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a b s t r a c t

This paper is devoted to numerical analysis of a new class of elliptic variational–
hemivariational inequalities in the study of a family of contact problems for elastic ideally
lockingmaterials. The contact is described by the Signorini unilateral contact condition and
the friction is modeled by a nonmonotone multivalued subdifferential relation allowing
slip dependence. The problem involves a nonlinear elasticity operator, the subdifferential
of the indicator function of a convex set for the locking constraints and a nonconvex locally
Lipschitz friction potential. Solution existence and uniqueness result on the inequality can
be found in Migórski and Ogorzaly (2017) . In this paper, we introduce and analyze a finite
element method to solve the variational–hemivariational inequality. We derive a Céa type
inequality that serves as a starting point of error estimation. Numerical results are reported,
showing the performance of the numerical method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Variational–hemivariational inequalities are a particular kind of inequality problems, in which both convex and noncon-
vex functions are involved. Motivated by applications in contactmechanics, several variational–hemivariational inequalities
have been studied recently. In [1], a class of static variational–hemivariational inequalities is introduced andwell-posedness
of the inequalities is shown. The finite element method is applied for the numerical approximation and error estimates
are derived. For the linear element solutions, the optimal convergence order is shown under certain solution regularity
assumptions. This represents the first optimal order error bound found in the literature on numerical solutions of hemi-
variational inequalities or variational–hemivariational inequalities. The results are applied in the analysis of static contact
problemwith friction for elastic materials. In [2], a viscoelastic problem is considered on infinite time interval, modeledwith
frictionless contact and with a boundary condition which describes both the instantaneous and the memory effects of the
foundation. This problem leads to a variational–hemivariational inequality with history-dependent operators. In [3], a class
of elliptic variational–hemivariational inequalities is studied in reflexive Banach spaces. Well-posedness of the inequalities
is established, including a result on the continuous dependence of the solution with respect to the data and a convergence
result obtained by means of penalization method. The abstract results are applied to the study of an elastic contact problem
with unilateral constraint. Numerical analysis of the problems studied in [3] is done in [4], where a general framework of
convergence and error estimation is established.
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In the very recent paper [5], new variational–hemivariational inequalities are introduced and analyzed for static contact
problems for elastic ideally lockingmaterials. The contact is assumed to be static and it is modeled by the Signorini unilateral
contact condition with a nonmonotone friction condition between a locking body and a rigid foundation. The constitutive
law is described by the (convex) subdifferential of the indicator function of a convex set which characterizes the locking
constraints. The friction is modeled by the (Clarke) subdifferential boundary condition involving a locally Lipschitz function
which is generally nonconvex and nondifferentiable. Furthermore, the multivalued frictional contact condition is allowed
to depend on the slip, important for many applications. The weak formulation has a form of variational–hemivariational
inequality of elliptic type. This appears to be the first work on variational–hemivariational inequalities for lockingmaterials.

The theory of locking materials started with the pioneering works by Prager, [6–8]. Here, locking materials refer to
hyperelastic bodies with the strain tensor constrained to a convex set. We use a positive integer d for the spatial dimension;
for applications, d ≤ 3. Let Sd be the space of second order symmetric tensors on Rd, and B be a closed, convex subset of Sd

with 0Sd ∈ B. The elastic ideally locking materials are characterized by the following relations{
σij = σ e

ij + σ l
ij, σ e

ij = aijklεkl(u),
ε(u) ∈ B, σ l

ij · (ε
∗

ij − εij(u)) ≤ 0 for all ε∗
= (ε∗

ij) ∈ B.
(1)

Here σ e
ij and σ l

ij represent elastic and locking components of the stress tensor σij, u is the displacement field, and ε(u) =

(εij(u)) is the infinitesimal strain tensor with the components εij(u) =
1
2 (ui,j + uj,i). The indices i, j, k, l run between 1 and

d, and the summation convention over repeated indices is adopted. As an example of one spatial dimension, a stress–strain
law of the type (1) takes the form [6]

σ =

⎧⎪⎨⎪⎩
0, if ε < 0,
kε, if 0 ≤ ε < ε0,
[kε0, +∞), if ε = ε0,
∅, if ε > ε0,

where ε0 and k are prescribed positive constants. This law describes the behavior of a body which offers no resistance for
compression, is linear (Hooke’s law) for 0 < ε < ε0, and has an infinite jump called a locking effect for ε = ε0.

Note that variational problems encountered in the theory of lockingmaterials were studied in [9], where the equivalence
between the statical and the kinematical methods for such materials was shown.

In this paper, we consider elastic materials with the following constitutive law:

σ(u) ∈ A(ε(u)) + ∂ IB(ε(u)) in Ω, (2)

where Ω is an open, bounded, connected set in Rd with a Lipschitz boundary ∂Ω ,A : Ω × Sd
→ Sd is a nonlinear elasticity

operator, B ⊂ Sd is a locking constraint set,

IB(ε) =

{
0, if ε ∈ B,
+∞, if ε ∈ Sd

\ B

is the indicator function of the set B, and ∂ IB : Sd
→ 2S

d
stands for the subdifferential of IB. In the case where the operator

ε ↦→ A(x, ε) is linear with the elasticity tensor components aijkl, the relation (2) reduces to (1). Moreover, in this case, the
law (2) can be written as

σ(u) ∈ ∂w(ε(u)) in Ω,

the potential function w : Sd
→ R being defined by

w(ε) =
1
2
aijkl εij εkl + IB(ε) for ε ∈ Sd.

Several choices of the set B can be found in the literature for perfectly locking materials. As an example, B = {ε ∈ Sd
|

Q (ε) ≤ 0}, where the locking function Q : Sd
→ R is convex, continuous, and Q (0) ≤ 0. The strains are restricted by the

inequality Q (ε) ≤ 0. The choice

Q (ε) =
1
2

εD
ij ε

D
ij − κ2, κ > 0 (3)

was considered by Prager in [7] to model an ideal-locking effect. Here, εD
= (εD

ij ) denotes the deviatoric part of the strain,
εD
ij = εij −

1
d tr(ε) I , tr(ε) = εii is the trace of the tensor ε(u), and I stands for the identity matrix. The choice

Q (ε) = |tr(ε)|2 − κ2, κ > 0 (4)
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leads tomaterials with limited compressibility [7]. This choice of the locking function Q can be used to describe the behavior
of rubber and some of other types of plasticmaterials [10]. In the limiting case κ = 0, the set B corresponds to incompressible
elastic materials [9]. In modeling the torsion of a cylindrical bar made of a locking material, the set B is chosen to be the ball
centered at zero with a radius r > 0 [9]. In one-dimensional models of idealized strain–stress law for rubber, the choice
Q (ε) = ε − ε0 [11,12] reflects the phenomenon that the stress can take at the locking criterion an arbitrarily large value
without any change of the strain state.

The rest of the paper is organized as follows. In Section 2, we state the variational–hemivariational inequality formulation
of the contact problem and recall the existence and uniqueness result proved in [5]. In Section 3, we introduce a numerical
method for the variational–hemivariational inequality and derive an error bound. Finally, in Section 4, we provide numerical
simulation results.

2. The variational–hemivariational inequality

In the statement of the variational–hemivariational inequality, we need the notion of the Clarke subgradient. Let (X, ∥·∥X )
be a Banach space with its dual denoted by X∗ and let ⟨·, ·⟩ stand for the duality pairing of X∗ and X .

Definition 1. Let g : X → R be a locally Lipschitz function. The (Clarke) generalized directional derivative of g at the point
x ∈ X in the direction v ∈ X is defined by

g0(x; v) = lim sup
y→x, λ↓0

g(y + λv) − g(y)
λ

.

The generalized gradient (subdifferential) of g at x is a subset of the dual space X∗ given by

∂g(x) =
{
ζ ∈ X∗

| g0(x; v) ≥ ⟨ζ , v⟩ for all v ∈ X
}
.

Detailed discussions of the Clarke generalized directional derivative and the generalized gradient can be found in [13–16].
We now recall the classical formulation of the contact problem studied in [5].

Problem 2. Find a displacement field u :Ω → Rd and a stress field σ : Ω → Sd such that

σ(u) ∈ A(ε(u)) + ∂ IB(ε(u)) in Ω, (5)

− Div σ(u) = f0 in Ω, (6)

u = 0 on ΓD, (7)

σ(u)ν = fN on ΓN , (8)

σν(u) ≤ 0, uν ≤ 0, σν(u)uν = 0 on ΓC , (9)

− στ (u) ∈ µ(∥uτ∥) ∂ j(uτ ) on ΓC . (10)

The set Ω represents the elastic body in its reference configuration and it is assumed to be an open, bounded, and
connected subset of Rd, d ≤ 3. The boundary Γ of Ω is supposed to be Lipschitz continuous and therefore the outward
unit normal on the boundary, denoted by ν = (νi), is defined a.e. Moreover, Γ is partitioned into three disjoint measurable
parts ΓD, ΓN and ΓC such thatmeas (ΓC ) > 0. The inner products and norms on Rd and Sd are defined by

u · v = uivi, ∥v∥ = (v · v)1/2 for all u = (ui), v = (vi) ∈ Rd,

σ · τ = σijτij, ∥τ∥ = (τ · τ)1/2 for all σ = (σij), τ = (τij) ∈ Sd,

respectively.
The constitutive law for elasticmaterials with locking constraints is given by Eq. (5). It is assumed that the contact process

is static and so we use the equilibrium equation (6), f0 being the body force density. Conditions (7) and (8) are the classical
displacement and traction boundary conditions: the body is fixed on ΓD and surface tractions of density fN are applied on
ΓN . The Signorini contact condition in its classical form without gap is given by relation (9) which holds on the surface ΓC .
Here, σν and στ represent the normal and tangential components of the stress field σ on the boundary, and are defined by
σν = (σν) · ν and στ = σν − σνν. The normal and tangential components of a vector field v on the boundary are given by
vν = v · ν and vτ = v − vνν, respectively. Relation (9) is a unilateral contact condition which assumes that the foundation
is perfectly rigid. Finally, condition (10) represents the friction law, in which ∂ j denotes the generalized gradient of the
prescribed function j, and µ is the friction coefficient, assumed to be a positive function on ΓC . We allow the function µ to
depend on the slip, i.e. the tangential displacement. Details on mechanical description of static contact models with elastic
materials can be found in the books [17,18,15].
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We need the following hypotheses on the elasticity operator A and the locking constraint set B.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : Ω × Sd
→ Sd is such that

(a) A(·, ε) is measurable on Ω for all ε ∈ Sd
;

(b) A(x, ·) is continuous on Sd for a.e. x ∈ Ω;

(c) there exist a0 ∈ L2(Ω), a0 ≥ 0 and a1 > 0 such that
∥A(x, ε)∥ ≤ a0(x) + a1∥ε∥ for all ε ∈ Sd, a.e. x ∈ Ω;

(d) there existsmA > 0 such that
(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) ≥ mA ∥ε1 − ε2∥

2

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(e) A(x, 0Sd ) = 0Sd for a.e. x ∈ Ω.

(11)

B is a closed, convex subset of Sd with 0Sd ∈ B. (12)

The potential function j and the friction coefficient µ are assumed to satisfy the following conditions.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

j : ΓC × Rd
→ R is such that

(a) j(·, ξ) is measurable on ΓC for all ξ ∈ Rd and there
exists e ∈ L2(ΓC ;Rd) such that j(·, e(·)) ∈ L1(ΓC );

(b) j(x, ·) is locally Lipschitz on Rd for a.e. x ∈ ΓC ;

(c) ∥∂ j(x, ξ)∥ ≤ cj for all ξ ∈ Rd, a.e. x ∈ ΓC with cj > 0;
(d) j0(x, ξ1; ξ2 − ξ1) + j0(x, ξ2; ξ1 − ξ2) ≤ αj ∥ξ1 − ξ2∥

2

for all ξ1, ξ2 ∈ Rd, a.e. x ∈ ΓC with αj ≥ 0.

(13)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ : ΓC × R+ → R+ is such that
(a) there exists Lµ > 0 such that

|µ(x, r1) − µ(x, r2)| ≤ Lµ|r1 − r2|
for all r1, r2 ∈ R+, a.e. x ∈ ΓC ;

(b) µ(·, r) is measurable on ΓC for all r ∈ R;

(c) there exists µ0 > 0 such that µ(x, r) ≤ µ0
for all r ∈ R+, a.e. x ∈ ΓC .

(14)

The condition (13)(d) is equivalent to the relaxed monotonicity condition

(∂ j(x, ξ1) − ∂ j(x, ξ2)) · (ξ1 − ξ2) ≥ −αj∥ξ1 − ξ2∥
2 (15)

for all ξ1, ξ2 ∈ Rd, a.e. x ∈ ΓC . In the case where j(x, ·) is a convex function, αj = 0 and this condition reduces to the
monotonicity of the convex subdifferential.

Furthermore, we assume that the densities of body forces and surface tractions have the following regularity

f0 ∈ L2(Ω;Rd), fN ∈ L2(ΓN ;Rd). (16)

We give two examples for the function j in the friction condition (10). For simplicity, we skip the dependence of the
potential j :Rd

→ R on the x variable. More examples for the function j can be found in [15, Chapter 7].
The first example is

j(ξ) =

⎧⎪⎨⎪⎩
a ∥ξ∥ +

a(1 − a)
2

if ∥ξ∥ ≥ a,
a − 1
2a

∥ξ∥2
+ ∥ξ∥ if ∥ξ∥ ≤ a

(17)

for ξ ∈ Rd, where 0 < a < 1 is given. Its subdifferential is

∂ j(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a

ξ

∥ξ∥
if ∥ξ∥ ≥ a,

B(0, 1) if ξ = 0,
a − 1
a

ξ +
ξ

∥ξ∥
if 0 < ∥ξ∥ ≤ a

for ξ ∈ Rd, where B(0, 1) is the closed unit ball in Rd. The function j is nonconvex and it satisfies hypotheses (13) with cj = 1
and αj = 1 [15]. The corresponding friction law (10) takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

∥στ∥ ≤ µ(0) if uτ = 0,

−στ = µ(∥uτ∥)
(a − 1

a
uτ +

uτ

∥uτ∥

)
if 0 < ∥uτ∥ ≤ a,

−στ = µ(∥uτ∥)a
uτ

∥uτ∥
if ∥uτ∥ ≥ a

(18)
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on ΓC . If a = 1 in (17), the function j(ξ) = ∥ξ∥ is convex and the friction law (18) becomes the classical Coulomb’s law of dry
friction. The latter has been studied in several monographs, cf. [19,17,15,18,20].

As another example, consider

j(ξ) =

√
∥ξ∥2 + ρ2 − ρ for ξ ∈ Rd,

where ρ > 0 is a parameter. This function is convex and continuously differentiable, and

∂ j(ξ) = j′(ξ) =
ξ√

∥ξ∥2 + ρ2
for ξ ∈ Rd. (19)

The function j satisfies (13)(b), (13)(c) with cj = 1 and ∂ j is monotone, i.e., (13)(d) holds with αj = 0. The corresponding
friction condition (10) reduces to the static version of the regularized Coulomb friction law with slip:

− στ (u) = µ(∥uτ∥)
uτ√

∥uτ∥
2 + ρ2

on ΓC .

Returning to Problem 2, for its weak formulation, we introduce some function spaces:

V = { v ∈ H1(Ω;Rd) | v = 0 on ΓD }, H = L2(Ω;Rd), H = L2(Ω; Sd).

These are Hilbert spaces. The inner product over the space H is

⟨σ, τ⟩H =

∫
Ω

σij(x) τij(x) dx.

The inner product over the space V is

⟨u, v⟩V = ⟨ε(u), ε(v)⟩H for u, v ∈ V ,

recalling that meas (ΓD) > 0. For v ∈ V , we denote its trace on the boundary by the same symbol v. The trace operator is
continuous,

∥v∥L2(∂Ω;Rd) ≤ ∥γ ∥ ∥v∥V for all v ∈ V ,

where ∥γ ∥ denotes the norm of the trace operator γ : V → L2(∂Ω;Rd). Define f ∈ V ∗ by

⟨f , v⟩ = ⟨f0, v⟩H + ⟨fN , v⟩L2(ΓN ;Rd) for all v ∈ V , (20)

the set of admissible displacement fields

K1 = { v ∈ V | vν ≤ 0 on ΓC }, (21)

and the set with locking constraint

K2 = { v ∈ V | ε(v(x)) ∈ B a.e. x ∈ Ω }. (22)

Note that for the choice (4),

K2 = {v ∈ V | div v(x) ∈ [−κ, κ] a.e. x ∈ Ω}.

Further define

K = K1 ∩ K2 (23)

which is a closed and convex set with 0V ∈ K . Then, the weak formulation of Problem 2 is the following.

Problem 3. Find a displacement field u ∈ K such that

⟨A(ε(u)), ε(v) − ε(u)⟩H +

∫
ΓC

µ(∥uτ∥)j0(uτ ; vτ − uτ ) dΓ

≥ ⟨f , v − u⟩V∗×V for all v ∈ K . (24)

Using the indicator function IK2 , we can rephrase Problem 3 as one to find u ∈ K1 such that

⟨A(ε(u)), ε(v) − ε(u)⟩H + IK2 (v) − IK2 (u) +

∫
ΓC

µ(∥uτ∥)j0(uτ ; vτ − uτ ) dΓ

≥ ⟨f , v − u⟩V∗×V for all v ∈ K1.

For this reason, we call Problem 3 a variational–hemivariational inequality.
The following existence and uniqueness result is proved in [5, Theorem 12].
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Theorem 4. Assume hypotheses (11)– (16) and the following smallness condition

(µ0 αj + cj Lµ)∥γ ∥
2 < mA. (25)

Then Problem 3 has a unique solution u ∈ K .

3. Numerical analysis of the problem

We consider the numerical solution of Problem 3 by the finite element method in this section. For simplicity, we assume
Ω is a polygonal/tetrahedral domain. Let {T h

} be a regular family of partitions of Ω into triangles/tetrahedrons that are
compatible with the partition of the boundary ∂Ω into ΓD, ΓN , and ΓC , in the sense that if the intersection of one side/face
of an element with one of the three sets has a positive surface measure, then the side/face lies entirely in that set. Then we
construct linear element spaces corresponding to T h

V h
=

{
vh

∈ C(Ω)d | vh
|T ∈ P1(T )d for T ∈ T h, vh

= 0 on ΓD
}
,

where P1(T ) stands for the space of polynomials of a degree less than or equal to 1 on T . Let

K h
=

{
vh

∈ V | vh
ν ≤ 0 on ΓC , ε(vh) ∈ B in Ω

}
. (26)

The set K h is non-empty since 0 ∈ K h. Then the finite element method for Problem 3 is the following.

Problem 5. Find uh
∈ K h such that

⟨A(ε(uh)), ε(vh) − ε(uh)⟩H +

∫
ΓC

µ(∥uh
τ∥)j

0(uh
τ ; v

h
τ − uh

τ ) dΓ

≥ ⟨f , vh
− uh

⟩V∗×V for all vh
∈ K h. (27)

The proof of Theorem 4 from [5] can be carried over to show that Problem 5 has a unique solution uh
∈ K h. The focus of

this section is to derive error estimates.
For error analysis, in addition to the previously stated assumptions on the data, we also assume thatA : Ω × Sd

→ Sd is
Lipschitz continuous:

∥Aε1 − Aε2∥ ≤ LA ∥ε1 − ε2∥ for all ε1, ε2 ∈ Sd with LA > 0. (28)

We start with an application of (11)(d) which gives

mA∥u − uh
∥
2
V ≤ ⟨A(ε(u)) − A(ε(uh)), ε(u − uh)⟩H.

For any vh
∈ K h, we rewrite the above inequality as

mA∥u − uh
∥
2
V ≤ ⟨A(ε(u)) − A(ε(uh)), ε(u − vh)⟩H + ⟨A(ε(u)), ε(vh

− u)⟩H
+ ⟨A(ε(u)), ε(u − uh)⟩H + ⟨A(ε(uh)), ε(uh

− vh)⟩H. (29)

From (24) with v = uh, we have

⟨A(ε(u)), ε(u − uh)⟩H ≤

∫
ΓC

µ(∥uτ∥)j0(uτ ; uh
τ − uτ ) dΓ − ⟨f , uh

− u⟩V∗×V .

From (27), we obtain

⟨A(ε(uh)), ε(uh
− vh)⟩H ≤

∫
ΓC

µ(∥uh
τ∥)j

0(uh
τ ; v

h
τ − uh

τ ) dΓ − ⟨f , vh
− uh

⟩V∗×V .

Use these two inequalities in (29), after some rearrangement of the terms, to get

mA∥u − uh
∥
2
V ≤ ⟨A(ε(u)) − A(ε(uh)), ε(u − vh)⟩H + R(u − vh) + Ij(uτ , uh

τ , v
h
τ ), (30)

where

R(w) = ⟨f ,w⟩V∗×V − ⟨A(ε(u)), ε(w)⟩H +

∫
ΓC

µ(∥uτ∥)j0(uτ ; −wτ ) dΓ , (31)

Ij(uτ , uh
τ , v

h
τ ) =

∫
ΓC

[
µ(∥uτ∥)

(
j0(uτ ; uh

τ − uτ ) − j0(uτ ; vh
τ − uτ )

)
+µ(∥uh

τ∥) j
0(uh

τ ; v
h
τ − uh

τ )
]
dΓ . (32)
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Next, we write

µ(∥uh
τ∥) j

0(uh
τ ; v

h
τ − uh

τ ) = µ(∥uτ∥) j0(uh
τ ; v

h
τ − uh

τ )

+
(
µ(∥uh

τ∥) − µ(∥uτ∥)
)
j0(uh

τ ; v
h
τ − uh

τ ).

By the sub-additivity of j0 with respect to its second argument, we have

j0(uh
τ ; v

h
τ − uh

τ ) ≤ j0(uh
τ ; v

h
τ − uτ ) + j0(uh

τ ; uτ − uh
τ ).

Then,

µ(∥uh
τ∥) j

0(uh
τ ; v

h
τ − uh

τ ) ≤ µ(∥uτ∥)
(
j0(uh

τ ; v
h
τ − uτ ) + j0(uh

τ ; uτ − uh
τ )

)
+

(
µ(∥uh

τ∥) − µ(∥uτ∥)
)
j0(uh

τ ; v
h
τ − uh

τ ),

and

Ij(uτ , uh
τ , v

h
τ ) ≤

∫
ΓC

[
µ(∥uτ∥)

(
j0(uτ ; uh

τ − uτ ) + j0(uh
τ ; uτ − uh

τ )
)

+ µ(∥uτ∥)
(
j0(uh

τ ; v
h
τ − uτ ) − j0(uτ ; vh

τ − uτ )
)

+
(
µ(∥uh

τ∥) − µ(∥uτ∥)
)
j0(uh

τ ; v
h
τ − uh

τ )
]
dΓ .

By (13)(d), it is clear that

j0(uτ ; uh
τ − uτ ) + j0(uh

τ ; uτ − uh
τ ) ≤ αj∥uτ − uh

τ∥
2,

and, by (13)(c), we deduce the following inequalities⏐⏐j0(uh
τ ; v

h
τ − uτ )

⏐⏐ ≤ cj∥uτ − vh
τ ∥,⏐⏐j0(uτ ; vh

τ − uτ )
⏐⏐ ≤ cj∥uτ − vh

τ ∥,⏐⏐j0(uh
τ ; v

h
τ − uh

τ )
⏐⏐ ≤ cj∥vh

τ − uh
τ∥.

Subsequently, from (14)(a), it follows⏐⏐µ(∥uh
τ∥) − µ(∥uτ∥)

⏐⏐ ≤ Lµ

⏐⏐∥uh
τ∥ − ∥uτ∥

⏐⏐ ≤ Lµ∥uτ − uh
τ∥.

Hence, we have

Ij(uτ , uh
τ , v

h
τ ) ≤

∫
ΓC

[
µ0αj∥uτ − uh

τ∥
2
+ 2µ0cj∥uτ − vh

τ ∥

+Lµcj∥uτ − uh
τ∥ ∥uh

τ − vh
τ ∥

]
dΓ .

Now, we use the inequality

∥uh
τ − vh

τ ∥ ≤ ∥uτ − uh
τ∥ + ∥uτ − vh

τ ∥.

Let ϵ > 0 be a small parameter. Then,

Lµcj∥uτ − uh
τ∥ ∥uh

τ − vh
τ ∥ ≤ Lµcj∥uτ − uh

τ∥
(
∥uτ − uh

τ∥ + ∥uτ − vh
τ ∥

)
≤

(
Lµcj + ϵ

)
∥uτ − uh

τ∥
2
+ c ∥uτ − vh

τ ∥
2

for a constant c depending on ϵ. For another constant c depending on ϵ, we have

⟨A(ε(u)) − A(ε(uh)), ε(u − vh)⟩ ≤ ϵ ∥u − uh
∥
2
V + c ∥u − vh

∥
2
V .

Using these bounds in (30), we obtain(
mA −

(
µ0αj + cjLµ + ϵ

)
∥γ ∥

2
− ϵ

)
∥u − uh

∥
2
V

≤ c ∥u − vh
∥
2
V + R(u − vh) + c ∥uτ − vh

τ ∥L2(ΓC ).

Recall the smallness condition(
µ0αj + cjLµ

)
∥γ ∥

2 < mA.

Then for ϵ > 0 sufficiently small, we conclude

∥u − uh
∥V ≤ c

[
∥u − vh

∥V + |R(u − vh)|
1/2

+ ∥uτ − vh
τ ∥

1/2
L2(ΓC )

]
. (33)

This Céa type inequality is the starting point for convergence and error estimation.
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Recalling the definition (31) for R(w), we can easily find a crude upper bound,

|R(w)| ≤ c
(
∥f ∥V∗ + ∥a0∥L2(Ω) + ∥u∥V + µ0cj

)
∥w∥V for all w ∈ V .

Consequently, from (33), we immediately have the following error bound

∥u − uh
∥V ≤ c inf

vh∈Kh
∥u − vh

∥
1/2
V . (34)

To proceed further, we make an assumption on the constraint set B: there exists a constant c1 > 0 such that

δ B + (1 − δ) c1B0 ⊂ B for all δ ∈ (0, 1). (35)

Here, B0 is the unit ball centered at the origin in Sd. This assumption is valid in applications, and in particular, for the choices
(3) and (4).

For the regularity of the solution u, we assume that

u ∈ W 2,∞(Ω;Rd). (36)

By the Sobolev embedding theorem, u ∈ C(Ω;Rd) and so its finite element interpolant Ihu ∈ V h is well defined. By the
standard finite element approximation theory (see [21, Theorem 4.4.20]), there is a constant c2 > 0 such that

max
T∈T h

∥u − Ihu∥W1,∞(T ;Rd) ≤ c2h ∥u∥W2,∞(Ω;Rd),

which implies

max
T∈T h

∥ε(Ihu − u)∥L∞(T ;Sd) ≤ c3h ∥u∥W2,∞(Ω;Rd) (37)

for a suitable constant c3 depending on c2.
Note that Ihu ∈ K1. Fix α < 1 an arbitrary positive number, and define

wh
= (1 − hα) Ihu. (38)

Writing

ε(wh) = (1 − hα) ε(u) + (1 − hα) ε(Ihu − u),

by (35) with δ = 1 − hα and (37), we know that for h small enough,wh
∈ K2, and then also

wh
∈ K h.

Therefore, from (34), we have

∥u − uh
∥V ≤ c ∥u − wh

∥
1/2
V .

Now, exploiting the inequality

∥u − wh
∥V ≤ ∥u − Ihu∥V + hα

∥Ihu∥V

≤ ∥u − Ihu∥V + hα
(
∥u∥V + ∥u − Ihu∥V

)
≤ c h + hα (∥u∥V + c h) ,

we have the error bound

∥u − uh
∥V ≤ c hα/2, (39)

for any α < 1. However, we comment that the error bound (39) is not optimal in order. It is desirable to improve the error
bound (39) to the optimal one

∥u − uh
∥V ≤ c h

under appropriate solution regularity assumptions. This is a topic for further investigation.

4. Numerical results

In this section, we report numerical simulation results on the contact Problem 5 regularized with normal compliance and
nearly locking effect, which is referred to as the regularized Problem 5 in this section.

The variational–hemivariational inequalities are usually related to the solution of nonlinear and nonconvex problems.
The nonlinearities come from both the frictional contact conditions and the locking effect of the elastic material, while
the nonconvexity comes from the nonmonotone dependence of the friction coefficient with respect to the tangential
displacement. A classical and efficient numerical technique to solve this kind of problems is based on a ‘‘convexification’’
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Fig. 1. Reference configuration of the two-dimensional example.

iterative procedure which leads to a sequence of convex programming problems. The solution of regularized Problem 5
based on this iterative procedure exploits numerical methods described in [22,23]. For the solution of the resulting convex
iterative problems, we used classical numerical methods that can be found for instance in [24,25].

For the numerical example, we consider compression of a quasi-incompressible deformable square clamped on its
horizontal bottom side andwhich can come into contact with two foundations on its vertical sides. The physical setting used
for regularized Problem 5 is depicted in Fig. 1. The deformable body is represented by a square domain,Ω = (0, 4)×(0, 4) ⊂

R2, and its boundary Γ is split as follows:

ΓD = [0, 4] × {0},
ΓN = [0, 4] × {4},
ΓC = ({0} × (0, 4)) ∪ ({4} × (0, 4)).

Here, the domain Ω represents the cross section of a three-dimensional elastic body with locking effect subjected to the
action of tractions in such away that a plane stress hypothesis is assumed. On the partΓD the body is clamped and, therefore,
the displacement field vanishes there. Vertical compression acts on the boundary ΓN . No body force acts on the elastic body.
The body is in frictional contact with two obstacles on the part ΓC of the boundary.

The elastic locking material’s behavior chosen for the numerical simulations is governed by the constitutive law of the
following form

σ(u) = A(ε(u)) + Cκ (|tr(ε(u))| − κ2)+I, (40)

where Cκ is a positive parameter and κ is a material constant. Note that the constitutive law (40) is based on nearly-locking
effect which approximates the ideal-locking effect considered in (5). This constitutive law is related to the locking functionQ
introduced in Section 1 and defined byQ (ε) = |tr(ε)|−κ2. In themodel (40), Cκ represents a compliance parameter intended
to tend towards infinity in order to approximate the ideal-locking effect. This nearly-locking effect can be interpreted as a
quasi-limited compressibility condition that the infinitesimal strain tensor ε must satisfy (see the last remark of Section 1).

We assume that the material is homogeneous and isotropic, and the elasticity tensor A has the form

(Aτ)ij =
Eγ

(1 + κ)(1 − 2γ )
(τkk)δij +

E
1 + γ

τij, 1 ≤ i, j ≤ 2, for all τ ∈ S2,

where the coefficients E and γ are Young’s modulus and the Poisson’s ratio of the material, respectively, and δij denotes the
Kronecker symbol. For the numerical simulation of the regularized Problem 5, the following data are used

E = 2000N/m2, γ = 0.3,
Cκ = 10000, κ = 0.4,
f0 = (0, 0)N/m2,

fN = (0, −9 × 102)N/m on ΓN .

The numerical results are presented in Figs. 2–4. In Fig. 2, the deformed configuration as well as the interface forces
on ΓC is plotted. In this case, the contact boundary conditions on ΓC are characterized by a frictional contact in which
the normal response follows a normal compliance law and for which the friction law is nonmonotone with respect to the
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Fig. 2. Deformed mesh and interface forces on ΓC .

tangential displacement uτ . This nonmonotone dependence is characterized by a coefficient of friction µ which depends on
the tangential displacement uτ as follows

µ(∥uτ∥) = (a − b) e−β ∥uτ ∥
+ b (41)

with a = 0.4, b = 0.1 and β = 100, and therefore the friction bound decreases with the slip from the value a to the limit
value b. As a consequence, the corresponding friction law is nonmonotone. This physicalmodel of slip-dependent frictionwas
introduced in [26] for earthquakes modeling in geophysics and it also was studied and used in [22,27,23,28,29]. Concerning
the normal compliance contact conditions on ΓC , we choose the following law

− σν =

{
0 if uν < ga,
cν(uν − ga) if uν ≥ ga,

(42)

with cν = 10 000 and ga = 0.4.
In Fig. 2, we observe that a large proportion of contact nodes situated at the top vertical extremities of ΓC are in status of

slip since the gap with the foundation and the friction bound are reached there.
In order to appreciate the locking effect, the deformedmeshes as well as the interface forces on ΓC are plotted in Fig. 3 for

two values of the compliance parameter Cκ . Note that the case Cκ = 0 corresponds to the problem without locking effect.
According to Fig. 3, we can see that when the compliance parameter Cκ = 0, the solution of the problem is characterized
by a strong compressibility behavior that leads to no contact on the vertical sides of the square. Conversely, it is obvious
to observe that the locking effect related to the quasi-limited compressibility condition considered in (40) leads to a quasi-
incompressibility behavior when the compliance parameter Cκ is large (Cκ = 10 000). Consequently, this behavior leads to
the contact of several nodes located on the vertical sides of the square.

Details concerning the computation for the numerical simulations related to the solution of the regularized Problem 5
with Cκ = 10 000 and Cκ = 0 are as follows. For instance, in Fig. 2, the problem was discretized in 33024 finite elements
with 256 contact elements; the total number of degrees of freedom was equal to 33794. The average iterations number of
the ‘‘convexification’’ procedure for the solution of Problem 5 was equal to 3 and the simulation runs in 76 (expressed in
seconds) CPU time on an IBM computer equipped with Intel Dual core processors (Model 5148, 2.33 GHz). For comparison,
the simulation for the solution of the problem without locking effect (Cκ = 0) runs in 15 CPU time.

For numerical convergence order, we computed a sequence of numerical solutions by using uniform discretization of the
regularized Problem 5 with respect to the spatial discretization parameter h. For this procedure, the spatial discretization
parameter h represents the surface of one finite element which is equal to the surface of the domain divided by the number
of finite elastic elements. We start with h = 1/2 which are successively divided by 4. For instance, in Fig. 2, the numerical
solution of the regularized Problem 5 is related to h = 1/2048.

The numerical errors in energy norm ∥u − uh
∥E are computed for several values of the discretization parameter h. The

energy norm is defined by the formula

∥vh
∥E =

1
√
2
(A(ε(vh)), ε(vh))1/2H .

Since it is not possible to calculate the exact solution u analytically, we consider a ‘‘reference’’ solution uref corresponding
to a fine approximation of the regularized Problem 5. The numerical solution uref corresponding to h = 1/32 768 was taken
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Fig. 3. Deformed meshes and interface forces on ΓC for Cκ = 0 and Cκ = 10 000.

Fig. 4. Numerical errors corresponding to the regularized Problem 5 with Cκ = 0 and Cκ = 10 000.

Table 1
Relative errors in energy norm corresponding to the regularized Problem 5 with Cκ = 0 and Cκ = 10 000.

h 1/2 1/8 1/32 1/128 1/512 1/2048

Error for Cκ = 0 12.416% 3.974% 1.247% 0.372% 0.113% 0.021%
Error for Cκ = 10 000 35.381% 11.028% 3.538% 1.081% 0.276% 0.070%

as the ‘‘reference’’ solution. This fine discretization corresponds to a problem with 528 386 degrees of freedom and 525 312
finite elements; the simulation runs in 17894 (expressed in seconds) CPU time. The numerical results are presented in
Fig. 4 and in Table 1, where the dependence of the relative error estimates ∥uref − uh

∥E/∥uref∥E with respect to h is plotted
both for the numerical solutions corresponding to the regularized Problem 5 with Cκ = 0 and Cκ = 10 000. These results
provide numerical convergence order close to 1 for the numerical solutions.We can observe that the asymptotic convergence
behavior is of a similar shape for the problem with (Cκ = 10 000) and without (Cκ = 0) the locking effect.
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