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SUMMARY

Implementation of Dirichlet boundary conditions in mesh-free methods is problematic. In Wagner and
Liu (International Journal for Numerical Methods in Engineering 2000; 50:507), a hierarchical enrich-
ment technique is introduced that allows a simple implementation of the Dirichlet boundary conditions.
In this paper, we provide some error analysis for the hierarchical enrichment mesh-free technique. We
derive optimal order error estimates for the hierarchical enrichment mesh-free interpolants. For one-
dimensional elliptic boundary value problems, we can directly apply the interpolation error estimates to
obtain error estimates for the mesh-free solutions. For higher-dimensional problems, derivation of error
estimates for the mesh-free solutions depends on the availability of an inverse inequality. Numerical
examples in 1D and 2D are included showing the convergence behaviour of mesh-free interpolants
and mesh-free solutions when the hierarchical enrichment mesh-free technique is employed. Copyright
? 2001 John Wiley & Sons, Ltd.

KEY WORDS: mesh-free method; Dirichlet boundary condition; hierarchical enrichment mesh-free
technique; error estimate

1. INTRODUCTION

Mesh-free methods are a new family of numerical methods that have attracted much attention
in the recent years. These new methods have been successfully applied to solve di=cult
engineering problems involving large deformation, highly localized behaviour such as bound-
ary layers or shear bands, moving discontinuities, etc.

On the other hand, some issues related to the mesh-free methods need further investigation.
One of the issues is the implementation of Dirichlet boundary conditions. Unlike the @nite
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element method, in a mesh-free method, the shape functions do not satisfy the Kronecker
delta property at the particles (nodes). This prevents a straightforward application of Dirichlet
boundary conditions. Various methods have been proposed in the literature for the treatment
of Dirichlet boundary conditions, e.g. the Lagrangian multiplier method [1], coupling with
@nite elements [2], transformation methods [3], boundary singular kernel method [3], a cor-
rected collocation method in Reference [4], implementation of non-linear boundary condition
in Reference [5], etc.

A new method based on a bridging scale is proposed in Reference [6]. This new method
oHers a simple and e=cient way to specify Dirichlet boundary conditions. The bridging scale
technique was @rst introduced in Reference [7]. In this paper, we provide some error analysis
for the hierarchical enrichment technique introduced in Reference [6].

We now introduce some notations which we will use in the paper. Let I⊂Rd (d¿1) be a
non-empty, open bounded set with a Lipschitz continuous boundary. In the one-dimensional
case, d=1, we choose I= (0; L) for some L¿0. A generic point in Rd is denoted by
x=(x1; : : : ; xd)T, or y=(y1; : : : ; yd)T or z=(z1; : : : ; zd)T. We use the Euclidean norm to mea-
sure the vector length:

‖x‖=
(

d∑
i=1

|xi|2
)1=2

For x0 ∈Rd and r¿0, we denote

Br(x0)= {x∈Rd: ‖x − x0‖6r}
for the (closed) ball with radius r centred at x0. In particular, when x0 = 0, we write Br for
Br(0).

It will be convenient to use the multi-index notation. Let =(1; : : : ; d), i¿0 integer, be a
multi-index. The quantity ||=∑d

i=1 i is the length of . We use the notations != 1! · · · d!
and x= x11 · · · xdd .

The rest of the paper is organized as follows. In Section 2, we review the hierarchical
enrichment technique introduced in Reference [6]. In Section 3, we review the reproducing
kernel particle method and its properties. In Section 4, we derive error estimates for the
hierarchical enrichment mesh-free interpolants. In Section 5, we present some error estimates
for the mesh-free solutions of boundary value problems. The @nal section is devoted to some
numerical examples.

2. A HIERARCHICAL ENRICHMENT MESH-FREE APPROXIMATION

To develop a mesh-free approximation, we choose a set of points {xI}I∈A⊂ NI. A point xI ,
I ∈A, is called a particle. The idea of the particle approximation is to use particle function
values for approximation:

u(x)≈∑
I∈A

OI (x) u(xI) (1)

Here {OI}I∈A are the shape functions associated with the particles {xI}I∈A. These functions
can be constructed by a moving least-squares procedure [8; 1], by a corrected reproducing
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CONVERGENCE ANALYSIS OF BOUNDARY CONDITIONS 1325

kernel particle procedure [9; 10], by hp-clouds [11; 12], by partition of unity @nite element
method [13; 14], or by any other methods. The discussion in this section is valid for any
mesh-free shape functions.

Denote the set of the essential boundary nodes by {xI}I∈B. We introduce one layer of
@nite elements on the essential boundary with the nodes {xI}I∈B. For each I ∈B, denote
NI (x) the linear @nite element basis function corresponding to the node xI . We have the
property NI (xJ )= �IJ . Then we introduce the following hierarchical enrichment mesh-free
approximations:

uh(x)=
∑
I∈B
NI (x)aI +

∑
I∈A

ÕI (x)dI (2)

where

ÕI (x)=OI (x)−
∑
J∈B
NJ (x)OI (xJ ) (3)

It is easy to verify that for a boundary particle xI , I ∈B, uh(xI)= aI . Thus, Dirichlet boundary
conditions can be speci@ed directly through the coe=cients {aI}I∈B.

It is shown in Reference [6] that from the polynomial reproducing property of the original
mesh-free shape functions ∑

I∈A
OI (x)xI =x

; ∀: ||6p

we have the consistency of the new mesh-free shape functions:∑
I∈B
NI (x)xI +

∑
I∈A

ÕI (x)xI =x
; ∀: ||6p (4)

Let us denote by Pp the space of the polynomials of degree less than or equal to p. The
dimension of the polynomial space Pp is

Np=

(
p+ d
d

)
=

(p+ d)!
p!d!

The consistency relations (4) can be equivalently rewritten as∑
I∈B
NI (x)u(xI) +

∑
I∈A

ÕI (x) u(xI)= u(x); ∀u∈Pp (5)

3. REPRODUCING KERNEL PARTICLE APPROXIMATION

There are various methods to construct mesh-free approximations. In this paper, we focus on
the approach of reproducing kernel particle approximation. For this purpose, we @rst need the
so-called generating function or window function T with the properties

T is continuous

suppT=B1

T(x)¿0 for ‖x‖¡1
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In one dimension, popular choices in engineering computations include the cubic spline

T(z)=




2
3 − 4|z|2 + 4|z|3; 06|z|6 1

2

4
3 − 4|z|+ 4|z|2 − 4

3 |z|3; 1
26|z|61

0; |z|¿1

and the in@nitely smooth function

T(z)=

{
e1=(z2−1); |z|¡1
0; |z|¿1

Any one-dimensional generating function T(z) can be used to create a d-dimensional gener-
ating function either in the form T(‖z‖) or by a tensor product

∏d
i=1T(zi).

We then de@ne

TrI (x − xI)=T
(
x − xI
rI

)

where the number rI¿0 is small and represents the support size of the function TrI . We use
the following form for the shape functions {OI}I∈A:

OI (x)=TrI (x − xI)
∑

||6p
(x − xI)b(x); I ∈A (6)

where b(x), ||6p, are the coe=cients to be determined by reproducing conditions. Since
the domain I is assumed to be Lipschitz continuous, it is locally on one side of the boundary.
In case the particle xI lies on or close to the boundary so that BrI (xI)∩ @I �= ∅, we rede@ne
the function value TrI (x− xI) to be zero outside that side of I on which the particle xI lies.
This is implicitly assumed throughout the paper.

Imposing the polynomial reproducing conditions on formula (1),

u(x)=
∑
I∈A

OI (x)u(xI) ∀u∈Pp (7)

we have a linear system for the coe=cients {b(x)}||6p:∑
||6p

m+�(x)b(x)= �|�|;0; |�|6p (8)

where

m(x)=
∑
I∈A

TrI (x − xI) (x − xI); ||6p (9)

are the discrete moment functions.
When the method is de@ned, the shape functions {OI}I∈A have the following properties:

1. The shape functions have compact supports: suppOI ⊂BrI (xI).
2. The shape functions {OI}I∈A form a partition of unity.
3. If T∈Ck , then OI ∈Ck , I ∈A.
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4. Assume T∈Ck . Then∑
I∈A
DOI (x)(x − xI)�=(−1)||�!�� ∀||6k; |�|6p (10)

Here �� equals 1 if �= , and is zero otherwise.

To describe conditions under which the method is de@ned and works well, we bring in some
de@nitions.

De*nition 3.1. A point x∈ NI is said to be covered by m shape functions if there are m
indices I1; : : : ; Im such that

‖x − xIj‖¡rIj ; j=1; : : : ; m

De*nition 3.2. A family of particle distributions {{xI}I∈A} is said to be (r; p)-regular (or
we simply say the particle distributions are (r; p)-regular) if there is a constant L0 such that

max
x∈ NI

‖M0(x)−1‖26L0

for all the particle distributions in the family. Here M0(x) is the scaled discrete moment
matrix:

M0(x)=
∑
I∈A

T
(
x − xI
rI

)
h
(
x − xI
r

)
h
(
x − xI
r

)T

with

h(z)= (z)||6p ∈RNp

Since on a @nite-dimensional space all norms are equivalent, the spectral norm ‖ · ‖2 in the
above de@nition can be replaced by any other matrix norm. We observe that the essential
point is to have M0(x)−1 uniformly bounded, or equivalently, the vectors {h((x−xI)=r)}, for
which O((x− xI)=r)¿c0¿0, are ‘uniformly’ independent. The particle distribution regularity
condition will play an important role in error estimates of mesh-free interpolants and mesh-
free solutions. We now mention some examples of regular family of particle distributions;
details are found in Reference [15].

Example 3.3. The @rst example is for a one-dimensional domain, that is taken to be
I=(0; L) for some L¿0. Consider the case of quasiuniform support sizes, i.e. there exist
two constants c1; c2 ∈ (0;∞) such that

c16
rI
rJ
6c2 ∀I; J ∈A

For such particle distributions, there exists a parameter r¿0 such that

c̃16
rI
r
6c̃2 ∀I ∈A

Assume there exist two constants c0¿0, "0¿0 such that for any x∈ [0; L], there are I0¡I1¡
· · ·¡Ip with

min
06j6p

O
(
x − xIj
rIj

)
¿c0¿0 (11)
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and

min
j �=k

∣∣∣∣xIj − xIkr

∣∣∣∣¿"0¿0 (12)

Then the family of particle distributions {{xI}I∈A} is (r; p)-regular, i.e. there exists a constant
L(c0; "0) such that

max
06x6L

‖M0(x)−1‖26L(c0; "0) (13)

Notice that condition (12) can be equivalently written as

min
06j6p−1

xIj+1 − xIj
r

¿"0¿0

A geometrical interpretation of condition (12) is that in any local region, at least p+1 particles
do not coalesce as the re@nement goes to in@nity (i.e. as r→ 0).

In the special case of equal support size rI = r for any I ∈A, and where T is increasing on
[−1; 0] and decreasing on [0; 1] and is symmetric with respect to 0 (always valid in actual
computations), if for any x, we can @nd I−1¡I0¡ · · ·¡Ip+1 such that

|x − xIj |6r; −16j6p+ 1

with

min
−16j6p

xIj+1 − xIj
r

¿"0¿0

then (11) is automatically satis@ed with

c0¿T(1− "0)

Example 3.4. Let I⊂Rd. Again consider the case of quasiuniform support sizes. A family
of particle distributions {{xI}I∈A} in Rd is (r; 1)-regular if there exist two constants c0; c̃0¿0
such that for any x∈ NI, there are d+ 1 particles xI0 ; : : : ;xId satisfying

min
06j6d

T
(
x − xIj
r

)
¿c0¿0

and the d-simplex with the vertices xI0 ; : : : ;xId has a volume larger than c̃0rd.

We have the following result for bounds on the shape functions and their derivatives.

Theorem 3.5. Assume the particle distributions are (r; p)-regular and the generating
function T is k-times continuously diHerentiable. Then there exists a constant c such that

max
I∈A

max
�: |�|=l

‖D�OI‖∞6 crl ; 06l6k

4. INTERPOLATION ERROR ESTIMATES

From now on, we assume T∈C1. Then we have the regularity property

OI ∈C1( NI); I ∈A (14)
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Given a continuous function u∈C( NI), we de@ne its hierarchical enrichment mesh-free
interpolant to be (cf. (2))

uI (x)=
∑
I∈B
u(xI)NI (x) +

∑
I∈A
u(xI)ÕI (x) (15)

We now derive some error estimation for the mesh-free interpolant (15). First, we collect
some bounds on the mesh-free shape functions and the linear @nite element basis functions.
We will always assume that the particle distributions are (r; p)-regular. From Theorem 3.5,
we have

‖DOI‖∞6c r−||; ∀: ||61; ∀I ∈A (16)

We assume the @nite elements on the boundary belong to a regular @nite element partition
of NI (cf. References [16; 17]) with the meshsize O(r). Then for the @nite element basis
functions, we have the bounds∫

I
[|DNI (x)|]2 dx6cr1−2 || ∀: ||61 (17)

Let u∈Hp+1(I). We assume p¿d=2−1. Then by the Sobolev embedding theorem, u∈C( NI),
and its mesh-free interpolant (15) is well de@ned. For error analysis, we assume that the family
of particle distributions is (r; p)-regular and the following hypothesis is satis@ed.

Hypothesis (H). There is a constant integer I0 such that for any x∈ NI, there are at most
I0 of xI satisfying the relation ‖x − xI‖¡rI , i.e. each point in NI is covered by at most I0
shape functions.

Hypothesis (H) is quite natural since otherwise as the number of shape functions covering
a local area increases, the shape functions tend to be more and more linearly dependent on
the local area.

We will apply results concerning polynomial approximations of Sobolev functions found in
Reference [16; chapter4]. For this purpose, we @rst introduce some concepts. Let B be a ball.
Then a domain I0 is said to be star shaped with respect to B if for any x∈I0, the closed
convex hull of {x}∪B is a subset of I0. The chunkiness parameter of I0 is de@ned to be
diam(I0)=(max, where

(max = sup{(: I0 is star shaped with respect to a ball of radius (}
To simplify the notation, we write BI ≡BrI (xI), I ∈A. We @rst bound the error u − uI in
Sobolev norms over BJ ∩ NI for J ∈A. De@ne

IJ =
{
x: ‖x − xJ‖¡rJ + max

I∈A
rI

}

and let

AJ = {I ∈A: dist(xI ; BJ )¡rI}
Then by hypothesis (H), the number of elements in the sets AJ , J ∈A, is uniformly bounded.
If NIJ ⊂ NI, then NIJ ∩ NI= NIJ is star shaped with respect to B̃J ≡BJ . Now suppose NIJ �⊂ NI.
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Then since @I is Lipschitz continuous, if r is su=ciently small, we can choose a ball B̃J of
radius rJ =2 with xJ on its boundary such that NIJ ∩ NI is star shaped with respect to B̃J . We
observe that the chunkiness parameters of NIJ ∩ NI, J ∈A, are uniformly bounded.

Let QpJ u be the Taylor polynomial of degree p of u averaged over B̃J ; the de@nition and
properties of QpJ u can be found in Reference [16; Section4:1]. Denote the error

RpJ u(x)= u(x)−QpJ u(x)

Then, since the chunkiness parameters of NIJ ∩ NI are uniformly bounded when r is su=ciently
small, from the results of Reference [16; Section4:3], we have the estimates:

||RpJ u‖L2(IJ ∩I)6 crp+1|u|Hp+1(IJ ∩I) (18)

‖RpJ u‖H 1(IJ ∩I)6 crp|u|Hp+1(IJ ∩I) (19)

‖RpJ u‖L∞(IJ ∩I)6 crp+1−d=2|u|Hp+1(IJ ∩I) (20)

where the constant c is independent of J .
Now for x∈BJ ∩ NI, we write

u(x)− uI (x) =QpJ u(x)−
∑
I∈B
QpJ u(xI)NI (x)−

∑
I∈A
QpJ u(xI)ÕI (x)

+RpJ u(x)−
∑
I∈B
RpJ u(xI)NI (x)−

∑
I∈A
RpJ u(xI)ÕI (x)

By the polynomial reproducing property (5),∑
I∈B
QpJ u(xI)NI (x) +

∑
I∈A
QpJ u(xI)ÕI (x)=Q

p
J u(x)

Thus

u(x)− uI (x)=RpJ u(x)−
∑
I∈B
RpJ u(xI)NI (x)−

∑
I∈A
RpJ u(xI)ÕI (x)

Note that xI ∈ NIJ ∩ NI for I ∈AJ . So using bound (16), we have

‖u− uI‖H 1(BJ ∩I)6 ‖RpJ u‖H 1(BJ ∩I) + c‖RpJ u‖L∞(IJ ∩I)

×
( ∑
I∈B∩SJ

‖NI‖H 1(BJ ∩I) +
∑
I∈AJ

‖OI‖H 1(BJ ∩I)

)

Recall that the number of elements contained in AJ is uniformly bounded. Applying estimates
(19), (20) and (16), we obtain

‖u− uI‖H 1(BJ ∩I)6crp|u|Hp+1(IJ ∩I); J ∈A
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Hence, by using hypothesis (H) once more, we get the error estimate

‖u− uI‖H 1(I)6crp|u|Hp+1(I) (21)

Similarly,

‖u− uI‖L2(I)6crp+1|u|Hp+1(I) (22)

Therefore, we have the following result.

Theorem 4.1. Assume the particle distributions are (r; p)-regular, p¿d=2− 1, T∈C1, the
@nite elements on the boundary are such that (17) holds, and hypothesis (H) is valid. Let
u∈Hp+1(I). Then we have the optimal order interpolation error estimates (21) and (22).

5. ERROR ESTIMATES FOR MESH-FREE SOLUTIONS

To explain the mesh-free method and error estimates in a concrete problem setting, we take
a linear second-order elliptic boundary value problem as an example.

Let W⊂ @I be a non-trivial closed subset of the boundary @I, and g∈H1(I) that is con-
tinuous in a neighbourhood of W. Consider a second-order elliptic boundary value problem:
Find u∈H1(I) such that u= g on W and

a(u; v)= l(v) ∀v∈V (23)

Here

V = {v∈H1(I): v=0 on W}
Assume a(·; ·) is a continuous, coercive bilinear form on V and l is a continuous linear form
on V . Then by Lax–Milgram lemma, problem (23) has a unique solution.

On NI, introduce a set of particles {xI}I∈A and its subset {xI}I∈B⊂W. Also, introduce positive
numbers {rI}I∈A, and construct functions {OI}I∈A in the form of (6) where {b(x)}||6p are
computed from (8). The reproducing kernel particle space is

Vh=span{ÕI ; I ∈A}
To approximate the boundary condition, let

VhW = span{NI ; I ∈B}
Note that functions in Vh vanish at the boundary nodes on W. We formulate the mesh-free
method for (23) as: Find uh ∈Vh + VhW such that uh= g at the boundary nodes on W and

a(uh; vh)= l(vh) ∀vh ∈Vh (24)

As long as a(·; ·) is coercive on Vh, the discrete problem (24) also admits a unique solution.
In general, the mesh-free method (24) is an external approximation of problem (23), since

Vh �⊂V and even when g=0, uh =∈V . In the one-dimensional case, however, the approximation
is conforming as it is easily seen that Vh⊂V . So we @rst consider the mesh-free method for
a one-dimensional second-order elliptic boundary value problem. Without loss of generality,

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1323–1336
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let I= (0; 1) and assume the Dirichlet boundary condition: u(0)= g0, u(1)= g1. Let N0 and
N1 be the corresponding linear @nite element basis functions at the nodes x0 = 0 and xN =1.
Then

uh(x)= g0N0(x) + g1N1(x) +
∑
I

ÕI (x)dI

where
ÕI (x)=OI (x)−OI (0)N0(x)−OI (1)N1(x)

We write
uh=wh + g0N0 + g1N1

Then wh ∈Vh satis@es
a(wh; vh)= l(vh)− a(g0N0 + g1N1; vh) ∀vh ∈Vh

This problem has a unique solution. For an error estimation, we can apply Cea’s inequality
and write

‖u− uh‖H1(I) = ‖w − wh‖H1(I)

6 c inf
vh∈Vh

‖w − vh‖H1(I)

6 c‖w − wI‖H1(I)

= c‖u− uI‖H1(I)

Assume the (r; p)-regularity and hypothesis (H). Then if u∈Hp+1(I), we have the error
estimate by using (21):

‖u− uh‖H1(I)6crp|u|Hp+1(I) (25)

Employing the standard duality technique in the theory of the @nite element method
(cf. References [16; 17]), we then have the error estimate in the L2 norm:

‖u− uh‖L2(I)6crp+1|u|Hp+1(I) (26)

In the general case d¿2, it is much more di=cult to obtain error estimates for mesh-free
solutions when the Dirichlet boundary conditions are present, due to the fact that Vh �⊂V . Let
g=0. Applying the framework on page 196 of Reference [16], we have

‖u− uh‖H1(I)6c inf
vh∈Vh

‖u− vh‖H1(I) + c sup
vh∈Vh

|a(u; vh)− l(vh)|
‖vh‖H1(I)

(27)

An estimate for the @rst term on the right-hand side of (27) is derived by applying the
interpolation error estimate (21). If an inverse inequality of the type

‖vh‖H 2(T )6cr−1‖vh‖H1(T ) for any @nite element T on W; ∀vh ∈Vh (28)

holds, then it can be shown that the second term on the right-hand side of (27) is bounded
by O(r). We will look into the possibility of proving the inverse inequality (28) in the future.
Note that in general, the convergence order of method (24) is expected to be one only. To
increase the convergence order, one needs to make modi@cations; one such modi@cation is to
include a boundary integral term in the weak formulation (cf. Reference [6]).
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6. NUMERICAL RESULTS FOR MESH-FREE INTERPOLANTS
WITH A FINITE ELEMENT BOUNDARY

6.1. 1D results: solution and interpolation convergence
An example problem demonstrates the interpolation error estimates (21) and (22) and the
solution error estimates (25) and (26) in 1D. Consider the following second-order boundary
value problem:

a0u; x − 3u;xx = sin
4x
L
; 06x6L (29a)

u(0) = 0 (29b)

u(L) = 1 (29c)

The exact solution is given by

u(x) =
1

4(a20L2 + 4232)

(
−L3a0 cos

4x
L

+ L234 sin 4xL

− −L3a0eax=L + ea0x=3(2L3a0 − L2a204− 4332) + a204L
2 + 4332 − L3a0

ea0L=3 − 1

)
(30)

The weak formulation of the boundary value problem is to @nd u∈H1(0; L) such that u(0)=0,
u(L)=1, and

a(u; v)=
∫ L

0
sin
4x
L
v(x) dx ∀v∈H 1

0 (0; L)

where the associated bilinear form is

a(u; v)=
∫ L

0
(a0u; xv+ 3u; xv; x) dx

Observe that the bilinear form is coercive on the space H 1
0 (0; L) since

a(v; v)= 3
∫ L

0
v2; x dx ∀v∈H 1

0 (0; L)

Therefore, our error estimates apply to the mesh-free solution of the boundary value problem.
The problem is solved numerically on a set of nodes with nodal spacing h. The mesh-

free shape functions are the reproducing kernel particle functions described in Section 3; a
support size of r=2:2h is used for all solutions, and the order of the reproduced polynomial
space is p. Results are presented for the case a0 = 5, 3=1, and L=1. Numerical integration
is performed using the Gaussian quadrature with four points between each set of adjacent
nodes. The interpolation error is de@ned as (cf. (15)):

u(x)− uI (x)= u(x)−∑
I∈B
NI (x) u(xI)−

∑
I∈A

ÕI (x) u(xI) (31)
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Figure 1. Error vs nodal spacing for 1D RKPM
with boundary enrichment: results for p=1.
Convergences rates are shown in parentheses.

Figure 2. Error vs nodal spacing for 1D RKPM
with boundary enrichment: results for p=2.
Convergences rates are shown in parentheses.

The L2 and H1 convergence results for p=1 are shown in Figure 1, while those for p=2 are
given in Figure 2. The convergence of both interpolation and solution errors is as predicted in
Equations (21), (22), (25) and (26), i.e. order p+1 for L2 and order p for H1. Convergence
rates given in Figures 1 and 2 are computed by @tting a line through all data points; in
several cases (notably the L2 interpolation error for p=1), rates asymptote to higher values
as h→ 0.

6.2. 2D results: solution and interpolation convergence

The solution of a 2D Laplace equation demonstrates the interpolation and solution error
estimates in multiple dimensions. The boundary value problem to be solved is

∇2u(x; y) = 0; 06x61; 06y61 (32a)

u(x; y) = sin(4x); for y=0 (32b)

u(x; y) = 0; for x=0; x=1 or y=1 (32c)

The exact solution, easily obtained through separation of variables, is

u(x; y)= [cosh(4y)− coth 4 sinh(4y)] sin(4x) (33)

The Galerkin weak form of (32) is∫
I
∇v · ∇u dI=0 (34)

where I is the solution domain.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1323–1336



CONVERGENCE ANALYSIS OF BOUNDARY CONDITIONS 1335

Figure 3. Error vs nodal spacing for 2D RKPM
with boundary enrichment: results for p=1.
Convergences rates are shown in parentheses.

Figure 4. Error vs nodal spacing for 2D RKPM
with boundary enrichment: results for p=2.
Convergences rates are shown in parentheses.

The numerical solution is obtained on a regular square grid of RKPM nodes, separated
by nodal spacing h. Once again, a support size of r=2:2h is used in computing the RKPM
shape functions with a consistency of order p. Numerical integration is performed using 16
Gaussian quadrature points per integration cell.

Results are plotted in Figures 3 and 4 for p=1 and 2, respectively. As predicted in
Equations (21) and (22), the H1 interpolation error is of order p while the L2 interpolation
error is of order p+ 1.

The solution errors show poor convergence rates for multiple dimensions, as predicted in
Section 5. Comparing Figures 3 and 4 shows that these rates seem to be independent of p,
and much less than the interpolation error convergence rates even for p=1. In Reference [6],
Wagner and Liu trace this poor convergence to the inconsistency of the Galerkin weak form
(34), which in turn results from the fact that Vh �⊂V as alluded to in Section 5. An augmented
weak form, which includes a boundary integral, was used in Reference [6] to correct this
problem:

∫
I
∇v · ∇u dI−

∫
Wg
vn · ∇u dW=0 (35)

where in this case the essential boundary Wg is the entire boundary of I. The convergence of
the solution error using this augmented weak form for p=2 is shown in Figure 5. For small
h, the error is dependent on the number of quadrature points used for numerical integration;
shown are results for both 4× 4 and 6× 6 Gaussian quadrature. As the number of integration
points increases, the convergence rates approach the ideal values of p+1 for L2 error and p
for H1 error, demonstrating that integration error is the likely source of the slight deviation
from the ideal convergence rates.
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Figure 5. Error vs nodal spacing for 2D RKPM with boundary enrichment using augmented
weak form (Equation (35)): results for p=2. Results approach the ideal convergence rates

with increasing number of integration points.
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