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Abstract. We consider numerical approximations of a class of abstract nonlinear evolution-
ary systems arising in the study of quasi-static frictional contact problems for elastic-viscoplastic
materials. Both semidiscrete and fully discrete schemes are analyzed. Strong convergence of both
approximations is established under minimal solution regularity. The results are applied to two
particular frictional contact problems for viscoplastic bodies, where the finite element method is
employed to discretize the spatial domain. Under additional regularity assumptions on the exact
solution, some error estimates are derived.
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1. Introduction. The aim of this paper is to provide numerical analysis of
some problems arising in frictional contact between an elastic-viscoplastic body and
a rigid foundation. Situations of frictional contact abound in industry and everyday
life. Contacts of the braking pads with the wheel, the tire with the road, and the
piston with the skirt are just a few simple examples. Because of the importance of
the process of frictional contact, a considerable effort has been made in its modeling
and numerical simulations. Indeed, the engineering literature concerning this topic
is extensive. Most of it, however, is dedicated to simple geometries, specific settings,
and mostly to numerical simulations.

In the applied mathematics literature, the study of general models for dynamic
or quasi-static contact process involving elastic-viscoplastic materials is very recent.
Rate-type viscoplastic constitutive laws of the form

σ̇ = Eε(u̇) +G(σ, ε(u))(1.1)

are used in the literature to describe mechanical responses of such materials as rubber,
various metals, rocks, pastes, etc. In (1.1), σ denotes the stress tensor, u the displace-
ment field, ε(u) the linearized strain tensor, and E and G are material constitutive
functions. The function E is assumed to be linear while G is in general nonlinear.
Here and throughout the paper, a dot above a quantity represents its derivative with
respect to the time variable t, and double dots denote the second-order derivative.
Concrete examples, experimental background, and mechanical interpretations of such
models may be found in [4] and references therein. Functional and numerical methods
are discussed in [13] for initial and boundary value problems involving (1.1) with the
usual displacement and traction boundary conditions.
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1172 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

Existence of weak solutions to quasi-static frictional contact problems for materi-
als modeled by a general rate-type constitutive law of the form (1.1) were established
in [1, 2, 17]. In the abstract form, the frictional contact problems are formulated as a
nonlinear evolution equation (the abstract version of (1.1)) coupled with an evolution-
ary variational inequality resulted from the equilibrium equation and the boundary
conditions. The variational analysis of this abstract problem was done in [1].

In this paper, we consider the numerical analysis of frictional contact problems for
elastic-viscoplastic materials of the type (1.1). The literature is abundant on numerical
treatment of variational inequality; see, for instance, the monographs [7, 8, 12, 14]. Of
particular relevance to this paper are the works on numerical analysis of variational
inequalities arising in plasticity; cf. [9, 11, 10].

The paper is organized as follows. In section 2 we present the abstract problem,
state the assumptions on the data, and recall the existence and uniqueness result
proved in [1]. In section 3, a semidiscrete scheme and a fully discrete scheme for
the approximation of the abstract problem are analyzed and some error estimates are
presented. In deriving the error estimates, we will need to apply Gronwall’s inequality,
which is recalled here for convenience. Suppose f, g ∈ C[a, b] and g is nondecreasing,
c0 > 0 is a constant, then

f(t) ≤ g(t) + c0
∫ t

a

f(s) ds, t ∈ [a, b] =⇒ f(t) ≤ ec0(t−a)g(t), t ∈ [a, b].(1.2)

Convergence analysis for both approximations is done in section 4 under the solution
regularity condition established in the proof of well-posedness of the problem. Finally,
in section 5 we apply the results to the study of numerical approximations of two con-
crete examples of quasi-static frictional contact problems in rate-type viscoplasticity.

2. The abstract problem. Let H be a real Hilbert space, V a closed subspace
of H. We denote by (·, ·)H the inner product of H and by ‖ · ‖H the associated norm.
Let us remark that V itself is a real Hilbert space endowed with the inner product
of H; for this reason we shall sometimes use the notation (u, v)V , ‖u‖V instead of
(u, v)H , ‖u‖H , if u, v ∈ V . Let A : H → H be a linear operator, B : [0, T ]×H×H → H
a possibly nonlinear operator, and ϕ : H → (−∞,+∞]. Let [0, T ] be the time interval
of interest.

We consider an abstract problem

ẏ(t) = Aẋ(t) +B(t, x(t), y(t)) almost everywhere (a.e.) t ∈ (0, T ),(2.1)

y(t) + ∂ϕ(ẋ(t)) � f(t) a.e. t ∈ (0, T ),(2.2)

x(0) = x0, y(0) = y0.(2.3)

Here the unknowns are the functions x : [0, T ] → V and y : [0, T ] → H, while
x0 ∈ V , y0 ∈ H and f : [0, T ] → V are given data. The symbol ∂ϕ represents the
subdifferential of the function ϕ, and the relation (2.2) is understood in the sense that
for a.e. t ∈ (0, T ), f(t) − y(t) is a subgradient of ϕ at ẋ(t). We denote by D(ϕ) the
effective domain of ϕ defined by

D(ϕ) = { x ∈ H | ϕ(x) < +∞ }.

We assume in what follows D(ϕ) = V .
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1173

An equivalent formulation of the problem (2.1)–(2.3) is derived.
Problem P. Find functions x : [0, T ] → V and y : [0, T ] → H such that

x(0) = x0, y(0) = y0,(2.4)

and for a.e. t ∈ (0, T ),

ẏ(t) = Aẋ(t) +B(t, x(t), y(t)),(2.5)

(y(t), w − ẋ(t))H + ϕ(w)− ϕ(ẋ(t)) ≥ (f(t), w − ẋ(t))V ∀w ∈ V.(2.6)

In the study of Problem P we make the following assumptions:

A : H → H is linear, continuous, positive definite, and symmetric, i.e.,
(a) there exists c0 > 0 such that (Ax, x)H ≥ c0‖x‖2

H ∀x ∈ H;
(b) (Ax, y)H = (x,Ay)H ∀x, y ∈ H.

(2.7)




B : [0, T ]×H ×H → H has the properties that
(a) there exists an L > 0 such that
‖B(t, x1, y1)−B(t, x2, y2)‖H ≤ L (‖x1 − x2‖H + ‖y1 − y2‖H)

∀ t ∈ [0, T ] ∀x1, x2, y1, y2 ∈ H;
(b) the mapping t �→ B(t, x, y) is measurable ∀x, y ∈ H;
(c) the mapping t �→ B(t, 0, 0) ∈ L∞(0, T ;H).

(2.8)

ϕ : V → R+ is a continuous seminorm.(2.9)

f ∈W 1,∞(0, T ;V ).(2.10)

x0 ∈ V, y0 ∈ H.(2.11)

y0 + ∂ϕ(0) � f(0).(2.12)

We see from the condition (2.7) that the quantity (Ax, y)H defines an inner product
on H, and the corresponding induced norm

‖x‖A =
√
(Ax, x)H , x ∈ H

is equivalent to the norm ‖x‖H . We also remark that the assumption (2.9) implies
that ϕ is Lipschitz continuous on V .

Everywhere in the paper we use the standard notation for Lp, Wm,p, Hm, and
Cm spaces, 1 ≤ p ≤ ∞, m ∈ N. Moreover, if X and Y are real Hilbert spaces, we
denote in what follows by X×Y the product space endowed with the canonical inner
product.

The well-posedness of Problem P has been investigated in [1] where the following
result can be found.

Theorem 2.1. Under the assumptions (2.7)–(2.12), Problem P has a unique
solution x ∈W 1,∞(0, T ;V ), y ∈W 1,∞(0, T ;H).

The proof of Theorem 2.1 is carried out in several steps. It is based on time dis-
cretization method, standard arguments of elliptic variational inequalities, and a fixed
point property. Because of the Sobolev embedding W 1,∞(0, T ;X) ↪→ C([0, T ];X) for
any Banach space X, the solution from Theorem 2.1 is (or more precisely, can be
made) continuous: x ∈ C([0, T ];V ), y ∈ C([0, T ];H).

In the next two sections, we assume (2.7)–(2.12) are satisfied.

3. Numerical analysis of the abstract problem. In this section, we present
and analyze approximation schemes for solving Problem P. We will give some prelim-
inary results that will be applied to some concrete examples later.
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1174 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

3.1. A semidiscrete approximation. Let h ∈ (0, 1] be an index and {Hh} a
family of finite dimensional subspaces of H. Set V h = V ∩ Hh, which is nonempty
since 0 ∈ V h. Let PHh : H → Hh be the orthogonal projection defined through the
relation

(PHhq, qh)H = (q, qh)H ∀ q ∈ H, qh ∈ Hh.(3.1)

Then PHh is linear and we have

‖PHhq‖H ≤ ‖q‖H ∀ q ∈ H.(3.2)

This property will be used on various occasions.
Now a semidiscrete approximation of Problem P follows.
Problem Ph. Find the functions xh : [0, T ] → V h and yh : [0, T ] → Hh such

that

xh(0) = xh0 , y
h(0) = yh0 ,(3.3)

and for a.e. t ∈ (0, T ),

ẏh(t) = PHhAẋh(t) + PHhB(t, xh(t), yh(t)),(3.4)

(yh(t), wh − ẋh(t))H + ϕ(wh)− ϕ(ẋh(t)) ≥ (f(t), wh − ẋh(t))V ∀wh ∈ V h.(3.5)

Here, xh0 = PV hx0 ∈ V h, yh0 = PHhy0 ∈ Hh are orthogonal projections of x0 and y0
to V h and Hh, respectively. The definition of PV h : V → V h is similar to that of
PHh . From the definition of yh0 , we see that the discrete analog of (2.12) is valid:

(yh0 , w
h)H + ϕ(wh) ≥ (f(0), wh)V ∀wh ∈ V h.

This relation is needed to verify the existence of a solution of Problem Ph.
We observe that the projection operator PHh is introduced to ensure that the

relation (3.4) is well defined on the space Hh.
Using the arguments in [1], it can be shown that Problem Ph has a unique solution

xh ∈ W 1,∞(0, T ;V h) and yh ∈ W 1,∞(0, T ;Hh). We have xh ∈ C([0, T ];V h) and
yh ∈ C([0, T ];Hh). Our main purpose here is to derive estimates for the errors x−xh
and y − yh.

To this end, let t ∈ [0, T ]. We first integrate (2.5) and (3.4) and use the initial
conditions (2.4) and (3.3) to obtain

y(t) = Ax(t) +

∫ t

0

B(s, x(s), y(s)) ds+ y0 −Ax0,(3.6)

yh(t) = PHhAxh(t) + PHh

∫ t

0

B(s, xh(s), yh(s)) ds+ yh0 − PHhAxh0 .(3.7)

Then we subtract (3.7) from (3.6) to get

y(t)− yh(t) = PHhA(x(t)− xh(t))(3.8)

+ PHh

∫ t

0

[
B(s, x(s), y(s))−B(s, xh(s), yh(s))

]
ds

+ y0 − yh0 − PHhA(x0 − xh0 ) + (IH − PHh)(y(t)− y0),
where IH : H → H is the identity operator.
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1175

Denote

e0 = ‖x0 − xh0‖V + ‖y0 − yh0 ‖H .(3.9)

Then we get the following inequality from (3.8), using the assumptions (2.7), (2.8),
and the property (3.2):

‖y(t)− yh(t)‖H ≤ c ‖x(t)− xh(t)‖V + ‖(IH − PHh)(y(t)− y0)‖H(3.10)

+ c

∫ t

0

(‖y(s)− yh(s)‖H + ‖x(s)− xh(s)‖A
)
ds+ c e0,

where c is a positive constant which depends on operators A and B. Everywhere in
this paper, except in section 5, the symbol c will represent a strictly positive constant
which may change its value from place to place, and may depend on A, B, T , and ϕ,
but not on the time or the input data.

Now plugging (3.6) in (2.6) with w = ẋh(t), we have

(Ax(t), ẋ(t)− ẋh(t))H ≤ (f(t), ẋ(t)− ẋh(t))V + ϕ(ẋh(t))− ϕ(ẋ(t))(3.11)

+

(∫ t

0

B(s, x(s), y(s)) ds, ẋh(t)− ẋ(t)
)

H

+ (y0 −Ax0, ẋ
h(t)− ẋ(t))H .

Let wh ∈ L2(0, T ;V h) be arbitrary. We plug (3.7) in (3.5) with wh = wh(t) to obtain

− (Axh(t), ẋ(t)− ẋh(t))H ≤ (f(t), ẋh(t)− wh(t))V + ϕ(wh(t))− ϕ(ẋh(t))(3.12)

+

(∫ t

0

B(s, xh(s), yh(s)) ds, wh(t)− ẋh(t)
)

H

+ (yh0 −Axh0 , wh(t)− ẋh(t))H
+ (Axh(t), wh(t)− ẋ(t))H .

The relations (3.11) and (3.12) hold for a.e. t. Adding these relations we have

(A(x(t)− xh(t)), ẋ(t)− ẋh(t))H ≤ (A(x(t)− xh(t)), ẋ(t)− wh(t))H

+R(t; ẋ(t), wh(t)) + (D(t), ẋh(t)− wh(t))H

for a.e. t ∈ (0, T ), where

R(t; ẋ(t), wh(t)) = (y(t), wh − ẋ(t))H + ϕ(wh(t))− ϕ(ẋ(t))(3.13)

− (f(t), wh(t)− ẋ(t))V
and

D(t) =

∫ t

0

(B(s, x(s), y(s))−B(s, xh(s), yh(s))) ds+ y0 − yh0 −A(x0 − xh0 ).(3.14)

Using the assumption (2.7), we then have

1

2

d

dt
‖x(t)− xh(t)‖2

A ≤ 1

2
‖x(t)− xh(t)‖2

A +
1

2
‖ẋ(t)− wh(t)‖2

A +R(t; ẋ(t), wh(t))

+ (D(t), ẋh(t)− ẋ(t))H + (D(t), ẋ(t)− wh(t))H .
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1176 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

Integrate the above inequality from 0 to t to obtain

‖x(t)− xh(t)‖2
A ≤ ‖x0 − xh0‖2

A + c

∫ t

0

(|R(s; ẋ(s), wh(s))|+ ‖D(s)‖2
H

)
ds

+ c

∫ t

0

(‖x(s)− xh(s)‖2
A + ‖ẋ(s)− wh(s)‖2

A

)
ds

+

∫ t

0

(D(s), ẋh(s)− ẋ(s))H ds,

which holds for all t ∈ [0, T ] owing to the continuity of x(t) and xh(t). For the last
term above, we perform an integration by parts,

∫ t

0

(D(s), ẋh(s)− ẋ(s))H ds

= (D(t), xh(t)− x(t))H − (D(0), xh0 − x0)H

−
∫ t

0

(B(s, x(s), y(s))−B(s, xh(s), yh(s)), xh(s)− x(s))H ds.

Using (2.8), we have the estimate

∫ t

0

(D(s), ẋh(s)− ẋ(s))H ds ≤ c ‖D(t)‖2
H +

1

2
‖x(t)− xh(t)‖2

A + c e20

+ c

∫ t

0

(‖x(s)− xh(s)‖2
A + ‖y(s)− yh(s)‖2

H) ds.

From the definition (3.14) and the assumptions (2.7) and (2.8), we have

‖D(t)‖H ≤ c
∫ t

0

(‖x(s)− xh(s)‖A + ‖y(s)− yh(s)‖H) ds+ c e0.

Combine the last several relations,

‖x(t)− xh(t)‖2
A ≤ c e20 + c

∫ t

0

(‖ẋ(s)− wh(s)‖2
A + |R(s; ẋ(s), wh(s))|) ds(3.15)

+ c

∫ t

0

(‖x(s)− xh(s)‖2
A + ‖y(s)− yh(s)‖2

H

)
ds.

This inequality, together with (3.10), implies

‖x(t)− xh(t)‖2
A + ‖y(t)− yh(t)‖2

H(3.16)

≤ c e20 + c ‖(IH − PHh)(y(t)− y0)‖2
H

+ c

∫ t

0

(‖ẋ(s)− wh(s)‖2
A + |R(s; ẋ(s), wh(s))|) ds

+ c

∫ t

0

(‖x(s)− xh(s)‖2
A + ‖y(s)− yh(s)‖2

H

)
ds.
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1177

Applying the Gronwall inequality (1.2), we get

sup
t∈[0,T ]

(
‖x(t)− xh(t)‖2

A + ‖y(t)− yh(t)‖2
H

)
≤ c e20 + c sup

t∈[0,T ]

‖(IH − PHh)(y(t)− y0)‖2
H

+ c

∫ T

0

(‖ẋ(t)− wh(t)‖2
A + |R(t; ẋ(t), wh(t))|) dt.

Summarizing, we have shown the following result.
Theorem 3.1. Let (x, y) ∈ W 1,∞(0, T ;V ×H) and (xh, yh) ∈ W 1,∞(0, T ;V h ×

Hh) be the solutions of Problem P and Ph, respectively. Then we have the error
estimate

(3.17)

‖x− xh‖L∞(0,T ;V ) + ‖y − yh‖L∞(0,T ;H)

≤ c (‖x0 − xh0‖V + ‖y0 − yh0 ‖H) + c ‖(IH − PHh)(y − y0)‖L∞(0,T ;H)

+ c inf
wh∈L2(0,T ;V h)


‖ẋ− wh‖L2(0,T ;V ) +

(∫ T

0

|R(s; ẋ(s), wh(s))| ds
)1/2

 ,

where R(·; ·, ·) is defined in (3.13).
The inequality (3.17) is the basis of convergence and error analysis for the semidis-

crete solutions. Concrete order error estimates will be established when Theorem 3.1
is applied in section 5 to some examples arising in mechanics.

3.2. A fully discrete approximation. In addition to the finite dimensional
spaces V h and Hh introduced in the previous subsection, we divide the time interval
[0, T ] into N equal parts and denote the step-size by k = T/N , the nodal points
by tn = nk, n = 0, 1, . . . , N , and the subintervals In = [tn−1, tn], n = 1, . . . , N .
The arguments and results of this subsection can be easily extended to the case of
nonuniform partition of the time interval. For a continuous function w(t) with values
in H or V , we use the notation wn ≡ w(tn). For a sequence {wn}Nn=0, we denote
δwn = (wn − wn−1)/k, n = 1, . . . , N .

Then a fully discrete approximation based on a forward Euler scheme which we
will analyze is the following.

Problem Phk. Find xhk = {xhkn }Nn=0 ⊂ V h and yhk = {yhkn }Nn=0 ⊂ Hh such that

xhk0 = xh0 , yhk0 = yh0 ,(3.18)

and for n = 1, . . . , N ,

δyhkn = PHhAδxhkn + PHhB(tn−1, x
hk
n−1, y

hk
n−1),(3.19)

(yhkn , w
h − δxhkn )H + ϕ(wh)− ϕ(δxhkn ) ≥ (fn, w

h − δxhkn )V ∀wh ∈ V h.(3.20)

Here again, xh0 = PV hx0 ∈ V h, yh0 = PHhy0 ∈ Hh are orthogonal projections of x0

and y0 to V
h and Hh, respectively.

We first inductively show the unique solvability of Problem Phk. Let xhkn−1 ∈ V h

and yhkn−1 ∈ Hh be given. We rewrite (3.19) as

yhkn = kPHhAδxhkn + kPHhB(tn−1, x
hk
n−1, y

hk
n−1) + y

hk
n−1(3.21)
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1178 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

and use it in (3.20) to yield

k(Aδxhkn , w
h − δxhkn )H + ϕ(wh)− ϕ(δxhkn )

≥ (fn − k B(tn−1, x
hk
n−1, y

hk
n−1)− yhkn−1, w

h − δxhkn )H ∀wh ∈ V h.

This is a discrete elliptic variational inequality of the second kind for the variable
δxhkn . By a standard result (cf. [7]), this inequality has a unique solution δxhkn ∈ V h

from which we can determine xhkn . Then yhkn can be obtained from (3.21). Therefore
Problem Phk has a unique solution.

For convergence analysis and error estimation, we need the Lipschitz continuity
of the function B(t;x, y) with respect to t, i.e., instead of (2.8), we assume

‖B(t1;x1, y1)−B(t2;x2, y2)‖H ≤ L (|t1 − t2|+ ‖x1 − x2‖H + ‖y1 − y2‖H)(3.22)

∀ t1, t2 ∈ [0, T ] ∀x1, y1, x2, y2 ∈ H.
If B does not depend on t, then the assumptions (2.8) and (3.22) are the same.

In the next section, we demonstrate the convergence of the fully discrete solution
under the proved solution regularity x ∈W 1,∞(0, T ;V ) and y ∈W 1,∞(0, T ;H). Our
goal here is to derive estimates for the errors {xn − xhkn }Nn=1 and {yn − yhkn }Nn=1. For
this purpose, we assume additionally x ∈ C1([0, T ];V ) so that (2.5) and (2.6) hold
for all t ∈ [0, T ]. We apply (3.21) recursively to get

yhkn = PHhAxhkn +

n∑
j=1

kPHhB(tj−1, x
hk
j−1, y

hk
j−1) + y

hk
0 − PHhAxhk0 .(3.23)

Then subtracting (3.23) from (3.6) at t = tn, we obtain

yn − yhkn = (IH − PHh)(yn − y0) + PHhA(xn − xhkn )(3.24)

+ PHh

[ ∫ tn

0

B(s, x(s), y(s)) ds−
n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1)

]

+ y0 − yhk0 − PHhA(x0 − xhk0 ).

We denote

en = ‖xn − xhkn ‖V + ‖yn − yhkn ‖H , n = 0, . . . , N

for the numerical solution errors.
We first present a preparatory result.
Lemma 3.2. There exists a constant c > 0 such that for n = 1, . . . , N ,∥∥∥∥∥

∫ tn

tn−1

B(s, x(s), y(s)) ds− kB(tn−1, x
hk
n−1, y

hk
n−1)

∥∥∥∥∥
H

(3.25)

≤ c ken−1 + c k
2
(
1 + ‖ẋ‖L∞(0,T ;V ) + ‖ẏ‖L∞(0,T ;H)

)
.

Therefore, ∥∥∥∥∥∥
∫ tn

0

B(s, x(s), y(s)) ds−
n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1)

∥∥∥∥∥∥
H

(3.26)

≤ c
n∑

j=1

k ej−1 + c k
(
1 + ‖ẋ‖L∞(0,T ;V ) + ‖ẏ‖L∞(0,T ;H)

)
.
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1179

Proof. We write

∫ tn

tn−1

B(s, x(s), y(s)) ds− kB(tn−1, x
hk
n−1, y

hk
n−1)

=

∫ tn

tn−1

[
B(s, x(s), y(s))−B(tn−1, xn−1, yn−1)

]
ds

+ k
[
B(tn−1, xn−1, yn−1)−B(tn−1, x

hk
n−1, y

hk
n−1)
]
.

Using the assumption (3.22), we have

‖B(s, x(s), y(s))−B(tn−1, xn−1, yn−1)‖H ≤ c k (1 + ‖ẋ‖L∞(0,T ;V ) + ‖ẏ‖L∞(0,T ;H)

)
and

‖B(tn−1, xn−1, yn−1)−B(tn−1, x
hk
n−1, y

hk
n−1)‖H ≤ c ken−1.

Thus (3.25) holds. The inequality (3.26) follows from (3.25).
We obtain the following inequality from (3.24) by the use of Lemma 3.2, the

assumptions (2.7), and the property (3.2):

‖yn − yhkn ‖H ≤ (IH − PHh)(yn − y0)‖H + c ‖xn − xhkn ‖H + c e0(3.27)

+ c

n∑
j=1

k ej−1 + c k (1 + ‖ẋ‖L∞(0,T ;V ) + ‖ẏ‖L∞(0,T ;H)).

Now let us bound rn ≡ xn − xhkn , n = 1, . . . , N . For this, we plug (3.6) into (2.6)
at t = tn with w = δxhkn and get

(Axn, ẋn − δxhkn )H ≤ (fn, ẋn − δxhkn )V + ϕ(δxhkn )− ϕ(ẋn)(3.28)

+

(∫ tn

0

B(s, x(s), y(s)) ds, δxhkn − ẋn
)

H

+ (y0 −Ax0, δx
hk
n − ẋn)H .

Similarly, plugging (3.23) into (3.20) with an arbitrary wh = wh
n ∈ V h yields

−(Axhkn , wh
n − δxhkn )H ≤ (fn, δx

hk
n − wh

n)V + ϕ(wh
n)− ϕ(δxhkn )(3.29)

+


 n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1), w

h
n − δxhkn




H

+ (yhk0 −Axhk0 , w
h
n − δxhkn )H .

Let us consider the quantity

An ≡ (Arn, δrn)H = (A(xn − xhkn ), δxn − δxhkn )H .

The following lower bound for An can be obtained by using the assumptions (2.7):

An ≥ 1

2k
(‖rn‖2

A − ‖rn−1‖2
A).(3.30)
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1180 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

For any wh
n ∈ V h, we write

An = (Axn, δxn − ẋn)H + (Axn, ẋn − δxhkn )H

− (Axhkn , δxn − wh
n)H − (Axhkn , w

h
n − δxhkn )H .

We then use (3.28) and (3.29) to bound the second and fourth terms,

An ≤ (Arn, δxn − wh
n)H +Rn(ẋn, w

h
n) + I1(n) + I2(n) + I3(n)

≤ 1

2
‖rn‖2

A +
1

2
‖δxn − wh

n‖2
A +Rn(ẋn, w

h
n) + I1(n) + I2(n) + I3(n),

where

Rn(ẋn, w
h
n) = (yn, w

h
n − ẋn)H + ϕ(wh

n)− ϕ(ẋn)− (fn, w
h
n − ẋn)V ,(3.31)

and

I1(n) =


∫ tn

0

B(s, x(s), y(s)) ds−
n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1), δx

hk
n − δxn




H

,

I2(n) = (y0 − yhk0 −A(x0 − xhk0 ), δxhkn − δxn)H ,

I3(n) =


∫ tn

0

B(s, x(s), y(s)) ds−
n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1)

+ y0 − yhk0 −A(x0 − xhk0 ), δxn − wh
n




H

.

Combining the lower and upper bounds for An, we have

‖rn‖2
A − ‖rn−1‖2

A ≤ k ‖rn‖2
A + k ‖δxn − wh

n‖2
A(3.32)

+ 2 k (Rn(ẋn, w
h
n) + I1(n) + I2(n) + I3(n)).

In the inequality (3.32), we change the index n to j, and sum over j from 1 to n:

‖rn‖2
A ≤ ‖r0‖2

A +

n∑
j=1

k ‖rj‖2
A +

n∑
j=1

k ‖δxj − wh
j ‖2

A(3.33)

+ 2

n∑
j=1

k
[
Rj(ẋj , w

h
j ) + I1(j) + I2(j) + I3(j)

]
.

We now write

n∑
j=1

kI1(j) =

n∑
j=1

(∫ tj

0

B(s, x(s), y(s)) ds−
j∑

i=1

k B(ti−1, x
hk
i−1, y

hk
i−1), rj−1 − rj

)
H

=

(∫ t1

0

B(s, x(s), y(s)) ds− kB(t0, xhk0 , y
hk
0 ), r0

)
H

−
(∫ tn

0

B(s, x(s), y(s)) ds−
n∑

i=1

kB(ti−1, x
hk
i−1, y

hk
i−1), rn

)
H

+

n−1∑
j=1

(∫ tj+1

tj

B(s, x(s), y(s)) ds− kB(tj , xhkj , yhkj ), rj

)
H

.
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1181

Using the assumption (2.7) and the estimates (3.26) and (3.25), we obtain

n∑
j=1

kI1(j) ≤ c e20 + c
n−1∑
j=1

k (‖rj‖2
V + ‖yj − yhkj ‖2

H) +
1

16
‖rn‖2

A(3.34)

+ c k2(1 + ‖ẋ‖L∞(0,T ;V ) + ‖ẏ‖L∞(0,T ;H))
2.

Similarly, we write

n∑
j=1

kI2(j) =


y0 − yhk0 −A(x0 − xhk0 ),

n∑
j=1

(rj−1 − rj)



H

= (y0 − yhk0 −A(x0 − xhk0 ), r0 − rn)H
and use the assumption (2.7) to obtain

n∑
j=1

kI2(j) ≤ c e20 +
1

16
‖rn‖2

A.(3.35)

Finally we use the assumption (2.8) and the estimates (3.26) and (3.25) to find

n∑
j=1

kI3(j) ≤ c e20 + c
n−1∑
j=1

k (‖rj‖2
V + ‖yj − yhkj ‖2

H)(3.36)

+ c k2(1 + ‖ẋ‖L∞(0,T ;V ) + ‖ẏ‖L∞(0,T ;H))
2

+ c

n∑
j=1

k ‖δxj − wh
j ‖2

V .

We now combine the estimates (3.27), (3.33), and (3.34)–(3.36) to obtain

‖xn − xhkn ‖2
V + ‖yn − yhkn ‖2

H ≤ c Jn + c
n−1∑
j=1

k(‖xj − xhkj ‖2
V + ‖yj − yhkj ‖2

H),(3.37)

where

Jn = e20 + k
2(1 + ‖ẋ‖L∞(0,T ;V ) + ‖ẏ‖L∞(0,T ;H))

2 + ‖(IH − PHh)(yn − y0)‖2
H

+

n∑
j=1

k ‖δxj − wh
j ‖2

V +

n∑
j=1

k |Rj(ẋj , w
h
j )|.

An error estimate can be derived based on (3.37).
Theorem 3.3. Let (x, y) ∈W 1,∞(0, T ;V )×W 1,∞(0, T ;H) and {(xhkn , yhkn )}Nn=1

be the solutions of Problems P and Phk, respectively. Assume x ∈ C1([0, T ];V ). Then
we have the error estimate

max
1≤n≤N

(‖xn − xhkn ‖V + ‖yn − yhkn ‖H
)

(3.38)

≤ c (‖x0 − xhk0 ‖V + ‖y0 − yhk0 ‖H)
+ c k (1 + ‖ẋ‖L∞(0,T ;V ) + ‖ẏ‖L∞(0,T ;H))

+ c max
1≤n≤N

‖(IH − PHh)(yn − y0)‖H

+ c


 N∑
j=1

k inf
wh

j ∈V h

(‖δxj − wh
j ‖2

V + |Rj(ẋj , w
h
j )|
)

1/2

.
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1182 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

Proof. Denote En =
∑n

j=1 k e
2
n. Then (3.37) can be rewritten as

e2n ≤ c Jn + cEn−1.(3.39)

Now

En − En−1 = k e
2
n ≤ c k Jn + c k En−1.

Hence we have

En − (1 + c k)En−1 ≤ c k Jn,
or equivalently,

En

(1 + c k)n
− En−1

(1 + c k)n−1
≤ c k Jn

(1 + c k)n
.

By an inductive argument, we get

En ≤ c k
n∑

i=1

(1 + c k)n−iJi ≤ ((1 + c k)n − 1) max
1≤i≤n

Ji ≤ (ec T − 1) max
1≤i≤n

Ji.

Using (3.39), we have

e2n ≤ c max
1≤i≤n

Ji,

which implies (3.38).
The estimate (3.38) will be used for error analysis of the fully discrete solutions

provided the exact solution possesses certain regularity.

4. Convergence analysis. In this section, we analyze the convergence of the
semidiscrete and fully discrete solutions for the Problem P under the basic regularity
condition (x, y) ∈W 1,∞(0, T ;V ×H), available from Theorem 2.1. First we make the
following additional assumptions on the function spaces H,V and the finite dimen-
sional spaces Hh and V h.

Assumption H1. There exist a subspace V0 ⊂ V which is dense in V and a function
α(h) ≥ 0 such that

lim
h→0+

α(h) = 0,

and

inf
wh∈V h

‖w − wh‖V = ‖w − PV hw‖V ≤ α(h)‖w‖V0 ∀w ∈ V0.

Assumption H2. There exist a subspace H0 ⊂ H which is dense in H and a
function β(h) ≥ 0 such that

lim
h→0+

β(h) = 0,

and

inf
zh∈Hh

‖z − zh‖H = ‖z − PHhz‖H ≤ β(h)‖z‖H0
∀ z ∈ H0.
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1183

These two hypotheses will be verified for the application problems discussed in
the next section.

We will need the following result, which can be found in [18].
Lemma 4.1. Assume that X is a Banach space, X0 ⊂ X is dense in X. Then

H1(0, T ;X0) is dense in H
1(0, T ;X).

Now we are ready to study the convergence of the semidiscrete solution for Prob-
lem P, based on the estimate (3.17).

Theorem 4.2. Let (x, y) ∈ W 1,∞(0, T ;V × H) be the solution of Problem P
and (xh, yh) ∈W 1,∞(0, T ;V h ×Hh) the solution of corresponding semidiscrete Prob-
lem Ph. Then under Assumptions H1 and H2 we have convergence:

‖x− xh‖L∞(0,T ;V ) + ‖y − yh‖L∞(0,T ;H) → 0 as h→ 0.(4.1)

Proof. From Assumptions H1 and H2, we know

‖x0 − xh0‖V → 0, ‖y0 − yh0 ‖H → 0 as h→ 0.(4.2)

Since ϕ is Lipschitz continuous on V , using the definition (3.13), we have

|R(t; ẋ(t), wh(t))| ≤ (‖y(t)‖H + ‖f(t)‖V + c) ‖wh(t)− ẋ(t)‖V .
Hence, the estimate (3.17) can be rewritten as

‖xh − x‖L∞(0,T ;V ) + ‖yh − y‖L∞(0,T ;H)(4.3)

≤ c e0 + c ‖(IH − PHh)(y − y0)‖L∞(0,T ;H)

+ c inf
wh∈L2(0,T ;V h)

‖ẋ− wh‖1/2
L2(0,T ;V ).

Using Lemma 4.1 and Assumption H1, we know that H1(0, T ;V0) is dense in
H1(0, T ;V ). So for any ε ∈ (0, 1), there exists x̃ ∈ H1(0, T ;V0) such that

‖x− x̃‖H1(0,T ;V ) ≤ ε,(4.4)

which can be combined with Assumption H1 again to yield

inf
wh∈L2(0,T ;V h)

‖ẋ− wh‖1/2
L2(0,T ;V )(4.5)

≤ ‖ẋ− ˙̃x‖1/2
L2(0,T ;V ) + inf

wh∈L2(0,T ;V h)
‖ ˙̃x− wh‖1/2

L2(0,T ;V )

≤ √
ε+
√
α(h) ‖x̃‖1/2

H1(0,T ;V0)
.

Similarly, from Lemma 4.1 and Assumption H2, we know H1(0, T ;H0) is dense in
H1(0, T ;H). So there exists ỹ ∈ H1(0, T ;H0) such that

‖y − y0 − ỹ‖H1(0,T ;H) ≤ ε.
Now we are ready to bound the first term on the right-hand side of (4.3):

‖(IH − PHh)(y − y0)‖L∞(0,T ;H) ≤ c ‖(IH − PHh)(y − y0)‖H1(0,T ;H)(4.6)

≤ c ‖y − y0 − ỹ‖H1(0,T ;H)

+ ‖(IH − PHh)ỹ‖H1(0,T ;H)

≤ c ε+ β(h) ‖ỹ‖H1(0,T ;H0).
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1184 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

Above we used the embedding result H1(0, T ;H) ↪→ L∞(0, T ;H) (cf. [18]). The
convergence result (4.1) then follows from (4.2)–(4.6).

We now turn to a convergence analysis of the fully discrete scheme. Notice that we
cannot use the estimate (3.38), because under the basic regularity condition (x, y) ∈
W 1,∞(0, T ;V × H), the pointwise values ẋj and ẏj are not well defined. Here we
follow the approach developed in [11] for a convergence analysis. For this purpose we
will need another density result, which can also be found in [18].

Lemma 4.3. The space C∞([0, T ];V ) is dense in H1(0, T ;V ); that is, given
w ∈ H1(0, T ;V ), for any ε > 0 there exists w̄ ∈ C∞([0, T ];V ) such that

‖w − w̄‖H1(0,T ;V ) ≤ ε.
Let us consider the quantity An = (Arn, δrn)H . We have the lower bound (3.30)

for An. To obtain an upper bound we begin with

An = (Axn, δxn − δxhkn )H − (Axhkn , δxn − wh
n)H − (Axhkn , w

h
n − δxhkn )H ,

where wh
n ∈ V h is arbitrary. Using (3.29) to bound the last term, we obtain

An ≤ (Axn, δxn − δxhkn )H − (Axhkn , δxn − wh
n)H(4.7)

+ (fn, δx
hk
n − wh

n)V + ϕ(wh
n)− ϕ(δxhkn )

+


 n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1), w

h
n − δxhkn




H

+ (yhk0 −Axhk0 , w
h
n − δxhkn )H .

Now integrate (2.6) with w = δxhkn from t = tn−1 to tn and use (3.6) to obtain

0 ≤ 1

k

∫
In

(Ax(t), δxhkn − ẋ(t))Hdt+ ϕ(δxhkn )− 1

k

∫
In

ϕ(ẋ(t))dt(4.8)

+
1

k

∫
In

(∫ t

0

B(s, x(s), y(s))ds, δxhkn − ẋ(t)
)

H

dt

+ (y0 −Ax0, δx
hk
n − δxn)H +

1

k

∫
In

(f(t), ẋ(t)− δxhkn )V dt.

Then we add (4.8) and (4.7) to obtain

An ≤ R1 +R2 +R3 +R4 +R5,(4.9)

where

R1 = (Axn, δxn − δxhkn )H − (Axhkn , δxn − wh
n)H +

1

k

∫
In

(Ax(t), δxhkn − ẋ(t))Hdt,

R2 = ϕ(w
h
n)−

1

k

∫
In

ϕ(ẋ(t))dt,

R3 = (fn, δx
hk
n − wh

n)V +
1

k

∫
In

(f(t), ẋ(t)− δxhkn )V dt,

R4 = (yhk0 −Axhk0 , w
h
n − δxhkn )H + (y0 −Ax0, δx

hk
n − δxn)H ,

R5 =


 n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1), w

h
n − δxhkn




H

+
1

k

∫
In

(∫ t

0

B(s, x(s), y(s))ds, δxhkn − ẋ(t)
)

H

dt.
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1185

We need to find appropriate bounds for Ri, 1 ≤ i ≤ 5. First let us estimate R1. Using
the assumption (2.7) and the properties of inner product, we have

R1 =
1

k

(
Axn − 1

k

∫
In

Ax(t) dt, rn − rn−1

)
H

(4.10)

+
1

k

∫
In

(Ax(t), δxn − ẋ(t))Hdt

+ (Arn, δxn − wh
n)H − (Axn, δxn − wh

n)H

≤ 1

k2

(
A

∫
In

(t− tn−1)ẋ(t) dt, rn − rn−1

)
H

+
1

k

∫
In

(Ax(t), δxn − ẋ(t))Hdt

+
1

2
‖rn‖2

A +
1

2
‖δxn − wh

n‖2
A − (Axn, δxn − wh

n)H

≤ c ‖ẋ‖L∞(In;V )(‖rn‖V + ‖rn−1‖V )
+
c

k
‖x‖L∞(In;V )

∫
In

‖δxn − ẋ(t)‖V dt

+
1

2
‖rn‖2

A + c ‖δxn − wh
n‖2

V + c ‖xn‖V ‖δxn − wh
n‖V .

Using the Lipschitz continuity of ϕ on V , we find a bound for R2,

|R2| = 1

k

∣∣∣∣
∫
In

(ϕ(wh
n)− ϕ(ẋ(t)) dt

∣∣∣∣ ≤ c

k

∫
In

‖wh
n − ẋ(t)‖V dt.(4.11)

For R3, we have

R3 =
1

k2

(∫
In

(t− tn−1)ḟ(t)dt, rn−1 − rn
)

H

+ (fn, δxn − wh
n)H(4.12)

− 1

k

∫
In

(f(t), δxn − ẋ(t))Hdt

≤ ‖ḟ‖L∞(In;V )(‖rn‖V + ‖rn−1‖V ) + ‖fn‖V ‖δxn − wh
n‖V

+
1

k
‖f‖L∞(In;V )

∫
In

‖δxn − ẋ(t)‖V dt.

For R4, we have

R4 =
1

k
(y0 − yhk0 −A(x0 − xhk0 ), rn−1 − rn)H − (y0 −Ax0, δxn − wh

n)H(4.13)

+ (y0 − yhk0 −A(x0 − xhk0 ), δxn − wh
n)H

≤ 1

k
(y0 − yhk0 −A(x0 − xhk0 ), rn−1 − rn)H
+ c (e0 + ‖y0‖H + ‖x0‖V )‖δxn − wh

n‖V .
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1186 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

Express R5 as

R5 =


 n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1)−

∫ tn

0

B(s, x(s), y(s)) ds, wh
n − δxhkn




H

(4.14)

+

(∫ tn

0

B(s, x(s), y(s)) ds, wh
n − δxhkn

)
H

+
1

k

∫
In

(∫ t

0

B(s, x(s), y(s)) ds, (δxhkn − δxn) + (δxn − ẋ(t))
)

H

dt.

Integrating by parts, we obtain

1

k

∫
In

(∫ t

0

B(s, x(s), y(s)) ds, δxn − ẋ(t)
)

H

dt(4.15)

=
1

k

∫
In

(B(t, x(t), y(t)),Πx(t))Hdt,

where

Πx(t) = x(t)− t− tn−1

k
xn − tn − t

k
xn−1, tn−1 ≤ t ≤ tn.(4.16)

By an elementary manipulation, we have

1

k

∫
In

(∫ t

0

B(s, x(s), y(s)) ds, δxhkn − δxn
)

H

dt(4.17)

=

(∫ tn

0

B(s, x(s), y(s)) ds, δxhkn − δxn
)

H

− 1

k

(∫
In

(s− tn−1)B(s, x(s), y(s)) ds, δx
hk
n − δxn

)
H

.

Using (4.15) and (4.17), we can rewrite R5 as

R5 =


 n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1)−

∫ tn

0

B(s, x(s), y(s)) ds, wh
n − δxn




H

+
1

k


 n∑

j=1

k B(tj−1, x
hk
j−1, y

hk
j−1)−

∫ tn

0

B(s, x(s), y(s)) ds, rn − rn−1




H

− 1

k2

(∫
In

(s− tn−1)B(s, x(s), y(s)) ds, rn−1 − rn
)

H

+
1

k

∫
In

(B(t, x(t), y(t)),Πx(t))H dt+

(∫ tn

0

B(s, x(s), y(s)) ds, wh
n − δxn

)
H

.
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1187

We then apply the estimates (3.26) and (3.25),

(4.18)

R5 ≤ c
n∑

j=1

k(‖xj−1 − xhkj−1‖2
V + ‖yj−1 − yhkj−1‖2

V )

+ c k2(1 + ‖ẋ‖2
L∞(0,tn;V ) + ‖ẏ‖2

L∞(0,tn;H))

+
1

2
‖wh

n − δxn‖2
V +

1

k
‖B(·, x, y)‖L∞(In;H)

∫
In

‖Πx(t)‖Hdt

+
1

k


 n∑

j=1

kB(tj−1, x
hk
j−1, y

hk
j−1)−

∫ tn

0

B(s, x(s), y(s))ds, rn − rn−1




H

+ ‖B(·, x, y)‖L∞(In;H)(‖rn‖V + ‖rn−1‖V + tn‖wh
n − δxn‖V ).

Combining the relations (3.30), (4.9)–(4.13), and (4.18), we find that

(4.19)

‖rn‖2
A − ‖rn−1‖2

A

≤ k ‖rn‖2
A + c k (‖ẋ‖L∞(In;V ) + ‖ḟ‖L∞(In;V )

+ ‖B(·, x, y)‖L∞(In;V )) (‖rn‖V + ‖rn−1‖V )

+ c (‖x‖L∞(In;V ) + ‖f‖L∞(In;V ))

∫
In

‖δxn − ẋ(t)‖V dt

+ c k ‖δxn − wh
n‖2

V + c (‖xn‖V + ‖fn‖V + e0 + ‖y0‖H + ‖x0‖V
+ ‖B(·, x, y)‖L∞(In;V ))‖δxn − wh

n‖V

+ c

∫
In

‖wh
n − ẋ(t)‖V dt+ 2 (y0 − yhk0 −A(x0 − xhk0 ), rn−1 − rn)H

+ 2


 n∑

j=1

k B(tj−1, x
hk
j−1, y

hk
j−1)−

∫ tn

0

B(s, x(s), y(s)) ds, rn − rn−1




H

+ c

n∑
j=1

k2(‖xj−1 − xhkj−1‖2
V + ‖yj−1 − yhkj−1‖2

V )

+ c ‖B(·, x, y)‖L∞(In;H)

∫
In

‖Πx(t)‖Hdt

+ c k3(1 + ‖ẋ‖2
L∞(0,tn;V ) + ‖ẏ‖2

L∞(0,tn;V )).D
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1188 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

By a series of manipulations similar to those leading to (3.37), we obtain from (4.19)
that

‖xn − xhkn ‖2
V + ‖yn − yhkn ‖2

H(4.20)

≤ c
n−1∑
j=1

k(‖xj − xhkj ‖2
V + ‖yj − yhkj ‖2

V ) + c e
2
0

+ c k (1 + ‖x‖2
W 1,∞(0,T ;V ) + ‖f‖2

W 1,∞(0,T ;V ))

+ c k (‖y0‖2
H + ‖x0‖2

V + ‖B(·, x, y)‖2
L∞(0,T ;V ))

+ c (‖x‖L∞(0,T ;V ) + ‖f‖L∞(0,T ;V ))

n∑
j=1

∫
Ij

‖δxj − ẋ(t)‖V dt

+ c

n∑
j=1

k ‖δxj − wh
j ‖2

V + c

n∑
j=1

∫
Ij

‖wh
j − ẋ(t)‖V dt

+ c ‖B(·, x, y)‖L∞(0,tn;H)

n∑
j=1

∫
Ij

‖Πx(t)‖Hdt

+ ‖(IH − PHh)(yn − y0)‖2
H .

We can then apply the technique of the proof of Theorem 3.3 to find the estimate

max
1≤n≤N

(‖xn − xhkn ‖2
V + ‖yn − yhkn ‖2

V )(4.21)

≤ c
(
e20 + max

1≤n≤N
‖(IH − PHh)(yn − y0)‖2

H + k (1 + ‖x‖2
W 1,∞(0,T ;V )

+ ‖f‖2
W 1,∞(0,T ;V )‖y0‖2

H + ‖x0‖2
V + ‖B(·, x, y)‖2

L∞(0,T ;V ))

+ (‖x‖L∞(0,T ;V ) + ‖f‖L∞(0,T ;V ))

N∑
j=1

∫
Ij

‖δxj − ẋ(t)‖V dt

+

N∑
j=1

k ‖δxj − wh
j ‖2

V +

N∑
j=1

∫
Ij

‖wh
j − ẋ(t)‖V dt

+ ‖B(·, x, y)‖L∞(0,T ;H)

N∑
j=1

∫
Ij

‖Πx(t)‖Hdt
)
.

We now show a convergence result using (4.21).

Theorem 4.4. Let (x, y) ∈ W 1,∞(0, T ;V × H) be the solution of Problem P
and {(xhkn , yhkn )}Nn=1 ⊂ V h × Hh be the solution of the corresponding fully discrete
Problem Phk. Then under Assumptions H1 and H2 we have

max
1≤n≤N

(‖xn − xhkn ‖2
V + ‖yn − yhkn ‖2

V ) → 0 as h, k → 0.(4.22)

Proof. We still have (4.2). By Lemma 4.3, for any ε > 0, there exists x̄ ∈
C∞([0, T ];V ) such that

‖x− x̄‖H1(0,T ;V ) ≤ ε.
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1189

Since

∫
Ij

‖δxj − ẋ(t)‖V dt =
∫
Ij

∥∥∥∥∥1k
∫
Ij

(ẋ(s)− ẋ(t)) ds
∥∥∥∥∥
V

dt

≤ 1

k

∫
Ij

∫
Ij

[‖ẋ(s)− ˙̄x(s)‖V + ‖ẋ(t)− ˙̄x(t)‖V

+ ‖ ˙̄x(s)− ˙̄x(t)‖V
]
ds dt

≤ 2

∫
Ij

‖ẋ(t)− ˙̄x(t)‖V dt+ k
∫
Ij

‖¨̄x(t)‖V dt,

we have

N∑
j=1

∫
Ij

‖δxj − ẋ(t)‖V dt ≤ c ε+ k ‖¨̄x(t)‖L1(0,T ;V ).(4.23)

From

‖wh
j − ẋ(t)‖V ≤ ‖wh

j − δxj‖V + ‖δxj − ẋ(t)‖V ,

we see that

N∑
j=1

∫
Ij

‖wh
j − ẋ(t)‖V dt ≤ k

N∑
j=1

‖wh
j − δxj‖V +

N∑
j=1

∫
Ij

‖δxj − ẋ(t)‖V dt.(4.24)

It suffices to estimate the term k
∑N

j=1 ‖wh
j − δxj‖V . Noticing that

wh
j − δxj = wh

j − δx̃j + 1

k

∫
Ij

( ˙̃x(t)− ẋ(t))dt,

we have

k
N∑
j=1

‖wh
j − δxj‖V ≤ k

N∑
j=1

‖wh
j − δx̃j‖V + ‖ẋ− ˙̃x‖L1(0,T ;V )(4.25)

≤ k
N∑
j=1

‖wh
j − δx̃j‖V + c ε.

Here x̃ is the function used in the proof of Theorem 4.2 such that (4.4) holds.
It remains to bound the last term in (4.21). From the definition (4.16), we have

Πx(t) =

∫ t

tn−1

tn − t
k
ẋ(s)ds−

∫ tn

t

t− tn−1

k
ẋ(s)ds, tn−1 ≤ t ≤ tn.

Therefore,

N∑
j=1

∫
Ij

‖Πx(t)‖Hdt ≤
N∑
j=1

k

∫
Ij

‖ẋ(s)‖V ds = k ‖ẋ‖L1(0,T ;V ).(4.26)D
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1190 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

The bounds (4.23)–(4.26) are now used in the estimate (4.21). Noticing the arbitrari-
ness of wh

j ∈ V h, 1 ≤ j ≤ N , and recalling the estimate (4.6), we get

max
1≤n≤N

(‖xn − xhkn ‖2
V + ‖yn − yhkn ‖2

V ) ≤ c (e20 + ε+ β(h) + k +Dhk(x̃)),(4.27)

where

Dhk(x̃) = k

N∑
j=1

inf
wh

j ∈V h
‖δx̃j − wh

j ‖V

and the constant c depends on x, y, ỹ, f, B(t, x(t), y(t)) but is independent of ε, h, k.
By Assumption H1, we see that

inf
wh

j ∈V h
‖δx̃j − wh

j ‖V ≤ α(h)‖δx̃j‖V0 ≤ α(h)
k

∫
Ij

‖ ˙̃x(t)‖V0dt,

and thus

Dhk(x̃) ≤ α(h) ‖ ˙̃x‖L1(0,T ;V0).(4.28)

Then the convergence result (4.22) follows directly from (4.2), (4.27), and
(4.28).

We remark here that the estimate (3.38) is used for deriving optimal order error
estimates provided the exact solution has higher degree regularity, while the estimate
(4.21) is suitable for convergence analysis under the basic solution regularity condition.

5. Applications to contact problems in rate-type viscoplasticity. The
aim of this section is to apply the results obtained in sections 3 and 4 to the numer-
ical analysis of two nonlinear quasi-static frictional contact problems for viscoplastic
materials. In this section, the symbol c may depend on the exact solution, but it is
independent of the discretization parameters h and k.

Let us consider a viscoplastic body whose material particles occupy an open,
bounded, connected domain Ω ⊂ R

d (d = 2 or 3). The boundary of Ω, being assumed
Lipschitz continuous, is partitioned into three disjoint measurable parts Γ1,Γ2, and
Γ3, with meas (Γ1) > 0. Since the boundary is Lipschitz continuous, the unit outward
normal vector ν exists a.e. on the boundary. Let [0, T ] be a time interval of interest.
Displacement, surface traction, and contact conditions will be specified on Γ1,Γ2, and
Γ3, respectively. We assume that the body is fixed on Γ1, a body force of density b
acts in Ω, and a surface traction of density F acts on Γ2. Both b and F can be time
dependent but we assume a slow variation of these functions in time so that the inertia
term in the equations of motion may be neglected. We choose (1.1) as the constitutive
relation for the viscoplastic material, in which E is a fourth-order tensor and G is a
given constitutive function, possibly nonlinear. The unknowns of the problem are the
displacement field u : Ω× [0, T ] → R

d and the stress field σ : Ω× [0, T ] → S
d, S

d being
the set of second-order symmetric tensors on R

d. We have the following equations
and initial-boundary value conditions:

σ̇ = Eε(u̇) +G(σ, ε(u)) in Ω× (0, T ),(5.1)

Divσ + b = 0 in Ω× (0, T ),(5.2)

u = 0 on Γ1 × (0, T ),(5.3)

σν = F on Γ2 × (0, T ),(5.4)

u(0) = u0, σ(0) = σ0 in Ω.(5.5)
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1191

Here u0 and σ0 are the given initial data. These relations will be supplemented by a
contact condition on Γ3.

We define the inner product and the corresponding norms on R
d and S

d by

u · v = uivi, |v| = (v · v)1/2 ∀u = (ui),v = (vi) ∈ R
d,

ξ · η = ξijηij , |ξ| = (ξ · ξ)1/2 ∀ ξ = (ξij),η = (ηij) ∈ S
d.

For every vector field v, we denote by vν and vτ the normal and the tangential
components of v on the boundary given by

vν = v · ν, vτ = v − vνν

and let ε(v) denote the tensor field defined by

ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i),

where the index that follows a comma indicates a partial derivative with respect to
the corresponding component of the independent variable.

We denote in what follows by H the real Hilbert space defined by

H = {τ = (τij) | τij = τji ∈ L2(Ω), 1 ≤ i, j ≤ d}

with the inner product

(σ, τ )H =

∫
Ω

σijτijdx, σ, τ ∈ H.

We assume in what follows that E : Ω×S
d → S

d and G : Ω×S
d×S

d → S
d satisfy

the following assumptions.




(a) Eijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(b) Eσ · τ = σ · Eτ ∀σ, τ ∈ S

d a.e. in Ω.
(c) There exists an α0 > 0 such that

Eτ · τ ≥ α0|τ |2 ∀ τ ∈ S
d a.e. in Ω.


(a) There exists an L > 0 such that ∀σ1,σ2, ε1, ε2 ∈ S

d a.e. in Ω,
|G(x,σ1, ε1)−G(x,σ2, ε2)| ≤ L (|σ1 − σ2|+ |ε1 − ε2|).

(b) For any σ, ε ∈ S
d, x �→ G(x,σ, ε) is measurable.

(c) The mapping x �→ G(x,0,0) ∈ H.

These assumptions will be used to verify (2.7) and (2.8) in the context of me-
chanical applications later.

For the input data, we assume that

b ∈W 1,∞(0, T ; (L2(Ω))d), F ∈W 1,∞(0, T ; (L2(Γ2))
d).

Finally, we suppose that the viscoplastic body is in contact with a rigid foundation
on Γ3×(0, T ). This contact involves friction. In what follows we consider two different
friction laws which lead us to the following examples.
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1192 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

5.1. Contact with simplified Coulomb’s friction law. Consider a contact
condition modeled by a simplified version of Coulomb’s law of dry friction (see, e.g.,
[6, 16]), i.e.,



σν = S, |στ | ≤ µ |σν |
|στ | < µ |σν | ⇒ u̇τ = 0

|στ | = µ |σν | ⇒ there existsλ ≥ 0 such thatστ = −λu̇τ

on Γ3 × (0, T ).(5.6)

Here σν denotes the normal stress on the contact boundary, στ is the tangential force
on the contact boundary, u̇τ denotes the tangential velocity, S ∈ L∞(Γ3) is a given
function, and µ ≥ 0 is the coefficient of friction.

Let

U = {v ∈ (H1(Ω))d | v = 0 on Γ1},
j : U → R+, j(v) = µ

∫
Γ3

|S| |vτ | ds,

L : [0, T ]× U → R, L(t,v) =

∫
Ω

b(t) · v dx+
∫

Γ2

F (t) · v ds+
∫

Γ3

S vν ds,

and let u0 ∈ U , σ0 ∈ H denote initial data such that

(σ0, ε(v))H + j(v) ≥ L(0,v) ∀v ∈ U.

The weak formulation of the mechanical problem (5.1)–(5.5) and (5.6) is (see,
e.g., [1]) the following.

Problem P1. Find the displacement field u : [0, T ] → U and the stress field
σ : [0, T ] → H such that

u(0) = u0, σ(0) = σ0,(5.7)

and for a.e. t ∈ (0, T ),

σ̇(t) = Eε(u̇(t)) +G(σ(t), ε(u(t))),(5.8)

(σ(t), ε(v − u̇(t)))H + j(v)− j(u̇(t)) ≥ L(t,v − u̇(t)) ∀v ∈ U.(5.9)

Let V be the subspace of H given by

V = ε(U) = {ε(v) | v ∈ U}.

Since meas (Γ1) > 0, Korn’s inequality holds (see [15]):

‖v‖U ≤ c ‖ε(v)‖H ∀v ∈ U.

It follows that V is a closed subspace of H and that the deformation operator ε : U →
V is a linear, continuous invertible operator. We denote the inverse of ε : U → V by
ε−1 : V → U , which is a linear, continuous operator. Now variational Problem P1
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1193

can be viewed as a special case of abstract Problem P, after we make the following
identifications:{

x↔ ε(u), y ↔ σ, x0 ↔ ε(u0), y0 ↔ σ0, A↔ E , B ↔ G,

ϕ(w) ↔ j(ε−1(w)), (f(t),w)V ↔ L(t, ε−1(w)) for w ∈ V.(5.10)

The conditions (2.7)–(2.12) can then be verified by using the assumptions made
on the constitutive functions E and G as well as on the data b, F , u0, σ0, S, and
µ. Therefore, from Theorem 2.1 it follows that Problem P1 has a unique solution
(u,σ) ∈W 1,∞(0, T ;U ×H).

We now briefly specify how to construct the finite dimensional spaces V h and Hh

via the finite element method. Details can be found in [3]. For simplicity, we assume
that Ω is a polygon or polyhedron and Γ1 ∩ Γ3 = ∅. We have Γ3 = ∪I

i=1Γ3,i with
each piece Γ3,i represented by an affine function. Let T h be a regular finite element
partition of Ω in such a way that if a side of an element lies on the boundary, the side
belongs entirely to one of the subsets Γ1, Γ2 and Γ3,i, 1 ≤ i ≤ I. Let Uh ⊂ U consist
of linear elements, let us use piecewise constants for Hh, and recall that V h = Hh∩V .
It can be shown that V h = ε(Uh).

With the above specifications, let us show that Assumptions H1 and H2 are
satisfied. We need a density result proved in [5].

Lemma 5.1. Let Ω ⊂ R
d, d ≥ 1, be an open, bounded, Lipschitz domain, and

let Γ1 ⊂ ∂Ω be a relatively open set with a Lipschitz relative boundary. Then the
space {v ∈ C∞(Ω) : v = 0 in a neighborhood of Γ1} is dense in {v ∈ H1(Ω) : v =
0 a.e. on Γ1}.

From this result, we see immediately that the space

{v ∈ [C∞(Ω)]d : v = 0 in a neighborhood of Γ1},

and therefore U0 = U ∩ [H2(Ω)]d also, is dense in U . Let V0 = ε(U0) and H0 =
H ∩ (H1(Ω))d×d. Then the spaces V0 and H0 are dense in V and H.

For any w ∈ V0, there exists w̄ ∈ U0 such that w = ε(w̄). Let Πhw̄ ∈ Uh be the
piecewise linear interpolant of w̄. Then from the standard finite element interpolation
theory (cf. [3]), we have

‖w̄ −Πhw̄‖(H1(Ω))d ≤ c h ‖w̄‖(H2(Ω))d .

By Korn’s inequality, we get

inf
wh∈V h

‖w − wh‖V ≤ c inf
zh∈Uh

‖w̄ − zh‖(H1(Ω))d

≤ c ‖w̄ −Πhw̄‖(H1(Ω))d

≤ c h ‖w̄‖(H2(Ω))d

≤ c h ‖w‖(H1(Ω))d .

So Assumption H1 is satisfied and we may take α(h) = c h. Assumption H2 can be
verified similarly. Therefore by Theorems 4.2 and 4.4, both the semidiscrete and fully
discrete solutions corresponding to Problem P1 converge to the solution of Problem P1

as h, and h and k go to zero.D
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1194 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

In order to derive error estimates via (3.17) and (3.38), we need to make assump-
tions on the regularity of the exact solution. Let us specialize the estimate (3.17) for
the semidiscrete approximation of Problem P1 and obtain

(5.11)

‖uh − u‖L∞(0,T ;U) + ‖σh − σ‖L∞(0,T ;H)

≤ c ‖(IH − PHh)(σ − σ0)‖L∞(0,T ;H)

+ c (‖uh
0 − u0‖U + ‖σh

0 − σ0‖H)

+ c inf
zh∈L2(0,T ;Uh)


‖u̇ − zh‖L2(0,T ;U) +

(∫ T

0

|R(t; u̇(t),zh(t))| dt
)1/2

 ,

where

R(t; u̇(t),zh(t)) = (σ(t), ε(zh(t)− u̇(t)))H + j(zh(t))− j(u̇(t))− L(t, zh(t)− u̇(t)).

Under the assumption

σν ∈ C([0, T ]; (L2(Γ))d),

we can follow a standard argument (e.g., [14]) to get the relations

Divσ(t) + b(t) = 0 a.e. in Ω,

σ(t)ν = F (t) a.e. on Γ2,

σν(t) = S a.e. on Γ3

for all t ∈ [0, T ]. We then have

R(t; u̇(t),zh(t)) =

∫
Γ3

στ (t) · (zh(t)τ − u̇τ (t)) ds(5.12)

+ µ

∫
Γ3

(|u̇τ (t)| − |zh
τ (t)|) ds.

The error analysis of the semidiscrete solution is given by the following result.
Theorem 5.2. Let (u,σ) ∈W 1,∞(0, T ;U×H) be the solution of Problem P1 and

(uh,σh) ∈ W 1,∞(0, T ;Uh ×Hh) be the corresponding semidiscrete solution. For the
initial values, we choose uh

0 ∈ Uh to be the orthogonal projection of u0 into U
h with

respect to the inner product (ε(u), ε(v))V , and σh
0 ∈ Hh the orthogonal projection of

σ0 into H
h with respect to the inner product of H. Assume

σν ∈ C([0, T ]; (L2(Γ))d), σ ∈W 1,∞(0, T ;H0), u ∈ H1(0, T ;U0),

and

σ0 ∈ H2(Ω)d×d, u0 ∈ H2(Ω)d;

then we have the error estimate

‖uh − u‖L∞(0,T ;U) + ‖σh − σ‖L∞(0,T ;H) ≤ c h3/4.(5.13)

If we further assume

uτ ∈ H1(0, T ;H2(Γ3,i)), 1 ≤ i ≤ I,
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1195

then we have the optimal order error estimate

‖uh − u‖L∞(0,T ;U) + ‖σh − σ‖L∞(0,T ;H) ≤ c h.(5.14)

Proof. First from the choice of the initial values uh
0 and σh

0 , we have

‖u0 − uh
0‖U ≤ c h, ‖σ0 − σh

0‖H ≤ c h.(5.15)

The condition u ∈ H1(0, T ;U0) implies uτ ∈ H1(0, T ;H3/2(Γ3,i)), 1 ≤ i ≤ I. Let
Πhu̇(t) ∈ Uh be the piecewise linear interpolant of u̇(t) for a.e. t ∈ (0, T ). Then we
have the estimates (cf. [3])

‖u̇(t)−Πhu̇(t)‖U ≤ c h ‖u̇(t)‖(H2(Ω))d ,

‖u̇τ (t)− (Πhu̇(t))τ‖L2(Γ3,i) ≤ c h3/2‖u̇τ (t)‖H3/2(Γ3,i).

Keep in mind the definition (3.13) and the transformation (5.10). From (5.12), we
obtain

|R(t; u̇(t),Πhu̇(t))| ≤ (‖στ (t)‖L2(Γ3) + c µ) ‖u̇τ (t)− (Πhu̇(t))τ‖L2(Γ3)(5.16)

≤ c (‖σ(t)‖H0 + µ)h
3/2

I∑
i=1

‖u̇τ (t)‖H3/2(Γ3,i).

From the property of the projection, we have

‖(IH − PHh)(σ(t)− σ0)‖H ≤ c h ‖σ(t)− σ0‖H0 .(5.17)

Then the error estimate (5.13) follows from (5.11), (5.15), (5.16), and (5.17).
Under the additional assumption uτ ∈ H1(0, T ;H2(Γ3,i)), 1 ≤ i ≤ I, we have

‖u̇τ (t)− (Πhu̇(t))τ‖L2(Γ3,i) ≤ c h2‖u̇τ (t)‖H2(Γ3,i),

and then the estimate (5.14) follows.
Now we turn to error analysis of the fully discrete solution.
Theorem 5.3. Let (u,σ) ∈W 1,∞(0, T ;U×H) be the solution of Problem P1 and

{(uhk
n ,σ

hk
n )}Nn=1 be the corresponding fully discrete solution. For the initial values,

we choose uh
0 ∈ Uh to be the orthogonal projection of u0 into U

h with respect to the
inner product (ε(u), ε(v))V , and σh

0 ∈ Hh the orthogonal projection of σ0 into H
h

with respect to the inner product of H. Assume

σν ∈ C([0, T ]; (L2(Γ))d), σ ∈W 1,∞(0, T ;H0), u ∈ C1([0, T ];U0),

and

σ0 ∈ H2(Ω)d×d, u0 ∈ H2(Ω)d;

then we have the error estimate

max
1≤n≤N

(‖uhk
n − un‖U + ‖σhk

n − σn‖H
) ≤ c (h3/4 + k + Ik(u̇)1/2),(5.18)

where

Ik(u̇) =

N∑
j=1

∫
Ij

‖u̇(t)− u̇j‖2
Udt.(5.19)D
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1196 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

If we further assume

uτ ∈ H1(0, T ;H2(Γ3,i)), 1 ≤ i ≤ I,
then

max
1≤n≤N

(‖uhk
n − un‖U + ‖σhk

n − σn‖H
) ≤ c (h+ k + Ik(u̇)1/2).(5.20)

Proof. The condition u ∈ C1([0, T ];U0) implies uτ ∈ C1([0, T ];H3/2(Γ3,i)), 1 ≤
i ≤ I. We specialize the estimate (3.38) for the case of the full discretization of
Problem P1:

max
1≤n≤N

(‖un − uhk
n ‖U + ‖σn − σhk

n ‖H
)

(5.21)

≤ c k (‖u̇‖L∞(0,T ;U) + ‖σ̇‖L∞(0,T ;H))

+ c


 N∑
j=1

k inf
zh∈Uh

(‖δuj − zh‖2
U + |Rj(u̇j ,z

h)|)



1/2

+ c max
1≤n≤N

‖(IH − PHh)(σn − σ0)‖H
+ c
(‖u0 − uhk

0 ‖U + ‖σ0 − σhk
0 ‖H

)
,

where

Rj(u̇j ,z
h) = (σj , ε(z

h − u̇j))H + j(zh)− j(u̇j)− L(tj ,zh − u̇j).

Again, we have the estimate (5.15) for the approximation of the initial values. For
each j, let Πhu̇j be the piecewise linear interpolant of u̇j . Then

‖δuj −Πhu̇j‖U ≤ c (‖δuj − u̇j‖U + ‖u̇j −Πhu̇j‖U )
≤ c

k

∫
Ij

‖u̇(t)− u̇j‖Udt+ c h ‖u̇j‖U0
.

So

N∑
j=1

k‖δuj −Πhu̇j‖2
U ≤ c Ik(u̇) + c h2‖u̇‖2

L∞(0,T ;U0)
.

Similar to (5.16) we have

|Rj(u̇j ,Π
hu̇j)| ≤ c h3/2(‖σ‖L∞(0,T ;H0) + µ)

I∑
i=1

‖u̇τ‖L∞(0,T ;H3/2(Γ3,i)).

The error estimate (5.18) then follows from (5.21) together with the bounds for the
various terms on the right-hand side of (5.21). The error estimate (5.20) is derived
using an improved bound for |Rj(u̇j ,Π

hu̇j)| under the additional solution regularity
assumption.

Both estimates (5.18) and (5.20) involve the quantity Ik(u̇) defined in (5.19).
Under the physically unrealistic assumption u ∈ H2(0, T ;U), we have

Ik(u̇) ≤ c k2‖ü‖2
L2(0,T ;U),
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NONLINEAR EVOLUTIONARY SYSTEM IN VISCOPLASTICITY 1197

and then the estimates (5.18) and (5.20) give the bounds O(h3/4 + k) and O(h+ k),
respectively.

We emphasize that the error estimates (5.13), (5.14), (5.18), and (5.20) are only
sample results under the stated regularity conditions. If the regularity conditions are
different, the error estimates need to be changed accordingly, but that follows easily
from (5.11) and (5.21).

5.2. Bilateral contact with Tresca’s friction law. We assume a bilateral
contact modeled by Tresca’s friction law (see, e.g., [2, 6]), i.e.,


uν = 0, |στ | ≤ g
|στ | < g ⇒ u̇τ = 0
|στ | = g ⇒ there existsλ ≥ 0 such thatστ = −λu̇τ

on Γ3 × (0, T ).(5.22)

Here uν represents the normal displacement, u̇τ denotes the tangential velocity, στ

is the tangential force on the contact boundary, and g ≥ 0 is the friction bound, i.e.,
the magnitude of the limiting friction traction at which slip begins. For simplicity, we
assume here that g is a constant but, with minor changes, the nonhomogenous case
may also be considered. In (5.22) the strict inequality holds in the stick zone and the
equality in the slip zone. The contact is assumed to be bilateral, i.e., there is no loss
of the contact during the process.

Let

U = {v ∈ (H1(Ω))d | v = 0 on Γ1, vν = 0 on Γ3},
j : U → R+, j(v) = g

∫
Γ3

|vτ | ds,

L : [0, T ]× U → R, L(t,v) =

∫
Ω

b(t) · v dx+
∫

Γ2

F (t) · v ds

and let u0 ∈ U , σ0 ∈ H be given initial data such that

(σ0, ε(v))H + j(v) ≥ L(0,v) ∀v ∈ U.
In [2] the following weak formulation of the mechanical problem (5.1)–(5.5) and

(5.22) was derived.
Problem P2. Find the displacement field u : [0, T ] → U and the stress field

σ : [0, T ] → H such that

u(0) = u0, σ(0) = σ0,(5.23)

and for a.e. t ∈ (0, T ),

σ̇(t) = Eε(u̇(t)) +G(σ(t), ε(u(t))),(5.24)

(σ(t), ε(v − u̇(t)))H + j(v)− j(u̇(t)) ≥ L(t,v − u̇(t)) ∀v ∈ U.(5.25)

Let V be the subspace of H given by

V = ε(U) = {ε(v) | v ∈ U}.
V is a closed subspace of H and that the deformation operator ε : U → V is a linear,
continuous invertible operator. We denote the inverse of ε : U → V by ε−1 : V → U ,
which is a linear, continuous operator. Variational Problem P2 can be viewed as a
special case of abstract Problem P, after we make the identifications (5.10).
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1198 JIUHUA CHEN, WEIMIN HAN, AND MIRCEA SOFONEA

The rest of the discussion on Problem P2 is similar to that for Problem P1 of the
previous subsection. In particular, the conditions (2.7)–(2.12) can be verified by using
the assumptions made on the constitutive functions E and G as well as on the data
b, F , u0, σ0, and g; so it follows from Theorem 2.1 that Problem P2 has a unique
solution having the regularity (u,σ) ∈W 1,∞(0, T ;U ×H).

We make the same assumptions on the domain Ω and its finite element partition.
The finite element space Uh ⊂ U now differs from that in the previous subsection by
requiring a vanishing normal component on Γ3,i for i = 1, . . . , I. We still use piecewise
constants for Hh and we have V h = ε(Uh) = Hh ∩ V .

To show the convergence of both semidiscrete and fully discrete solutions for
Problem P2, we need to verify Assumptions H1 and H2. Again, the crucial ingredient
is a density result. By adapting the proof of Lemma 3.2 on page 141 from [12],
we know that for d = 2, the space U ∩ [C∞(Ω)]2 is dense in U . Using this result,
then it can be shown that for d = 2, Assumptions H1 and H2 are satisfied and we
have the convergence of the discrete solutions under the proved solution regularity
(u,σ) ∈W 1,∞(0, T ;U ×H).

Finally, the error estimates presented in Theorems 5.2 and 5.3 also hold for nu-
merical approximations of Problem P2. We skip the detailed arguments for these
results because they are very similar to those used in proving Theorems 5.2 and 5.3.

Acknowledgments. We thank the two referees whose suggestions led to an
improvement of this paper.
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