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Abstract

In this paper we discuss inexact Uzawa algorithms and inexact non-linear Uzawa algorithms to solve discretized

variational inequalities of the second kind. We prove convergence results for the algorithms. Numerical examples are

included to show the effectiveness of the algorithms.
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1. Introduction

Variational inequalities are an important family of non-linear boundary value or initial-boundary value

problems with applications in mechanics, physical sciences, etc. A partial list of comprehensive references

on the topic include [2,9,11,16,17,21,22,25,27].

In the literature (cf. e.g. [12]), variational inequalities are classified into two kinds. Variational in-

equalities of the first kind refer to those defined over convex subsets of function spaces, while variational

inequalities of the second kind are those involving non-differentiable terms in the formulations. Let X � Rd

be a non-empty, open, bounded domain, and V � H 1ðXÞ be a Sobolev space defined on X. Consider a
general elliptic variational inequality of the second kind:

u 2 V ; aðu; v� uÞ þ jðvÞ � jðuÞP lðv� uÞ 8v 2 V : ð1:1Þ

Assume að�; �Þ : V 	 V ! R is bilinear, continuous and elliptic, jð�Þ : V ! R ¼ R [ f�1g is proper, convex
and lower semi-continuous, and lð�Þ : V ! R is linear and continuous. Then (1.1) is uniquely solvable by a

standard result [12,13].
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Denote V 0 the dual space of V . Recall the definition of sub-differential ojðuÞ : w� 2 ojðuÞ is equivalent to
w� 2 V 0; jðvÞP jðuÞ þ hw�; v� uiV 0	V 8v 2 V :

We can rewrite (1.1) as

jðvÞP jðuÞ þ lðv� uÞ � aðu; v� uÞ 8v 2 V :
Note that v 7! lðvÞ � aðu; vÞ defines an element in V 0; we call it w� 2 V 0. Then (1.1) is equivalent to the

existence of u and w� such that

u 2 V ; w� 2 ojðuÞ; aðu; vÞ þ hw�; viV 0	V ¼ lðvÞ 8v 2 V : ð1:2Þ
In many applications, the non-differentiable functional jðvÞ is of the form
jðvÞ ¼ kLvkL1ðDÞd1 ð1:3Þ

for some subset D � X or D � oX. The operator L is linear and continuous from V to L2ðDÞd1 . The op-
erator L will be mostly chosen as Lv ¼ gv and then d1 ¼ 1, or Lv ¼ grv and then d1 ¼ d, the function
gP 0 being given in L1ðDÞd1 . Two particular cases for the functional j we will consider are

Case 1

jðvÞ ¼
Z

C1

gjvjds;

where C1 � oX. For this case, D ¼ C1, Lv ¼ gvjC1
for v 2 H 1ðXÞ.

Case 2

jðvÞ ¼
Z

X
gjrvjdx; jrvj ¼

Xd
i¼1

ov
oxi

� �2
" #1=2

:

For this case, D ¼ X, Lv ¼ grv for v 2 H 1ðXÞ.
In any case, we have a constant c0 such that

kLvk2L2ðDÞd1 6 c0aðv; vÞ 8v 2 V : ð1:4Þ

In the rest of the paper, we focus on the numerical solution of the variational inequality (1.1) with jð�Þ
given by (1.3). Note that the functional jð�Þ is positively homogeneous:

jðavÞ ¼ ajðvÞ 8a P 0; v 2 V :
We see that the inequality

jðvÞP jðuÞ þ hw�; v� uiV 0	V 8v 2 V ð1:5Þ
is equivalent to

hw�; viV 0	V 6 jðvÞ 8v 2 V ; ð1:6Þ

hw�; uiV 0	V ¼ jðuÞ: ð1:7Þ
A sketch of a proof of the equivalence is as follows. In (1.5) we take v ¼ 0 and 2u, and use the positive

homogeneity of jð�Þ to obtain (1.7). Then (1.6) follows from (1.5) and (1.7). Conversely, subtracting (1.7)
from (1.6), we obtain (1.5).

Introduce the set

K ¼ fl 2 L1ðDÞd1 : klkL1ðDÞd1 6 1g
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for the Lagrangian variable k, and the projection mapping PK : L1ðDÞd1 ! K by the formula

PKl ¼ l

supð1; jljÞ :

It is easy to show that for any vectors a and b of the same dimension, we have

a

supð1; jajÞ

���� � b

supð1; jbjÞ

����6 ja� bj:

Hence, PK is non-expansive:

kPKl1 �PKl2kL2ðDÞd1 6 kl1 � l2kL2ðDÞd1 8l1; l2 2 L1ðDÞ
d1 : ð1:8Þ

We can rewrite (1.2) as

u 2 V ; aðu; vÞ þ hk;LviL1ðDÞd1	L1ðDÞd1 ¼ lðvÞ 8v 2 V ;
k 2 K; hk;LuiL1ðDÞd1	L1ðDÞd1 ¼ kLukL1ðDÞd1 ;

or equivalently,

u 2 V ; aðu; vÞ þ ðk;LvÞL2ðDÞd1 ¼ lðvÞ 8v 2 V ;
k 2 K; ðk;LuÞL2ðDÞd1 ¼ kLukL1ðDÞd1 :

We see that on the region where Lu 6¼ 0, we have k ¼ Lu=jLuj, whereas on the remaining region, jkj6 1.
Thus, for any q > 0,

k ¼ PKðk þ qLuÞ: ð1:9Þ
Turning now to numerical approximations, let Vh � V be a finite element space. We apply the finite

element method to solve the variational inequality (1.1): Find uh 2 Vh such that

aðuh; vh � uhÞ þ jðvhÞ � jðuhÞP lðvh � uhÞ 8vh 2 Vh: ð1:10Þ
Again we can characterize the solution uh of the discrete variational inequality (1.10) in the form of an

equivalent non-linear system:

uh 2 Vh; aðuh; vhÞ þ ðkh;LvhÞL2ðDÞd1 ¼ lðvhÞ 8vh 2 Vh; ð1:11Þ

kh 2 K; ðkh;LuhÞL2ðDÞd1 ¼ kLuhkL1ðDÞd1 : ð1:12Þ

Convergence and error estimates of the approximation (1.10) to (1.1) are discussed in several references,
see e.g. [12,13,16]. In this paper, we focus our attention on iterative algorithms for the discretized varia-

tional inequality (1.10). In the literature, numerous iterative algorithms have been studied for discrete

variational inequalities. In [12], relaxation and over-relaxation methods are analyzed for solving (1.10).

These are extensions of the Gauss–Seidel and SOR methods to the iterative solution of discrete variational

inequalities. There are some other extended relaxation methods as well, for example, the multigrid method

[18,19,23,24] and projection method based on the domain decomposition [29].

The Uzawa algorithm is a predictor–corrector type method for solving non-linear problems with more

than one variable. It was first studied by Uzawa and his co-workers in 1958 [1] in applying the gradient
method to the minimization problem of the dual functional of the Stokes problem, which is a saddle point

problem. The most attractive features of the Uzawa algorithm are its simplicity and robustness (see

[7,12,14,15,26]). However, a well-known drawback of the Uzawa algorithm is the requirement of solving a

linear system exactly for the predictor equation in each step of the iteration. For many applications, this

requirement is costly. Recently, inexact Uzawa algorithms have attracted much attention in solving saddle
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point problems. In an inexact Uzawa algorithm, the predictor equation is solved inexactly. Usually, pre-
conditioned one-step iteration method or multistep preconditioning conjugate gradient method is used in

the predictor step. See [3–6,8,10,15,20] and the references therein for applications of inexact Uzawa al-

gorithms in solving saddle point problems.

So far in the literature, there has been no discussion on inexact Uzawa-type algorithms for solving

discrete variational inequalities. In [12], an exact Uzawa-type algorithm by duality method is studied for

some variational inequalities. The problem (1.11) and (1.12) is solved by a predictor–corrector type Uzawa

algorithm. Eq. (1.11) is used as a predictor for a given knh, n ¼ 0; 1; 2; . . .,

aðunþ1h ; vhÞ ¼ lðvhÞ � ðknh;LvhÞL2ðDÞd1 8vh 2 Vh; ð1:13Þ

and kh is updated by

knþ1h ¼ PKðknh þ qLunþ1h Þ; q > 0: ð1:14Þ
The main drawback of above Uzawa�s algorithm is that it requires the solution of the linear system (1.11)

at each iteration. To overcome this difficulty, it is natural to consider inexact Uzawa�s algorithms as de-

scribed above.
In this paper, we study inexact Uzawa and non-linear inexact Uzawa algorithms (also called multistep

inexact Uzawa algorithm in the literature) for solving the problem (1.11) and (1.12). We prove convergence

of the algorithms. We also show applications of the algorithms in solving some sample problems, including

a simplified version of the friction problem in elasticity and the flow of a viscous plastic fluid in a pipe.

Finally, some numerical results are reported to show the better performance of inexact Uzawa algorithms

over the standard Uzawa algorithm.

2. Inexact Uzawa algorithms

For the sake of simplicity, we assume that X is a polyhedral domain of Rd . Let fThg be a regular family
of triangulations of X. As usual, h denotes the length of the largest diameter of the elements in the tri-

angulation. We approximate V by the corresponding finite element subspaces fVhg. Let f/ig
m
i¼1 be a set of

basis functions of the space Vh. Denote A the stiffness matrix associated with the bilinear form að�; �Þ,
ai;j ¼ að/i;/jÞ; i; j ¼ 1; 2; . . . ;m:

Let A0 be a symmetric, positive definite m	 m matrix, satisfying (cf. [5])

ð1� cÞðA0y; yÞ6 ðAy; yÞ6 ðA0y; yÞ 8y 2 Rm ð2:1Þ
for some constant c 2 ð0; 1Þ. The matrix A0 is chosen as a preconditioner of matrix A, so in particular, the

equation A0x ¼ b should be easier to solve than the equation Ax ¼ b. The matrix A0 can be constructed

from incomplete LU decomposition or be derived from multigrid method, multilevel method and domain

decomposition method; see [3,4,28].

For the convenience of analysis, we denote

a0ðuh; vhÞ ¼ ðA0u; vÞ
for

uh ¼
Xm
i¼1
ui/i; u ¼ ðu1; . . . ; umÞT;

vh ¼
Xm
i¼1
vi/i; v ¼ ðv1; . . . ; vmÞT:
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Then for x ¼ 1=ð1� cÞ we have
aðvh; vhÞ6 a0ðvh; vhÞ6xaðvh; vhÞ 8vh 2 Vh: ð2:2Þ

Now we introduce an inexact Uzawa algorithm for the problem (1.11) and (1.12).

Algorithm 2.1. Let k0h 2 K and u0h 2 Vh. For n ¼ 0; 1; 2; . . ., we compute unþ1h 2 Vh and knþ1h inductively by

a0ðunþ1h ; vhÞ ¼ a0ðunh; vhÞ � ½aðunh; vhÞ þ ðknh;LvhÞL2ðDÞd1 � lðvhÞ� 8vh 2 Vh; ð2:3Þ

knþ1h ¼ PKðknh þ qLunþ1h Þ: ð2:4Þ

Regarding the convergence of the algorithm, we have the following result.

Theorem 2.2. Assume (2.2). Then for 16x < 5 and 0 < q < ð5� xÞ=ð2c0Þ, Algorithm 2.1 converges:

lim
n!1

kunh � uhkV ¼ 0: ð2:5Þ

Proof. Denote the nth iteration error

enh ¼ uh � unh; �nh ¼ kh � knh; n ¼ 0; 1; 2; . . .

Then from (1.11) and (2.3) we get the relation

ð�nh;Lenþ1h ÞL2ðDÞd1 ¼ a0ðenh � enþ1h ; enþ1h Þ � aðenh; enþ1h Þ: ð2:6Þ

It follows from (1.12) that (the discrete analogue of (1.9))

kh ¼ PKðkh þ qLuhÞ:
Thus

�nþ1h ¼ PKðkh þ qLuhÞ �PKðknh þ qLunþ1h Þ:
From (1.8) and the relation (2.6), we obtain

k�nþ1h k2L2ðDÞd1 6 k�nhk
2

L2ðDÞd1 þ 2qð�nh;Lenþ1h ÞL2ðDÞd1 þ q2kLenþ1h k2L2ðDÞd1
¼ k�nhk

2

L2ðDÞd1 þ 2qða0ðenh � enþ1h ; enþ1h Þ � aðenh; enþ1h ÞÞ þ q2kLenþ1h k2L2ðDÞd1 :

By the assumption (2.2) we have

a0ðenh � enþ1h ; enþ1h Þ � aðenh; enþ1h Þ ¼ �a0 1
2
enh
�

� enþ1h ; 1
2
enh � enþ1h

	
þ 1

4
a0ðenh; enhÞ � aðenh; enþ1h Þ

6 � a 1
2
enh
�

� enþ1h ; 1
2
enh � enþ1h

	
þ 1

4
xaðenh; enhÞ � aðenh; enþ1h Þ

¼ 1
4
ðx � 1Þaðenh; enhÞ � aðenþ1h ; enþ1h Þ:

Then

k�nþ1h k2L2ðDÞd1 6 k�nhk
2

L2ðDÞd1 þ 1
2
ðx � 1Þqaðenh; enhÞ þ ðq2c0 � 2qÞaðenþ1h ; enþ1h Þ: ð2:7Þ

Denote

tn ¼ k�nhk
2

L2ðDÞd1 þ 1
2
qðx � 1Þaðenh; enhÞ: ð2:8Þ

Then we have from (2.7),

tnþ1 6 tn þ c0q2
�

þ 1
2
qðx � 5Þ

	
aðenþ1h ; enþ1h Þ: ð2:9Þ
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When 16x < 5 and q < ð5� xÞ=ð2c0Þ, ftng is a decreasing sequence and has a lower bound 0. Then the

sequence ftng has a limit and from its definition (2.8) and (2.9), we see that

lim
n!1

aðenh; enhÞ ¼ 0:

Therefore, we have the convergence (2.5). �

By Theorem 2.2, we see that the preconditioner A0 should satisfy (2.2) with 16x < 5. In practical

computation, the multi-step preconditioning conjugate gradient method can be used to get an approximate

solution of (1.13). For / 2 Rm, denote wð/Þ an approximation to the solution n of

An ¼ /: ð2:10Þ
We assume that for some 06 d < 1, our approximation satisfies

kwð/Þ � A�1/kA6 dk/kA�1 8/ 2 Rm: ð2:11Þ
Here, for a symmetric, positive definite matrix Q, we use the Q-norm:

k/kQ ¼ ð/;Q/Þ1=2:
As described in [5], the condition (2.11) is a reasonable assumption which is satisfied by the approximate
inverse associated with the PCG algorithm. For example, let QA be a symmetric and positive definite m	 m
matrix and we apply l steps of the conjugate gradient algorithm preconditioned by QA to solve the linear

equation (2.10) with a zero starting iterate. That is

n0 ¼ 0; r0 ¼ An0 � /; h0 ¼ Q�1
A r0; d0 ¼ �h0;

and for k ¼ 0; 1; . . . ; l� 1,

sk ¼ ðrk; hkÞ=ðdk;AdkÞ; nkþ1 ¼ nk þ skdk;

rkþ1 ¼ rk þ skAdk; hkþ1 ¼ Q�1
A rkþ1;

bk ¼ ðrkþ1; hkþ1Þ=ðrk; hkÞ; dkþ1 ¼ �hkþ1 þ bkdk:

Then wð/Þ ¼ nl satisfies the inequality

knl � A�1/kA6 dk/kA�1 ;
where

d ¼ dl6
1

coshðl cosh�1 gÞ
; g ¼ jðQ�1

A AÞ þ 1

jðQ�1
A AÞ � 1

;

or

d ¼ dl6 2
ðjðQ�1

A AÞÞ
1=2 � 1

ðjðQ�1
A AÞÞ

1=2 þ 1

 !l
with jðQ�1

A AÞ being the condition number of Q�1
A . Since dl tends to zero as l tends to infinity, we can make

dl as small as we wish by taking a suitably large number of PCG iterations.

Now we discuss the following non-linear inexact Uzawa algorithm:

Algorithm 2.3. Let k0h 2 K and u0h 2 Vh. For n ¼ 0; 1; 2; . . ., we compute unþ1h 2 Vh and knþ1h 2 K as follows:

unþ1 ¼ un � 1

1þ d
wðsnÞ;

knþ1h ¼ PKðknh þ qLunþ1h Þ;

8<: ð2:12Þ
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where un ¼ ðun1; . . . ; unmÞ
T
, unh ¼

Pm
j¼1 u

n
j/j 2 Vh and the vector sn has the components

snj ¼ aðunh;/jÞ þ ðknh;L/jÞL2ðDÞd1 � lð/jÞ; j ¼ 1; 2; . . . ;m:

For a convergence analysis of Algorithm 2.3, we will rewrite it as an equivalent linear inexact Uzawa

algorithm. We need some preparatory results.

Lemma 2.4. [3, p. 661] Let H be a symmetric, positive definite m	 m matrix and let d; d̂d 2 Rm satisfy

kd � d̂dkH 6 dkdkH
with 06 d < 1. Then there exists a symmetric, positive definite matrix bHH such that bHH d̂d ¼ Hd and

kI � bHH �1=2H bHH �1=2k6 d; ð2:13Þ
where k � k denotes the matrix spectral norm.

We express (2.13) in an equivalent form, directly useful for our analysis.

Lemma 2.5. Assume H and bHH are symmetric, positive definite m	 m matrices. Then (2.13) is equivalent to the
inequalities

ð1� dÞð bHHw;wÞ6 ðHw;wÞ6 ð1þ dÞð bHHw;wÞ 8w 2 Rm:

Proof. As H and bHH are symmetric, positive definite m	 m matrices, I � bHH �1=2H bHH �1=2 is symmetric. Thus,

(2.13) is equivalent to the inequalities

�dðw;wÞ6 ððI � bHH �1=2H bHH �1=2Þw;wÞ6 dðw;wÞ 8w 2 Rm;

or

ð1� dÞðw;wÞ6 ð bHH �1=2H bHH �1=2w;wÞ6 ð1þ dÞðw;wÞ 8w 2 Rm:

Replacing w by bHH 1=2w we obtain the result. �

Applying Lemmas 2.4 and 2.5 to (2.11), we conclude that there exists a symmetric, positive definite

matrix ÂA such that (d ¼ A�1/, H ¼ A, d̂d ¼ wð/Þ, bHH ¼ ÂA)

ÂAwð/Þ ¼ /;

and

ð1� dÞð ÂAw;wÞ6 ðAw;wÞ6 ð1þ dÞð ÂAw;wÞ 8w 2 Rm:

Define a preconditioner of the matrix A by scaling the matrix ÂA,

eQQA ¼ ð1þ dÞ ÂA:

Then

ð1� d0ÞðeQQAw;wÞ6 ðAw;wÞ6 ðeQQAw;wÞ 8w 2 Rm;

with d0 ¼ 2d=ð1þ dÞ. So the first equation of (2.12) is the same as

unþ1 ¼ un � eQQ�1
A ðsnÞ;
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and with d0 ¼ 2d=ð1þ dÞ and

ð1� d0ÞðeQQAv; vÞ6 ðAv; vÞ6 ðeQQAv; vÞ:
Define the symmetric bilinear form

~bbðuh; vhÞ ¼ ðeQQAu; vÞ
for

uh ¼
Xm
i¼1
ui/i; u ¼ ðu1; . . . ; umÞT;

vh ¼
Xm
i¼1
vi/i; v ¼ ðv1; . . . ; vmÞT:

Then we have the inequalities

aðvh; vhÞ6 ~bbðvh; vhÞ6x0aðvh; vhÞ 8vh 2 Vh
with

x0 ¼ 1þ d
1� d

:

Thus the non-linear Uzawa algorithm is equivalent to the following linear inexact Uzawa algorithm:

Algorithm 2.6. Let k0h 2 K and u0h 2 Vh. For n ¼ 0; 1; 2; . . ., we compute unþ1h 2 Vh and knþ1h by

~bbðunþ1h ; vhÞ ¼ ~bbðunh; vhÞ � ½aðunh; vhÞ þ ðknh;LvhÞL2ðDÞd1 � lðvhÞ� 8vh 2 Vh;
knþ1h ¼ PKðknh þ qLunþ1h Þ:

Applying Theorem 2.2, we obtain

Theorem 2.7. Assume (2.11). Then if 06 d < 2=3 and 0 < q < ð2� 3dÞ=ðð1� dÞc0Þ, we have the convergence
for Algorithm 2.3:

lim
n!1

kunh � uhkV ¼ 0:

Remark 2.8. The condition d < 2=3 is satisfied if a sufficient number of PCG iterations are applied.

We now apply the above results to a flow problem.

Example 2.9. Let X � R2 be a bounded domain and let l, g be given positive parameters. Over the space

V ¼ H 1
0 ðXÞ, define

aðu; vÞ ¼ l
Z

X
ru � rvdx;

jðvÞ ¼ g
Z

X
jrvjdx; jrvj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðox1vÞ

2 þ ðox2vÞ
2

q
;

lðvÞ ¼
Z

X
fvdx:
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We consider the corresponding variational inequality: Find u 2 V such that

aðu; v� uÞ þ jðvÞ � jðuÞP lðv� uÞ 8v 2 V : ð2:14Þ
If lðvÞ ¼ C

R
X vdx, then (2.14) models the laminar stationary flow of a Bingham fluid in a cylindrical pipe of

cross section X. The constant C is the linear decay of pressure and l, g are the viscosity and plasticity yield
of the fluid [12].

The finite element method for the variational inequality (2.14) is: Find uh 2 Vh such that

aðuh; vh � uhÞ þ jðvhÞ � jðuhÞP lðvh � uhÞ 8vh 2 Vh: ð2:15Þ
It is easy to see that (1.4) holds with c0 ¼ g2=l. So we can apply Theorems 2.2 and 2.7 to conclude con-

vergence of the linear and non-linear inexact Uzawa algorithms for solving the discrete variational in-

equality (2.15).

3. Discretization with numerical integration

Notice that the jð�Þ term is non-differentiable. In finite element computations, it is convenient to replace

this term by jhð�Þ obtained through a numerical integration procedure. In this section, we take a simplified

friction problem as a model and show that the convergence theory for inexact Uzawa algorithms developed

in the previous section can be extended to this case.

Let X be a bounded polygonal domain of R2. Decompose the boundary oX into two subsets C0 and C1

with C0 and C1 relatively open in oX. Over the space

V ¼ H 1
C0
ðXÞ ¼ fv 2 H 1ðXÞ : v ¼ 0 a:e: on C0g;

we define

aðu; vÞ ¼
Z

X
ðru � rvþ uvÞdx;

jðvÞ ¼ g
Z

C1

jvjds; g > 0;

lðvÞ ¼
Z

X
fvdx:

The corresponding problem (1.1) is a simplified version of the friction problem in elasticity (cf. [9,12]). We

assume fThg is a regular family of triangulations of X such that if T 2 Th has a non-empty intersection

with C0, then T \ C0 is an entire side of T . Define the corresponding linear element spaces:

Vh ¼ fvh 2 C0ðXÞ : vhjT 2 P1ðT Þ 8T 2 Th; vh ¼ 0 on C0g:
We use the composite trapezoidal rule to evaluate j:

jhðvhÞ ¼ g
X
e2Eb

he
2
ðjvhðx1eÞj þ jvhðx2eÞjÞ;

where Eb is the set of all edges of the elements on C1, x
1
e , x

2
e are the two endpoints of an edge e. The finite

element solution is then defined by

uh 2 Vh; aðuh; vhÞ þ jhðvhÞ � jhðuhÞP lðvh � uhÞ 8vh 2 Vh: ð3:1Þ
LetMh ¼ fwh : jwhðxf Þj6 1 8xf 2 Nbg, Nb being the set of all the nodes on C1, and define a discrete inner

product

ðkh; vhÞh ¼ g
X
e2Eb

he
2
ðkhðx1eÞvhðx1eÞ þ khðx2eÞvhðx2eÞÞ:
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Then (3.1) is characterized by uh 2 Vh and kh 2 Mh such that

aðuh; vhÞ þ ðkh; vhÞh ¼ lðvhÞ 8vh 2 Vh;
khðxf Þuhðxf Þ ¼ juhðxf Þj 8xf 2 Nb:

Let k0h 2 K and u0h 2 Vh be given. Denote the projection operator on R to ½�1; 1�:

P0t ¼
t

supð1; jtjÞ ; t 2 R:

For n ¼ 0; 1; 2; . . ., we can then apply the following variant of Algorithm 2.1:

unþ1h 2 Vh; a0ðunþ1h ; vhÞ ¼ a0ðunh; vhÞ � aðunh; vhÞ
�

þ ðknh;LvhÞh � lðvhÞ
�

8vh 2 Vh; ð3:2Þ

knþ1h ðxf Þ ¼ P0ðknhðxf Þ þ qunþ1h ðxf ÞÞ 8xf 2 Nb; ð3:3Þ
or the following variant of Algorithm 2.3:

unþ1 ¼ un � 1

1þ d
wðsnÞ; ð3:4Þ

knþ1h ðxf Þ ¼ P0ðknhðxf Þ þ qunþ1h ðxf ÞÞ 8xf 2 Nb; ð3:5Þ
where un ¼ ðun1; . . . ; unmÞ

T
, unh ¼

Pm
j¼1 u

n
j/j 2 Vh and the vector sn has the components

snj ¼ aðunh;/jÞ þ ðknh;L/jÞh � lð/jÞ; j ¼ 1; 2; . . . ;m:

Convergence of these inexact Uzawa algorithms does not follow directly from Theorems 2.2 and 2.7.

However, we can present the following arguments.

The following trace inequality is well-known:Z
C1

v2 ds6 ĉc0

Z
X
ðjrvj2 þ v2Þdx 8v 2 H 1ðXÞ;

where ĉc0 ¼ 1=kmin and kmin > 0 is the smallest eigenvalue of the problem

� Duþ u ¼ 0 in X;

u ¼ 0 on C0;

ou
on

¼ ku on C1:

We have

ðLvh;LvhÞh ¼ g
X
e2Eb

he
2
ðvhðx1eÞ

2 þ vhðx2eÞ
2Þ6 3g

2

Z
X
vhðsÞ2 ds6

3gĉc0
2
aðvh; vhÞ:

Thus we can modify the proofs of Theorems 2.2 and 2.7 in a straightforward way (replacing ð�; �ÞL2ðDÞd1 and
k � k2L2ðDÞd1 by ð�; �Þh in the proofs) to conclude convergence of the linear and non-linear inexact Uzawa al-

gorithms (3.2), (3.3) and (3.4), (3.5), under the conditions stated in Theorems 2.2 and 2.7 with c0 ¼ 3gĉc0=2.

4. Numerical experiments

In this section we present some numerical results for solving the discrete system (2.15). We choose
X ¼ ð0; 1Þ 	 ð0; 1Þ be the unit square and l ¼ g ¼ 1, lðvÞ ¼

R
X vdx. Let Th be the uniform triangulation of

1460 X.-L. Cheng, W. Han / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1451–1462



X, dividing X into 2ðnþ 1Þ2 triangles. Denote h ¼ 1=ðnþ 1Þ. We compare the numerical results for the
Uzawa algorithm (1.13) and (1.14) (denoted by I) and the inexact non-linear Uzawa algorithm (2.12)

(denoted by II), with 20 steps of PCG method for W and d ¼ 0:5 in (2.12). The stop criterion is

kunh � un�1h k0 6 10�5. Let q ¼ 1:5.
It is evident from Table 1 that as the size of the discrete system gets larger, it is more efficient to use the

inexact Uzawa algorithm.

For the inexact Uzawa algorithm, we have done some experiments for the effect of the number of PCG

inner iterations and the value of the parameter q on the performance of the method. The results are

summarized in Table 2.
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