), V = {v ∈ H1(Ω)d | v = 0 on ΓD}

endowed with the inner scalar products

(σ, τ)H =

∫
Ω

σijτij dx, (u, v)V = (ε(u), ε(v))H

with the corresponding norms. Denote by ⟨·, ·⟩V∗×V the duality pairing between a dual space V ∗ and V . The set of
admissible displacements is

U = {v ∈ V | vν ≤ g on ΓC }.

For a function v ∈ V , we use the same symbol v for its trace on the boundary Γ . By the Sobolev trace theorem, there
exists a constant c0 > 0 depending only on Ω , ΓD and ΓC such that

∥v∥L2(ΓC )d ≤ c0∥v∥V ∀ v ∈ V . (2.10)

Now we introduce the hypotheses on the data needed in the study of Problem 1.
H(F): For the elasticity operator F:Ω × Sd

→ Sd,
(a) F(·, ε) is measurable on Ω for all ε ∈ Sd, F(·, 0) ∈ H;
(b) ∃ LF > 0 s.t. ∥F(x, ε1) − F(x, ε2)∥ ≤ LF∥ε1 − ε2∥ ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω;
(c) ∃ mF > 0 s.t. (F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF∥ε1 − ε2∥

2
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω .

H(p): For the normal compliance function p:ΓC × R → R+,
(a) p(·, r) is measurable on ΓC ∀ r ∈ R;
(b) ∃ Lp > 0 s.t. |p(x, r1) − p(x, r2)| ≤ Lp|r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ ΓC ;
(c) (p(x, r1) − p(x, r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ ΓC ;
(d) p(x, r) = 0 ∀ r ≤ 0, a.e. x ∈ ΓC .

Note that H(p)(b) and (d) imply

|p(x, r)| ≤ Lp|r| ∀ r ∈ R, a.e. x ∈ ΓC .

H(f ): For the densities of body and traction forces,

f0 ∈ C([0, T ]; L2(Ω)d), fN ∈ C([0, T ]; L2(ΓN )d).

H0: For the friction and wear coefficients, and the foundation velocity,
(a) µ ∈ L∞(ΓC ), µ(x) ≥ 0 a.e. x ∈ ΓC ;
(b) κ ∈ L∞(ΓC ), κ(x) ≥ 0 a.e. x ∈ ΓC ;
(c) v∗

∈ C([0, T ];Rd), ∥v∗(t)∥ ≥ v0 > 0 ∀ t ∈ [0, T ].
We notice that hypotheses H0 imply the following regularities:

n∗
∈ C([0, T ];Rd), α ∈ C([0, T ]; L∞(ΓC )),

where n∗ and α are defined in (2.1).
Finally, we will need a smallness assumption on the combined effect of the Lipschitz constant of the normal compliance

function p and the friction coefficient µ. Recall that c0 is the constant in the inequality (2.10).

Hs: c20Lp∥µ∥L∞(ΓC ) < mF .

Now we define some operators and functions needed in the variational formulation of Problem 1. Let F : V → V ∗,
f : [0, T ] → V ∗ and ϕ: [0, T ] × L2(ΓC ) × V × V → R be defined for all u, v ∈ V , w ∈ L2(ΓC ), t ∈ [0, T ] as follows:

⟨Fu, v⟩V∗×V = (F(ε(u)), ε(v))H,

⟨f (t), v⟩V∗×V =

∫
Ω

f0(t) · v dx +

∫
ΓN

fN (t) · v da,

ϕ(t, w, u, v) =

∫
ΓC

p(uν − w)
[
vν + µ n∗(t) · vτ

]
da.

Let W = L2(ΓC ) be the space for the wear variable w. Using the standard procedures in the mathematical theory of
contact mechanics, we obtain the weak formulation of Problem 1.



D. Han, W. Han, M. Jureczka et al. / Computers and Mathematics with Applications 79 (2020) 2942–2951 2945

Problem 2. Find u: [0, T ] → U and w: [0, T ] → W such that for all t ∈ [0, T ],

⟨Fu(t), v − u(t)⟩V∗×V + ϕ(t, w(t), u(t), v) − ϕ(t, w(t), u(t), u(t)) ≥ ⟨f (t), v − u(t)⟩V∗×V ∀ v ∈ U, (2.11)

w(t) =

∫ t

0
α(s) p(uν(s) − w(s)) ds.

We recall the following existence and uniqueness result for Problem 2 from [23].

Theorem 3. Assume H(F), H(p), H(f ), H0 and Hs. Then Problem 2 has a unique solution with the regularity

u ∈ C([0, T ]; V ), σ ∈ C([0, T ];H), w ∈ C1([0, T ];W ).

In addition, w(t) ≥ 0 for all t ∈ [0, T ], a.e. on ΓC .

3. Numerical analysis

We turn to the numerical solution of Problem 2. Let V h
⊂ V and W h

⊂ W be two families of finite dimensional
subspaces with a discretization parameter h > 0. Then define Uh

= U ∩ V h. Let 0 = t0 < t1 < · · · < tN = T be a partition
of the time interval [0, T ]. Denote kn = tn+1 − tn, 0 ≤ n ≤ N − 1, and k = max0≤n≤N−1 kn for the time step size. For a
function z continuous in t , we write zn = z(tn).

We make the following additional assumptions on the solution u to Problem 2 and the velocity of the foundation v∗.

H1: u ∈ H1(0, T ; V ), v∗
∈ W 1,∞(0, T ;Rd).

Note that assumptions H1 and H0 (b) imply that

α ∈ W 1,∞(0, T ; L∞(ΓC )).

Consider the following fully discrete scheme for solving Problem 2.

Problem 4. Find uhk
= {uhk

n }
N
n=0 ⊂ Uh and whk

= {whk
n }

N
n=0 ⊂ W h, whk

0 = 0 such that for 0 ≤ n ≤ N ,

⟨Fuhk
n , vh

− uhk
n ⟩V∗×V + ϕ(tn, whk

n , uhk
n , vh) − ϕ(tn, whk

n , uhk
n , uhk

n ) ≥ ⟨fn, vh
− uhk

n ⟩V∗×V ∀ vh
∈ Uh, (3.1)

and for 1 ≤ n ≤ N ,

whk
n =

n−1∑
j=0

kj αj p(uhk
j,ν − whk

j ).

We remark that existence of a unique solution to Problem 4 follows from an application of discrete version of
Theorem 3. We also remark that the numerical scheme considered in [24] is a special case of Problem 4 where a uniform
partition of the time interval [0, T ] is used. For a uniform partition of [0, T ] into N equal size sub-intervals, we let k = T/N
be the time step and tn = n k, 0 ≤ n ≤ N , the node points.

We will make use of the following discrete Gronwall inequality [4, Lemma 7.25].

Lemma 5. Assume {gn}Nn=1 and {en}Nn=1 are two sequences of non-negative numbers satisfying

en ≤ c gn + c
n−1∑
j=1

kjej, n = 1, . . . ,N.

Then

en ≤ c
(
gn +

n−1∑
j=1

kjgj
)
, n = 1, . . . ,N.

Therefore,

max
1≤n≤N

en ≤ c max
1≤n≤N

gn.

We have Ceá’s inequality useful for error estimation.
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Theorem 6. Under the assumptions stated in Theorem 3 and the additional hypothesis H1, there exists a constant c > 0 such
that for any vh

n ∈ Uh, 1 ≤ n ≤ N,

max
1≤n≤N

(
∥un − uhk

n ∥
2
V + ∥wn − whk

n ∥
2
W

)
≤ c k2 + c k ∥u0 − uhk

0 ∥
2
V

+ c max
1≤n≤N

(
∥un − vh

n∥
2
V + |Rn(wn, un, vh

n )|
)

(3.2)

where

Rn(wn, un, vh
n ) = ⟨Fun, vh

n − un⟩V∗×V + ϕ(tn, wn, un, vh
n ) − ϕ(tn, wn, un, un) − ⟨fn, vh

n − un⟩V∗×V .

Proof. By modifying the proof of Theorem 4 in [24], we can establish the inequality

∥un − uhk
n ∥

2
V + ∥wn − whk

n ∥
2
W ≤ c ∥un − vh

n∥
2
V +

⏐⏐Rn(wn, un, vh
n )

⏐⏐ + c k2 + c k ∥u0 − uhk
0 ∥

2
V

+ c
n−1∑
j=1

kj
(
∥uj − uhk

j ∥
2
V + ∥wj − whk

j ∥
2
W

)
. (3.3)

Applying Lemma 5 on (3.3), we get the inequality (3.2). ■

Note that from H(p) and H0, we have (cf. [24, (27)]), for t ∈ [0, T ],

ϕ(t, w1, u1, v2) + ϕ(t, w2, u2, v1) − ϕ(t, w1, u1, v1) − ϕ(t, w2, u2, v2)
≤ Lp (c0∥u1 − u2∥V + ∥w1 − w2∥W )

(
c0∥µ∥L∞(ΓC )∥v1 − v2∥V + ∥w1 − w2∥W

)
∀ u1, u2, v1, v2 ∈ V , w1, w2 ∈ W . (3.4)

The inequality (3.2) is the starting point for further error estimation. For simplicity, we assume Ω is a polygo-
nal/polyhedral domain. Then ΓD, ΓN and ΓC can be expressed as unions of flat components (line segments for d = 2 and
polygons for d = 3) that have pairwise disjoint interiors. In particular, we write ΓC = ∪

i0
i=1ΓC,i, where each component

ΓC,i is a line segment if d = 2 or a polygon if d = 3. Consider a regular family of finite element partitions {T h
} of the

domain Ω into triangular or tetrahedral elements such that if the intersection of one side/face of an element with one
flat component of the boundary has a positive relative measure, then the side/face lies entirely in that flat component.
Corresponding to T h, we define the linear element space

V h
=

{
vh

∈ C(Ω)d | vh
|T∈ P1(T )d, T ∈ T h, vh

= 0 on ΓD
}
. (3.5)

Then we define the discrete admissible finite element set

Uh
=

{
vh

∈ V h
| vh

ν ≤ g at all nodes on ΓC
}
. (3.6)

We assume g is a concave function. Then, Uh
= V h

∩ U ⊂ U . We proceed to derive an optimal order error estimate for
the finite element solution defined by Problem 4.

Theorem 7. Keep the assumptions stated in Theorem 6. Assume further the solution regularities

u ∈ C([0, T ];H2(Ω)d), u|ΓC,i∈ C([0, T ];H2(ΓC,i)d), 1 ≤ i ≤ i0, (3.7)

σν|Γ ∈ C([0, T ]; L2(Γ )d). (3.8)

Then we have the optimal order error estimate

max
1≤n≤N

(
∥un − uhk

n ∥V + ∥wn − whk
n ∥W

)
≤ c (k + h) . (3.9)

Proof. By following the arguments presented in [4, Section 8.1], it can be shown that under the stated regularity
assumptions, the solution of Problem 2 satisfies, for t ∈ [0, T ],

Div σ(t) + f0(t) = 0 a.e. in Ω,

σ(t)ν = fN (t) a.e. on ΓN ,

where

σ(t) = Fε(u(t)).

Using these relations we find that

Rn(wn, un, vh
n ) =

∫
ΓC

{
σnν·(vh

n − un) + p(uhk
n,ν − wn)

[
vh
n,ν − un,ν + µ n∗

n · (vh
n,τ − un,τ )

]}
da.
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Thus, ⏐⏐Rn(wn, un, vh
n )

⏐⏐ ≤ c ∥un − vh
n∥L2(ΓC )d . (3.10)

This provides an upper bound for the term
⏐⏐Rn(wn, un, vh

n )
⏐⏐ on the right hand side of (3.2).

Now we bound the error ∥u0 − uhk
0 ∥V . For simplicity, we denote

ϕ0(u, v) := ϕ(0, 0, u, v).

Write

⟨Fu0 − Fuhk
0 , u0 − uhk

0 ⟩V∗×V = ⟨Fu0 − Fuhk
0 , u0 − vh

0⟩V∗×V + ⟨Fu0, vh
0 − u0⟩V∗×V

+ ⟨Fu0, u0 − uhk
0 ⟩V∗×V − ⟨Fuhk

0 , vh
0 − uhk

0 ⟩V∗×V . (3.11)

From (2.11) with t = 0,

⟨Fu0, v − u0⟩V∗×V + ϕ0(u0, v) − ϕ0(u0, u0) ≥ ⟨f0, v − u0⟩V∗×V ∀ v ∈ U . (3.12)

From (3.1) with n = 0,

⟨Fuhk
0 , vh

0 − uhk
0 ⟩V∗×V + ϕ0(uhk

0 , vh
0 ) − ϕ0(uhk

0 , uhk
0 ) ≥ ⟨f0, vh

0 − uhk
0 ⟩V∗×V ∀ vh

0 ∈ Uh. (3.13)

Take v = uhk
0 in (3.12), and use the resulting inequality and the inequality (3.13) in (3.11) to obtain

⟨Fu0 − Fuhk
0 , u0 − uhk

0 ⟩V∗×V ≤ ⟨Fu0 − Fuhk
0 , u0 − vh

0⟩V∗×V + R0(0, u0, vh
0 )

+ ϕ0(u0, uhk
0 ) + ϕ0(uhk

0 , vh
0 ) − ϕ0(u0, vh

0 ) − ϕ0(uhk
0 , uhk

0 ). (3.14)

By H(F)(c),

mF∥u0 − uhk
0 ∥

2
V ≤ ⟨Fu0 − Fuhk

0 , u0 − uhk
0 ⟩V∗×V .

By H(F)(b),

⟨Fu0 − Fuhk
0 , u0 − vh

0⟩V∗×V ≤ LF∥u0 − uhk
0 ∥V∥u0 − vh

0∥V .

Then, for an arbitrarily small ϵ > 0, there is a constant c depending on ϵ such that

⟨Fu0 − Fuhk
0 , u0 − vh

0⟩V∗×V ≤ ϵ ∥u0 − uhk
0 ∥

2
V + c ∥u0 − vh

0∥
2
V .

By (3.10),

R0(0, u0, vh
0 ) ≤ c ∥u0 − vh

0∥L2(ΓC )d .

By (3.4),

ϕ0(u0, uhk
0 ) + ϕ0(uhk

0 , vh
0 ) − ϕ0(u0, vh

0 ) − ϕ0(uhk
0 , uhk

0 ) ≤ c20Lp∥µ∥L∞(ΓC )∥u0 − uhk
0 ∥V∥uhk

0 − vh
0∥V .

Since

∥uhk
0 − vh

0∥V ≤ ∥u0 − uhk
0 ∥V + ∥u0 − vh

0∥V ,

for the arbitrarily small ϵ > 0, there is a constant c depending on ϵ such that

ϕ0(u0, uhk
0 ) + ϕ0(uhk

0 , vh
0 ) − ϕ0(u0, vh

0 ) − ϕ0(uhk
0 , uhk

0 )

≤
(
c20Lp∥µ∥L∞(ΓC ) + ϵ

)
∥u0 − uhk

0 ∥
2
V + c ∥u0 − vh

0∥
2
V .

Using these relations in (3.14), we obtain(
mF − c20Lp∥µ∥L∞(ΓC ) − 2 ϵ

)
∥u0 − uhk

0 ∥
2
V ≤ c

(
∥u0 − vh

0∥
2
V + ∥u0 − vh

0∥L2(ΓC )d
)
.

Recall the condition Hs; choosing ϵ =
(
mF − c20Lp∥µ∥L∞(ΓC )

)
/4 we obtain from the above inequality that

∥u0 − uhk
0 ∥

2
V ≤ c

(
∥u0 − vh

0∥
2
V + ∥u0 − vh

0∥L2(ΓC )d
)
. (3.15)

Using (3.15) and (3.10) in (3.2), we have

max
0≤n≤N

(
∥un − uhk

n ∥
2
V + ∥wn − whk

n ∥
2
W

)
≤ c k2 + c k

(
∥u0 − vh

0∥
2
V + ∥u0 − vh

0∥L2(ΓC )d
)

+ c max
1≤n≤N

(
∥un − vh

n∥
2
V + ∥un − vh

n∥L2(ΓC )d
)

(3.16)

for any vh
n ∈ Uh.

Thus, by applying the finite element interpolation theory (e.g., [25,26]), we have the optimal order error bound (3.9)
from (3.16), under the solution regularities (3.7) and (3.8). ■
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Fig. 1. Initial setting.

We comment that if F(x, ε) is a smooth function of x, in particular if F(x, ε) does not depend on x, then (3.8) follows
from (3.7) and thus there is no need to assume (3.8). Moreover, if quadrilateral elements (in 2D) or hexahedral elements
(in 3D) with lowest degree conforming finite element functions are used, we again have the optimal order error estimate
stated in Theorem 7.

4. Numerical results

In this section, we report computer simulation results on a numerical example. Let d = 2 and consider a rectangular-
shaped set Ω = (0, 2) × (0, 1) presented in Fig. 1 with the following partition of the boundary

ΓD = {0} × [0, 1], ΓN = ([0, 2] × {1}) ∪ ({2} × [0, 1]), ΓC = [0, 2] × {0}.

The linear elasticity operator F is defined by

F(τ) = 2ητ + λtr(τ)I, τ ∈ S2.

Here I denotes the identity matrix, tr denotes the trace of the matrix, λ > 0 and η > 0 are the Lamé coefficients. In our
simulations, we choose λ = η = 4, T = 1 and take the following data

u0(x) = (0, 0), x ∈ Ω,

p(r) =

{
70 r, r ∈ [0, ∞),
0, r ∈ (−∞, 0),

f N (x, t) = (0, 0), x ∈ ΓN , t ∈ [0, T ],

f 0(x, t) = (0, −2), x ∈ Ω, t ∈ [0, T ],

g = 0.1.

We use the linear finite element space V h defined in (3.5) and its subset Uh defined in (3.6), based on uniform triangular
partitions of Ω . We use the uniform partition of the time interval [0, 1] with the time step size k = 1/N for a positive
integer N .

We first demonstrate the effect of some input data on the deformation of the body. In all cases, we show the shape
of the body at final time t = 1 as well as the contact interface forces on ΓC . We also present plots of wear w and
penetration uν − w of the soft layer of material covering ΓC at t = 0.25, t = 0.5, t = 0.75 and t = 1. The numerical
solutions correspond to the time step size 1/64 and where the boundary ΓC of the body is divided into 64 equal parts.

In Fig. 2 we show the deformed configuration for µ(x) = 0.2, κ(x) = 0.02 and v∗(x, t) = (1, 0). We push the body
down towards the moving foundation with a force f 0, and as a result of friction, the soft layer of material covering ΓC
wears out allowing the body to move downward. We observe that in this case coefficient κ , governing the rate of wear, is
not big enough to cause the body to touch the foundation. Because of the friction, the body moves in the same direction
as the foundation, i.e. to the right.

We then increase the wear coefficient κ to κ(x) = 0.06. The deformed configuration is shown in Fig. 3. We observe
that the layer of soft material on part of the boundary ΓC wears out, allowing the body to rest on the rigid foundation
as it cannot penetrate it further. In this case, by condition (2.6), plotted normal components of contact interface forces
represent a lower bound for the actual force.
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Fig. 2. Deformed configuration at t = 1, wear and penetration for µ = 0.2, κ = 0.02, v∗
= (1, 0).

Fig. 3. Deformed configuration at t = 1, wear and penetration for µ = 0.2, κ = 0.06, v∗
= (1, 0).

Fig. 4. Deformed configuration at t = 1, wear and penetration for µ = 1, κ = 0.02, v∗
= (1, 0).

In Fig. 4, we show the deformed configuration for µ(x) = 1, κ(x) = 0.02 and v∗(x, t) = (1, 0). We observe that the
body moves further to the right, which is a result of increased friction between soft layer of material covering ΓC and the
rigid foundation.

The result in Fig. 5 corresponds to µ(x) = 0.3, κ(x) = 0.02 and v∗(x, t) = (−1, 0). Note that the direction of the
motion of the foundation is reversed. As a result, the lower part of the body squeezes to the left and we observe that the
boundary ΓC is slightly curled. We conclude that all those modifications lead to results that can be expected.

Finally, we explore the numerical convergence orders of the numerical method on the model problem with f N (x, t) =

(−0.5, −0.5), f 0(x, t) = (−0.5, −2), µ(x) = 0.6, κ(x) = 0.01, and v∗(x, t) = (1, 0). We present a comparison of numerical
errors ∥u − uhk

∥V and ∥w − whk
∥W computed for a sequence of solutions to discretized problems. We use a uniform

discretization of the problem domain and time interval according to the spatial discretization parameter h and time step
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Fig. 5. Deformed configuration at t = 1, wear and penetration for µ = 0.3, κ = 0.02, v∗
= (−1, 0).

Fig. 6. Error estimate ∥u − uhk
∥V /∥u∥V .

Fig. 7. Error estimate ∥w − whk
∥W /∥w∥W .

size k, respectively. The boundary ΓC of Ω is divided into 1/h equal parts. We start with h = 1/2 and k = 1/2, which are
successively halved. The numerical solution corresponding to h = 1/128 and k = 1/128 is taken as the ‘‘exact’’ solution
u and w with ∥u∥V

.
= 0.30081 and ∥w∥W

.
= 0.03011. The results are presented in Table 1 and Figs. 6 and 7, where the

dependence of the relative error estimates ∥u−uhk
∥V/∥u∥V and ∥w−whk

∥W/∥w∥W with respect to h+k are plotted on a
log–log scale. A first order convergence is clearly observed for the numerical solutions of the displacement. The numerical
convergence orders for the numerical solutions of the wear function are somewhat higher than 1.
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Table 1
Numerical errors.
h + k 1 1/2 1/4 1/8 1/16 1/32

∥u − uhk
∥V /∥u∥V 3.9800e−1 2.2588e−1 1.2565e−1 6.8223−2 3.5958e−2 1.7146e−2

Convergence order 0.8172 0.8462 0.8811 0.9239 1.0684

∥w − whk
∥W /∥w∥W 3.1733e−1 1.0178e−1 3.2950e−2 1.0516e−2 3.3533e−3 1.0045e−3

Convergence order 1.6405 1.6271 1.6476 1.6490 1.7391
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