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Abstract

This paper is devoted to a fourth-order hemivariational inequality for a Kirchhoff plate prob-
lem. A solution existence and uniqueness result is proved for the hemivariational inequality
through the analysis of a corresponding minimization problem. A nonconforming virtual
element method is developed to solve the hemivariational inequality. An optimal order error
estimate in a broken H2-norm is derived for the virtual element solutions under appropriate
solution regularity assumptions. The discrete problem can be formulated as an optimization
problem for a difference of two convex (DC) functions and a convergent algorithm is used
to solve it. Computer simulation results on a numerical example are reported, providing
numerical convergence orders that match the theoretical prediction.

Keywords Kirchhoff plate problem - Hemivariational inequality - Well-posedness -
Nonconforming virtual element method - Error analysis - Double bundle algorithm

1 Introduction

Since the early 1980s, many challenging nonsmooth problems in a wide range of applications
have been formulated and studied as hemivariational inequalities (HVIs). Modeling, well-
posedness analysis and numerical solutions of HVIs can be found in numerous references,
cf. comprehensive references [16, 31, 34-37]. Optimal order error analysis for finite element
solutions of HVIs started with [28], followed by numerous publications. We refer the reader
to the survey paper [29] on recent progress of numerical analysis of HVIs. Compared to vari-
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ational inequalities, a distinguished feature of HVIs is their capability to treat non-monotone,
non-smooth, and set-valued relations between physical quantities in application problems.

The pioneering work of virtual element methods (VEMs) is found in [1, 6, 8]. Because of
the advantages in handling problems with complex geometries or requiring high-regularity
approximations, the VEM has been applied successfully to a wide variety of scientific and
engineering problems. For example, conforming and nonconforming VEMs are presented for
second-order elliptic problems ([1, 5, 6, 15]), elasticity problems ([7, 42]), fourth-order ellip-
tic problems ([2, 14, 41, 43]) and polyharmonic problems ([3, 18]). Moreover, the method has
been applied to solve elliptic variational inequalities and elliptic hemivariational inequalities
(cf. [23, 24, 39, 40]). We refer to [9, 10, 12, 17, 18] for a comprehensive understanding of
mathematical theories of VEMs.

In this paper, we apply the nonconforming virtual element method to solve a Kirchhoff
plate problem, which is formulated as a fourth-order HVI. We provide aresult on the existence
of aunique solution to the HVI. In most of the existing literature, solution existence for HVIs s
shown through an application of an abstract surjectivity result for coercive, pseudomonotone
operators. In this paper, we adopt an approach presented in [27] and prove the solution
existence through the study of a corresponding minimization problem, thus avoiding the
notion of pseudomonotone operators and employment of abstract surjectivity results for
such operators. An optimal order error estimate is derived for the virtual element solutions
under appropriate solution regularity assumptions. The discrete problem is converted into a
DC (difference of convex functions) programming. Then, the double bundle method ([33])
is applied to find the solution of the discretized hemivariational inequality. Numerical results
are reported to illustrate computational performance of the VEM studied in this paper.

The rest of the paper is organized as follows. In Sect. 2, we recall notions and basic
properties of the generalized directional derivative and subdifferential in the sense of Clarke.
In Sect. 3, we introduce a fourth-order HVIfor a frictional contact problem of a Kirchhoff plate
problem, and prove the unique solvability of the HVI through the analysis of a corresponding
minimization problem. In Sect. 4, we apply a nonconforming virtual element method to solve
the HVI and provide its error analysis. In Sect. 5, we present a solution algorithm for the
discrete problem and report simulation results on a numerical example.

2 Preliminaries

All linear spaces in this paper are real. For a normed space X, we denote by || - ||x its
norm, by X* its topological dual, and by (-, -) x*x x the duality pairing between X* and X.
In the description of the hemivariational inequality, we need the notions of the generalized
(Clarke) directional derivative and the generalized gradient of a locally Lipschitz continuous
functional (cf. [20]).

Definition 2.1 Let ¢ : X — R be a locally Lipschitz functional on a Banach space X. The
generalized (Clarke) directional derivative of ¥ at x € X in the direction v € X is defined
by

‘/’O(XZ v) = limsup Yy +2rv) — 1//(y)
y—=>x, A0 A

The generalized gradient (subdifferential) of v at x is defined by
W) ={ e X y(x;v) = (¢, v) Yo e X).
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We recall some properties of the generalized directional derivative and the generalized
subdifferential (cf. [34, Propositions 3.23 & 3.32]).

Proposition 2.1 Suppose v : X — R is a locally Lipschitz continuous functional on a
Banach space X.

(1) For every x € X, the function ¥°(x;-) : X — R is positively homogeneous and
subadditive:

YO av) =A ¢y v) VA>0, veX,
YO0 v+ ) < ¥ v) + Y0 v) Ve, e X. @2.1)
(2) Foranyx,v € X,
¥0(x; v) = max{(¢, v) : ¢ € dY (x)). 2.2)

(3) If Y is convex, then the subdifferential in the sense of Clarke coincides with the subdif-
ferential in the sense of convex analysis.

Another property we will need is the following result (cf. [34, Proposition 3.35]).

Proposition 2.2 If {1, Y» : X — R are locally Lipschitz continuous on a Banach space X,
then

01 +¥2)(x) C Y1 (x) +9yY2(x) Vx € X,
or equivalently,
W1+ 9% v) < PV v) + ¥ v) Vx,ve X,
It is convenient to record an elementary result to be used later:

a,b,x>0andx> <ax+b = x><da’>+2b. (2.3)

Remark 2.1 To simplify the presentation, similar to other papers in numerical methods for
hemivariational inequalities, we use the convention that for a function f, d f denotes its
generalized subdifferential, while for a bounded domain D, d D means its boundary.

3 Kirchhoff Plate Problems

In this section, after reviewing a classical Kirchhoff plate bending problem and a fourth-order
variational inequality in frictional contact problem for the plate, we introduce a hemivari-
ational inequality (HVI) for a frictional contact problem of the plate where the frictional
contact condition is allowed to be non-monotone. We proceed to prove the existence and
uniqueness of a solution to the HVI. Contrary to the common approach adopted in most of
the existing literature where an abstract surjectivity result on pseudomonotone operators is
needed, here we show the solution existence directly through the analysis of a corresponding
minimization problem.
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3.1 A Classical Kirchhoff Plate Bending Problem

Let © C R? be a Lipschitz domain with a boundary I'. For an elastic thin plate clamped on
the boundary and acted by a vertical load with density f € L*(), its deflection u is the
solution of the minimization problem (cf. [19, §6.8], [25, Chapter 3, §4])

ue HJ(Q), Ei(u) =inf{E|(v):ve H}(Q)} 3.1

where the energy functional

1
Ei(v) = f/ Mg (v) Kop(v) dx —/ fuvdx
2 Q Q
in which,
Mag() = (1 = )Kap () + v V)80, Kepg(v) = —0gpv, 1 =Zoa,u, B <2,

and v € (0, 1/2) is the Poisson ratio of the plate. The quantities Myg(v) are known as the
moments. We adopt Einstein’s convention for summation over a repeated index, e.g.,

Kup) = K11 (v) + K (v).

It is a classical result that the problem (3.1) has a unique solution u € H02(Q), and the
minimization problem (3.1) is equivalent to the weak formulation

ue HH(Q), a(,v)=(f,v) Yve H}(Q), (3.2)

where (f, v) stands for the ordinary L2($2)-inner product of f and v, and the bilinear form

a(u, v) :/ Mg W) Kop(v) dx. 3.3)
Q

If the solution u of the problem (3.2) is sufficiently smooth, then u satisfies the following
pointwise relations:

- Mozﬁ,aﬁ(”) =f in €2,
u=0u=>0 onT, 3.4

where n = (n1, ny) is the unit outward normal vector defined a.e. on I'. We use T = (71, 12)
for the unit tangential vector a.e. on I" such that (n, t) forms a right-hand system.

3.2 A Frictional Contact Problem

In [30], a variational inequality for frictional contact of the Kirchhoff plate is studied. To
describe the problem, we decompose the boundary I' = 92 of the plateas ' = ' UTh, UT'3
such that ", I'2, and I'5 are relatively closed with mutually non-overlapping relative interiors,
and meas (I'1) > 0. We assume the plate is clamped on I'(, free on I'2, and subject to a friction
effect following a simplified friction law on I'3. Then the deflection u is a solution of the
following minimization problem

ueV, Eyu)=inf{E(v):veV} (3.5)
where the function space is

V={veH* Q) :v=23,v=0o0nT}, (3.6)
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and the energy functional is

Ez(v)=1/ Maﬁ(v)lCaﬂ(v)dx—}—/ g|v|ds—/ fudx,
2 Q F3 Q

in which g > 0 is the frictional bound (see an interpretation on this claim below). The
contribution of the frictional effect to the energy functional is reflected by the integral term
on I'3. By [19, Theorem 6.8-4], |[v||v := |v|y2(q) defines a norm on V which is equivalent
to the norm ||v|| g2 (g over V. The problem (3.5) has a unique solution u € V, which is also
the unique solution of the variational inequality

ueVv, a(u,v—u)+/ g(vl—lupds = (f,v—u) YveV, 3.7
I's

where the bilinear form a(-, -) is defined in (3.3).
For convenience, given a deflection function v, introduce the quantities

Mun (v) 1= Mgp(v)ngng, Mazn(v) = Mg (V) Tanp,
Qu (V) 1= Mg (), Qu(V) == Qu(WIng, N(W) = Qu(v) + 3z Men(v),

where My, (v), — Mz (v), Q,(v), and N (v) respectively denote the bending moment, the
twist moment, the transverse shearing force, and the effective shear force in elastic mechanics
(cf. [25, pp. 180-184]).

If the solution u € V of the problem (3.7) is sufficiently smooth, then it can be shown that
u satisfies the equations (3.4) in 2 and the following boundary conditions:

u=0u=0 onl',
Mup(u) =N@w) =0 on I,
Mupn(w) =0, N(u) € 9 (g |ul) on I'z, (3.8)

where 0 stands for the subdifferential in convex analysis ([21]). Note that the condition
N (u) € 3 (g |u|) is equivalent to the following relations:

INw)|<g, Nuwl<g=u=0 [Nu)|=g = u=xrN(u) for some A > 0.

Thus, g > 0 can be interpreted as the frictional bound.

3.3 An Elliptic Hemivariational Inequality for Kirchhoff Plate

We proceed to consider the frictional contact plate problem for which the boundary condition
(3.8) takes a more general form

Mupn(w) =0, N@u) € dj(u) onls, 3.9

where j : I's x R — R is a locally Lipschitz function, and 9 j () is the generalized subd-
ifferential of j at u in the sense of Clarke. As is common in the literature, we suppress x in
Jj(x, u) and simply write j(u). Unlike the condition N (1) € 3 (g |u|) from (3.8) that gives a
monotonic relation between N («) and u, in general, the condition A/ («) € 9 («) from (3.9)
allows a non-monotonic relation between N (1) and u. With the function space V defined
by (3.6), the bilinear form a(-, -) defined by (3.3), f € L3(Q) given, we have the following
minimization problem.
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Problem (P) Find an element u € V such that
E3z(u) =inf{E3(v) : v € V}

where the energy functional is
1
Es(v) = f/ Maﬂ(v)lCaﬁ(v)dx—i-/ j(v)ds—/ fuvdx. (3.10)
2 Jq T3 Q

The corresponding weak formulation is stated next.

Problem (P) Find an element u € V such that

a(u, v) +/ j%u;v)ds > (f,v) YveV. (3.11)
I3

The relation between Problem (P) and Problem (P) is explored in Theorem 3.1 below.
On the function j, we impose the following condition:

Assumption (Hp). j(-, z) is measurable on I'; for any z € R and there exists zg € L>(I'3)
such that j(-, zo(-)) € LY(I'3). j(x, ) is locally Lipschitz on R for a.e. x € I'3, and there are
constants co, c1, &; > 0 such that

[0j()] <cotecilz] VzeR, (3.12)
PPz —a)+ %0z —2) < ajlzy — 2)? Yz1,z2 €R. (3.13)

We comment that (3.12) is a short-hand notation for the property
€l <co+cilz]l YzeR, VE€dj(2).

It is known (cf. [34, Theorem 3.47]) that under the assumption (Hp), the integral
1w = [ s
I's
is well-defined and locally Lipschitz continuous on L2(I'3). Moreover,
daJ(v) C / dj(v)ds
I3

in the sense that for v* € 9.J (v), there exists ¢ € L2(I'3) such that (x) € dj(v(x)) fora.e.
x € I'3, and

(v, V) 120y x22(Ty) =/ ¢(x)v(x)ds.
I3

Define a linear operator A : V — V* by
(Au,v) =a(u,v), u,veVv.
Then A € L(V, V*). The bilinear form (3.3) is coercive on V since
a,v) = 1 =v) v} YveV.

This implies that A is strongly monotone with a monotonicity constant (1 —v). Define f € V*
by

(f,v)=(f,v) YvelV.
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By the Sobolev trace theorem, there exists a constant ¢, > 0 such that

lll2ry) < eyllvlly Yve V. (3.14)

-1/2

The best constant ¢, in the inequality (3.14) is ¢, = A/~ where Amin > 0 is the smallest

eigenvalue of the eigenvalue problem

/Vzu:Vzvdx:k/ uvds YveV.
Q '3

We assume

ajes < 1—v. (3.15)

Such a condition is known as a smallness assumption in the literature (cf. [34]).
We present a property of the energy functional E3, which is obviously Lipschitz continuous
onV.

Lemma 3.1 Under the assumptions (Hy) and (3.15), the energy functional E3 defined in
(3.10) is strongly convex on V.

Proof Letu,v € V andlet& € dE3(u), n € 9 E3(v). By Proposition 2.2,
AE3(v) C Av+dJ(v) — f, 3J() C /F dj(v)ds.
3
Thus, we can write, for any w € V,
(&, w) = (Au, w) + . Ex)wx)ds — (f, w),

(n.w) = (Av, w) +/ ) wee) ds — (7. w)

I'3

for some &1, n; € LZ(F3) with &1(x) € dj(u(x)) and n1(x) € 9j(v(x)) for a.e. x € I'.
Hence,

(§—nu—v)= (A —v),u—v) +/ (E1(x) = n1(x)) (u(x) —v(x))ds
I3
===l — o [ lu) - vl ds
I's
= (1=v—o;e2) Ju—vl}.
Applying [22, Theorem 3.4], we know that E3 is strongly convex on V. O

We are now in a position to present a solution existence and uniqueness result for Problems
(P) and Problem (P).

Theorem 3.1 Assume (Hp) and (3.15). Then Problem (P) has a unique solution; Moreover,
u € V is the solution of Problem (P) if and only if it is the solution of Problem (P).

Proof Thanks to Lemma 3.1, the functional Ej is strictly convex and coercive on V (cf. [27,
P~rop0sition 2.5]). Thus by a standard result on convex minimization (cf. [4, §3.3.2]), Problem
(P) has a unique solution.
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Now we turn to prove the equivalencg between Problem (P) and Problem (P). Denote by
u € V the unique solution of Problem (P). Then,

0 € dE3(u).

Since

OE3(u) C Au+93Jw) — f, 8Ju) C / 9 (u)ds,
I's
there is a function & € L?(I'3) such that E(x) € dj(u(x)) fora.e. x € I's and

(Au, v) + Ex)v(x)ds = (7, v) YVveV. (3.16)
I'3

Since £(x) € 9j(u(x)) forae. x € ',
Ex)vx) < jOu(x); v(x)) ae.x eTs.

Thus, from (3.16), we obtain
a(u, v)+/ JOu@x);v(x))ds > (f,v) YveV.
I3

In other words, u € V is a solution of Problem (P). Let us prove that a solution of Problem
(P) is unique. For this purpose, denote by # another solution of Problem (P). Then,

a(u, v) +/ jo(ﬁ; v)ds > (f,v) YvelV. (3.17)
I's
Take v = u — u in (3.11), take v = u — u in (3.17), and add the two resulting inequalities,

a(u — i, u — i) 5/ [jo(u;ﬁ—u)—i-jo(ft;u —ft)]ds.
I'3

Then,
~02 ~ 2 2 ~ 2
(A=)l =l < ajllu— il < gl — il

Recalling the smallness condition (3.15), we find from the above inequality that U=u.
In conclusion, Problem (P) has a unique solution, Problem (P) also has a unique solution,
and the two solutions are equal. O

In the next section, we will develop and analyze a nonconforming virtual element method
to solve Problem (P). For this purpose, we present some preliminary results.
We will assume the solution regularity

ue H(Q). (3.18)
We choose arbitrary v € C3°(£2) in (3.11) to obtain
a(u,v) = (f,v) VveCTER).
Recall that the bilinear form a(-, -) is defined by (3.3). Thus, the above identity implies
—Mp,ap(u) = f in the sense of distributions.
Since f € L?(S2), we have —Mog qp(u) € L?(2) and
— Magapu) = f ae. in Q. (3.19)
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Multiply the equality (3.19) by an arbitrary function v € H'!(), integrate over €2, and
perform an integration by parts to get

/ Qo (U)dgvdx — (f,v) = (Qu(w), v)12r Yv e H'(Q), (3.20)
Q
where (-, -)1,2,r denotes the duality pair between H~Y2(T") and H'/2(I") and
Qu(u) == Qu(u)ng € H'(3Q).
Now forv € V, v = d,v = 0 on I'1 and we have
a(u,v) = / Qu(u)ogvdx — / [(Mpn(@)0,v + Mep(u)ozv]ds. (3.21)
Q rLurs

According to (3.20) and (3.21),

alu, v) = (f,v)+<Qn<u),v>1/z,r—/ [ Mo ()30 + Man ()3, 0] ds.
rLpurs

Then (3.11) is reduced to
(Qn (), U)I/Z,F - / [Mpn (@)0nv + My (u)d-v]ds
hurs

+/ P v)yds >0 YveV. (3.22)
I's

By taking v € V such that v = 0 on I" and 9, v arbitrary on I', U I'3, it can be shown that

Mpn(u) =0 a.e.onlp UT3. (3.23)
Thus, from (3.22),
(Qn(u), v)12r — M () dzvds +/ O v)ds >0 YveV.
Hurs I3

Replacing v by —v in the above inequality, we have

(Qu(w), V)21 — Men(u) 9rvds S/ Jou; —vyds YveV. (324)
Lurs I3

The closure of V in H' () is
Hlll(Q) ={ve HI(Q) :v=0a.e.onl}.
Denote
A () ={v e H} (Q): ;v e L* ()},

Then from (3.24), we conclude that

(Qn(u), v)120 — Mep(u)dzvds < / i%u; —v)ds Vve I:Illl(Q). (3.25)
Lurs I'3
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4 Nonconforming Virtual Element Discretization and Approximation

Given a positive integer m and a bounded set S C R2, H™(S) denotes the usual Sobolev
space with the corresponding norm || - ||, s and semi-norm | - |,,, s. For simplicity, we assume
2 is a polygonal domain. Let {7;},, 7, := {K}ke7,, be a family of partitions of Q into
polygons, with a generic element denoted by K; h := maxge7, hg and hg := diam(K).
Let &, be the set of all the element edges, 5;: the set of all the element edges that lie on the
boundary I', 5;; the set of all interior edges, and 5}117,1“2,1"3 the set of all the edges that lie on
I'; and I's. Similarly, we denote by V), = V}; U Vh the set of vertices in 7, where V,; and Vh
are the sets of interior and boundary vertices on I', respectively, and by Vh r, C Vh the set
of boundary vertices on I';. For an element K and an edge e on the boundary 0K of K, |K|
and |e| = h, denote the area of K and the length of e, respectively. We denote the traces of
a piecewise smooth function v on e C dK+ N 9K~ from the interior of K* by v*. Then,
we define the jump of v on the interior edge by [v] = v — v~ and on the boundary edge by
[v] = v].. We make the following assumption on the family of decompositions (cf. [17]):

Assumption (H;). For each K € 7, there exists a “virtual triangulation” 7x of K such
that 7k is uniformly shape regular and quasi-uniform. The corresponding mesh size of 7x
is bounded from below by a constant multiple of 4. Each edge of K is a side of certain
triangle in 7.

Throughout this paper, for any two quantities a and b, the notation “a < b” stands for
“a < Cb”, where C or ¢ (with or without subscript) denotes a positive constant independent
of hx or h, which may take on different values at different occurrences.

For a nonnegative integer £ and an open set D, IP;(D) denotes the set of all polynomials
on D with the total degree no more than £. Moreover, we use 7,* to denote a triangulation
of 2, which comprises all triangles in Tk for all K € 7;,. Evidently, {7} is regular and
quasi-uniform with respect to the mesh size h.

For any integer m > 0, let

H"(Tp) = Nger, H"(K) ={v € L*(Q) :v|g € H"(K) forany K € Ty}

be a broken Sobolev space and endow it with the broken H™-seminorm

12
. 2
|U|m,h = ( Z |v|m,K> .

KeT,

Then we introduce the nonconforming space H Zne(,) C H*(Tp) by
H>"(T;) = {v € H?(T3,) : v continuous at internal vertices, v(P;) =0V P; € V,I;,Fl,

/[anv]ds =0Ve e &\, |-
e

Lemma4.1 The quantity | - |2, is a norm on the spaces V and H2>"C(Tp).

Proof 1t is well-known that | - |2 5 is a norm on the space V, cf. [19, Theorem 6.8-4]. So we
only need to prove that | - |2 4 is a norm on H2"C(Tp).
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According to [13, Corollary 4.2 & Example 2.4],

2
Il g+ loalts S TonB + D2 (e IPSLonlI2 + by | Polawval )

i
ee&y

Y, € H>"(Tp), 4.1)

where P¢, is the Lz-projection from L% (e) to Py, (e). By the definition of H 2.n¢(75,), we have
/[anh]ds =0 Veeé&,
e

which implies P§[d,vs] = 0. Note that [v),], vanishes at the endpoints of e. If v£ is the usual
linear interpolant of v;, on e, then [vﬁ]e =0.So

2 2 192 3 2
IPSToalll2 < Nlvadll? = Nlow — vA 12 S A2 D Ioal3,
tedle

where 3~ !e denotes the set of all triangles in 7, with e as one side. Thus, we obtain from
(4.1) that

lonlig.q + lonltp < a3, Yow € H2"(Tp), (4.2)
which implies that | - |5 5, is a norm on the space H 2ne (). O

Now we introduce the local and global nonconforming virtual element spaces. The local
virtual element space is defined as follows (cf. [2, 43]):

VE = (v, € HX(K) : A*vy, =0in K, Mun(vp)le € Po(e), N(vp)le =0Ve C 3K}
We choose the following degrees of freedom in VhK:

(D1) vy (P;) for any vertex P; of K,
(D2) [, 8yv; ds for any edge e of K,

which are unisolvent for VhK. Building upon the local space VhK , the global nonconforming
virtual element space is then defined as follows:

Vi :{vh € LZ(Q) D vplg € VhK, v, continuous at internal vertices,
v,(P;) =0V P € V,’j’rl, /[anvh]ds =0Vece Eh\gf,mr}}. 4.3)
e

We observe that by construction, V;, C HZ"¢(T;) and V, Q H2().
Let f; € L*(S2) represent a function to be constructed to satisfy the condition

(fnv) =cllflloallvioe Yve V. (4.4)

Since the bilinear form a(-, -) can be split as

a,v)= Y a“@,v), aK(u,v):/ Map () Kop(v) dx,
KeT, K

we construct the discrete symmetric bilinear form ay, (-, -) over Vj, x Vj, in the form

K
an(up, vp) = Y af (up, vp) Vup, vy € Vi
KeT,

@ Springer



89 Page120f24 Journal of Scientific Computing (2022) 90:89

To define the local bilinear form a,{( (-,-) on VhK X VhK, introduce a projection operator
Nk : vE — P,(K) by the relations (cf. [18])

akMXy, q) =ak (@, q) Vg ePrK),

%y = 7,
Wl v 1 4.5)
> —/Vﬂkwds= > —/vwds,
eCoK lel Je eCoK lel Je
where
~ 1 ©
V==Y v(Ph,
i
and {PiK } are the vertices of K. Note that (4.5) implies
N%g =g YqcPyK), (4.6)

and ITX is computable from the degrees of freedom (D1)—(D2). Then the local bilinear form
is defined by the formula

a® (un, o) = a¥ (HKuh, nth) n SK<uh — 5wy, vy — Hth) Yup, vp € VK,

4.7)
where the stabilization term is
NK
SKw ) = hi? Y xiw)xi(v) Yw,ve Vi,
i=1
N being the number of degrees of freedom, {x1,--- , xyk} being the local degrees of

freedom from (D1)—(D2).
With the above preparation, our numerical method for Problem (P) is the following.

Problem (Pj) Find an element u;, € V}, such that

ap(up, vy) +/ 7Ouns vy ds = (fu, vn) Yop € Vi 4.8)

I'3

The rest of the section is devoted to an analysis of Problem (P,).
For a polygon K € 7, satisfying assumption (H), the following trace inequality holds
naturally (cf. [17]):

IlIg.ox < hg' VI3 x +hklvl x Yve H (K). 4.9)

By examining the derivations in [18], we find that all the estimates there hold under assump-
tion (Hi) in our context. This implies that SX (-, -) is a symmetric bilinear form satisfying

a® (p, vn) < S8, o) S a® iy vn) Yoy € ker(ITX). (4.10)

From the definition of ITX and (4.7), and the relations (4.6) and (4.10), we deduce a consis-
tency property:

ak(p,vn) =a®(p,vn) VpePrK), v, € VK, 4.11)
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and a stability property: for two positive constants o, and o™, independent of 1x and K,
awa® (v, vn) < aff (vp. ) < oa® (. vp) Yo € Vi (4.12)

From the definition of aX (-, -),

aX (op o) = (1 —v)/ icaﬁ(vhvcaﬁ(vh)dxwf (Ao dx = (1= lun g
K K

(4.13)
From (4.12), we have
an(on, v) = Y wd® (p, vi) = a1 = ) [wpl3 - (4.14)
KeT,
For later use, we denote
ma = ag(l —v). 4.15)
Similarly, for all u, vy, € V)X, we have
a* (up, vp) = / Magun)Kap () dx < un oo lvn .k (4.16)
K

Choosing g = l'IKw in the first relation in (4.5), and making use of (4.13) and (4.16), we
have

M5 ylax S Wk Vi€ H(K).
Define 1, : V), — P(7y) by (ITyv) g = X (v|g) for each K € 7}, where
P>(73) := {v € L*(Q) : v|x € P2(K) for each K € T}.

Under assumption (Hp), we can directly obtain the following result in view of the Scott-
Dupont approximation theory (cf. [11]).

Lemma 4.2 Foreveryv € H3(K), there exists a function v, € Pr(K) such that
lv—vxllix Sh?ilvls,x, i=0,12. 4.17)

From [18, Lemma A.5], we can also obtain the local Poincaré inequality with the hidden
constant independent of the geometric nature of K.

Lemma4.3 Forany K € 7Ty, there holds

lvllo.x +hxlvlik S hklvlk Vo € ker(ITX).

The above result can be used in derivation of error estimates of the nodal interpolation
operator in lower order norms (cf. [18]).

Lemma4.4 Let Ix : H3(K) — VhK be the standard nodal interpolation operator. Then the
Sfollowing error estimates hold:

lv— Ixvllik S kg ol g, i=0,1,2. (4.18)

From now on, we write v; for the global interpolant of v, i.e., for all K € 7;, vy (x) is equal
to Ixv(x) forx € K.
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Lemma 4.5 There exists some constant ¢, > 0 such that
Wil 2y < Eylolon Yv e HX"(T) + V. 4.19)

Proof Let I7 be the usual interpolation operator from C(S2) into the continuous piecewise
linear finite element space related to the triangulation 7. Since the function values at vertices
are available for all v € HZ"¢(7j,), this operator is also well defined in H?%"¢(T},). For
v E Hz’"c(’Th) + V,since v =0on I'y, we have I7v = 0 on I';. By the trace theorem,

IH7vllz2ry) S Hrvlhe- (4.20)
By (4.20), (4.9) and Lemma 4.1, we obtain

1/2
2
1ol 2y = o = vl + rvleey S (X o= frolde) © +lirvlhg

eCl'3
_q 5 , W12

S (X X (0 o = 170l .+ helliro = vl )

eCl'; Te

1/2 1/2
(X v =vidg) (X k)
KeT, KeT,
172 1/2 1/2

N ( Z h%|”|%,K) +( Z h%(“”%,l() +( Z |U|%,K)

KeT, KeT, KeT,
< Il

where 1, refers to the only triangle in 7," with e as one side. Consequently, there exists a
positive constant ¢, > 0 independent of / such that (4.19) holds. O

Similar to Problem (f’), we introduce a minimization problem related to Problem (Pp,).

Problem (P;) Find u;, € Vj such that
Eb ) = inf | E4 i) : vy € Vi,
where
Ebon) = 3 an(on, ) + /r Jn)ds = (fiovn).

We have the following existence and uniqueness result.
Theorem 4.1 Assume (Hy) and (Hy), (4.4), and
< my. (4.21)

~2
OleV

Then Problem (Py,) is equivalent to Problem ( 15/, ), and both problems have the same unique
solution uy, € Vj,.

Proof Due to assumption (H;) and (4.19), we have
lvnll 2y < Eylvnlan Yo € Vi (4.22)

Combining (4.14) with (4.15), we obtain

an(vn, vi) > ialval3, Yup € Vi (4.23)
By (Ho), (4.4), (4.21), (4.22) and (4.23), similar to Theorem 3.1, we conclude that Problem
(Pj,) has a unique solution, which is also the unique solution of Problem (Pj,). O
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We provide a uniform boundedness result on the numerical solutions, which will be needed
in error estimation later.

Lemma 4.6 Under the assumptions (Hy) and (Hy), (4.4), and (4.21), we have
lunlon SN flloq+ 1.

Proof We take v, = —uj, in (4.8),

ap(up, —up) +/ 7Ouns —up)ds = (fu, —un),
I3

which is rewritten as

an(up, up) S/ 70Cuns —up) ds + fu, up). (4.24)
I3
By (4.14) and (4.15),
an(up, up) = malupl3 (4.25)

and from (3.12) and (3.13),

0, . 2 .0/, 2
J (uns —up) < ajlup|” = j70; up) < ajlupl” + colunl.

According to (4.19), there is a constant ¢ > 0,
0, . 202
/ J ups —up)ds < ajcyluply , +cluplon. (4.26)
I's

Use (4.25), (4.26) and (4.4) in (4.24) to obtain
alunl3y < cllflo.ellunllo.e + o lunl3 , + ¢ lunlon-
Due to (4.21) and (4.2), we obtain
lunlon S flloe + 1,

i.e., up € Vj, is uniformly bounded independent of 4. O

Using the intrinsic arguments for error analysis of plate elements in [26, 32] as well as
the technique developed in [24], we can obtain a Céa-type estimate for our VEM method.

Theorem 4.2 Under the assumptions (Hy), (H}), (3.18), (4.4), and (4.21), we have the fol-
lowing inequality:

2
= nlon S B llu—url 5 41 = fullyy, 427)
where
(f = Jn>vn)

If = fullvy = sup
vpeVy ”Uh”Vh

Proof By Lemma 4.2, for each element K, we can find u, € P»(K) such that

lu —nllix S hy lulsg, i=0,1,2. (4.28)
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Let wp, = u; — up. By (4.11), we obtain

. 2 K K
malwplyy, < Y awd® wpwp) < Y af (wa, wa) = an(ur, wa) — an(up, wp)

KeT, KeT,
< Y (af Uk —um, wp) + @S (e —w,wi)) + Y a® @, wi) — ap @, wp).
KeTy, KeT,
(4.29)
By (4.8),
—ap(up, wp) < =(f, wp) + (f — fo, wn) +/ JOCuns up — up) ds.
I3
Use this inequality in (4.29) to get
alwnl3y < T+ Tt (f — firo wn) +/ SOwniur —wyds,  (430)
I3
where
L= Y (af Ugu = uz. wp) +a® (r —u,wp)).
KeT),
L= ) aX G wn) = (f wa). (4.31)
KeTy

It follows from (4.28) and (4.18) that

172 172
L el (X ku—uxBBg) "+ (D w—uali) | = chlunlanlulsg.

KeTy KeTy,
(4.32)

Using integration by part in (4.31), we obtain
L= Z [/ Qu (u)dgwp dx _/ (Mnn(”)anwh + Mrn(”)arwh) ds:l = (f, wn).
K dK

KeTy,
(4.33)

Let w,ﬁ be the nodal interpolant of wy, in the lowest-order H'-conforming virtual element
space presented in [6, 23]. Write

> [ iy = 3 [ Quitun —wpdx+ | Quau]dx.
KeT; 'K KeT; 'K Q2
Then, by (3.20),

L= Z / Qu () (W — wi) dx + (f, wh — wp) + (Quw), wh) 121
KeTy, K

- Z /d (Mrm(u)anwh +Mm(u)3,wh) ds.
KeT, 70K

Thus,
L =T+ 1+ (Qu(w), wi)iyar, (4.34)
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where

= Y [ Quatun — wydx + (f. ] = wn)
K

KeT,

Il = — Z/ (Mun ()9 wp + Men )z wy) ds.
KeT, YK

It follows from error estimates for nodal interpolation operators (cf. [17]) that

IS D luls klwn — whlik + 221 flloglwalan < (Aluls.q + 22 fllo.o)l
KeT),

whl2,4-

(4.35)

On the other hand, for any v € L?(e) with e € &, let R{v = v — Pgv. Then we have by (4.9)

and the Scott-Dupont approximation theory (cf. [11]) that

. 1/2 1
IR§Vl0.e = min v —wloe <A vlix YveH'(K).
welPy(K)

For any v, € Vj, by the definition (4.3),
Pi[0,unl =0 Ve € E\EY 1, 1y
Recalling (3.23), we have

Z / Mun () Opwp ds = Z /M,m(u)[anwh] ds.
K e

KeT, eEEh\S,l]’vrzvr%

By making use of the property (4.37),
/M,,,, (w)[0pwp ] ds = /M,,,, () ([0nwn]| — P§[dnwn]) ds

= /RSM,,,,(M) R{[8,wy]ds.

e

So it follows from (4.36) that

\Zf Mun ) dwnds| = 3" IREMun(@) eI RG[Bawi I
K

KeT, eesh\s,’;hr3

S D hxlulsklwalak S hluls.qlwalon.
KeTy,
Write

Z/ Mep(u)ozwy ds = Z/ M,n(u)arwflds
K K

KeT, KeT)

+ Y faK Man ()3 (0 — w]) ds.

KeTy,

Then, using the fact w,’l e C(Q) and w,ﬁ = 0on Iy, we have

Z/ Mep@dewids = Y | Men()dwy ds.
0K

KeT;, eCIUI3 ¥ ¢

(4.36)

4.37)

(4.38)

(4.39)
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Similar to the derivation of (4.38), we find that
‘ Z / Men ()07 (wy — wz)ds‘ = Z / ‘Mrn(”)(at(wh - w]i))‘ds
KeT, YK KeT, VK

I
S D lulsklwn — whlig < hluls.qlwnl2n.
KeTy,
(4.40)

From (4.34)—(4.40),

L < c(hluls.o + k1 flloe) wilzn + (Qu@) wi)ipr — Y | Mea@)dew) ds.
eCIhUI'3 ¢
Using (3.25) to get
(Qu@). wi)ipr — Y Mm<u)a,w{,dss/ 0 —wp) ds.
eCIhUI'3 ¢ T3

Therefore,

L < ¢ (hluls,o + >0 fllo.e) lwalon +/ 70 u; —w}) ds. (4.41)
I3

Consequently, we combine (4.30), (4.32) with (4.41) to obtain
malwnlsy, < c[hluls.glwnlon + I fllo.elwalan + (f = fu, wi)]

+/ [jo(u; —w,ﬁ)+j°(uh;u,—uh)]ds. (4.42)
I3

By (2.1) on the sub-additivity for the generalized directional derivative,
70us —w}h) < j0us wp — wh) + 70w up —up),
FOuns wp —up) < JOCuns up —u) + jOCun; u — up),
FOsun —up) < 0w —w) + 0w —uyp).
Hence,
7Ous —wh) 4+ s up —up) < [jo(uh; u—up) + jOus up — u)]
+ 0 uns ug —w) + 0w —up) + O s wy — wh).

By (3.13) and (4.19), we have

-0 . 00 . 2 ~2 2
/ [/ nsu—up) + j° s up —w)]ds < ajllu— Unllparyy < @jCylu —unly -
'3 -

(4.43)
From (3.12) and (2.2), we have
7O uns ur —u) < (co + crlupDlu —upl, (4.44)
JOs u—ur) < (co+crlul)lu —uyl, (4.45)
70 us wy — wl) < (co+ erlul)lwy, — wi. (4.46)
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In view of (4.19) and the boundedness of |uy |2 5 in Lemma 4.6, we obtain the boundedness
of [[unll L2(ry)- We derive from (4.42)—(4.46) and (4.2) that

~ 2 2 2 2
malwply )y = ojcy lu —uply ), +c (h luls +hl fllo.e +1ILf — fhllvh*) lwa 2,

I

e (I = gy + lwn = whllaey )
The quantity ||wy, — wé | L2(r4) is bounded as follows:
12
I 12
lwr — wyll L2y = ( Z lwn — wh”O,y)
yCI3

12
-1 12 12
S Ut lwn — wh I i+ hxlwn — whi 1)
K:dKNT3#0

< W [wplo.n.

Noting that
Y R 2 Lol —
lu—unlyy < lu—urlz, +lwnlz, +2lu —urlanlwnlz.n,
we obtain
- 2 < h n2 _ w32 _
J ~ 5 s s
(ma —ajcy)lwply y S lwalon(kluls + 7N flloe + lu —urlon + 072+ 1L f = fullvg
2
+lu—urlsy, +llw—urllp2my)-

Then from (4.21), (4.18) and (2.3),

1/2

walon S hluls.g + 020 fllo.e + B+ 11F = fullve + lu =gl o -

Hence, by the triangle inequality
lu —unlon < lu—urlopn + walzn,
we obtain the inequality (4.27). O
Finally, we define the approximation of the right hand side by
(fnsvn) = (f, Tpvn), (4.47)

and derive an optimal order error estimate for the resulting VEM.

Theorem 4.3 Assume the conditions stated in Theorem 4.2, and let the right hand side of
(4.8) be defined by (4.47). Then we have the optimal order error estimate

lu —uplopn S h. (4.48)
Proof Write

(fron) = (o) = (F s on = o) = Y (f, op — T wy).

KeT,
As in [18], we have

172
o) = o)l SHSos( D ton = T¥uB ) S K0 floglunlan. (4:49)
KeT,
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Fig. 1 Polygonal meshes with N = 64 (left) and N = 256 (right)

On the other hand,
1/2
o= urlloe = (2 Ia—wrl,)
yCIs
12
(X =l e =i 1)
K:0KNT3#£0
1/2
S k) =h e
K:0KNT'3#£0

Using (4.50) and (4.49) in (4.27), we obtain the error bound (4.48).

5 Numerical Results

(4.50)

We use an efficient algorithm (the double bundle method) developed in [33] to solve the

discrete problems. A description of the solution algorithm can be found in [24].

LetQ2 = (—1,1)x (—1,1),v =0.3. A generic point in Q is denoted as x = (x, y)T. The
Dirichlet boundary is I'1 = (—1, 1) x {1}, and the free boundary is I'; = {{—1} x (—1, 1)} U
{{1} x (=1, 1)}. The friction boundary is I'3 = (—1, 1) x {—1}. The right hand side function

is chosen to be

Fx)=24(1—x2)2+24(1—y)>+32GBx2 =1 By = 1).

Let
0ifu<O,
5 ifu € (0,0.1],
N@u) = .
10 —50u if u € (0.1,0.15),
20u — 0.5 if u>0.15.
By (3.9), we obtain
0ifuc<O,

Su ifu € (0,0.1],
10u —25u% —0.25 if u € (0.1,0.15),
10u? —0.5u +0.5375 if u > 0.15.

Ju) =
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Numerical solution

Numerical solution

Numerical solution
Numerical solution

Fig. 2 The numerical solution for different number of elements: N = 256 (upper left), N = 1024 (upper
right), N = 4096 (bottom left) and N = 16384 (bottom right)

Let j(u) = fo(u) — fo(u), where fo(u) and fo(u) are defined as follows:

25u? ifu <0,
25u® +5u ifu € (0,0.1],
fou) = )
10u — 0.25 if u € (0.1, 0.15),
35u% —0.5u +0.5375 if u > 0.15,
fo(u) = 25u>.

The integral fr3 J(up) ds is calculated with the trapezoidal rule.

We use the code PolyMesher ([38]) to generate the polygonal meshes and then solve the
discrete problem. Meshes with element numbers N = 64 and N = 256 are displayed in
Fig. 1.

The numerical solutions on V}, corresponding to several meshes with N = 256, N = 1024,
N = 4096, N = 16384 are displayed in Fig. 2, respectively. A convergence trend is evident
for the numerical solutions as N increases.
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1.15 T T T T T T T

—— N=64
—— N=128
N=256

1.05

0.95

0.9

0.85

0.8 L L L L L L L L L

Fig.3 The numerical solution of normal direction for different meshes

Table 1 Numerical errors on

1 1 L €1
square meshes for lowest-order 2 4 8 16
VEM
Error 1.388 0.733 0.371 0.182
1h ]
Iy
=
z
=
~
< osf 1
™
=
S
\
ERY 1
=
0.125 1
00313 00625 0125 02

Fig.4 Relative errors in energy norm

For the numerical solutions on the boundary [—1, 1] x {—1}, a similar convergence trend
is clearly observed (cf. Fig. 3).

In Table 1 and Fig. 4, we report relative errors of the numerical solutions in the energy
norm on square meshes:

1
ap(u —up, u _uh))f

an(u, u) (5-3)

€Iror: = (
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Since the true solution # in (5.3) is not available, we use the numerical solution with a
fine mesh as the “reference” solution u,.r in computing the solution errors. Specifically,
the “reference” solution u,y is set as the numerical solution with 7 = 1/64. Note that the
error bound (4.27) predicts an optimal first order convergence of the numerical solutions
measured in the energy norm, under the regularity assumptions (3.18). Observe that the
numerical convergence orders from the results in Table 1 and Fig. 4 are close to 1, matching
the theoretical prediction.
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