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Abstract
This paper is devoted to a fourth-order hemivariational inequality for a Kirchhoff plate prob-
lem. A solution existence and uniqueness result is proved for the hemivariational inequality
through the analysis of a corresponding minimization problem. A nonconforming virtual
element method is developed to solve the hemivariational inequality. An optimal order error
estimate in a broken H2-norm is derived for the virtual element solutions under appropriate
solution regularity assumptions. The discrete problem can be formulated as an optimization
problem for a difference of two convex (DC) functions and a convergent algorithm is used
to solve it. Computer simulation results on a numerical example are reported, providing
numerical convergence orders that match the theoretical prediction.

Keywords Kirchhoff plate problem · Hemivariational inequality · Well-posedness ·
Nonconforming virtual element method · Error analysis · Double bundle algorithm

1 Introduction

Since the early 1980s, many challenging nonsmooth problems in a wide range of applications
have been formulated and studied as hemivariational inequalities (HVIs). Modeling, well-
posedness analysis and numerical solutions of HVIs can be found in numerous references,
cf. comprehensive references [16, 31, 34–37]. Optimal order error analysis for finite element
solutions of HVIs started with [28], followed by numerous publications. We refer the reader
to the survey paper [29] on recent progress of numerical analysis of HVIs. Compared to vari-
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ational inequalities, a distinguished feature of HVIs is their capability to treat non-monotone,
non-smooth, and set-valued relations between physical quantities in application problems.

The pioneering work of virtual element methods (VEMs) is found in [1, 6, 8]. Because of
the advantages in handling problems with complex geometries or requiring high-regularity
approximations, the VEM has been applied successfully to a wide variety of scientific and
engineering problems. For example, conforming and nonconformingVEMs are presented for
second-order elliptic problems ([1, 5, 6, 15]), elasticity problems ([7, 42]), fourth-order ellip-
tic problems ([2, 14, 41, 43]) and polyharmonic problems ([3, 18]).Moreover, themethod has
been applied to solve elliptic variational inequalities and elliptic hemivariational inequalities
(cf. [23, 24, 39, 40]). We refer to [9, 10, 12, 17, 18] for a comprehensive understanding of
mathematical theories of VEMs.

In this paper, we apply the nonconforming virtual element method to solve a Kirchhoff
plate problem,which is formulated as a fourth-orderHVI.We provide a result on the existence
of a unique solution to theHVI. Inmost of the existing literature, solution existence forHVIs is
shown through an application of an abstract surjectivity result for coercive, pseudomonotone
operators. In this paper, we adopt an approach presented in [27] and prove the solution
existence through the study of a corresponding minimization problem, thus avoiding the
notion of pseudomonotone operators and employment of abstract surjectivity results for
such operators. An optimal order error estimate is derived for the virtual element solutions
under appropriate solution regularity assumptions. The discrete problem is converted into a
DC (difference of convex functions) programming. Then, the double bundle method ([33])
is applied to find the solution of the discretized hemivariational inequality. Numerical results
are reported to illustrate computational performance of the VEM studied in this paper.

The rest of the paper is organized as follows. In Sect. 2, we recall notions and basic
properties of the generalized directional derivative and subdifferential in the sense of Clarke.
InSect. 3,we introduce a fourth-orderHVI for a frictional contact problemof aKirchhoff plate
problem, and prove the unique solvability of the HVI through the analysis of a corresponding
minimization problem. In Sect. 4, we apply a nonconforming virtual element method to solve
the HVI and provide its error analysis. In Sect. 5, we present a solution algorithm for the
discrete problem and report simulation results on a numerical example.

2 Preliminaries

All linear spaces in this paper are real. For a normed space X , we denote by ‖ · ‖X its
norm, by X∗ its topological dual, and by 〈·, ·〉X∗×X the duality pairing between X∗ and X .
In the description of the hemivariational inequality, we need the notions of the generalized
(Clarke) directional derivative and the generalized gradient of a locally Lipschitz continuous
functional (cf. [20]).

Definition 2.1 Let ψ : X → R be a locally Lipschitz functional on a Banach space X . The
generalized (Clarke) directional derivative of ψ at x ∈ X in the direction v ∈ X is defined
by

ψ0(x; v) = lim sup
y→x, λ↓0

ψ(y + λv) − ψ(y)

λ
.

The generalized gradient (subdifferential) of ψ at x is defined by

∂ψ(x) = {ζ ∈ X∗ : ψ0(x; v) ≥ 〈ζ, v〉 ∀ v ∈ X}.
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We recall some properties of the generalized directional derivative and the generalized
subdifferential (cf. [34, Propositions 3.23 & 3.32]).

Proposition 2.1 Suppose ψ : X → R is a locally Lipschitz continuous functional on a
Banach space X.

(1) For every x ∈ X, the function ψ0(x; ·) : X → R is positively homogeneous and
subadditive:

ψ0(x; λ v) = λψ0(x; v) ∀ λ ≥ 0, v ∈ X ,

ψ0(x; v1 + v2) ≤ ψ0(x; v1) + ψ0(x; v2) ∀ v1, v2 ∈ X . (2.1)

(2) For any x, v ∈ X,

ψ0(x; v) = max{〈ζ, v〉 : ζ ∈ ∂ψ(x)}. (2.2)

(3) If ψ is convex, then the subdifferential in the sense of Clarke coincides with the subdif-
ferential in the sense of convex analysis.

Another property we will need is the following result (cf. [34, Proposition 3.35]).

Proposition 2.2 If ψ1, ψ2 : X → R are locally Lipschitz continuous on a Banach space X,
then

∂(ψ1 + ψ2)(x) ⊂ ∂ψ1(x) + ∂ψ2(x) ∀ x ∈ X ,

or equivalently,

(ψ1 + ψ2)
0(x; v) ≤ ψ0

1 (x; v) + ψ0
2 (x; v) ∀ x, v ∈ X .

It is convenient to record an elementary result to be used later:

a, b, x ≥ 0 and x2 ≤ a x + b ⇒ x2 ≤ a2 + 2 b. (2.3)

Remark 2.1 To simplify the presentation, similar to other papers in numerical methods for
hemivariational inequalities, we use the convention that for a function f , ∂ f denotes its
generalized subdifferential, while for a bounded domain D, ∂D means its boundary.

3 Kirchhoff Plate Problems

In this section, after reviewing a classical Kirchhoff plate bending problem and a fourth-order
variational inequality in frictional contact problem for the plate, we introduce a hemivari-
ational inequality (HVI) for a frictional contact problem of the plate where the frictional
contact condition is allowed to be non-monotone. We proceed to prove the existence and
uniqueness of a solution to the HVI. Contrary to the common approach adopted in most of
the existing literature where an abstract surjectivity result on pseudomonotone operators is
needed, here we show the solution existence directly through the analysis of a corresponding
minimization problem.
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3.1 A Classical Kirchhoff Plate Bending Problem

Let � ⊂ R
2 be a Lipschitz domain with a boundary �. For an elastic thin plate clamped on

the boundary and acted by a vertical load with density f ∈ L2(�), its deflection u is the
solution of the minimization problem (cf. [19, §6.8], [25, Chapter 3, §4])

u ∈ H2
0 (�), E1(u) = inf

{
E1(v) : v ∈ H2

0 (�)
}

(3.1)

where the energy functional

E1(v) = 1

2

∫

�

Mαβ(v)Kαβ(v) dx −
∫

�

f v dx

in which,

Mαβ(v) = (1 − ν)Kαβ(v) + νKμμ(v)δαβ, Kαβ(v) = −∂αβv, 1 ≤ α,μ, β ≤ 2,

and ν ∈ (0, 1/2) is the Poisson ratio of the plate. The quantities Mαβ(v) are known as the
moments. We adopt Einstein’s convention for summation over a repeated index, e.g.,

Kμμ(v) = K11(v) + K22(v).

It is a classical result that the problem (3.1) has a unique solution u ∈ H2
0 (�), and the

minimization problem (3.1) is equivalent to the weak formulation

u ∈ H2
0 (�), a(u, v) = ( f , v) ∀ v ∈ H2

0 (�), (3.2)

where ( f , v) stands for the ordinary L2(�)-inner product of f and v, and the bilinear form

a(u, v) =
∫

�

Mαβ(u)Kαβ(v) dx . (3.3)

If the solution u of the problem (3.2) is sufficiently smooth, then u satisfies the following
pointwise relations:

− Mαβ,αβ(u) = f in �,

u = ∂nu = 0 on �, (3.4)

where n = (n1, n2) is the unit outward normal vector defined a.e. on �. We use τ = (τ1, τ2)

for the unit tangential vector a.e. on � such that (n, τ ) forms a right-hand system.

3.2 A Frictional Contact Problem

In [30], a variational inequality for frictional contact of the Kirchhoff plate is studied. To
describe the problem, we decompose the boundary � = ∂� of the plate as � = �1 ∪�2 ∪�3

such that�1,�2, and�3 are relatively closedwithmutually non-overlapping relative interiors,
andmeas (�1) > 0.We assume the plate is clamped on�1, free on�2, and subject to a friction
effect following a simplified friction law on �3. Then the deflection u is a solution of the
following minimization problem

u ∈ V , E2(u) = inf {E2(v) : v ∈ V } (3.5)

where the function space is

V = {v ∈ H2(�) : v = ∂nv = 0 on �1}, (3.6)
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and the energy functional is

E2(v) = 1

2

∫

�

Mαβ(v)Kαβ(v) dx +
∫

�3

g |v| ds −
∫

�

f v dx,

in which g > 0 is the frictional bound (see an interpretation on this claim below). The
contribution of the frictional effect to the energy functional is reflected by the integral term
on �3. By [19, Theorem 6.8-4], ‖v‖V := |v|H2(�) defines a norm on V which is equivalent
to the norm ‖v‖H2(�) over V . The problem (3.5) has a unique solution u ∈ V , which is also
the unique solution of the variational inequality

u ∈ V , a(u, v − u) +
∫

�3

g (|v| − |u|) ds ≥ ( f , v − u) ∀ v ∈ V , (3.7)

where the bilinear form a(·, ·) is defined in (3.3).
For convenience, given a deflection function v, introduce the quantities

Mnn(v) := Mαβ(v)nαnβ, Mτn(v) := Mαβ(v)ταnβ,

Qα(v) := ∂βMαβ(v), Qn(v) := Qα(v)nα, N (v) := Qn(v) + ∂τMτn(v),

whereMnn(v), −Mτn(v),Qn(v), andN (v) respectively denote the bending moment, the
twist moment, the transverse shearing force, and the effective shear force in elastic mechanics
(cf. [25, pp. 180–184]).

If the solution u ∈ V of the problem (3.7) is sufficiently smooth, then it can be shown that
u satisfies the equations (3.4) in � and the following boundary conditions:

u = ∂nu = 0 on �1,

Mnn(u) = N (u) = 0 on �2,

Mnn(u) = 0, N (u) ∈ ∂ (g |u|) on �3, (3.8)

where ∂ stands for the subdifferential in convex analysis ([21]). Note that the condition
N (u) ∈ ∂ (g |u|) is equivalent to the following relations:

|N (u)| ≤ g, |N (u)| < g ⇒ u = 0, |N (u)| = g ⇒ u = λN (u) for some λ ≥ 0.

Thus, g > 0 can be interpreted as the frictional bound.

3.3 An Elliptic Hemivariational Inequality for Kirchhoff Plate

We proceed to consider the frictional contact plate problem for which the boundary condition
(3.8) takes a more general form

Mnn(u) = 0, N (u) ∈ ∂ j(u) on �3, (3.9)

where j : �3 × R → R is a locally Lipschitz function, and ∂ j(u) is the generalized subd-
ifferential of j at u in the sense of Clarke. As is common in the literature, we suppress x in
j(x, u) and simply write j(u). Unlike the conditionN (u) ∈ ∂ (g |u|) from (3.8) that gives a
monotonic relation betweenN (u) and u, in general, the conditionN (u) ∈ ∂ j(u) from (3.9)
allows a non-monotonic relation between N (u) and u. With the function space V defined
by (3.6), the bilinear form a(·, ·) defined by (3.3), f ∈ L2(�) given, we have the following
minimization problem.
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Problem (P̃) Find an element u ∈ V such that

E3(u) = inf {E3(v) : v ∈ V }
where the energy functional is

E3(v) = 1

2

∫

�

Mαβ(v)Kαβ(v) dx +
∫

�3

j(v) ds −
∫

�

f v dx . (3.10)

The corresponding weak formulation is stated next.

Problem (P) Find an element u ∈ V such that

a(u, v) +
∫

�3

j0(u; v) ds ≥ ( f , v) ∀ v ∈ V . (3.11)

The relation between Problem (P) and Problem (P̃) is explored in Theorem 3.1 below.
On the function j , we impose the following condition:

Assumption (H0). j(·, z) is measurable on �3 for any z ∈ R and there exists z0 ∈ L2(�3)

such that j(·, z0(·)) ∈ L1(�3). j(x, ·) is locally Lipschitz on R for a.e. x ∈ �3, and there are
constants c0, c1, α j ≥ 0 such that

|∂ j(z)| ≤ c0 + c1|z| ∀ z ∈ R, (3.12)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ α j |z1 − z2|2 ∀ z1, z2 ∈ R. (3.13)

We comment that (3.12) is a short-hand notation for the property

|ξ | ≤ c0 + c1|z| ∀ z ∈ R, ∀ ξ ∈ ∂ j(z).

It is known (cf. [34, Theorem 3.47]) that under the assumption (H0), the integral

J (v) =
∫

�3

j(v) ds

is well-defined and locally Lipschitz continuous on L2(�3). Moreover,

∂ J (v) ⊂
∫

�3

∂ j(v) ds

in the sense that for v∗ ∈ ∂ J (v), there exists ζ ∈ L2(�3) such that ζ(x) ∈ ∂ j(v(x)) for a.e.
x ∈ �3, and

〈v∗, v〉L2(�3)×L2(�3)
=

∫

�3

ζ(x) v(x) ds.

Define a linear operator A : V → V ∗ by

〈Au, v〉 = a(u, v), u, v ∈ V .

Then A ∈ L(V , V ∗). The bilinear form (3.3) is coercive on V since

a(v, v) ≥ (1 − ν) ‖v‖2V ∀ v ∈ V .

This implies that A is stronglymonotonewith amonotonicity constant (1−ν). Define f ∈ V ∗
by

〈 f , v〉 = ( f , v) ∀ v ∈ V .

123



Journal of Scientific Computing            (2022) 90:89 Page 7 of 24    89 

By the Sobolev trace theorem, there exists a constant cγ > 0 such that

‖v‖L2(�3)
≤ cγ ‖v‖V ∀ v ∈ V . (3.14)

The best constant cγ in the inequality (3.14) is cγ = λ
−1/2
min where λmin > 0 is the smallest

eigenvalue of the eigenvalue problem
∫

�

∇2u : ∇2v dx = λ

∫

�3

u v ds ∀ v ∈ V .

We assume

α j c
2
γ < 1 − ν. (3.15)

Such a condition is known as a smallness assumption in the literature (cf. [34]).
Wepresent a property of the energy functional E3,which is obviouslyLipschitz continuous

on V .

Lemma 3.1 Under the assumptions (H0) and (3.15), the energy functional E3 defined in
(3.10) is strongly convex on V .

Proof Let u, v ∈ V and let ξ ∈ ∂E3(u), η ∈ ∂E3(v). By Proposition 2.2,

∂E3(v) ⊂ Av + ∂ J (v) − f , ∂ J (v) ⊂
∫

�3

∂ j(v) ds.

Thus, we can write, for any w ∈ V ,

〈ξ,w〉 = 〈Au, w〉 +
∫

�3

ξ1(x)w(x) ds − 〈 f , w〉,

〈η,w〉 = 〈Av,w〉 +
∫

�3

η1(x)w(x) ds − 〈 f , w〉

for some ξ1, η1 ∈ L2(�3) with ξ1(x) ∈ ∂ j(u(x)) and η1(x) ∈ ∂ j(v(x)) for a.e. x ∈ �3.
Hence,

〈ξ − η, u − v〉 = 〈A(u − v), u − v〉 +
∫

�3

(ξ1(x) − η1(x)) (u(x) − v(x)) ds

≥ (1 − ν) ‖u − v‖2V − α j

∫

�3

|u(x) − v(x)|2 ds

≥
(
1 − ν − α j c

2
γ

)
‖u − v‖2V .

Applying [22, Theorem 3.4], we know that E3 is strongly convex on V . ��
We are now in a position to present a solution existence and uniqueness result for Problems

(P) and Problem (P̃).

Theorem 3.1 Assume (H0) and (3.15). Then Problem (P) has a unique solution. Moreover,
u ∈ V is the solution of Problem (P) if and only if it is the solution of Problem (P̃).

Proof Thanks to Lemma 3.1, the functional E3 is strictly convex and coercive on V (cf. [27,
Proposition 2.5]). Thus by a standard result on convexminimization (cf. [4, §3.3.2]), Problem
(P̃) has a unique solution.
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Now we turn to prove the equivalence between Problem (P) and Problem (P̃). Denote by
u ∈ V the unique solution of Problem (P̃). Then,

0 ∈ ∂E3(u).

Since

∂E3(u) ⊂ Au + ∂ J (u) − f , ∂ J (u) ⊂
∫

�3

∂ j(u) ds,

there is a function ξ ∈ L2(�3) such that ξ(x) ∈ ∂ j(u(x)) for a.e. x ∈ �3 and

〈Au, v〉 +
∫

�3

ξ(x) v(x) ds = 〈 f , v〉 ∀ v ∈ V . (3.16)

Since ξ(x) ∈ ∂ j(u(x)) for a.e. x ∈ �3,

ξ(x) v(x) ≤ j0(u(x); v(x)) a.e. x ∈ �3.

Thus, from (3.16), we obtain

a(u, v) +
∫

�3

j0(u(x); v(x)) ds ≥ ( f , v) ∀ v ∈ V .

In other words, u ∈ V is a solution of Problem (P). Let us prove that a solution of Problem
(P) is unique. For this purpose, denote by ũ another solution of Problem (P). Then,

a(ũ, v) +
∫

�3

j0(ũ; v) ds ≥ ( f , v) ∀ v ∈ V . (3.17)

Take v = ũ − u in (3.11), take v = u − ũ in (3.17), and add the two resulting inequalities,

a(u − ũ, u − ũ) ≤
∫

�3

[
j0(u; ũ − u) + j0(ũ; u − ũ)

]
ds.

Then,

(1 − ν) ‖u − ũ‖2V ≤ α j‖u − ũ‖2L2(�3)
≤ α j c

2
γ ‖u − ũ‖2V .

Recalling the smallness condition (3.15), we find from the above inequality that ũ = u.
In conclusion, Problem (P̃) has a unique solution, Problem (P) also has a unique solution,

and the two solutions are equal. ��
In the next section, we will develop and analyze a nonconforming virtual element method

to solve Problem (P). For this purpose, we present some preliminary results.
We will assume the solution regularity

u ∈ H3(�). (3.18)

We choose arbitrary v ∈ C∞
0 (�) in (3.11) to obtain

a(u, v) = ( f , v) ∀ v ∈ C∞
0 (�).

Recall that the bilinear form a(·, ·) is defined by (3.3). Thus, the above identity implies

−Mαβ,αβ(u) = f in the sense of distributions.

Since f ∈ L2(�), we have −Mαβ,αβ(u) ∈ L2(�) and

− Mαβ,αβ(u) = f a.e. in �. (3.19)
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Multiply the equality (3.19) by an arbitrary function v ∈ H1(�), integrate over �, and
perform an integration by parts to get

∫

�

Qα(u)∂αv dx − ( f , v) = 〈Qn(u), v〉1/2,� ∀ v ∈ H1(�), (3.20)

where 〈·, ·〉1/2,� denotes the duality pair between H−1/2(�) and H1/2(�) and

Qn(u) := Qα(u)nα ∈ H−1/2(∂�).

Now for v ∈ V , v = ∂nv = 0 on �1 and we have

a(u, v) =
∫

�

Qα(u)∂αv dx −
∫

�2∪�3

[Mnn(u)∂nv + Mτn(u)∂τv] ds. (3.21)

According to (3.20) and (3.21),

a(u, v) = ( f , v) + 〈Qn(u), v〉1/2,� −
∫

�2∪�3

[Mnn(u)∂nv + Mτn(u)∂τv] ds.

Then (3.11) is reduced to

〈Qn(u), v〉1/2,� −
∫

�2∪�3

[Mnn(u)∂nv + Mτn(u)∂τv] ds

+
∫

�3

j0(u; v) ds ≥ 0 ∀ v ∈ V . (3.22)

By taking v ∈ V such that v = 0 on � and ∂nv arbitrary on �2 ∪ �3, it can be shown that

Mnn(u) = 0 a.e. on �2 ∪ �3. (3.23)

Thus, from (3.22),

〈Qn(u), v〉1/2,� −
∫

�2∪�3

Mτn(u) ∂τv ds +
∫

�3

j0(u; v) ds ≥ 0 ∀ v ∈ V .

Replacing v by −v in the above inequality, we have

〈Qn(u), v〉1/2,� −
∫

�2∪�3

Mτn(u) ∂τv ds ≤
∫

�3

j0(u;−v) ds ∀ v ∈ V . (3.24)

The closure of V in H1(�) is

H1
�1

(�) = {v ∈ H1(�) : v = 0 a.e. on �1}.
Denote

H̃1
�1

(�) = {v ∈ H1
�1

(�) : ∂τv ∈ L2(�)}.
Then from (3.24), we conclude that

〈Qn(u), v〉1/2,� −
∫

�2∪�3

Mτn(u)∂τv ds ≤
∫

�3

j0(u;−v) ds ∀ v ∈ H̃1
�1

(�). (3.25)
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4 Nonconforming Virtual Element Discretization and Approximation

Given a positive integer m and a bounded set S ⊂ R
2, Hm(S) denotes the usual Sobolev

space with the corresponding norm ‖ ·‖m,S and semi-norm | · |m,S . For simplicity, we assume
� is a polygonal domain. Let {Th}h , Th := {K }K∈Th , be a family of partitions of � into
polygons, with a generic element denoted by K ; h := maxK∈Th hK and hK := diam(K ).
Let Eh be the set of all the element edges, Eb

h the set of all the element edges that lie on the
boundary �, E ih the set of all interior edges, and Eb

h,�2,�3
the set of all the edges that lie on

�2 and �3. Similarly, we denote by Vh = V i
h ∪ Vb

h the set of vertices in Th , where V i
h and Vb

h
are the sets of interior and boundary vertices on �, respectively, and by Vb

h,�1
⊂ Vb

h the set
of boundary vertices on �1. For an element K and an edge e on the boundary ∂K of K , |K |
and |e| = he denote the area of K and the length of e, respectively. We denote the traces of
a piecewise smooth function v on e ⊂ ∂K+ ∩ ∂K− from the interior of K± by v±. Then,
we define the jump of v on the interior edge by [v] = v+ − v− and on the boundary edge by
[v] = v|e. We make the following assumption on the family of decompositions (cf. [17]):

Assumption (H1). For each K ∈ Th , there exists a “virtual triangulation” TK of K such
that TK is uniformly shape regular and quasi-uniform. The corresponding mesh size of TK
is bounded from below by a constant multiple of hK . Each edge of K is a side of certain
triangle in TK .

Throughout this paper, for any two quantities a and b, the notation “a � b” stands for
“a ≤ Cb”, where C or c (with or without subscript) denotes a positive constant independent
of hK or h, which may take on different values at different occurrences.

For a nonnegative integer � and an open set D, P�(D) denotes the set of all polynomials
on D with the total degree no more than �. Moreover, we use T ∗

h to denote a triangulation
of �, which comprises all triangles in TK for all K ∈ Th . Evidently, {T ∗

h } is regular and
quasi-uniform with respect to the mesh size h.

For any integer m > 0, let

Hm(Th) = �K∈Th H
m(K ) = {v ∈ L2(�) : v|K ∈ Hm(K ) for any K ∈ Th}

be a broken Sobolev space and endow it with the broken Hm-seminorm

|v|m,h :=
( ∑

K∈Th

|v|2m,K

)1/2
.

Then we introduce the nonconforming space H2,nc(Th) ⊂ H2(Th) by

H2,nc(Th) =
{
v ∈ H2(Th) : v continuous at internal vertices, v(Pi ) = 0 ∀ Pi ∈ Vb

h,�1
,

∫

e
[∂nv] ds = 0 ∀ e ∈ Eh\Eb

h,�2,�3

}
.

Lemma 4.1 The quantity | · |2,h is a norm on the spaces V and H2,nc(Th).

Proof It is well-known that | · |2,h is a norm on the space V , cf. [19, Theorem 6.8-4]. So we
only need to prove that | · |2,h is a norm on H2,nc(Th).
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According to [13, Corollary 4.2 & Example 2.4],

‖vh‖20,� + |vh |21,h � |vh |22,h +
∑

e∈E i
h

(
h−3
e ‖Pe1[vh]‖2e + h−1

e

∥∥∥Pe0[∂nvh]
∥∥∥
2

e

)

∀ vh ∈ H2,nc(Th), (4.1)

where Pem is the L2-projection from L2(e) to Pm(e). By the definition of H2,nc(Th), we have
∫

e
[∂nvh] ds = 0 ∀ e ∈ E ih,

which implies Pe0[∂nvh] = 0. Note that [vh]e vanishes at the endpoints of e. If v I
h is the usual

linear interpolant of vh on e, then [v I
h ]e = 0. So

‖Pe1[vh]‖2e ≤ ‖[vh]‖2e = ‖[vh − v I
h ]‖2e � h3e

∑

τ∈∂−1e

|vh |22,τ ,

where ∂−1e denotes the set of all triangles in T ∗
h with e as one side. Thus, we obtain from

(4.1) that

‖vh‖20,� + |vh |21,h � |vh |22,h ∀ vh ∈ H2,nc(Th), (4.2)

which implies that | · |2,h is a norm on the space H2,nc(Th). ��
Now we introduce the local and global nonconforming virtual element spaces. The local

virtual element space is defined as follows (cf. [2, 43]):

V K
h = {vh ∈ H2(K ) : �2vh = 0 in K , Mnn(vh)|e ∈ P0(e), N (vh)|e = 0 ∀ e ⊂ ∂K }.

We choose the following degrees of freedom in V K
h :

(D1) vh(Pi ) for any vertex Pi of K ,
(D2)

∫
e ∂nvh ds for any edge e of ∂K ,

which are unisolvent for V K
h . Building upon the local space V K

h , the global nonconforming
virtual element space is then defined as follows:

Vh =
{
vh ∈ L2(�) : vh |K ∈ V K

h , vh continuous at internal vertices,

vh(Pi ) = 0 ∀ Pi ∈ Vb
h,�1

,

∫

e
[∂nvh] ds = 0 ∀ e ∈ Eh\Eb

h,�2,�3

}
. (4.3)

We observe that by construction, Vh ⊂ H2,nc(Th) and Vh � H2(�).
Let fh ∈ L2(�) represent a function to be constructed to satisfy the condition

( fh, v) ≤ c ‖ f ‖0,�‖v‖0,� ∀ v ∈ Vh . (4.4)

Since the bilinear form a(·, ·) can be split as

a(u, v) =
∑

K∈Th

aK (u, v), aK (u, v) =
∫

K
Mαβ(u)Kαβ(v) dx,

we construct the discrete symmetric bilinear form ah(·, ·) over Vh × Vh in the form

ah(uh, vh) =
∑

K∈Th

aKh (uh, vh) ∀ uh, vh ∈ Vh .
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To define the local bilinear form aKh (·, ·) on V K
h × V K

h , introduce a projection operator
�K : V K

h → P2(K ) by the relations (cf. [18])
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aK (�Kψ, q) = aK (ψ, q) ∀ q ∈ P2(K ),

�̂Kψ = ψ̂,
∑

e⊂∂K

1

|e|
∫

e
∇�Kψ ds =

∑

e⊂∂K

1

|e|
∫

e
∇ψ ds,

(4.5)

where

ψ̂ = 1

n

n∑

i=1

ψ(PK
i ),

and {PK
i } are the vertices of K . Note that (4.5) implies

�K q = q ∀ q ∈ P2(K ), (4.6)

and �K is computable from the degrees of freedom (D1)–(D2). Then the local bilinear form
is defined by the formula

aKh (uh, vh) := aK
(
�K uh,�

K vh

)
+ SK

(
uh − �K uh, vh − �K vh

)
∀ uh, vh ∈ V K

h ,

(4.7)

where the stabilization term is

SK (w, v) := h−2
K

NK∑

i=1

χi (w)χi (v) ∀ w, v ∈ V K
h ,

NK being the number of degrees of freedom, {χ1, · · · , χNK } being the local degrees of
freedom from (D1)–(D2).

With the above preparation, our numerical method for Problem (P) is the following.

Problem (Ph) Find an element uh ∈ Vh such that

ah(uh, vh) +
∫

�3

j0(uh; vh) ds ≥ ( fh, vh) ∀ vh ∈ Vh . (4.8)

The rest of the section is devoted to an analysis of Problem (Ph).
For a polygon K ∈ Th satisfying assumption (H1), the following trace inequality holds

naturally (cf. [17]):

‖v‖20,∂K � h−1
K ‖v‖20,K + hK |v|21,K ∀ v ∈ H1(K ). (4.9)

By examining the derivations in [18], we find that all the estimates there hold under assump-
tion (H1) in our context. This implies that SK (·, ·) is a symmetric bilinear form satisfying

aK (vh, vh) � SK (vh, vh) � aK (vh, vh) ∀ vh ∈ ker(�K ). (4.10)

From the definition of �K and (4.7), and the relations (4.6) and (4.10), we deduce a consis-
tency property:

aKh (p, vh) = aK (p, vh) ∀ p ∈ P2(K ), vh ∈ V K
h , (4.11)
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and a stability property: for two positive constants α∗ and α∗, independent of hK and K ,

α∗aK (vh, vh) ≤ aKh (vh, vh) ≤ α∗aK (vh, vh) ∀ vh ∈ V K
h . (4.12)

From the definition of aK (·, ·),

aK (vh, vh) = (1 − ν)

∫

K
Kαβ(vh)Kαβ(vh) dx + ν

∫

K
(�vh)

2 dx ≥ (1 − ν)|vh |22,K .

(4.13)

From (4.12), we have

ah(vh, vh) ≥
∑

K∈Th

α∗aK (vh, vh) ≥ α∗(1 − ν)|vh |22,h . (4.14)

For later use, we denote

m̃ A = α∗(1 − ν). (4.15)

Similarly, for all uh, vh ∈ V K
h , we have

aK (uh, vh) =
∫

K
Mαβ(uh)Kαβ(vh) dx � |uh |2,K |vh |2,K . (4.16)

Choosing q = �Kψ in the first relation in (4.5), and making use of (4.13) and (4.16), we
have

|�Kψ |2,K � |ψ |2,K ∀ ψ ∈ H2(K ).

Define �h : Vh → P2(Th) by (�hv)|K := �K (v|K ) for each K ∈ Th , where

P2(Th) := {v ∈ L2(�) : v|K ∈ P2(K ) for each K ∈ Th}.
Under assumption (H1), we can directly obtain the following result in view of the Scott-
Dupont approximation theory (cf. [11]).

Lemma 4.2 For every v ∈ H3(K ), there exists a function vπ ∈ P2(K ) such that

‖v − vπ‖i,K � h3−i
K |v|3,K , i = 0, 1, 2. (4.17)

From [18, Lemma A.5], we can also obtain the local Poincaré inequality with the hidden
constant independent of the geometric nature of K .

Lemma 4.3 For any K ∈ Th, there holds

‖v‖0,K + hK |v|1,K � h2K |v|2,K ∀ v ∈ ker(�K ).

The above result can be used in derivation of error estimates of the nodal interpolation
operator in lower order norms (cf. [18]).

Lemma 4.4 Let IK : H3(K ) → V K
h be the standard nodal interpolation operator. Then the

following error estimates hold:

‖v − IK v‖i,K � h3−i
K |v|3,K , i = 0, 1, 2. (4.18)

From now on, we write vI for the global interpolant of v, i.e., for all K ∈ Th , vI (x) is equal
to IK v(x) for x ∈ K .
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Lemma 4.5 There exists some constant c̃γ > 0 such that

‖v‖L2(�3)
≤ c̃γ |v|2,h ∀ v ∈ H2,nc(Th) + V . (4.19)

Proof Let IT be the usual interpolation operator from C(�̄) into the continuous piecewise
linear finite element space related to the triangulation T ∗

h . Since the function values at vertices
are available for all v ∈ H2,nc(Th), this operator is also well defined in H2,nc(Th). For
v ∈ H2,nc(Th) + V , since v = 0 on �1, we have IT v = 0 on �1. By the trace theorem,

‖IT v‖L2(�3)
� ‖IT v‖1,�. (4.20)

By (4.20), (4.9) and Lemma 4.1, we obtain

‖v‖L2(�3)
≤ ‖v − IT v‖L2(�3)

+ ‖IT v‖L2(�3)
�

( ∑

e⊂�3

‖v − IT v‖20,e
)1/2 + ‖IT v‖1,�

�
( ∑

e⊂�3

∑

τe

(
h−1

τ ‖v − IT v‖20,τ + hτ‖IT v − v‖21,τ
))1/2

+
( ∑

K∈Th

‖IT v − v‖21,K
)1/2 +

( ∑

K∈Th

‖v‖21,K
)1/2

�
( ∑

K∈Th

h3K |v|22,K
)1/2 +

( ∑

K∈Th

h2K |v|22,K
)1/2 +

( ∑

K∈Th

|v|22,K
)1/2

� |v|2,h,
where τe refers to the only triangle in T ∗

h with e as one side. Consequently, there exists a
positive constant c̃γ > 0 independent of h such that (4.19) holds. ��

Similar to Problem (P̃), we introduce a minimization problem related to Problem (Ph).

Problem (P̃h) Find uh ∈ Vh such that

Eh
3 (uh) = inf

{
Eh
3 (vh) : vh ∈ Vh

}
,

where

Eh
3 (vh) = 1

2
ah(vh, vh) +

∫

�3

j(vh) ds − ( fh, vh).

We have the following existence and uniqueness result.

Theorem 4.1 Assume (H0) and (H1), (4.4), and

α j c̃
2
γ < m̃ A. (4.21)

Then Problem (Ph) is equivalent to Problem (P̃h), and both problems have the same unique
solution uh ∈ Vh.

Proof Due to assumption (H1) and (4.19), we have

‖vh‖L2(�3)
≤ c̃γ |vh |2,h ∀ vh ∈ Vh . (4.22)

Combining (4.14) with (4.15), we obtain

ah(vh, vh) ≥ m̃ A|vh |22,h ∀ vh ∈ Vh . (4.23)

By (H0), (4.4), (4.21), (4.22) and (4.23), similar to Theorem 3.1, we conclude that Problem
(P̃h) has a unique solution, which is also the unique solution of Problem (Ph). ��
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Weprovide a uniformboundedness result on the numerical solutions, whichwill be needed
in error estimation later.

Lemma 4.6 Under the assumptions (H0) and (H1), (4.4), and (4.21), we have

|uh |2,h � ‖ f ‖0,� + 1.

Proof We take vh = −uh in (4.8),

ah(uh,−uh) +
∫

�3

j0(uh;−uh) ds ≥ 〈 fh,−uh〉,

which is rewritten as

ah(uh, uh) ≤
∫

�3

j0(uh;−uh) ds + 〈 fh, uh〉. (4.24)

By (4.14) and (4.15),

ah(uh, uh) ≥ m̃ A|uh |22,h, (4.25)

and from (3.12) and (3.13),

j0(uh;−uh) ≤ α j |uh |2 − j0(0; uh) ≤ α j |uh |2 + c0|uh |.
According to (4.19), there is a constant c > 0,

∫

�3

j0(uh;−uh) ds ≤ α j c̃
2
γ |uh |22,h + c |uh |2,h . (4.26)

Use (4.25), (4.26) and (4.4) in (4.24) to obtain

m̃ A|uh |22,h ≤ c ‖ f ‖0,�‖uh‖0,� + α j c̃
2
γ |uh |22,h + c |uh |2,h .

Due to (4.21) and (4.2), we obtain

|uh |2,h � ‖ f ‖0,� + 1,

i.e., uh ∈ Vh is uniformly bounded independent of h. ��
Using the intrinsic arguments for error analysis of plate elements in [26, 32] as well as

the technique developed in [24], we can obtain a Céa-type estimate for our VEM method.

Theorem 4.2 Under the assumptions (H0), (H1), (3.18), (4.4), and (4.21), we have the fol-
lowing inequality:

|u − uh |2,h � h + ‖u − uI ‖1/2L2(�3)
+ ‖ f − fh‖V ∗

h
, (4.27)

where

‖ f − fh‖V ∗
h

= sup
vh∈Vh

〈 f − fh, vh〉
‖vh‖Vh

.

Proof By Lemma 4.2, for each element K , we can find uπ ∈ P2(K ) such that

‖u − uπ‖i,K � h3−i
K |u|3,K , i = 0, 1, 2. (4.28)
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Let wh = uI − uh . By (4.11), we obtain

m̃ A|wh |22,h ≤
∑

K∈Th

α∗aK (wh, wh) ≤
∑

K∈Th

aKh (wh, wh) = ah(uI , wh) − ah(uh, wh)

≤
∑

K∈Th

(
aKh (IK u − uπ ,wh) + aK (uπ − u, wh)

) +
∑

K∈Th

aK (u, wh) − ah(uh, wh).

(4.29)

By (4.8),

−ah(uh, wh) ≤ −( f , wh) + ( f − fh, wh) +
∫

�3

j0(uh; uI − uh) ds.

Use this inequality in (4.29) to get

m̃ A|wh |22,h ≤ I1 + I2 + ( f − fh, wh) +
∫

�3

j0(uh; uI − uh) ds, (4.30)

where

I1 :=
∑

K∈Th

(
aKh (IK u − uπ ,wh) + aK (uπ − u, wh)

)
,

I2 :=
∑

K∈Th

aK (u, wh) − ( f , wh). (4.31)

It follows from (4.28) and (4.18) that

I1 ≤ c|wh |2,h
[( ∑

K∈Th

|IK u − uπ |22,K
)1/2 +

( ∑

K∈Th

|u − uπ |22,K
)1/2] ≤ ch|wh |2,h |u|3,�.

(4.32)

Using integration by part in (4.31), we obtain

I2 =
∑

K∈Th

[ ∫

K
Qα(u)∂αwh dx −

∫

∂K

(
Mnn(u)∂nwh + Mτn(u)∂τwh

)
ds

]
− ( f , wh).

(4.33)

Let w I
h be the nodal interpolant of wh in the lowest-order H1-conforming virtual element

space presented in [6, 23]. Write

∑

K∈Th

∫

K
Qα(u)∂αwh dx =

∑

K∈Th

∫

K
Qα(u)∂α(wh − w I

h) dx +
∫

�

Qα(u)∂αw I
h dx .

Then, by (3.20),

I2 =
∑

K∈Th

∫

K
Qα(u)∂α(wh − w I

h) dx + ( f , w I
h − wh) + 〈Qn(u), w I

h〉1/2,�

−
∑

K∈Th

∫

∂K

(
Mnn(u)∂nwh + Mτn(u)∂τwh

)
ds.

Thus,

I2 = II + III + 〈Qn(u), w I
h〉1/2,�, (4.34)
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where

II :=
∑

K∈Th

∫

K
Qα(u)∂α(wh − w I

h) dx + ( f , w I
h − wh),

III := −
∑

K∈Th

∫

∂K

(
Mnn(u)∂nwh + Mτn(u)∂τwh

)
ds.

It follows from error estimates for nodal interpolation operators (cf. [17]) that

|II| �
∑

K∈Th

|u|3,K |wh − w I
h |1,K + h2‖ f ‖0,�|wh |2,h � (h|u|3,� + h2‖ f ‖0,�)|wh |2,h .

(4.35)

On the other hand, for any v ∈ L2(e) with e ∈ E , let Re
0v = v − Pe0v. Then we have by (4.9)

and the Scott-Dupont approximation theory (cf. [11]) that

‖Re
0v‖0,e = min

w∈P0(K )
‖v − w‖0,e � h1/2K |v|1,K ∀ v ∈ H1(K ). (4.36)

For any vh ∈ Vh , by the definition (4.3),

Pe0[∂nvh] = 0 ∀ e ∈ Eh\Eb
h,�2,�3

. (4.37)

Recalling (3.23), we have

∑

K∈Th

∫

∂K
Mnn(u) ∂nwh ds =

∑

e∈Eh\Eb
h,�2,�3

∫

e
Mnn(u)

[
∂nwh

]
ds.

By making use of the property (4.37),
∫

e
Mnn(u)

[
∂nwh

]
ds =

∫

e
Mnn(u)

([
∂nwh

] − Pe0
[
∂nwh

])
ds

=
∫

e
Re
0Mnn(u) Re

0[∂nwh] ds.

So it follows from (4.36) that
∣∣∣

∑

K∈Th

∫

∂K
Mnn(u) ∂nwh ds

∣∣∣ ≤
∑

e∈Eh\Eb
h,�2,�3

‖Re
0Mnn(u)‖e‖Re

0[∂nwh]‖e

�
∑

K∈Th

hK |u|3,K |wh |2,K � h|u|3,�|wh |2,h . (4.38)

Write
∑

K∈Th

∫

∂K
Mτn(u)∂τwh ds =

∑

K∈Th

∫

∂K
Mτn(u)∂τw I

h ds

+
∑

K∈Th

∫

∂K
Mτn(u)∂τ (wh − w I

h) ds.

Then, using the fact w I
h ∈ C(�) and w I

h = 0 on �1, we have

∑

K∈Th

∫

∂K
Mτn(u)∂τw I

h ds =
∑

e⊂�2∪�3

∫

e
Mτn(u)∂τw I

h ds. (4.39)
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Similar to the derivation of (4.38), we find that
∣∣∣

∑

K∈Th

∫

∂K
Mτn(u)∂τ (wh − w I

h) ds
∣∣∣ ≤

∑

K∈Th

∫

∂K

∣∣∣Mτn(u)
(
∂τ (wh − w I

h)
)∣∣∣ ds

�
∑

K∈Th

|u|3,K |wh − w I
h |1,K � h|u|3,�|wh |2,h .

(4.40)

From (4.34)–(4.40),

I2 ≤ c
(
h|u|3,� + h2‖ f ‖0,�

) |wh |2,h + 〈Qn(u), w I
h〉1/2,� −

∑

e⊂�2∪�3

∫

e
Mτn(u)∂τw I

h ds.

Using (3.25) to get

〈Qn(u), w I
h〉1/2,� −

∑

e⊂�2∪�3

∫

e
Mτn(u)∂τw I

h ds ≤
∫

�3

j0(u;−w I
h) ds.

Therefore,

I2 ≤ c
(
h|u|3,� + h2‖ f ‖0,�

) |wh |2,h +
∫

�3

j0(u;−w I
h) ds. (4.41)

Consequently, we combine (4.30), (4.32) with (4.41) to obtain

m̃ A|wh |22,h ≤ c
[
h |u|3,�|wh |2,h + h2‖ f ‖0,�|wh |2,h + ( f − fh, wh)

]

+
∫

�3

[
j0(u;−w I

h) + j0(uh; uI − uh)
]
ds. (4.42)

By (2.1) on the sub-additivity for the generalized directional derivative,

j0(u;−w I
h) ≤ j0(u;wh − w I

h) + j0(u; uh − uI ),

j0(uh; uI − uh) ≤ j0(uh; uI − u) + j0(uh; u − uh),

j0(u; uh − uI ) ≤ j0(u; uh − u) + j0(u; u − uI ).

Hence,

j0(u;−w I
h) + j0(uh; uI − uh) ≤ [

j0(uh; u − uh) + j0(u; uh − u)
]

+ j0(uh; uI − u) + j0(u; u − uI ) + j0(u;wh − w I
h).

By (3.13) and (4.19), we have
∫

�3

[
j0(uh; u − uh) + j0(u; uh − u)

]
ds ≤ α j‖u − uh‖2L2(�3)

≤ α j c̃
2
γ |u − uh |22,h .

(4.43)

From (3.12) and (2.2), we have

j0(uh; uI − u) ≤ (c0 + c1|uh |)|u − uI |, (4.44)

j0(u; u − uI ) ≤ (c0 + c1|u|)|u − uI |, (4.45)

j0(u;wh − w I
h) ≤ (c0 + c1|u|)|wh − w I

h |. (4.46)
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In view of (4.19) and the boundedness of |uh |2,h in Lemma 4.6, we obtain the boundedness
of ‖uh‖L2(�3)

. We derive from (4.42)–(4.46) and (4.2) that

m̃ A|wh |22,h ≤ α j c̃
2
γ |u − uh |22,h + c

(
h |u|3 + h2‖ f ‖0,� + ‖ f − fh‖V ∗

h

)
|wh |2,h

+ c
(
‖u − uI ‖L2(�3)

+ ‖wh − w I
h‖L2(�3)

)
.

The quantity ‖wh − w I
h‖L2(�3)

is bounded as follows:

‖wh − w I
h‖L2(�3)

=
( ∑

γ⊂�3

‖wh − w I
h‖20,γ

)1/2

�
( ∑

K :∂K∩�3 �=∅
[h−1

K ‖wh − w I
h‖20,K + hK |wh − w I

h |21,K ]
)1/2

� h3/2|wh |2,h .
Noting that

|u − uh |22,h ≤ |u − uI |22,h + |wh |22,h + 2|u − uI |2,h |wh |2,h,
we obtain

(m̃ A − α j c̃
2
γ )|wh |22,h � |wh |2,h

(
h|u|3 + h2‖ f ‖0,� + |u − uI |2,h + h3/2 + ‖ f − fh‖V ∗

h

)

+ |u − uI |22,h + ‖u − uI ‖L2(�3)
.

Then from (4.21), (4.18) and (2.3),

|wh |2,h � h|u|3,� + h2‖ f ‖0,� + h3/2 + ‖ f − fh‖V ∗
h

+ ‖u − uI ‖1/2L2(�3)
.

Hence, by the triangle inequality

|u − uh |2,h ≤ |u − uI |2,h + |wh |2,h,
we obtain the inequality (4.27). ��

Finally, we define the approximation of the right hand side by

〈 fh, vh〉 = ( f ,�hvh) , (4.47)

and derive an optimal order error estimate for the resulting VEM.

Theorem 4.3 Assume the conditions stated in Theorem 4.2, and let the right hand side of
(4.8) be defined by (4.47). Then we have the optimal order error estimate

|u − uh |2,h � h. (4.48)

Proof Write

( f , vh) − 〈 fh, vh〉 = ( f , vh − �hvh) =
∑

K∈Th

( f , vh − �K vh).

As in [18], we have

|( f , vh) − 〈 fh, vh〉| � h2‖ f ‖0,�
( ∑

K∈Th

|vh − �K vh |22,K
)1/2

� h2‖ f ‖0,�|vh |2,h . (4.49)
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Fig. 1 Polygonal meshes with N = 64 (left) and N = 256 (right)

On the other hand,

‖u − uI ‖L2(�3)
=

( ∑

γ⊂�3

‖u − uI ‖20,γ
)1/2

≤
( ∑

K :∂K∩�3 �=∅
[h−1

K ‖u − uI ‖20,K + hK |u − uI |21,K ]
)1/2

� h5/2
( ∑

K :∂K∩�3 �=∅
|u|23,K

)1/2 ≤ h5/2|u|3,�. (4.50)

Using (4.50) and (4.49) in (4.27), we obtain the error bound (4.48). ��

5 Numerical Results

We use an efficient algorithm (the double bundle method) developed in [33] to solve the
discrete problems. A description of the solution algorithm can be found in [24].

Let� = (−1, 1)× (−1, 1), ν = 0.3. A generic point in� is denoted as x = (x, y)T . The
Dirichlet boundary is �1 = (−1, 1)×{1}, and the free boundary is �2 = {{−1}× (−1, 1)}∪
{{1}× (−1, 1)}. The friction boundary is �3 = (−1, 1)×{−1}. The right hand side function
is chosen to be

f (x) = 24 (1 − x2)2 + 24 (1 − y2)2 + 32 (3x2 − 1) (3y2 − 1).

Let

N (u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if u ≤ 0,

5 if u ∈ (0, 0.1],
10 − 50 u if u ∈ (0.1, 0.15),

20 u − 0.5 if u ≥ 0.15.

(5.1)

By (3.9), we obtain

j(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if u ≤ 0,

5 u if u ∈ (0, 0.1],
10 u − 25 u2 − 0.25 if u ∈ (0.1, 0.15),

10 u2 − 0.5 u + 0.5375 if u ≥ 0.15.

(5.2)

123



Journal of Scientific Computing            (2022) 90:89 Page 21 of 24    89 

Fig. 2 The numerical solution for different number of elements: N = 256 (upper left), N = 1024 (upper
right), N = 4096 (bottom left) and N = 16384 (bottom right)

Let j(u) = f0(u) − f̃0(u), where f0(u) and f̃0(u) are defined as follows:

f0(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

25 u2 if u ≤ 0,

25 u2 + 5 u if u ∈ (0, 0.1],
10 u − 0.25 if u ∈ (0.1, 0.15),

35 u2 − 0.5 u + 0.5375 if u ≥ 0.15,

f̃0(u) = 25 u2.

The integral
∫
�3

j(uh) ds is calculated with the trapezoidal rule.
We use the code PolyMesher ([38]) to generate the polygonal meshes and then solve the

discrete problem. Meshes with element numbers N = 64 and N = 256 are displayed in
Fig. 1.

The numerical solutions onVh corresponding to severalmesheswith N = 256, N = 1024,
N = 4096, N = 16384 are displayed in Fig. 2, respectively. A convergence trend is evident
for the numerical solutions as N increases.

123



   89 Page 22 of 24 Journal of Scientific Computing            (2022) 90:89 

Fig. 3 The numerical solution of normal direction for different meshes

Table 1 Numerical errors on
square meshes for lowest-order
VEM

h 1
2

1
4

1
8

1
16

Error 1.388 0.733 0.371 0.182

Fig. 4 Relative errors in energy norm

For the numerical solutions on the boundary [−1, 1] × {−1}, a similar convergence trend
is clearly observed (cf. Fig. 3).

In Table 1 and Fig. 4, we report relative errors of the numerical solutions in the energy
norm on square meshes:

error: =
(ah(u − uh, u − uh)

ah(u, u)

) 1
2
. (5.3)
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Since the true solution u in (5.3) is not available, we use the numerical solution with a
fine mesh as the “reference” solution ure f in computing the solution errors. Specifically,
the “reference” solution ure f is set as the numerical solution with h = 1/64. Note that the
error bound (4.27) predicts an optimal first order convergence of the numerical solutions
measured in the energy norm, under the regularity assumptions (3.18). Observe that the
numerical convergence orders from the results in Table 1 and Fig. 4 are close to 1, matching
the theoretical prediction.

Acknowledgements The authors would like to thank Profs. K. Joki and O. Montonen for providing their
algorithms freely at the website http://napsu.karmitsa.fi/nsosoftware/, which are very helpful for solving the
discrete problemsgiven in this paper. The authors also thank the twoanonymous referees for valuable comments
and suggestions which helped to improve an early version of the paper.

Author Contributions All authors contributed equally to this manuscript.

Funding The work of Prof. Weimin Han was partially supported by Simons Foundation Collaboration Grants,
No. 850737. The work of Prof. Jianguo Huang was partially supported by NSFC (Grant No. 12071289).

CodeAvailability The codes during the current study are available from the corresponding author on reasonable
request.

Declarations

Conflict of interest The authors have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this manuscript.

References

1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element
methods. Comput. Math. Appl. 66, 376–391 (2013)

2. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic
problems. Math. Models Methods Appl. Sci. 28, 387–407 (2018)

3. Antonietti, P.F., Manzini, G., Verani, M.: The conforming virtual element method for polyharmonic
problems. Comput. Math. Appl. 79, 2021–2034 (2020)

4. Atkinson,K.,Han,W.: Theoretical numerical analysis: a functional analysis framework, 3rd edn. Springer,
New York (2009)

5. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIMMath.
Model. Numer. Anal. 50, 879–904 (2016)

6. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., et al.: Basic principles of virtual element
methods. Maths. Model. Method. Appl. Sci. 23, 199–214 (2013)

7. Beirão Da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J
Numer Anal. 51, 794–812 (2013)

8. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element
method. Math. Models Methods Appl. Sci. 24, 1541–1573 (2014)

9. Beirão Da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Maths
Models Methods Appl. Sci. 27, 2557–2594 (2017)

10. Brenner, S.C., Guan, Q., Sung, L.: Some estimates for virtual element methods. Comput. Methods Appl.
Math. 17, 553–574 (2017)

11. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New
York (2008)

12. Brenner, S.C., Sung, L.: Virtual element methods on meshes with small edges or faces. Math. Models
Methods Appl. Sci. 28, 1291–1336 (2018)

13. Brenner, S.C., Wang, K., Zhao, J.: Poincaré-Friedrichs inequalities for piecewise H2 functions. Numer.
Funct. Anal. Optim. 25, 463–478 (2004)

123



   89 Page 24 of 24 Journal of Scientific Computing            (2022) 90:89 

14. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl.
Mech. Engrg. 253, 455–462 (2013)

15. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for
elliptic problems. IMA J. Numer. Anal. 37, 1317–1354 (2017)

16. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth variational problems and their inequalities: comparison
principles and applications. Springer, New York (2007)

17. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55, 23 (2018). (Art. 5)
18. Chen, L., Huang, X.: Nonconforming virtual elementmethod for 2m-th order partial differential equations

in R
n . Math. Comp. 89, 1711–1744 (2020)

19. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)
20. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)
21. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)
22. Fan, L., Liu, S., Gao, S.: Generalizedmonotonicity and convexity of non-differentiable functions. J.Math.

Anal. Appl. 279, 276–289 (2003)
23. Feng, F., Han, W., Huang, J.: Virtual element methods for elliptic variational inequalities of the second

kind. J. Sci. Comput. 80, 60–80 (2019)
24. Feng, F., Han, W., Huang, J.: Virtual element method for an elliptic hemivariational inequality with

applications to contact mechanics. J. Sci. Comput. 81, 2388–2412 (2019)
25. Feng, K., Shi, Z.: Mathematical Theory of Elastic Structures. Springer, Berlin (1996)
26. Guo, L., Huang, J., Shi, Z.: Remarks on error estimates for the trunc plate element. J. Comput. Math. 24,

103–112 (2006)
27. Han,W.:Minimization principles for elliptic hemivariational inequalities. NonlinearAnalysis: RealWorld

Applications. 54 (2020), article number 103114
28. Han, W., Migorski, S., Sofonea, M.: A class of variational-hemivariational inequalities with applications

to frictional contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2014)
29. Han, W., Sofonea, M.: Numerical analysis of hemivariational inequalities in contact mechanics. Acta

Numer. 28, 175–286 (2019)
30. Han, W., Wang, L.: Nonconforming finite element analysis for a plate contact problem. SIAM J. Numer.

Anal. 40, 1683–1697 (2002)
31. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequal-

ities. Theory, Methods and Applications, Kluwer Academic, Dordrecht (1999)
32. Huang, J., Shi, Z., Xu, Y.: Finite element analysis for general elastic multi-structures. Sci. China Ser. A.

49, 109–129 (2006)
33. Joki, K., Bagirov, A.M., Karmitsa, N., et al.: Double bundle method for finding Clarke stationary points

in nonsmooth DC programming. SIAM J. Optim. 28, 1892–1919 (2018)
34. Migorski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Springer,

New York (2013)
35. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Appli-

cations. Marcel Dekker, New York (1995)
36. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering.

Springer, Berlin (1993)
37. Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications. Chapman &

Hall/CRC Press, Boca Raton-London (2018)
38. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator

for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)
39. Wang, F., Wei, H.: Virtual element method for simplified friction problem. Appl. Math. Lett. 85, 125–131

(2018)
40. Wang, F., Wei, H.: Virtual element methods for the obstacle problem. IMA J. Numer. Anal. 40, 708–728

(2020)
41. Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems.

Math. Models Methods Appl. Sci. 26, 1671–1687 (2016)
42. Zhang,B., Zhao, J., Yang,Y., Chen, S.: The nonconforming virtual elementmethod for elasticity problems.

J. Comput. Phys. 378, 394–410 (2019)
43. Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J.

Sci. Comput. 76, 610–629 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	A Nonconforming Virtual Element Method for a Fourth-order Hemivariational Inequality in Kirchhoff Plate Problem
	Abstract
	1 Introduction
	2 Preliminaries
	3 Kirchhoff Plate Problems
	3.1 A Classical Kirchhoff Plate Bending Problem
	3.2 A Frictional Contact Problem
	3.3 An Elliptic Hemivariational Inequality for Kirchhoff Plate

	4 Nonconforming Virtual Element Discretization and Approximation
	5 Numerical Results
	Acknowledgements
	References




