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SUMMARY

A general formulation for developing reproducing kernel (RK) interpolation is presented. This is based
on the coupling of a primitive function and an enrichment function. The primitive function introduces
discrete Kronecker delta properties, while the enrichment function constitutes reproducing conditions.
A necessary condition for obtaining a RK interpolation function is an orthogonality condition between
the vector of enrichment functions and the vector of shifted monomial functions at the discrete points.
A normalized kernel function with relative small support is employed as the primitive function. This
approach does not employ a �nite element shape function and therefore the interpolation function can be
arbitrarily smooth. To maintain the convergence properties of the original RK approximation, a mixed
interpolation is introduced. A rigorous error analysis is provided for the proposed method. Optimal
order error estimates are shown for the meshfree interpolation in any Sobolev norms. Optimal order
convergence is maintained when the proposed method is employed to solve one-dimensional boundary
value problems. Numerical experiments are done demonstrating the theoretical error estimates. The
performance of the method is illustrated in several sample problems. Copyright ? 2003 John Wiley &
Sons, Ltd.

KEY WORDS: reproducing kernel approximation; reproducing kernel interpolation; meshfree method;
essential boundary conditions; Kronecker delta properties

1. INTRODUCTION

Meshfree shape functions developed from moving least-squares (MLS) approximation [1–4],
partition of unity [5–7], or reproducing kernel (RK) approximation [8–10] are in general
not interpolation functions. Since the approximation spaces formed by these approximation
functions are not kinematically admissible, a Lagrange multiplier method [2] or a penalty
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method [11] is required in the Galerkin framework to impose essential boundary conditions.
E�orts have been devoted to construct kinematically admissible test and trial function spaces
for Galerkin meshfree methods. A transformation method that transforms generalized co-
ordinates to nodal co-ordinates for degrees of freedom associated with essential boundaries
has been introduced [12], recovering nodal values by introducing singularity to the ker-
nel functions has been discussed [13, 14], and employment of D’Alembert’s principle in
conjunction with co-ordinate transformation has also been proposed for essential boundary
condition treatment [15].
Interpolation properties in �nite elements can be recovered in meshfree approximation in

numerous ways. Examples are coupling meshfree and �nite element shape functions with a
ramping in the transition zone [16], coupling and enrichment of �nite element and meshfree
shape functions via enforcement of reproducing conditions [17], and hierarchical enrichment
of �nite element solution using a meshfree approximation [18]. Rigorous convergence analysis
and error estimation of this latter technique is given in Reference [19]. All these methods allow
a direct imposition of essential boundary conditions, but require an underlined grid structure
for construction of �nite element shape functions. While attempts have been made to develop
stabilized nodal integration methods [20–22] for integration of weak form, it is desirable to
formulate a meshfree interpolation function that does not require an underlined grid.
In the method of enriching lower-order �nite element solution by meshfree approxima-

tion [16], a set of �nite element shape functions was �rst constructed in the designated
sub-domains. Coupled MLS shape functions are then formed by imposing reproducing condi-
tions. If �nite element nodes are di�erent from meshfree nodes, separate coe�cients for �nite
element and meshfree shape functions are needed. In the case where the meshfree nodes co-
incide with the �nite element nodes, the MLS approximation has to be at least one order
higher than that of the intrinsic completeness of the FEM shape functions, and consequently,
larger support sizes for MLS shape functions are necessary.
This work presents a general formulation for a meshfree approximation that recovers nodal

values at designated points without the �nite element enrichment. The proposed method fol-
lows the idea of coupling meshfree and �nite element shape functions by Krongauz et al. [16]
and Huerta et al. [17] but without using an underlying mesh. In the current approach the mesh-
free approximation constitutes a primitive function and an enrichment function. The require-
ment in the enrichment function for recovering interpolation properties in the reproducing
kernel approximation is �rst identi�ed. A simple normalized kernel function that does not
cover any neighbour points is used as the primitive function. For the purpose of simplifying
imposition of essential boundary conditions while maintaining the convergence properties of
the regular RK approximation, a mixed interpolation is introduced. Primitive functions are
only added to the essential boundary points so that the coe�cients of meshfree approximation
associated with the essential boundaries are nodal values.
In this paper, the RK approximation is reviewed in Section 2. The �rst part of Section 3

discusses the general requirements for obtaining interpolation properties in the enriched RK
approximation, and the second part of this section presents speci�c forms of primitive function
and enrichment functions. A mixed reproducing kernel interpolation (Mixed RKI) is also
discussed in this section. Rigorous convergence analysis and error estimate of the proposed
method are presented in Section 4, followed by numerical veri�cations in Section 5. Several
example problems are given in Section 6 to evaluate the performance of the RK interpolation
functions. Conclusions and remarks are given in Section 7.
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2. REPRODUCING KERNEL APPROXIMATION

The approximation methods widely used in meshfree methods are the MLS approxima-
tion [1–4], partition of unity method (PUM) [5–7], and the RK approximation [8–10]. Since
the reproducing conditions play an important role in the forthcoming discussion, the RK ap-
proximation is introduced in this section as the basis for developing meshfree interpolation
functions.
To make the discussion general, we describe and analyse the method for an arbitrary

d-dimensional problem, d¿1. For this purpose, we introduce some notations used in the
rest of this paper. Let �⊂Rd be an nonempty, open bounded set with a Lipschitz continuous
boundary. In the one-dimensional case, d=1 and � is an open bounded interval. A generic
point in Rd is denoted x=[x1; : : : ; xd]T, or y=[y1; : : : ; yd]T, or z=[z1; : : : ; zd]T. We use the
Euclidean norm to measure the vector length ‖x‖=(∑d

i=1 |xi|2)1=2. For x0 ∈Rd and r¿0,
we denote Br(x0)= {x∈Rd | ‖x − x0‖6r} for the closed ball with radius r centred at x0.
In particular, when x0 = 0, we write Br for Br(0). We use n for the highest degree of the
polynomials that can be reproduced by the meshfree methods. Let Pn=Pn(�) be the space of
the polynomials of degree 6n on �. The dimension of the space Pn is Nn=(n+ d)!=(n!d!).
It is convenient to use the multi-dimensional notation �=(�1; : : : ; �d) with d¿0 being

integers. The quantity |�|=∑d
i=1 �i is the length of �. This allows a simple notation for

partial derivatives: D�u(x)= @|�|u(x)=@x�11 · · · @x�dd . Denote �!= �1! · · · �d! and x�= x�11 · · · x�dd .
Consider a problem domain �� discretized by a set of points {xI ;xI ∈�}NPI=1. A function

u(x) de�ned in �� is approximated by

uh(x)=
∑
I

[ ∑
|�|6n

(x − xI)�b�(x)
]
�aI (x − xI)uI (1)

where {(x − xI)�}|�|6n is a set of monomial basis functions and b�(x); |�|6n, are the coef-
�cients of the basis functions that vary with the location of approximation x. The function
�aI (x−xI) is the kernel function centred at xI that has a compact support !I =Supp(�aI (x−
xI));�aI (x− xI)¿0 for x in the interior of !I , and

⋃
I !I ⊃�. The support size aI is a nor-

malization parameter for distance measure so that �al(x− xI) vanishes when ‖x− xI‖=aI¿1.
For convenience, de�ne the following notations:

HT(x − xI) = {(x − xI)�}|�|6n
= {1; x1 − x1I ; : : : ; xd − xdI ; (x1 − x1I)2; : : : ; (xd − xdI)n} (2)

bT(x) = {b�(x)}|�|6n
= {b0···0(x); b10···0(x); : : : ; b0···01(x); b20···0(x) : : : ; b00···n(x)} (3)

and rewrite Equation (1) to

uh(x) =
∑
I
�I (x)uI (4)

�I (x) =HT(x − xI)b(x)�aI (x − xI) (5)
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The coe�cient vector b(x) is determined from the following reproducing conditions:∑
I
�I (x)x�I =x

�; |�|6n (6)

Equation (6) is equivalent to∑
I
�I (x)(x − xI)�= �|�|;0; |�|6n (7)

or ∑
I
�I (x)H(x − xI)=H(0) (8)

The b(x) vector is obtained by substituting Equation (5) into Equation (8) to yield

b(x) =M−1(x)H(0) (9)

M(x) =
∑
I
H(x − xI)HT(x − xI)�aI (x − xI) (10)

Using Equations (5) and (9), function �I (x) is obtained by

�I (x)=HT(0)M−1(x)H(x − xI)�aI (x − xI) (11)

The function �I (x) is called the RK approximation function or RK shape function. Note that
for M(x) to be non-singular, the support of �aI (x−xI) has to cover enough discrete points so
that the reproducing conditions are satis�ed at any location in the domain. This is referred to
as the kernel stability and that is dependent on the order of reproducing conditions imposed.
Conditions assuring the non-singularity of the matrix M(x) as well as good performance of
the method are discussed in Reference [23], where rigorous convergence analysis and error
estimates of the method are also provided.

3. REPRODUCING KERNEL INTERPOLATION

3.1. Modi�ed reproducing kernel approximation

The RK shape functions discussed in Section 2 are in general not interpolation functions.
This leads to complications in imposing essential boundary conditions and in applying nodal
forces. It is therefore desirable to construct an interpolation function that preserves RK
features. For this purpose, a modi�ed RK approximation of u(x) is considered as
follows:

uh(x) =
∑
I
�I (x)uI (12)

�I (x) = �̂I (x) + ��I (x) (13)
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In Equation (13), �̂I (x) is a primitive function used to introduce Kronecker delta properties
in the approximation, and ��I (x) is an enrichment function for imposing nth order reproducing
conditions: ∑

I
[�̂I (x) + ��I (x)]x�I = x

�; |�|6n (14)

In the following discussion, we will show that if �̂I (xJ )= �IJ , and Equation (14) holds, then
the vector of the enrichment functions, ��(x)= { ��1(x); ��2(x); : : : ; ��NP(x)}, is orthogonal to the
vector consisting of shifted monomial functions hi(x) = {hi(x−x1); hi(x−x2); : : : ; hi(x−xNP)}
where hi(x − xI) is the ith component of H(x − xI) in Equation (2), at all discrete points
{xJ}NPJ=1, i.e.

��(xJ )Thi(xJ )=0 ∀J (15)

To show Equation (15), Equation (14) is �rst recast as∑
I
[�̂I (x) + ��I (x)](x − xI)�= �|�|;0; |�|6n (16)

or ∑
I
[�̂I (x) + ��I (x)]H(x − xI)=H(0) (17)

Evaluating Equation (17) at point xJ leads to∑
I
[ ��I (xJ ) + �̂I (xJ )]H(xJ − xI) = H(0) (18)

If �̂I (xJ )= �IJ , one has ∑
I
[ ��I (xJ ) + �IJ ]H(xJ − xI)=H(0) (19)

Since
∑

I �IJH(xI − xJ )=H(0) ∀J , Equation (19) reduces to∑
I

��I (xJ )H(xJ − xI)= 0 (20)

or equivalently, ∑
I

��I (xJ )hi(xJ − xI)=0 (21)

This completes the proof of Equation (15). If indeed Equation (21) leads to a trivial solution
��I (xJ )=0, then it follows that �I (x) which satis�es reproducing condition in Equation (14)
becomes an interpolation function. This can be achieved by considering the following formu-
lation for ��I (x):

��I (x) = GT(x − xI)a(x) (22)

where G(x − xI) is the vector of basis functions that has the same dimension as H(x − xI),
and a(x) is the corresponding coe�cient vector. Substituting Equation (22) into Equation (20)
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leads to

Q(xJ )a(xJ )= 0 (23)

where

Q(x) =
∑
I
H(x − xI)GT(x − xI) (24)

If Q(xJ ) is non-singular, Equation (24) yields a trivial solution a(xJ )= 0. It follows imme-
diately ��I (xJ )=0 from Equation (22), and thus

�I (xJ )= ��I (xJ ) + �̂I (xJ )= �IJ (25)

One obvious choice of G(x − xI) for non-singular Q(x) is

G(x − xI)=H(x − xI) �� �aI (x − xI) (26)

where �� �aI (x − xI) is a positive function with compact support. Hence,
��I (x)=HT(x − xI)a(x) �� �aI (x − xI) (27)

Conclusion: If the enrichment function ��I (x) takes the form of Equation (22), and the
primitive function �̂I (x) has Kronecker delta properties, satisfaction of reproducing conditions
in Equation (14) results in an interpolation function �I (x).
The �nite element shape functions is apparently a possible option for �̂I (x). This reduces to

the approach of Huerta et al. [17]. In this paper, we consider the following simple construction
of �̂I (x):

�̂I (x)=
�̂ �aI (x − xI)
�̂âI (0)

; âI¡min{‖xI − xJ‖ ∀J �= I} (28)

The support size âI of �̂âI (x − xI) is so chosen that it does not cover any neighbour points,
and thus Kronecker delta conditions are satis�ed in �̂I (x).

3.2. Reproducing conditions

Introducing Equations (27) and (28) into Equation (13), we obtain the coe�cients a(x) in
��I (x) by the reproducing condition:

∑
I

[
�̂âI (x − xI)
�̂âI (0)

+HT(x − xI)a(x) �� �aI (x − xI)
]
x�I =x

�; |�|6n (29)

Equation (29) can be rewritten as

∑
I

[
�̂âI (x − xI)
�̂âI (0)

+HT(x − xI)a(x) �� �aI (x − xI)
]
(x − xI)�= �|�|;0; |�|6n (30)
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or

∑
I
H(x − xI)

[
�̂âI (x − xI)
�̂âI (0)

+HT(x − xI)a(x) �� �aI (x − xI)
]
=H(0) (31)

The coe�cient vector a(x) is obtained from Equation (31) by

a(x) =Q−1(x)[H(0)− F̂(x)] (32)

F̂(x) =
∑
I
H(x − xI)�̂âI (x − xI)

�̂âI (0)
(33)

Finally, the RK interpolation function is obtained:

�I (x) =
�̂âI (x − xI)
�̂âI (0)

+HT(x − xI)Q−1(x)[H(0)− F̂(x)] �� �aI (x − xI) (34)

It can be easily shown that

�I (xJ ) =
�̂âI (xJ − xI)
�̂âI (0)

+HT(xJ − xI)Q−1(xJ )[H(0)− F̂(xJ )] �� �aI (xJ − xI)

= �IJ +HT(xJ − xI)Q−1(xJ )[H(0)− F̂(xJ )] �� �aI (xJ − xI) (35)

Since

F̂(xJ )=
∑
I
H(xJ − xI)�̂âI (xJ − xI)

�̂âI (0)
=H(0) (36)

We have �I (xJ )= �IJ . Note that in Equations (35) and (36) the property âI¡min
{‖xI − xJ‖ ∀J �=I} has been used.
For demonstration purposes, consider here the construction of a one-dimensional RK in-

terpolation functions of a set of uniformly distributed discrete points with nodal distance
�x = 0:1. The two kernel functions are selected as �� �aI (x − xI)=�((x − xI)= �aI) and
�̂âI (x − xI)=�((x − xI)=âI), where � is the cubic B-spline function, and �aI =2�x, and
âI =0:9�x. The two component functions ��I (x) and �̂I (x), and combined RK interpola-
tion function �I (x) are shown in Figure 1. For irregular discretization, âI should be carefully
selected so that Supp(�̂âI ) does not cover any neighbour points. A RK interpolation of one-
dimensional irregular discretization is shown in Figure 2.
A representative discretization using RK interpolation functions is shown in Figure 3, where

the supports with dash and solid lines refer to supports of �̂âI and ��aI , respectively. Note that
xJ =∈Supp(�̂âI (x − xI)) ∀J �=I .
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Figure 3. Domain discretization by reproducing kernel interpolation.

The RK interpolation function in Equation (34) bares the following properties:

1. The radius of Supp(�I (x)) is max( �aI ; âI):
2. If ��âI ∈C �m, �̂âI ∈Cm̂, then �I ∈Ck , k= min( �m; m̂).
3. The singularity of Q(x) is only dependent on �aI and the order of basis functions in
G(x − xI), and is independent to âI .

4. It is 	exible to include primitive functions only for the designated points. For example,
let the primitive function �̂K(x) be only included for point xK , i.e., �I (x)= ��I (x)
for I �=K , and �K(x)= �̂K(x) + ��K(x). Following Equations (34)–(36) it shows that
�K(xK)=1, and �I (xK)=0 for all I �=K . Note that �K(x) does not vanish at other
points, �K(xI) �=0. It is clear that in the approximation of u(x) the nodal value of point
xK becomes the nodal value. For the purpose of a direct imposition of essential boundary
conditions, the primitive functions can be added only to the essential boundary points.
Figure 4 shows various conditions of including primitive functions in the construction of
RK approximation: (a) no primitive function is included (traditional RK approximation),
(b) primitive functions are added to all points, (c) primitive function is included only
for a single point. We call case (c) of the RK approximation the mixed reproducing
kernel interpolation, abbreviated as Mixed RKI in this paper.

As mentioned earlier, employment of �nite element shape function for �I (x) reduces RK
interpolation to that of Huerta et al. [17]. However, this approach requires a �nite element
mesh for construction of �nite element shape functions. It is also noted that since piecewise
linear �nite element shape functions possess linear completeness, at least second-order basis
functions are needed in the construction of the enrichment function ��I (x) in Reference [17].
Otherwise, ��I (x)≡ 0 and �I (x)≡NI (x). This requires the increase of support size of �� �aI for
non-singular Q(x), and that consumes higher computational e�ort in the construction of sti�-
ness matrix and force vector. Further, �I ∈C0 in this case. The formulation proposed in this
paper resolves this dilemma. Since the primitive function �̂I (x) does not possess the linear
completeness, enrichment function ��I (x) with the low order consistency will not vanish like
that in FEM enrichment. Hence, smaller support size can be used for �� �aI (x−xI) and arbitrary
order of smoothness in �I can be obtained.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:935–960



944 J.-S. CHEN ET AL.

Figure 4. (a) Reproducing kernel approximation; (b) reproducing kernel interpolation;
(c) mixed interpolation at single point.

4. ERROR ANALYSIS

For de�niteness, we provide an error analysis of the proposed method when primitive functions
are included only for the discrete points on the (relatively closed) part of the boundary 
D⊂ @�
where Dirichlet (essential) boundary conditions are speci�ed. The case of including primitive
functions for an arbitrarily chosen set of discrete points can be discussed with exactly the same
technique. Let {{xI}NPI=1}⊂ �� be a family of discrete point distributions. Thus, a continuous
function u∈C( ��) is approximated by

u(x)≈∑
I
�I (x)u(xI) (37)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:935–960
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The meshfree shape function is

�I (x) =



��I (x) for xI =∈
D
��I (x) + �̂I (x) for xI ∈
D

(38)

where �̂I (x) are the primitive functions and ��I (x) are the enrichment functions

��I (x)=HT(x − xI)a(x) �� �aI (x − xI) (39)

with the coe�cient function vector a(x)∈RNn determined by reproducing conditions. For any
xI ∈
D, the assumptions on �̂I are:
1. Supp(�̂I) does not contain xJ for J �= I ;
2. �̂I (xI)=1:

Then the Kronecker delta property holds for the particles on 
D:

�̂I (xJ )= �IJ ; 16I6NP; xJ ∈
D (40)

We will derive error estimates for the case of quasiuniform support sizes, i.e.

c16
�aI
�aJ
6c2 ∀I; J (41)

for two constants 0¡c16c2¡∞. Then there exists two constants 0¡ �c16 �c2¡∞ such that
for any discrete point distribution {xI}NPI=1, we have a typical support size �a and

�c16
�aI
�a
6 �c2 ∀I (42)

Now the polynomial reproducing condition∑
I
�I (x)x�I =x

� ∀�: |�|6n (43)

is equivalent to ∑
I
�I (x)(x − xI)�= �|�|;0 ∀�: |�|6n (44)

This reproducing condition is rewritten as a linear system for the coe�cient a�(x):[∑
I
H(x − xI)HT(x − xI) �� �aI (x − xI)

]
a(x)=H(0)− ∑

xI ∈ 
D
�̂I (x)H(x − xI) (45)

Denote

M0(x)=
∑
I
H
(
x − xI
�a

)
HT

(
x − xI
�a

)
�� �aI (x − xI) (46)

for the scaled moment matrix, and ã(x)= ( �a|�|a�(x))|�|6n. Then the polynomial reproducing
condition implies

M0(x)ã(x) = H(0)−
∑
xI∈
D

�̂I (x)H
(
x − xI
�a

)
(47)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:935–960
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To describe conditions under which the method is de�ned and works well, we bring in some
de�nitions. We say that a point x∈ �� is covered by m shape functions if there are m indices
I1; : : : ; Im such that

‖x − xIj‖¡ �aIj ; j=1; : : : ; m (48)

We say a family of discrete point distributions {{xI}NPI=1} is ( �a; n)-regular if there is a constant
L0 such that

max
x∈ ��

‖M0(x)−1‖26L0 (49)

for all the discrete point distributions in the family.
It can be shown that a family of one-dimensional discrete point distributions is ( �a; n)-regular

if any point is covered by at least n + 1 shape functions and in any local region there are
at least n + 1 discrete points with relative distances bounded away from 0. For a general
d-dimensional domain, a family of discrete point distributions is ( �a; 1)-regular if any point is
covered by d + 1 shape functions and the d-simplex with the vertices of the corresponding
discrete points has a volume larger than �c0 �ad. For details, see Reference [23].
In Equation (28), a concrete form for the primitive functions is suggested. For error analysis

of the method, we make the following assumptions:

1. Supp(�̂I)=B(x; âI) does not contain xJ for J �= I .
2. There are constraints 0¡ ĉ16ĉ2 ¡∞ such that ĉ1 �a6âI6ĉ2 �a for any xI ∈
D:
3. �̂I (xI)=1: (50)
4. �̂I ∈Ck:

By a standard scaling argument, we have the bounds

max
|�|= l

‖D��̂I‖L∞(�)6c �a−l; l=0; 1; : : : ; k ∀I (51)

Notice that in the particular case of uniform discrete point distributions and uniform support
sizes, we may simply take

�̂I (x)= �̂
(
x − xI
â

)
(52)

for some (�xed) function �̂ with the properties:

1. Supp(�̂)=B(0; c0) is the ball centred at the origin with radius c0 for any c0 ∈ (0; 1),
2. �̂(0)=1; (53)
3. �̂∈Ck(B(0; c0)).

It is easy to see that the requirement Equation (50) on the functions �̂I are all satis�ed with
ĉ1 = ĉ2 = 1.
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In the following, we always assume the regularity of the discrete point distributions. We
also assume ��∈Ck . From Equation (47) we immediately obtain

max
�:|�|6n

�a|�|‖a�‖L∞(�)6c (54)

for some constant c¡∞.
Rewrite the enrichment functions (39) in the form

��I (x)=HT
(
x − xI
�a

)
�� �aI (x − xI)�a|�|a�(x) (55)

Together with the bound Equation (51), we see that the meshfree shape functions are uniformly
bounded:

max
16I6NP

‖�I‖L∞(�)6c (56)

We then bound the �rst derivatives of the shape functions. For any multi-index � with |�|=1,
we di�erentiate the system Equation (47) to obtain

M0(x)D�ã(x) =D�M0(x)ã(x)−
∑
xI∈
D

[
D��̂I (x)HT

(
x − xI
�a

)
+ �̂I (x)D�HT

(
x − xI
�a

)]

(57)

Using Equation (51), we know that the summation term on the right-hand side of Equation
(57) is bounded by c �a−1. Also, easily,

max
�:|�|=1

max
x∈ ��

‖D�M0(x)‖26c �a−1 (58)

Thus from Equation (57), we have

max
�:|�|=1

max
�:|�|6n

�a|�|‖D�a�‖L∞(�)6c �a−1 (59)

In general, an inductive argument shows that

max
�:|�|6n

max
�:|�|= l

�a|�|‖D�a�‖L∞(�)6c �a−l; l=0; 1; : : : ; k (60)

Then from Equation (55), we obtain the following result.

Theorem 4.1
Assume the discrete point distributions are ( �a; n)-regular, �� is k-times continuously di�eren-
tiable, and Equation (50) holds. Then

max
I

max
�:|�|=l

‖D��I‖L∞(�)6c �a−l; 06l6k (61)

Now we are ready to derive error estimates for the meshfree interpolants. For this purpose,
we �rst introduce some de�nitions. Let B⊂Rd be a ball. Then a domain �1 is said to be
star-shaped with respect to B if for any x∈�1, the closed convex hull of {x}∪B is a subset
of �1.
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The chunkiness parameter of �1 is de�ned to be �1=�max, where

�max = sup{�: �1 is star-shaped with respect to a ball of radius �} (62)

Let u∈Wm+1; q(�), m¿0, q∈ [1;∞]. We assume (m+1)q¿d if q¿1, or m+1¿d if q=1.
Then by the Sobolev embedding theorem, u∈C( ��), and it is meaningful to use pointwise
values of u(x). The meshfree interpolant of u(x) is

uI (x)=
∑
I
u(xI)�I (x); x∈ �� (63)

Notice that this function interpolates u at the discrete points on the essential boundary:
ul(xI) = u(xI) for xI ∈
D. Denote n1 = min{m+ 1; n+ 1}.
We will assume the following hypothesis is satis�ed.

Hypothesis (H)
There is a constant integer N0 such that for any x∈ ��, there are at most N0 of xI satisfying
the relation ‖x − xI‖¡ �aI , i.e., each point in �� is covered by at most N0 shape functions.

Hypothesis (H) is quite natural since otherwise as the number of shape functions covering
a local area increases, the shape functions tend to be more and more linearly dependent in
the local area.
To simplify the notation, we write BI ≡B �aI (xI), 16I6NP. We �rst bound the error u− uI

in Sobolev norms over BJ ∩ �� for J =1; : : : ; NP. De�ne

�J =
{
x: ‖x − xJ‖¡ �aJ + max

16I6NP
�aI

}
(64)

and let

SJ = {I : dist(xI ; BJ )¡ �aI} (65)

It follows from hypothesis (H) that card (SJ ), 16I6NP, are uniformly bounded. If ��J ⊂ ��,
then ��J ∩ ��= ��J is star-shaped with respect to B̃J ≡BJ , and the chunkiness parameter of
��J ∩ �� is uniformly bounded. Now suppose ��J �⊂ ��. Then since @� is Lipschitz continuous,
if �a is su�ciently small, we can choose a ball B̃J of radius �aJ =2 with xJ on its boundary such
that ��J ∩ �� is star-shaped with respect to B̃J . Again we see that the chunkiness parameter of
��J ∩ �� is uniformly bounded.
Let Pn1J u be the Taylor polynomial of degree n1−1 of u averaged over B̃J [24, Section 4.1],

and denote

Rn1J u(x)= u(x)− Pn1J u(x) (66)

for the remainders. Then since the chunkiness parameters of ��J ∩ �� are uniformly bounded
when �a is su�ciently small, from the results of [24, Section 4.3], we have the estimates:

‖Rn1J u‖Wl; q(�J ∩�)6 c �an1−l|u|Wn1 ; q(�J∩�); l=0; : : : ; n1 (67)

‖Rn1J u‖L∞(�J ∩�)6 c �an1−d=q|u|Wn1 ; q(�J ∩�) (68)

where the constant c depends only on n1, d and q, and is independent of J .
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For x∈BJ ∩ ��, we have

u(x)− uI (x)=Pn1J u(x)−
∑
I
Pn1J u(xI)�I (x) + R

n1
J u(x)−

∑
I∈SJ

Rn1J u(xI)�I (x) (69)

By the polynomial reproducing property,∑
I
Pn1J u(xI)�I (x)=P

n1
J u(x) (70)

Thus we have the error representation formula

u(x)− uI (x) = Rn1J u(x)−
∑
I∈SJ

Rn1J u(xI)�I (x) (71)

Note that xI ∈ ��J ∩ �� for I ∈ SJ . So

‖u− uI‖Wl; q(BJ∩�)6‖Rn1J u‖Wl; q(BJ∩�) + ‖Rn1J u‖L∞(�J∩�)
∑
I∈SJ

‖�I‖Wl; q(BJ∩�) (72)

Since card(SJ ) is uniformly bounded, applying estimates (67), (68) and Theorem 4.1, we
have

‖u− uI‖Wl; q(BJ∩�)6c �a
n1−l|u|Wn1 ; q(�J∩�); 06l6min{n1; k}; 16J6NP (73)

Therefore, recalling again hypothesis (H),

‖u− uI‖Wl; q(�)6c �a
n1−l|u|Wn1 ; q(�); 06l6min{n1; k} (74)

To conclude, we have derived the following optimal order meshfree interpolation error
estimates.

Theorem 4.2
Assume the conditions stated in Theorem 4.1. Also assume hypothesis (H). Let m¿0, q∈[1;∞]
with (m+ 1)q¿d if q¿1, or m+ 1¿d if q=1. Then for any u∈Wm+1; q(�), we have the
optimal order interpolation error estimates

‖u− uI‖Wl; q(�)6c �a
min{m+1; n+1}−l|u|Wmin{m+1; n+1}; q(�) ∀l6min{m+ 1; n+ 1; k} (75)

Notice that when u is su�ciently smooth, m¿n, the error estimate Equation (75) reduces to

‖u− uI‖Wl; q(�)6c �a
n+1−l|u|Wn+1; q(�) ∀l6min{n+ 1; k} (76)

If we further assume �� and �̂I are su�ciently smooth so that k¿n+ 1, then

‖u− uI‖Wl; q(�)6c �a
n+1−l|u|Wn+1; q(�); l=0; 1; : : : ; n+ 1 (77)

For meshfree solutions uR of one-dimensional elliptic boundary value problems, it then follows
that the optimal order error estimates hold:

‖u− uR‖H 1(�)6c �an|u|Hn+1(�) (78)
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5. CONVERGENCE STUDY

In this section, we present some results on numerical experiments of the meshfree methods to
demonstrate the theoretical error estimates derived in the previous section. Numerical examples
showing the performance of the proposed method will be given in the next section.
For all the following numerical experiments, we use uniform discrete point distributions and

uniform support sizes. Then the support size �a is proportional to the nodal distance h. From
the results of the previous section, we have the following error estimates for the meshfree
interpolant uI :

‖u− uI‖H 1(�)6 chn|u|Hn+1(�) (79)

‖u− uI‖L2(�)6 chn+1|u|Hn+1(�) (80)

as long as the function u belongs to the space Hn+1(�). For a one-dimensional linear elliptic
boundary value problem, we also have the optimal order meshfree error estimate of meshfree
solution uR:

‖u− uR‖H 1(�)6chn|u|Hn+1(�) (81)

By the well-known Nitsche’s technique, we also have the optimal order meshfree error estimate
in L2 norm:

‖u− uR‖L2(�)6chn+1|u|Hn+1(�) (82)

Two examples are analysed to verify the order of convergence. The �rst example is a one-
dimensional boundary value problem:

u;xx=ex; x∈ (0; 1)
u(0)=1; u(1)= e

(83)

The exact solution is u(x) = ex. Uniform particle distributions and uniform support sizes are
used for meshfree computation. Denote h the distance between two neighbouring particles and
n the polynomial degree. The support size of the enrichment functions is chosen as �a=h=2:1+
n, and that of the primitive functions â=h=0:5. Figure 5 shows errors of RK interpolations and
Figure 6 the errors of meshfree solutions in L2 related norms. Essential boundary conditions are
imposed using the Kronecker delta property of RK interpolation on the essential boundaries.
We observe the optimal-order convergence for both the meshfree interpolants and the meshfree
solutions. By comparison of numerical solution using â=h=0:1; 0:5; 0:9, the results show that
the support size of primitive function â has very minimum in	uence on the solution accuracy
and the order of convergence.
For the two-dimensional boundary value problem, we solve the following Poisson equation:

∇2u(x; y)=(x2 + y2)exy (x; y)∈ (0; 1)× (0; 1)
u(0; y)=1; u(1; y)= ey; 06y61

u(x; 0)=1; u(x; 1)= ex; 06x61

(84)
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Figure 5. Error norms of one-dimensional reproducing kernel interpolation.

Figure 6. Error norms of one-dimensional meshfree solution.

Figure 7. Error norms of two-dimensional reproducing kernel interpolation.

The exact solution is u(x; y)= exy. Uniform particle distributions and uniform support sizes
are used for meshfree computation. Denote h the distance in the x or y direction between
two neighbouring particles and n the monomial degree. The support size of the enrichment
functions is chosen as �a=h=2:1 + n, and that of the primitive functions â=h=0:5. Numeri-
cal results shown in Figure 7 indicate that we have optimal order convergence for the RK
interpolation. Meshfree solution using �rst-order monomials shown in Figure 8 also achieves
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Figure 8. Error norms of two-dimensional meshfree solution.

optimum order of convergence. For higher monomial degrees, although the convergence order
in the energy norm is still one, the corresponding meshfree solutions are more accurate than
that with linear basis functions. This is due to the fact that the essential boundary condi-
tions are imposed only at discrete points. Similar phenomenon was observed in the meshfree
solution using standard RK approximation.

6. NUMERICAL EXAMPLES

In the following examples, unless otherwise speci�ed, mixed reproducing kernel interpolation
(Mixed RKI) functions using cubic B-spline kernel with linear basis are employed. Normalized
support sizes for �� �aI and �̂âI are de�ned as �RI = �aI =h and R̂I = âI =h, where h is the nodal
distance.

6.1. One-dimensional equation

In this example, the following model problem is considered:

−u;xx+20u(x)=0 in (0; 1)

u(0)=c1; u(1)= c1 exp(
√
20) + c2 exp(−

√
20)

(85)

where c1 = 1=(exp(
√
20)− exp(−√

20)), c2 = c1 − 1=
√
20, RK interpolation functions are con-

structed using linear basis functions with normalized support size R̂I =0:9 for �̂âI and �RI =2:0
for �� �aI . The solution is also compared with the regular RK approximation with boundary
conditions imposed by Lagrange multiplier method. The comparison of u and du=dx with an
equally spaced 11-node model is shown in Figure 9.
The convergence of the proposed formulation with respect to the support size of the inter-

polation function is also studied. For this purpose �RI =1:2; 2:0; 3:0 for �� �aI are considered in
the analysis. Consecutively re�ned regular models with 11, 21, 41, and 81 points are used in
the convergence study. The error norms in u and du=dx are plotted in Figure 10. The results
show a characteristic similar to that of the conventional RK approximation.
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Figure 9. Solution comparison using 11 nodes regular model.

Figure 10. Error norms in u and du=dx for �RI =1:2; 2:0; 3:0:

6.2. Beam bending

A cantilever beam subjected to a shear load as shown in Figure 11 is studied. Owing to the
symmetry in the geometry, only half of the model 1s modelled. Three regular models with
11× 3, 21× 5, and 41× 9 points, as shown in Figure 12, are tested. Linear basis functions
with normalized support sizes R̂I =0:9 for �̂âI and �RI =2:0 for �� �aI are employed. The compar-
ison of Mixed RKI, the regular RK approximation, and the �nite element solution are shown
in Table I. It is noted that with the Mixed RKI, the imposition of essential boundary condi-
tions is much less costly than that of the regular RK approximation with Lagrange multiplier
method.
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Figure 11. Beam bending problem con�guration.

Figure 12. Regular models with 11× 3, 21× 5, and 41× 9 nodes.

Table I. Tip displacement comparison in beam problem.

Model 33 105 369

FEM 71.1956% 88.3096% 96.9314%
RKPM 74.3174% 93.5920% 98.4111%
Mix RKI 74.0020% 93.6215% 98.4354%

The displacement error norms of the proposed method using �RI =1:2; 2:0; 3:0 for �� �aI are
shown in Figure 13, and the corresponding vertical displacement along y=0:0 and shear
stress distributions along x=5:0 using �nest discretization are plotted in Figures 14 and 15.

6.3. Two dimensional plate with hole

An in�nite plate with a central circular hole (diameter 2a) subjected to a unidirectional tensile
load 1.0 in the x direction as show in Figure 16 is studied using the proposed method. Plane
strain condition is assumed with Young’s modulus E=2:11× 1011 Pa and Poisson’s ratio
�=0:3. The exact solution of this problem is given in the polar co-ordinates:

�xx =1− a2

r2

(
3
2
cos(2�) + cos(4�)

)
+
3a4

2r4
cos(4�)
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Figure 13. L2 norm using �RI =1:2; 2:0; 3:0.

Figure 14. Vertical displacement y=0:0 using �RI =1:2; 2:0; 3:0:

�yy =−a
2

r2

(
1
2
cos(2�)− cos(4�)

)
− 3a4

2r4
cos(4�) (86)

�xy =−a
2

r2

(
1
2
sin(2�) + sin(4�)

)
+
3a4

2r4
sin(4�)

where (r; �) are the usual polar co-ordinates. Owing to geometric symmetry, only half model
was modelled by three domain discretizations using 45, 153, and 561 points as shown in
Figure 17. The traction along the edges x= ±5 and y=5 are given according to the analytic
solution Equation (86).
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Figure 15. Shear stress along x=5:0 using �RI =1:2; 2:0; 3:0:

Figure 16. Problem statement: a=1, and plate dimension is 10× 10.

The normal stresses �xx along the line x=5 using the Mixed RKI with three discretizations
are presented in Figure 18. Results comparison using the Mixed RKI and the conventional
RK approximation with the �nest discretization is shown in Figure 19, and the corresponding
energy norms are compared in Figure 20.

7. CONCLUSIONS

A general formulation for constructing meshfree interpolation functions that preserve repro-
ducing conditions is presented. It is based on a coupling of a primitive function and an
enrichment function. The primitive function introduces Kronecker delta properties, while the
enrichment function is responsible for meeting reproducing conditions. By enforcing repro-
ducing conditions on the combined shape function, an orthogonality condition at nodal points
exists between the vector of the enrichment functions and the vector of shifted monomial
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Figure 17. Domain discretization with 45, 153 and 561 nodes.

Figure 18. Stress plot along x=0 for 3 models using Mix RKI.

functions. It is shown that if the enrichment basis functions and the monomial basis functions
form a regular pair, the orthogonality condition leads to a nullity of the enrichment function at
nodal locations. As a consequence, the RK shape function becomes an interpolation function.
Based on this result, a RK interpolation function is constructed by coupling a nodal

Kronecker delta primitive function and an enrichment function that takes the form of RK
approximation. The nodal Kronecker delta function can be easily constructed by normaliz-
ing any kernel functions used in the RK approximation with the restricted support size so
that it does not cover any neighbour points. This primitive function can be 	exibly added
to selected points or to all points for desired interpolation properties. For points with added
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Figure 19. Stress comparison between RKPM and Mix RK interpolation.

Figure 20. Energy norm comparison between RKPM and Mix RKI.

primitive functions, the coe�cients of the corresponding RK shape functions become nodal
values. This provides a convenient means for imposing essential boundary conditions. Optimal-
order error estimates are shown rigorously for the proposed RK interpolant in any Sobolev
norms. Optimal order convergence is maintained when the method is employed to solve one-
dimensional boundary value problems. In two-dimensional problems, the order of convergence
is not optimum for higher order basis. This is due to the fact that the essential boundary con-
ditions are imposed only at discrete points. Similar phenomenon was observed in the meshfree
solution using standard RK approximation.
When the primitive functions are selected to be the �nite element shape functions, the

proposed method reduces to the approach by Huerta et al. [17], in which a background grid
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was needed. Since �nite element shape functions are linearly complete, the basis functions
in the enrichment function have to be at least second order. The smoothness of the resulting
shape function is governed by the smoothness of the �nite element shape function which
is generally C0. In the proposed method, since the proposed primitive function is merely a
normalized kernel function, basis functions with arbitrary order can be used in the enrichment
function. The continuity of the resulting shape function is the minimum continuity of the
primitive and enrichment functions. Therefore, taking the same kernel function for primitive
and enrichment functions leads to a shape function that has the same smoothness as the two
component functions. Of course speci�c continuity in the primitive function can be chosen
for particular applications.
The major advantage of the proposed method resides on its simplicity in dealing with

essential boundary conditions or point loads without �nite element enrichment. When a full
RK interpolation is employed, the rate of convergence is slightly lower than that of the regular
RK approximation. On the other hand, a mixed interpolation by introducing primitive functions
only to the essential boundary points allows the standard treatment of essential boundary
conditions while maintaining the good convergence properties of RK approximation. It should
be noted that, although straightforward, the proposed RK interpolation only allows imposition
of essential boundary conditions at nodal points. This is in contrast with the conventional �nite
element or coupling of �nite element and meshfree methods. We are exploring the possibility
of removing this drawback with new RK interpolations.
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