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Abstract. A time-dependent Stokes fluid flow problem is studied with non-
linear boundary conditions described by the Clarke subdifferential. We present

equivalent weak formulations of the problem, one of them in the form of a hemi-

variational inequality. The existence of a solution is shown through a limiting
procedure based on temporally semi-discrete approximations. Uniqueness of

the solution and its continuous dependence on data are also established. Fi-
nally, we present a result on the existence of a solution to an optimal control

problem for the hemivariational inequality.

1. Introduction. Let Ω be a bounded simply connected domain in Rd (d = 2 or
3) with a C2 boundary Γ. Let T0 > 0 and define Q = Ω× (0, T0). In this paper, we
consider hemivariational inequalities for the nonstationary Stokes system

ut − ν∆u+∇h = f in Q, (1)

divu = 0 in Q, (2)

where u is the flow velocity field, ν > 0 the kinematic viscosity, h = p+ |u|2/2 the
dynamic pressure (p the pressure), f the density of external forces. The system
(1)–(2) is to be supplemented by initial and boundary conditions. For simplicity in
writing, we use u(t) to stand for the function Ω 3 x 7→ u(x, t). Let u0 denote the
initial velocity. Then the initial condition is

u(0) = u0 in Ω. (3)
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For boundary conditions, we consider the normal direction and tangential direc-
tion separately. Let n = (n1, · · · , nd)T be the unit outward normal on the boundary
Γ. For a vector u, uN = u·n denotes the normal component, whereas uT = u−uNn
is the tangential component. Denote Σ = Γ×(0, T0). Then the boundary conditions
considered in this paper are

uT = 0 on Σ, (4)

h(t) ∈ ∂j(t, uN (t)) on Σ. (5)

Here j(t, uN (t)) is a short-hand notation for j(x, t, uN (x, t)) and j : Ω×(0, T0)×R→
R is called a superpotential. We assume the function j is locally Lipschitz in its
third argument and write ∂j for the subdifferential of j(x, t, ·) in the sense of Clarke.
The condition (4) models a non-slip boundary condition. The boundary condition
(5) arises in the motion of a fluid through a tube or channel: the fluid pumped into
Ω can leave the tube at the boundary orifices while a device can change the sizes
of the latter. In this problem we regulate the normal velocity of the fluid on the
boundary to reduce the total pressure on Γ.

Hemivariational inequalities were first studied by P. D. Panagiotopoulos in early
eighties as weak formulations for several classes of mechanical problems with non-
smooth and nonconvex energy superpotentials. Since that time many papers and
monographs on hemivariational inequalities have appeared, see for example [15, 16,
25, 27, 29, 30].

Recently, inequality problems for the time-dependent Stokes equations have been
studied in [12, 13, 19, 32]. In all these papers, since the function j(x, t, ·) is con-
vex, the considered problems were formulated as variational inequalities involving
maximal monotone operators. In this paper, due to the lack of convexity of the
superpotential j, our problem is formulated as a hemivariational inequality. To
show the solution existence, we use a sequence of temporally semi-discrete approx-
imation problems, known as the Rothe method in some references. The main idea
is to replace time derivative with the backward difference scheme and to solve the
associated elliptic problem at every time step to find the solution at the consecutive
points of the time mesh. As long as one can solve the underlying elliptic problems,
this method does not require any smoothing or other additional regularizing condi-
tions. The Rothe method has been used in studying a variety of nonlinear problems,
see for example [31, 28, 18, 5].

The mathematical theory of optimal control has in the past few decades rapidly
developed into an important and seperate field of applied mathematics. In a wide
range of applications, such as robotics, aviation and space technology, heat conduc-
tion, electromagnetic waves and fluid flows, there are many interesting problems in
which a given cost functional has to be minimized subject to differential equations
and other constraints. There is a large literature on optimal control problems. For
optimal control problems for systems described by ordinary differential equations
see [7], for partial differential equations see [20, 35], for variational inequalities see
[4, 34] and for hemivariational inequalities see [9, 17, 21, 22, 23, 24]. In this pa-
per, we consider an optimal control problem associated with the hemivariational
inequality. The existence of an optimal solution to the control problem is shown.

The organization of this paper is as follows. In Section 2 we introduce some
definitions and auxiliary material. The problem setup and some assumptions on
the data are presented in Section 3. In Section 4 we show the solution existence.
Solution uniqueness and continuous dependence results are established in Section
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5. Section 6 is devoted to the optimal control problem for which we establish the
existence of an optimal solution.

2. Preliminaries. For a normed space X, we denote by ‖ · ‖X its norm, by X∗

its topological dual, and by 〈·, ·〉X∗×X the duality pairing between X∗ and X.
The symbol Xw is used for the space X endowed with the weak topology. Weak
convergence will be indicated by the symbol ⇀. We denote the Euclidean norm in
Rn by |·|. The symbol 2X

∗
represents the set of all subsets of X∗. We always assume

X is a Banach space, unless stated otherwise. We first recall some definitions.
Let f : X → R be a locally Lipschitz function. Following [8], we define the

generalized directional derivative of f at x ∈ X in the direction v ∈ X by

f0(x; v) = lim sup
y→x,λ→0

f(y + λv)− f(y)

λ
.

We then define the generalized gradient or subdifferential of f at x by

∂f(x) = {ζ ∈ X∗ | f0(x; v) ≥ 〈ζ, v〉X∗×X ∀ v ∈ X}.

We say f is regular (in the sense of Clarke) at x ∈ X if for all v ∈ X, the one-sided
directional derivative f ′(x; v) exists and f0(x; v) = f ′(x; v).

The concept of pseudomonotonicity plays an important role in this paper. We
say a single-valued operator F : X → X∗ is pseudomonotone, if

(i) F is bounded (i.e., it maps bounded subsets of X into bounded subsets of
X∗);

(ii) un ⇀ u in X and lim supn→∞〈Fun, un − u〉X∗×X ≤ 0 imply

〈Fu, u− v〉X∗×X ≤ lim inf
n→∞

〈Fun, un − v〉X∗×X ∀ v ∈ X.

It can be proved (see [25], for example) that an operator F : X → X∗ is pseu-
domonotone iff it is bounded and un ⇀ u in X together with lim supn→∞〈Fun, un−
u〉X∗×X ≤ 0 imply Fun ⇀ Fu in X∗ and limn→∞〈Fun, un − u〉X∗×X = 0.

Now let X be a reflexive Banach space. We say a multi-valued operator F : X →
2X
∗

is pseudomonotone if
(a) F has values which are nonempty, bounded, closed and convex;
(b) F is upper semicontinuous from each finite dimensional subspace of X into

X∗w;
(c) for any sequences {un} ⊂ X and {u∗n} ⊂ X∗ such that un ⇀ u in X,

u∗n ∈ Fun and lim supn→∞〈u∗n, un − u〉X∗×X ≤ 0, we have that for every v ∈ X,
there exists u∗(v) ∈ Fu such that

〈u∗(v), u− v〉X∗×X ≤ lim inf
n→∞

〈u∗n(v), u− v〉X∗×X .

The following proposition is usually used to check the pseudomonotonicity of a
operator.

Proposition 1. ([11]) Let X be a real reflexive Banach space, and assume that
F : X → 2X

∗
satisfies the following conditions:

(i) for each v ∈ X, F (v) is a nonempty, closed and convex subset of X∗;
(ii) F is bounded;
(iii) if vn ⇀ v in X, v∗n ⇀ v∗ in X∗ with v∗n ∈ F (vn), and lim supn→∞〈v∗n, vn −

v〉X∗×X ≤ 0, then v∗ ∈ F (v) and 〈v∗n, vn〉 → 〈v∗, v〉X∗×X .
Then the operator F is pseudomonotone.
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We need the notion of coercivity. We say an operator F : X → 2X
∗

is coercive if
either D(F ) is bounded or D(F ) is unbounded and

lim
‖u‖X→∞,u∈D(F )

inf{〈u∗, u〉X∗×X | u∗ ∈ Fu}
‖u‖X

= +∞.

The following surjectivity result for pseudomonotone and coercive operators will
be applied later in the paper.

Theorem 2.1. ([11]) Let X be a reflexive Banach space and F : X → 2X
∗

be
pseudomonotone and coercive. Then F is surjective, i.e., R(F ) = X∗.

For a Banach space X and a finite time interval I = (0, T0), we will use the spaces
Lp(I;X), 1 ≤ p ≤ ∞. Denote by BV (I;X) the space of functions of bounded total
variation on I defined as follows. Let π denote a finite partition of I: 0 = a0 <
a1 < · · · < an = T0, and let F be the collection of all such partitions. Then we
define the total variation as

‖x‖BV (I;X) = sup
π∈F

n∑
i=1

‖x(ai)− x(ai−1)‖X .

For 1 ≤ q <∞, we similarly define

‖x‖qBV q(I;X) = sup
π∈F

n∑
i=1

‖x(ai)− x(ai−1)‖qX .

Now for Banach spaces X, Z such that X ⊂ Z we introduce a vector space

Mp,q(I;X,Z) = Lp(I;X) ∩BV q(I;Z).

It is a Banach space for 1 ≤ p, q < ∞ with the norm given by ‖ · ‖Lp(I;X) + ‖ ·
‖BV q(I;Z).

The following result is crucial in proving the convergence of the Rothe method
(cf. Theorem 4.5).

Theorem 2.2. ([18]) Let 1 ≤ p, q <∞. Let X1 ⊂ X2 ⊂ X3 be real Banach spaces
such that X1 is reflexive, the embedding X1 ⊂ X2 is compact and the embedding
X2 ⊂ X3 is continuous. Then a bounded subset of Mp,q(I;X1, X3) is relatively
compact in Lp(I;X2).

The following Aubin-Cellina convergence theorem will be used.

Theorem 2.3. ([2]) Let F : X → 2Y be an upper semicontinuous multifunction
from a Hausdorff locally convex space X to the closed convex subsets of a Banach
space Y endowed with the weak topology. Let {xn} and {yn} be two sequences of
functions such that

(a) xn : (0, T0) → X and yn : (0, T0) → Y are measurable functions, for all
n ∈ N;

(b) for almost all t ∈ (0, T0) and for every neighborhood N (0) of 0 in X × Y
there exists n0 ∈ N such that (xn(t), yn(t)) ∈ Gr(F ) +N (0) for all n ≥ n0;

(c) xn(t)→ x(t) for a.e. t ∈ (0, T0), where x : (0, T0)→ X;
(d) yn ∈ L1(0, T0;Y ) and yn ⇀ y in L1(0, T0;Y ), where y ∈ L1(0, T0;Y ).
Then (x(t), y(t)) ∈ Gr(F ), i.e. y(t) ∈ F (x(t)) for a.e. t ∈ (0, T0).
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3. Weak formulations. We introduce the weak formulations of the problem (1)–
(5) in this section. Let

M = {v ∈ C∞(Ω;Rd) | divv = 0 in Ω, vT = 0 on Γ}.

We denote by V and H the closure ofM in the norms of H1(Ω;Rd) and L2(Ω;Rd),
respectively, and identity H with its dual H∗. We define the space Z to be the
closure of M in the norm of Hδ(Ω;Rd) with some δ ∈ ( 1

2 , 1). Note the relations

V ⊂ Z ⊂ H = H∗ ⊂ Z∗ ⊂ V ∗

with all embeddings being dense and compact. We denote by 〈·, ·〉 the duality of
V and V ∗, by (·, ·) the scalar product in H. The norms in V and H we denote
by ‖ · ‖V and ‖ · ‖H . Denoting by i : V → Z the embedding injection and by
γ : Z → L2(Γ;Rd) and γ0 : H1(Ω;Rd) → H1/2(Γ;Rd) ⊂ L2(Γ;Rd) the trace
operators, for all v ∈ V we have γ0v = γ(iv). For simplicity we omit the notation
of the embedding i and write γ0v = γv. Denoting by ι : V → H the embedding
injection. For T0 > 0, we define the spaces V = L2(0, T0;V ), Z = L2(0, T0;Z),
H = L2(0, T0;H), U = L2(0, T0;L2(Γ;Rd)), V∗ = L2(0, T0;V ∗), Z∗ = L2(0, T0;Z∗)
and W = {v ∈ V | v′ ∈ V∗}, where v′ = vt is the time derivative of v, understood
in the sense of distributions. The spaceW is embedded continuously in C(0, T0;H),
the space of all continuous functions v : [0, T0]→ H with the norm

‖v‖C(0,T0;H) = max
t∈[0,T0]

‖v(t)‖H .

Concerning the data, we assume

f ∈ V∗, u0 ∈ H, (6)

and
H(j) : j : Γ× (0, T0)× R→ R is such that

(i) j(·, ·, ξ) is measurable on Σ for all ξ ∈ R and there exists e ∈ L2(Γ) such that
j(·, ·, e(·)) ∈ L1(Σ);

(ii) j(x, t, ·) is locally Lipschitz on R for a.e. (x, t) ∈ Σ;
(iii) |η| ≤ c0(1 + |ξ|) for all ξ ∈ R, η ∈ ∂j(x, t, ξ), a.e. (x, t) ∈ Σ with c0 > 0;
(iv) (η1 − η2)(ξ1 − ξ2) ≥ −mN |ξ1 − ξ2|2 for all ηi ∈ ∂j(x, t, ξi), ξi ∈ R, i = 1, 2,

a.e. (x, t) ∈ Σ with mN > 0.
We proceed to derive weak formulations of the problem (1)–(5). Recall the

identity (see [14])

−∆u = curl curlu−∇divu,

where the symbol curl denotes the curl operator (see [14] for its definition). From
(1)–(2) we derive that

ut + ν curl curlu+∇h = f in Q. (7)

Let v,w ∈ V . We define A : V → V ∗ by

〈Av,w〉 = ν

∫
Ω

curlv · curlw dx.

It is known from [33] that in the case of simply connected domain Ω, the bilinear
form

((v,w))V =

∫
Ω

curlv · curlw dx
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generates a norm in V , ‖v‖V = ((v,v))
1/2
V , which is equivalent to the H1(Ω;Rd)-

norm.
Multiplying the equation of motion (7) by v ∈ V and applying the Green formula,

we obtain

〈ut +Au(t),v〉+

∫
Γ

hvNdΓ = 〈f(t),v〉 ∀v ∈ V, a.e. t ∈ (0, T0).

From the relation (5), by using the definition of the Clarke subdifferential, we
have ∫

Γ

hvNdΓ ≤
∫

Γ

j0(t, uN (t); vN )dΓ,

where j0(t, ξ; η) ≡ j0(x, t, ξ; η) denotes the directional derivative of j(x, t, ·) at the
point ξ ∈ R in the direction η ∈ R. The last two relations yield the following weak
formulation.

Problem 3.1. Find u ∈ W such that{
〈ut +Au(t),v〉+

∫
Γ
j0(t, uN (t); vN )dΓ ≥ 〈f(t),v〉 ∀v ∈ V, a.e. t ∈ (0, T0),

u(0) = u0.
(8)

Corresponding to the superpotential j, we define a functional J : (0, T0) ×
L2(Γ;Rd)→ R by

J(t,u) =

∫
Γ

j(x, t, uN (x)) dΓ, u ∈ L2(Γ;Rd), a.e. t ∈ (0, T0). (9)

The following result holds.

Lemma 3.2. Assume that j : Γ× (0, T0)× R → R has the properties H(j). Then
the functional J defined by (9) satisfies
H(J) : (i) J(·,u) is measurable on (0, T0) for all u ∈ L2(Γ;Rd);

(ii) J(t, ·) is locally Lipschitz on L2(Γ;Rd) for a.e. t ∈ (0, T0);
(iii) ‖η‖L2(Γ;Rd) ≤ c (1 + ‖u‖L2(Γ;Rd)) for all η ∈ ∂J(t,u),u ∈ L2(Γ;Rd), a.e.

t ∈ (0, T0) with c =
√

2 c0 max{
√

meas(Γ), 1};
(iv) J0(t,u;v) ≤

∫
Γ
j0(t, uN (x); vN (x))dΓ for all u,v ∈ L2(Γ;Rd), a.e. t ∈

(0, T0);
(v) 〈z1(t) − z2(t),u1 − u2〉L2(Γ;Rd) ≥ −mN‖u1 − u2‖2L2(Γ;Rd) for all zi(t) ∈

∂J(t,ui), ui ∈ L2(Γ;Rd), zi ∈ L2(0, T0;L2(Γ;Rd)), i = 1, 2, a.e. t ∈ (0, T0).

Proof. We define j̃ : Γ × (0, T ) × Rd → R by j̃(x, t,η) = j(x, t, ηN ) for (x, t,η) ∈
Γ×(0, T0)×Rd. Then, j̃(x, t,η) = j(x, t, Lη), where L ∈ L(Rd,R), Lη = ηN = η ·n
and that L∗ ∈ L(R,Rd) is given by L∗r = rn for r ∈ R ([25, Lemma 13]). Then,
in view of [27, Proposition 3.37, Theorem 3.47], we obtain the conclusions (i)–(iv).
Using arguments similar to those in the proof of Theorem 4.20 in [27], we get (v).

We consider the following inclusion:

Problem 3.3. Find u ∈ W such that{
u′(t) +Au(t) + γ∗∂J(γu(t)) 3 f(t), a.e. t ∈ (0, T0),

u(0) = u0,
(10)

where ∂J(γu(t)) ≡ ∂J(t, γu(t)) and γ∗ : L2(Γ;Rd)→ Z∗ is the adjoint operator to
γ.
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We will refer to the following equivalent formulation of Problem 3.3.

Problem 3.4. Find (u,η) ∈ W × U such that u′(t) +Au(t) + γ∗η(t) = f(t) for a.e. t ∈ (0, T0)
η(t) ∈ ∂J(γu(t)) for a.e. t ∈ (0, T0)
u(0) = u0.

(11)

Remark 1. If the functional J is of the form (9) and H(j) holds, it is clear that
every solution to Problem 3.3 (or Problem 3.4) is also a solution to Problem 3.1. If
either j or −j is regular, then the converse is also true. Indeed, from [27, Theorem
3.47(vii)] we have, for all v ∈ V and a.e. t ∈ (0, T0),

〈f(t)− u′(t)−Au(t),v〉 ≤
∫

Γ

j0(t, uN (t); vN ) dΓ = J0(t, γu(t); γv).

By Proposition 3.37(ii) in [27], we obtain

f(t)− u′(t)−Au(t) ∈ ∂(J ◦ γ)(u(t)) = γ∗∂J(γu(t)), a.e. t ∈ (0, T0),

which implies (10).

Note that from our problem setting, we have the following properties:
H(A) : A : V → V ∗ is a linear, continuous, symmetric operator such that

〈Av,v〉 = ν‖v‖2V ∀v ∈ V ;

H(γ): the Nemytskii operator γ : M2,2(0, T0;V, V ∗)→ U defined by (γv)(t) = γv(t)
is compact.

4. Solution existence. In this section we show the existence of a solution to
Problem 3.4. This is achieved through the consideration of a temporally semi-
discrete approximation of Problem 3.4 based on the backward Euler difference for
the time derivative; such an approximation is also known as the Rothe method.
For a fixed N ∈ N, define the time step-size τ = T0/N . Introduce the piecewise
constant interpolant of f by

fkτ =
1

τ

∫ kτ

(k−1)τ

f(t) dt, k = 1, . . . , N.

We approximate the initial condition by elements of V . Namely, let {u0
τ} ⊂ V be

such that u0
τ → u0 in H as τ → 0, and ‖u0

τ‖V ≤ C/
√
τ for some constant C > 0.

Since V is dense in H, such a sequence {u0
τ} exists (cf. [31, Theorem 8.9]).

The semi-discrete approximation of Problem 3.4 is the following.

Problem 4.1. Find {ukτ}Nk=0 ⊂ V, and {ηkτ}Nk=0 ⊂ L2(Γ;Rd) such that for k =
1, . . . , N ,{

1
τ (ukτ − uk−1

τ ,v) + 〈Aukτ ,v〉+ 〈ηkτ , γv〉L2(Γ;Rd) = 〈fkτ ,v〉 ∀v ∈ V,
ηkτ ∈ ∂J(γukτ ).

(12)

Denote by λ the trace constant of V → L2(Γ;Rd):

‖v‖L2(Γ;Rd) ≤ λ ‖v‖V ∀v ∈ V.

First we show an existence result for Problem 4.1.

Theorem 4.2. Assume (6), H(j), and ν > cλ2. Then there exists a solution to
Problem 3.4.
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Proof. It is sufficient to prove that for a given uk−1
τ ∈ V , there exist ukτ ∈ V and

ηkτ ∈ L2(Γ;Rd) satisfying (12). Note that (12) is equivalent to

Lukτ 3 f
k
τ +

ι∗ι

τ
uk−1
τ ,

where the multivalued operator L : V → 2V
∗

is defined by

Lv =
ι∗ι

τ
v +Av + γ∗∂J(γv), v ∈ V.

Note that it is enough to prove the surjectivity of L. In view of Theorem 2.1, we
will show that L is pseudomonotone and coercive.

First, we prove the coercivity of L. Let v ∈ V and v∗ ∈ Lv. Then

v∗ =
ι∗ι

τ
v +Av + γ∗η,

where η ∈ ∂J(γv). Using H(A), we have

〈v∗,v〉 = (
ι∗ι

τ
v,v) + 〈Av,v〉+ 〈η, γv〉L2(Γ;Rd)

≥ 1

τ
‖v‖2H + ν‖v‖2V + 〈η, γv〉L2(Γ;Rd).

(13)

From H(J)(iii), we have

〈η, γv〉L2(Γ;Rd) ≥ −‖η‖L2(Γ;Rd)‖v‖L2(Γ;Rd)

≥ −c ‖v‖L2(Γ;Rd)(1 + ‖v‖L2(Γ;Rd))

≥ −c λ2‖v‖2V − c λ ‖v‖V .
(14)

It follows from (13) and (14) that

〈v∗,v〉 ≥ 1

τ
‖v‖2H + (ν − cλ2)‖v‖2V − cλ ‖v‖V .

Therefore, the operator L is coercive.
Next we prove that L is pseudomonotone. Since the operator ι∗ι

τ is bounded,
continuous and monotone, from Theorem 3.69(i) in [27] we deduce that the operator
ι∗ι
τ is pseudomonotone. Since the trace operator γ : V → L2(Γ;Rd) is compact,

from Lemma 2 in [18] we obtain that γ∗∂J(γ·) is pseudomonotone. Since the sum
of two pseudomonotone operators remains pseudomonotone (cf. [11, Proposition
1.3.68]), L is pseudomonotone.

Let us establish a boundedness result for the semi-discrete solutions.

Lemma 4.3. Under the assumptions of Theorem 4.2, there is a constant M1 > 0,
independent of τ , such that

max
k=1,...,N

‖ukτ‖H +

N∑
k=1

‖ukτ − uk−1
τ ‖2H + τ

N∑
k=1

‖ukτ‖2V ≤M1. (15)

Proof. Take v = ukτ in (4.1),

1

τ
(ukτ − uk−1

τ ,ukτ ) + 〈Aukτ ,ukτ 〉+ 〈ηkτ , γukτ 〉L2(Γ;Rd) = 〈fkτ ,ukτ 〉. (16)

We have

(ukτ − uk−1
τ ,ukτ ) =

1

2
‖ukτ‖2H −

1

2
‖uk−1

τ ‖2H +
1

2
‖ukτ − uk−1

τ ‖2H .
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From H(A),

〈Aukτ ,ukτ 〉 = ν‖ukτ‖2V .

For any ε > 0, we have

〈fkτ ,ukτ 〉 ≤ ‖f
k
τ‖V ∗‖ukτ‖V ≤

ε

2
‖ukτ‖2V +

1

2ε
‖fkτ‖2V ∗ .

Recall (see (14)) that

〈ηkτ , γukτ 〉L2(Γ;Rd) ≥ −cλ2‖ukτ‖2V − cλ ‖ukτ‖V .

Therefore, for any ε > 0,

〈ηkτ , γukτ 〉L2(Γ;Rd) ≥ −cλ2‖ukτ‖2V −
ε

2
‖ukτ‖2V −

c2λ2

2ε

= (−cλ2 − ε

2
)‖ukτ‖2V −

c2λ2

2ε
.

Thus, from (16), we have

‖ukτ‖2H − ‖uk−1
τ ‖2H + ‖ukτ − uk−1

τ ‖2H + c1τ‖ukτ‖2V ≤
τ

ε
‖fkτ‖2V ∗ + c2τ, (17)

where c1 = 2
(
ν − ε− cλ2

)
, c2 = c2λ2/ε, and ε > 0 is chosen so that c1 > 0, e.g.,

ε =
(
ν − cλ2

)
/2.

For 1 ≤ n ≤ N , we sum the inequality (17) for k = 1, . . . , n to obtain

‖unτ ‖2H +

n∑
k=1

‖ukτ − uk−1
τ ‖2H + c1τ

n∑
k=1

‖ukτ‖2V ≤ ‖u0
τ‖2H +

1

ε
τ

n∑
k=1

‖fkτ‖2V ∗ + c2T

≤ ‖u0
τ‖2H +

1

ε
‖f‖2V∗ + c2T.

(18)

From (18) we obtain the bound (15). This completes the proof.

We now construct piecewise linear and piecewise constant interpolants uτ ∈
C([0, T0];V ) and uτ ∈ L∞(0, T0;V ) by the formulae

uτ (t) = ukτ + (
t

τ
− k)(ukτ − uk−1

τ ) for t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N,

uτ (t) =

{
ukτ , t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N,
u0
τ , t = 0.

The piecewise constant function ητ : (0, T0]→ L2(Γ;Rd) is given by

ητ (t) = ηkτ for t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N.

Moreover, we define fτ : (0, T0]→ V ∗ as follows

fτ (t) = fkτ for t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N.

By [6, Lemma 3.3], we know that fτ → f in V∗ as τ → 0. We observe that
the distributional derivative of uτ is given by u′τ (t) = (ukτ − uk−1

τ )/τ for t ∈
((k − 1) τ, k τ), k = 1, . . . , N . Thus, (4.1) can be rewritten as (u′τ (t),v) + 〈Auτ (t),v〉+ 〈ητ (t), γv〉L2(Γ;Rd) = 〈fτ (t),v〉,

∀v ∈ V, a.e. t ∈ (0, T0),
ητ (t) ∈ ∂J(γuτ (t)), a.e. t ∈ (0, T0).

(19)
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We define the Nemytskii operator A : V → V∗ by (Av)(t) = A(v(t)) for v ∈ V
and γ : V → U by (γv)(t) = γv(t) for v ∈ V. Observe that the problem (19) is
equivalent to{

(u′τ ,v)H + 〈Auτ ,v〉V∗×V + 〈ητ , γv〉U = 〈fτ ,v〉V∗×V ∀v ∈ V,
ητ (t) ∈ ∂J((γ uτ )(t)), a.e. t ∈ (0, T0).

(20)

Lemma 4.4. Under the assumptions of Theorem 4.2, there is a constant M2 > 0,
independent of τ , such that

‖uτ‖V + ‖uτ‖L∞(0,T0;H) + ‖uτ‖C(0,T0;H) + ‖uτ‖V
+‖u′τ‖V∗ + ‖ητ‖U + ‖uτ‖M2,2(0,T0;V,V ∗) ≤M2.

(21)

Proof. Bounds on ‖uτ‖L∞(0,T0;H) and ‖uτ‖C(0,T0;H) follow directly from (15). Since

‖uτ‖2V = τ

N∑
k=1

‖ukτ‖2V ,

we obtain the bound on ‖uτ‖V from (15). A simple calculation shows that

‖uτ‖2V ≤ τ
N∑
k=0

‖ukτ‖2V .

Thus, from (15) and the fact

‖u0
τ‖V ≤ C/

√
τ ,

we get the bound on ‖uτ‖V .
Next, using H(J)(iii) we have

‖ητ‖2U =

∫ T0

0

‖ητ (t)‖2L2(Γ;Rd)dt

≤
∫ T0

0

(
2c2 + 2c2 ‖uτ (t)‖2L2(Γ;Rd)

)
dt

≤
∫ T0

0

(
2c2 + 2c2λ2‖uτ (t)‖2V

)
dt

= 2T0c
2 + 2c2λ2‖uτ‖2V ,

and hence from the bound on ‖uτ‖V we get the bound on ‖ητ‖U .
Using H(A), from (20) we have

‖u′τ‖V∗ = sup
‖v‖V≤1

|〈u′τ ,v〉V∗×V | = sup
‖v‖V≤1

|(u′τ ,v)H|

= sup
‖v‖V≤1

|〈fτ ,v〉V∗×V − 〈Auτ ,v〉V∗×V −
∫ T0

0

〈ητ (t), γv(t)〉L2(Γ;Rd)dt|

≤ ‖fτ‖V∗ + (

∫ T0

0

‖Auτ (t)‖2V ∗dt)
1
2 + λ ‖ητ‖U

≤ ‖fτ‖V∗ + ‖A‖L(V,V ∗)‖uτ‖V + λ ‖ητ‖U .

Thus, using the bounds on ‖uτ‖V and ‖ητ‖U we get the bound on ‖u′τ‖V∗ .
Suppose the BV 2(0, T0;V ∗) seminorm of piecewise constant function uτ is ob-

tained by some division 0 = a0 < a1 < . . . < an = T0, and each ai is in different
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interval ((mi − 1)τ,miτ ], such that uτ (ai) = umi
τ with m0 = 0,mn = N and

mi+1 > mi for i = 1, . . . , N − 1. Thus, from the bound on ‖u′τ‖V∗ we have

‖uτ‖2BV 2(0,T0;V ∗) =

n∑
i=1

‖umi
τ − umi−1

τ ‖2V ∗

≤
n∑
i=1

((mi −mi−1)

mi∑
k=mi−1+1

‖ukτ − uk−1
τ ‖2V ∗)

≤ N
n∑
i=1

mi∑
k=mi−1+1

‖ukτ − uk−1
τ ‖2V ∗

= N

N∑
i=1

‖ukτ − uk−1
τ ‖2V ∗ = T0τ

N∑
i=1

‖u
k
τ − uk−1

τ

τ
‖2V ∗

= T0

∫ T0

0

‖u′τ (t)‖2V ∗dt = T0‖u′τ‖2V∗ .

Thus, from the bounds on ‖uτ‖V and ‖u′τ‖V∗ , we deduce that uτ is bounded
in M2,2(0, T0;V, V ∗). Hence, the bound on ‖uτ‖M2,2(0,T0;V,V ∗) is proved. This
completes the proof.

Theorem 4.5. Keep the assumptions made in Theorem 4.2. Then there exists
a pair (u,η) ∈ W × U such that for a subsequence, uτ ⇀ u in W, uτ ⇀

∗ u in
L∞(0, T0;H), uτ ⇀ u in V, uτ ⇀

∗ u in L∞(0, T0;H) and ητ ⇀ η in U . Moreover,
(u,η) is a solution of Problem 3.4.

Proof. From (21), we know that there exist u ∈ V ∩ L∞(0, T0;H), u ∈ V ∩
L∞(0, T0;H), u1 ∈ V∗ and η ∈ U such that, passing to a subsequence if neces-
sary, the following convergence holds

uτ → u weakly in V and weakly∗ in L∞(0, T0;H), (22)

uτ → u weakly in V and weakly∗ in L∞(0, T0;H), (23)

u′τ ⇀ u1 in V∗, (24)

ητ ⇀ η in U . (25)

First we show that u = u. Note that

‖uτ − uτ‖2V∗ =

N∑
k=1

∫ kτ

(k−1)τ

(kτ − t)2‖u
k
τ − uk−1

τ

τ
‖2V ∗dt =

τ2

3
‖u′τ‖2V∗ .

Thus, uτ −uτ → 0 in V∗ as τ → 0. On the other hand, from (22) and (23) we have
uτ − uτ ⇀ u − u in V. Since the embedding V ⊂ V∗ is continuous, we also have
uτ − uτ ⇀ u− u in V∗. Therefore, u− u = 0, i.e. u = u. Since uτ ⇀ u in V and
u′τ ⇀ u1 in V∗, we conclude (cf. [16, Proposition 1.2]) that u1 = u′. Thus, for all
v ∈ V, we obtain

(u′τ ,v)H = 〈u′τ ,v〉V∗×V → 〈u′,v〉V∗×V = (u′,v)H. (26)

From H(A), it is clear that A is linear and continuous operator from V to V∗ and
thus also weakly continuous. Since uτ ⇀ u in V, we get

〈Auτ ,v〉V∗×V → 〈Au,v〉V∗×V . (27)
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From (25) we get

〈ητ , γv〉U → 〈η, γv〉U . (28)

Since fτ → f in V∗, we have

〈fτ ,v〉V∗×V → 〈f ,v〉V∗×V . (29)

Using (26)–(29), we can pass to the limit in (20) and obtain

(u′,v)H + 〈Au,v〉V∗×V + 〈η, γv〉U = 〈f ,v〉V∗×V ∀v ∈ V. (30)

Since uτ ⇀ u in V, from H(γ) we have γ uτ → γu in U . Thus, for a subse-
quence, γ uτ (t) → γu(t) in L2(Γ;Rd) for a.e. t ∈ (0, T0). Since ∂J : L2(Γ;Rd) →
2L

2(Γ;Rd) has nonempty, closed and convex values, and is upper semicontinuous
from L2(Γ;Rd) furnished with strong topology into L2(Γ;Rd) furnished with weak
topology (cf. [10, Proposition 5.6.10]), from (25) and Theorem 2.3 we have

η(t) ∈ ∂J(γu(t)), a.e. t ∈ (0, T0). (31)

Finally, we pass to the limit with the initial conditions on the function uτ . Since
uτ ⇀ u in V and u′τ ⇀ u′ in V∗ and the embeddingW ⊂ C(0, T0;H) is continuous,
we have uτ (t) ⇀ u(t) in H for all t ∈ [0, T0] (cf. [26, Lemma 4(b)]). Therefore,
u0
τ = uτ (0) ⇀ u(0) in H. Since u0

τ → u0 in H, we have u(0) = u0. This completes
the proof.

5. Uniqueness and continuous dependence on data. In this section we study
the uniqueness of a solution to Problem 3.4 and continuous dependence of the
solution on f and u0.

Theorem 5.1. Keep the assumptions of Theorem 4.2. Then, there exists a constant
C > 0 such that for any solution u ∈ V to Problem 3.4.

‖u‖V ≤ C. (32)

If ν−mNλ
2 > 0, where mN > 0 is the constant from H(J)(v), then the solution to

Problem 3.4 is unique.

Proof. First we prove the priori estimate (32). Since u ∈ V solves Problem 3.4, we
have

(u′(t),u(t)) + 〈Au(t),u(t)〉+ 〈η(t), γu(t)〉L2(Γ;R2) = 〈f(t),u(t)〉, a.e. t ∈ (0, T0),

where η(t) ∈ ∂J(γu(t)) for a.e. t ∈ (0, T0).
Recall that

〈η(t), γu(t)〉L2(Γ;Rd) ≥ −cλ2‖u(t)‖2V − cλ ‖u(t)‖V , a.e. t ∈ (0, T0).

Thus, from H(A) we have

1

2

d

dt
‖u(t)‖2H + (ν − cλ2)‖u(t)‖2V − cλ ‖u(t)‖V ≤ 〈f(t),u(t)〉, a.e. t ∈ (0, T0).

Therefore,

1

2

d

dt
‖u(t)‖2H + (ν − cλ2)‖u(t)‖2V ≤ cλ ‖u(t)‖V + 〈f(t),u(t)〉, a.e. t ∈ (0, T0).

(33)
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Integrating (33) from 0 to T0, we obtain

1

2
‖u(T0)‖2H −

1

2
‖u0‖2H + (ν − cλ2)‖u‖2V ≤ cλ

∫ T0

0

‖u(t)‖V dt+

∫ T0

0

〈f(t),u(t)〉dt

≤ cλ
√
T0 ‖u‖V + ‖f‖V∗‖u‖V .

Hence,

1

2
‖u(T0)‖2H + (ν − cλ2)‖u‖2V ≤ (cλ

√
T + ‖f‖V∗)‖u‖V +

1

2
‖u0‖2H . (34)

Thus, (32) holds.
Next let (u1,η1), (u2,η2) be two solutions of Problem 3.4. Then, for a.e. t ∈

(0, T0), we have

(u′1(t)− u′2(t),v) + 〈A(u1(t)− u2(t)),v〉+ 〈η1(t)− η2(t), γv〉L2(Γ;R2) = 0∀v ∈ V.
(35)

Taking v = u1(t)− u2(t) in (35), we get

1

2

d

dt
‖u1(t)− u2(t)‖2H + 〈A(u1(t)− u2(t)),u1(t)− u2(t)〉

+ 〈η1(t)− η2(t), γ(u1(t)− u2(t))〉L2(Γ;R2) = 0, a.e. t ∈ (0, T0).
(36)

By H(J)(v), we have

〈η1(t)− η2(t), γ(u1(t)− u2(t))〉L2(Γ;R2) ≥ −mN‖γ(u1(t)− u2(t))‖2L2(Γ;Rd)

≥ −mNλ
2‖u1(t)− u2(t)‖2V .

From the above inequality and (36) we obtain for a.e. t ∈ (0, T0)

1

2

d

dt
‖u1(t)− u2(t)‖2H + (ν −mNλ

2)‖u1(t)− u2(t)‖2V ≤ 0.

Therefore,

1

2

d

dt
‖u1(t)− u2(t)‖2H ≤ 0. (37)

Integrating (37) from 0 to t, we get

‖u1(t)− u2(t)‖2H ≤ ‖u1(0)− u2(0)‖2H = 0.

So u1 = u2, and this completes the proof.

Next we establish the continuous dependence of solution of Problem 3.4 on f
and u0.

Theorem 5.2. Assume (6), H(j), and ν −mλ2 > 0 with m = max{c,mN}. Then
the mapping (f ,u0) 7→ u : V ×H → C(0, T0;H) is Lipschitz continuous, where u
denotes the unique solution to Problem 3.4.

Proof. Consider two solutions u1,u2 ∈ W of Problem 3.4 corresponding to two
right-hand sides f1,f2 ∈ V and two initial conditions u1,0,u2,0 ∈ H. Similar to
(36), we have

(u′1(t)− u′2(t),u1(t)− u2(t)) + 〈A(u1(t)− u2(t)),u1(t)− u2(t)〉
+ 〈η1(t)− η2(t), γ(u1(t)− u2(t))〉L2(Γ;Rd) = 〈f1(t)− f2(t),u1(t)− u2(t)〉,
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where η1(t) ∈ ∂J(γu1(t)) and η2(t) ∈ ∂J(γu2(t)) for a.e. t ∈ (0, T0). Similar to
the proof of the uniqueness in Theorem 5.1, from (38) we get

‖u1(t)− u2(t)‖2H ≤ ‖u1,0 − u2,0‖2H +

∫ t

0

‖f1(s)− f2(s)‖2V ∗ds.

Thus,

‖u1 − u2‖2C(0,T ;H) ≤ ‖u1,0 − u2,0‖2H + ‖f1 − f2‖2V∗ ,

and the proof is completed.

6. An optimal control problem. The optimal control problem studied here
arises in some important models such as artificial heart. It is known (cf. [1]) that
hemolysis is caused largely by excessive shear stresses and vortices. Blood clot may
be caused by recirculation and stagnation. Hence, an artificial heart must be de-
signed so as to minimize shear stresses, vortices, and stagnation. Thus, a meaningful
cost functional may be given by

P (u,f) =
1

2

∫ T0

0

[Q1(∇u) +Q2(curl (u)) +Q3(u− us) +Q4(f)] dt, (38)

where Qi, 1 ≤ i ≤ 4, are quadratic functionals of their arguments, u is the velocity
field, f is the control, and us is an ideal velocity distribution. In (38), Q1, Q2 and
Q3 are assumed to be positive semidefinite whereas Q4 is assumed to be strictly
coercive. The problem is to determine a control function in such a way that the cost
functional is minimized subject to certain constraints on u and f . We will consider
the optimal control problem with a general functional

P (u,v) =

∫ T0

0

R(t,u(t),v(t)) dt,

where R : [0, T0]× L2(Ω;Rd)× L2(Ω;Rd)→ R ∪ {+∞}.
In this section we shall study an optimal control problem for a system described

by a hemivariational inequality in Problem 3.3.

Denote L2(Ω;Rd) by H. We suppose that Û = L2(0, T0;H) represents the

control space. Let Û0 ⊂ Û be the set of admissible controls and P :W × Û → R be
the objective functional.

The control problem is the following: P (u,f) =
∫ T0

0
R(t,u(t),f(t)) dt→ inf = m such that

u′(t) +Au(t) + γ∗∂J(γu(t)) 3 f(t) a.e. t ∈ (0, T0),

u(0) = u0, f ∈ Û0.

(39)

In what follows we need the following hypotheses:

H(Û): Û0 is a bounded and weakly closed subset of Û ;
H(R): R : [0, T0] ×H ×H → R ∪ {+∞} is a measurable function which satisfies
the following three conditions:

(i) R(t, ·, ·) is sequentially lower semicontinuous on H ×H, a.e. t ∈ (0, T0);
(ii) R(t,u, ·) is convex on H, for all u ∈H and a.e. t;
(iii) there exist M > 0 and φ ∈ L1(0, T0) such that for all u,f ∈ H and a.e. t,

we have R(t,u,f) ≥ φ(t)−M(‖u‖H + ‖f‖H).
The following example illustrates the existence of the functional R satisfying the

assumption H(R) (cf. [20]).
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Example 6.1. Take R(t,u,f) = ‖Bu − ũ‖2H + (Qf ,f)H , where B ∈ L(H,H)
is the “observation” operator, Q ∈ L(H,H), (Qf ,f)H ≥ µ‖f‖2H with µ > 0, and
ũ ∈H is the desired terminal output. Then the hypothesis H(R) is satisfied.

Theorem 6.2. Assume (6), H(j), ν > cλ2, H(Û), and H(R). Then, there exists

an optimal “state-control” pair (u,f) ∈ W × Û0 for (39).

Proof. Let {(uk,fk)} ⊂ W×Û0 be a minimizing sequence, i.e. limk→∞ P (uk,fk) =
m. Then,

u′k(t) +Auk(t) + γ∗ηk(t) = fk(t) a.e. t ∈ (0, T0) (40)

with ηk(t) ∈ ∂J(γuk(t)) a.e. t ∈ (0, T0) and uk(0) = u0.

From H(Û) it follows that the sequence {fk} belongs to a bounded subset of Û .

Therefore, by the reflexivity of Û , we may assume, by passing to a subsequence if

necessary, that for some f ∈ Û , fk ⇀ f in Û . The weak closedness of Û0 implies

that the limit f ∈ Û0. Similarly to the proof of Theorem 5.1 (cf. (34)), we conclude
that

‖uk‖V ≤ c1(1 + ‖fk‖V∗) (41)

for some constant c1 > 0. From (40) we have

‖u′k‖V∗ ≤ ‖fk‖V∗ + ‖A‖L(V,V ∗)‖uk‖V + ‖γ∗ηk‖V∗ . (42)

Since ηk(t) ∈ ∂J(γuk(t)) for a.e. t ∈ (0, T0), from H(J)(iii) we have

‖γ∗ηk‖V∗ ≤ c2‖γ∗ηk‖Z∗ ≤ c2‖γ∗‖‖ηk‖U ≤ c2‖γ∗‖
(√

2T0 c+
√

2 c λ ‖γ‖‖uk‖V
)
,

(43)

where c2 > 0 is an embedding constant of V ⊂ Z. Using (41) and (43), from (42)
we deduce that for some constant c4 > 0,

‖u′k‖V∗ ≤ c4(1 + ‖fk‖V∗). (44)

From (41) and (44) we conclude that {uk} is bounded in W. Thus, by passing to
a subsequence if necessary, we have that uk ⇀ u in W for some u ∈ W. Since the

embedding of V into H is compact, so is the embedding of W into Û . Therefore,

uk → u in Û . Using [3, Theorem 2.1], we obtain

P (u,f) =

∫ T0

0

R(t,u(t),f(t)) dt ≤ lim inf
k→∞

∫ T0

0

R(t,uk(t),fk(t)) dt = m. (45)

Since the embedding of W into C(0, T0;H) is continuous, uk(t) ⇀ u(t) in H for all
t ∈ [0, T0]. Hence, we have that uk(0) ⇀ u(0) = u0 in H. Similarly as in the proof
of Lemma 4.4, using H(J)(iii) we get

‖ηk‖2U ≤ 2T0c
2 + 2c2λ2‖γ‖2‖uk‖2V

≤ 2T0c
2 + 2c2λ2‖γ‖2‖uk‖2W

≤M3,

(46)

where M3 > 0. Thus, we may assume that ηk ⇀ η in U . Hence, γ∗ηk ⇀ γ∗η in
V. Since A is linear and continuous, it is weakly continuous. Hence, Auk ⇀ Au in
V∗.
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Let Φ(x, t) = φ(t)v(x) with φ ∈ C∞0 (0, T0) and v ∈ V . Multiplying (40) with Φ
and integrating on (0, T0), we have

〈u′k +Auk + γ∗ηk − fk,Φ〉V∗×V = 0.

Letting k →∞, we obtain

〈u′ +Au+ γ∗η − f ,Φ〉V∗×V = 0,

i.e., ∫ T0

0

〈u′(t) +Au(t) + γ∗η(t)− f(t),v〉V ∗×V φ(t) dt = 0.

Since φ ∈ C∞0 (0, T0) is arbitrary, we deduce that

〈u′(t) +Au(t) + γ∗η(t)− f(t),v〉V ∗×V = 0 a.e. t ∈ (0, T0).

Since v ∈ V is arbitrary, we get

u′(t) +Au(t) + γ∗η(t) = f(t) a.e. t ∈ (0, T0).

Continuing as in the proof of Theorem 4.5, we have η(t) ∈ ∂J(γu(t)) a.e. t ∈ (0, T0).
This together with u(0) = u0 shows that the pair (u,f) is admissible. Recalling
(45), we have P (u,f) = m. This completes the proof.

For any given f ∈ Û0, we denote by S(f) the set of solutions inW of the problem{
u′(t) +Au(t) + γ∗∂J(γu(t)) 3 f(t) a.e. t ∈ (0, T0),

u(0) = u0.
(47)

Next we present a result on the closedness of the graph of the map Û ⊃ Û0 3 f 7→
S(f) ⊂ W in suitable topologies.

Theorem 6.3. Assume H(j), ν > cλ2, H(Û), and u0 ∈ H. Then the multivalued
mapping

Û ⊃ Û0 3 f 7→ S(f) ⊂ W

has a closed graph in Ûw ×Ww.

Proof. Let fk ∈ Û0, uk ∈ S(fk),

fk ⇀ f in Û and uk ⇀ u in W. (48)

Then

u′k(t) +Auk(t) + γ∗ηk(t) = fk(t) a.e. t ∈ (0, T0),

uk(0) = u0,

where

ηk(t) ∈ ∂J(γuk(t)) a.e. t ∈ (0, T0). (49)

We shall show that u ∈ S(f). The weak closedness of Û0 implies that the limit

f ∈ Û0. Since the embedding of W into C(0, T0;H) is continuous, uk(t) ⇀ u(t) in
H for all t ∈ [0, T0]. Hence, we have

uk(0) ⇀ u(0) = u0 in H. (50)
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Since {uk} is bounded in W, from (46) we may assume that ηk ⇀ η in U . Thus,

γ∗ηk ⇀ γ∗η in V. (51)

Since A is linear and continuous, it is weakly continuous. Therefore,

Auk ⇀ Au in V∗. (52)

Similarly as in the proof of Theorem 4.5, from (49) we have

η(t) ∈ ∂J(γu(t)) a.e. t ∈ (0, T0). (53)

Similar to the proof of Theorem 6.2 and using (48), (51), (52), from (49) we obtain

u′(t) + (Au)(t) + γ∗η(t) = f(t) a.e. t ∈ (0, T0).

This together with (50) and (53) gives u ∈ S(f), and the proof is completed.

Acknowledgments. The authors are grateful to Professor Stanis law Migórski for
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[35] F. Tröltzsch, Optimal Control of Partial Differential Equations, American Mathematical So-
ciety, Providence, Rhode Island, 2010.

Received August 2015; revised April 2016.

E-mail address: fangcj@cqupt.edu.cn

E-mail address: weimin-han@uiowa.edu

http://www.ams.org/mathscinet-getitem?mr=MR1163317&return=pdf
http://dx.doi.org/10.1080/01630569208816460
http://dx.doi.org/10.1080/01630569208816460
http://www.ams.org/mathscinet-getitem?mr=MR2240746&return=pdf
http://dx.doi.org/10.3934/dcdsb.2006.6.1339
http://dx.doi.org/10.3934/dcdsb.2006.6.1339
http://www.ams.org/mathscinet-getitem?mr=MR3462400&return=pdf
http://dx.doi.org/10.3934/proc.2013.2013.545
http://dx.doi.org/10.3934/proc.2013.2013.545
http://www.ams.org/mathscinet-getitem?mr=MR1807980&return=pdf
http://dx.doi.org/10.1023/A:1026555014562
http://www.ams.org/mathscinet-getitem?mr=MR2132897&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2004.12.033
http://www.ams.org/mathscinet-getitem?mr=MR2540272&return=pdf
http://dx.doi.org/10.1137/080733231
http://dx.doi.org/10.1137/080733231
http://www.ams.org/mathscinet-getitem?mr=MR1019435&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1301779&return=pdf
http://dx.doi.org/10.1007/978-1-4612-0873-0
http://dx.doi.org/10.1007/978-1-4612-0873-0
http://www.ams.org/mathscinet-getitem?mr=MR2589721&return=pdf
http://dx.doi.org/10.1002/fld.2010
http://dx.doi.org/10.1002/fld.2010
mailto:fangcj@cqupt.edu.cn
mailto:weimin-han@uiowa.edu

	1. Introduction
	2. Preliminaries
	3. Weak formulations
	4. Solution existence
	5. Uniqueness and continuous dependence on data
	6. An optimal control problem
	Acknowledgments
	REFERENCES

