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Abstract. The radiative transfer equation (RTE) arises in many different areas of sci-
ence and engineering. In this paper, we propose and investigate a discrete-ordinate
discontinuous-streamline diffusion (DODSD) method for solving the RTE, which is a
combination of the discrete-ordinate technique and the discontinuous-streamline dif-
fusion method. Different from the discrete-ordinate discontinuous Galerkin (DODG)
method for the RTE, an artificial diffusion parameter is added to the test functions in
the spatial discretization. Stability and error estimates in certain norms are proved.
Numerical results show that the proposed method can lead to a more accurate approx-
imation in comparison with the DODG method.

AMS subject classifications: 65N30, 65R20

Key words: Radiative transfer equation, discrete-ordinate method, discontinuous-streamline dif-
fusion method, stability, error estimation.

1 Introduction

The radiative transfer equation, which describes the scattering and absorbing of radiation
through a medium, plays an important role in a wide range of applications such as astro-
physics, atmosphere and ocean, heat transfer, neutron transport and nuclear physics, and
so on. Today, research on the RTE remains to be very active and important, especially in
the biomedical optics fields, see e.g. [2, 6, 14, 26, 28].

The RTE can be viewed as a hyperbolic type integro-differential equation. Due to the
involvement of both integration and differentiation in the equation, as well as the high
dimension of the problem, it is challenging to develop effective numerical methods for
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solving the RTE. The numerical methods can be basically divided into two categories:
statistical schemes and deterministic schemes. The interested readers are referred to [11–
13, 15, 17, 19, 24, 25, 27].

The discrete-ordinate (DO) method [8, 22, 23], also called the SN method, is the most
popular deterministic method for the RTE, owing to the good compromise among ac-
curacy, flexibility, and moderate computational requirements. This method solves the
radiative transfer equation along a discrete set of angular directions, which are the nodal
points of a numerical quadrature approximating the integral term on the unit sphere,
thus reducing the RTE to a semi-discretized first-order hyperbolic system. To solve the
semi-discretized hyperbolic system, it is natural to use the discontinuous Galerkin (DG)
discretization, leading to the so-called discrete-ordinate discontinuous Galerkin method.
In [16], a DODG method was proposed for the RTE, and error estimates in certain discrete
norms were obtained.

The object of this paper is to propose and investigate a discrete-ordinate discontinuous-
streamline diffusion method for solving the RTE. Such a method is a combination of the
discrete-ordinate technique and the discontinuous-streamline diffusion (DSD) method.
The streamline diffusion (SD) finite element method was proposed by Hughes et al. [20]
and Johnson et al. [21] in order to cope with the usual instabilities caused by the convec-
tion term for the convection–dominated problem. In [3, 4], the streamline diffusion finite
element method was analyzed for the multi-dimensional Vlasov-FokkerPlanck system
and Fermi pencil beam equation. The DSD method keeps the fundamental structure of
the DG method while replacing the Galerkin elements by the SD framework in the up-
wind iteration procedure. In [9], the DSD method was employed successfully in solving
first order hyperbolic problems, where such a modification preserves the advantages of
both the upwind approach and the DG method, and also further improves the stability.
In this contribution, we seek to improve the DG method for RTE by employing the DSD
scheme and derive error estimates of the DODSD method in a norm including the direc-
tional gradient. While the DSD approach has been developed and applied to hyperbolic
systems or convection–dominated problems, this paper represents the first attempt, to
our knowledge, to construct DSD schemes for the RTE. Our numerical results show that
the DODSD method can lead to a more accurate solution in comparison with the DODG
method.

The rest of this paper is organized as follows. In Section 2, we introduce the RTE
and recall a few basic related results. In Section 3, we derive the discrete-ordinate
discontinuous-streamline diffusion method, and in Section 4 we present a stability and
convergence analysis for the proposed method. Numerical examples are presented in
Section 5, illustrating the performance of the numerical method and providing numer-
ical evidence of the theoretical error estimates. Finally, a few concluding remarks are
given in Section 6.

Throughout this paper, standard notation is used for Sobolev spaces, and the corre-
sponding semi-norms and norms [10]. Moreover, the letter C denotes a generic positive
constant whose value may be different at different occurrences.
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2 Radiative transfer equation

Let X be a bounded domain in R
d (d=2,3) with a smooth boundary ∂X. Denote by n(x)

the unit outward normal for x ∈ ∂X. Let Ω be the angular space, i.e., the unit circle in
R

2, or the unit sphere in R
3. For each fixed direction ω∈Ω, we introduce the following

subsets of ∂X:

∂Xω,−={x∈∂X : ω·n(x)<0}, ∂Xω,+={x∈∂X : ω·n(x)≥0}.

Then, we define

Γ−={(x,ω) : x∈∂Xω,−,ω∈Ω}, Γ+={(x,ω) : x∈∂Xω,+,ω∈Ω}

as the incoming and outgoing boundaries.
We define the integral operator S by

(Su)(x,ω)=
∫

Ω
g(x,ω·ω̂)u(x,ω̂)dσ(ω̂),

where g is a nonnegative normalized phase function satisfying
∫

Ω
g(x,ω·ω̂)dσ(ω̂)=1 ∀x∈X, ω∈Ω. (2.1)

In most applications, the function g is independent of x. As an example, a commonly
used phase function is the following Henyey-Greenstein (H-G) function:

g(t)=







1−η2

2π(1+η2−2ηt)
, d=2,

1−η2

4π(1+η2−2ηt)3/2 , d=3,
(2.2)

where the parameter η ∈ (−1,1) is the anisotropy factor of the scattering medium. Note
that η = 0 for isotropic scattering, η > 0 for forward scattering, and η < 0 for backward
scattering.

With the above notation, a boundary value problem of the radiative transfer equation
(RTE) reads

ω·∇u(x,ω)+σt(x)u(x,ω)=σs(x)(Su)(x,ω)+ f (x,ω), (x,ω)∈X×Ω, (2.3)

u(x,ω)=0, (x,ω)∈Γ−. (2.4)

Here σt = σa+σs, σa is the macroscopic absorption cross section, σs is the macroscopic
scattering cross section, and f is a source function. We assume these given functions
have the properties that

σt,σs ∈L∞(X), σs ≥0 a.e. in X, and σt−σs ≥ c0 in X for a constant c0>0, (2.5)

f (x,ω)∈L2(X×Ω) and is a continuous function with respect to ω∈Ω. (2.6)

It is shown in [1] that the problem (2.3)-(2.4) has a unique solution u ∈ H1
2(X×Ω),

where
H1

2(X×Ω) :={v∈L2(X×Ω) : ω·∇v∈L2(X×Ω)}

with ω·∇v denoting the generalized directional derivative of v in the direction ω.

http://dx.doi.org/10.4208/cicp.310715.290316a
Downloaded from http:/www.cambridge.org/core. The University of Iowa, on 05 Dec 2016 at 17:00:14, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.4208/cicp.310715.290316a
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


1446 C. Wang, Q. Sheng and W. Han / Commun. Comput. Phys., 20 (2016), pp. 1443-1465

3 A discrete-ordinate discontinuous-streamline diffusion

method

In this section, a discrete-ordinate discontinuous-streamline diffusion method is pre-
sented for solving the radiative transfer problem (2.3)-(2.4). The numerical scheme is
formed in two steps: First, we use the discrete-ordinate method to approximate the
integral term in the RTE, resulting in a system of linear hyperbolic partial differential
equations. Then these coupled linear hyperbolic equations are further discretized by the
discontinuous-streamline diffusion method.

3.1 Angular discretization

To approximate the integration term Su, we employ a numerical quadrature of the form

∫

Ω
F(ω)dσ(ω)≈

L

∑
l=0

wlF(ωl), wl >0, ωl ∈Ω, 0≤ l≤ L, (3.1)

where F is a continuous function over the unit sphere Ω.

3.1.1 Quadrature scheme in the two-dimensional (2D) domain

Introduce the spherical coordinate system

ω=(cosθ,sinθ)T, 0≤ θ≤2π. (3.2)

Noting that dσ(ω)=dθ holds for the coordinate system (3.2), we have

∫

Ω
F(ω)dσ(ω)=

∫ 2π

0
F̄(θ)dθ,

where F̄ stands for the representation of F in the spherical coordinates.

One possible quadrature scheme for the above integral is the composite trapezoidal
formula

∫ 2π

0
F̄(θ)dθ≈

hθ

2

(

F̄(θ0)+
L−1

∑
i=1

2F̄(θi)+ F̄(θL)

)

:=
L

∑
i=0

wiF̄(θi), (3.3)

where {θi} are evenly spaced on [0,2π] with a spacing hθ=2π/L, i.e., θi=ihθ , w0=wL=
hθ
2 ,

and wi=hθ for 1≤ i≤ L−1. It is known that (see, e.g. [5])

∫ 2π

0
F̄(θ)dθ−

hθ

2

(

F̄(θ0)+
L−1

∑
i=1

2F̄(θi)+ F̄(θL)

)

=−
πh2

θ

6
F̄′′(θ). (3.4)
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3.1.2 Quadrature scheme in the three-dimensional (3D) domain

Introduce the spherical coordinate system

ω=(sinθcosψ,sinθsinψ,cosθ)T, 0≤ θ≤π, 0≤ψ≤2π. (3.5)

Then we have dσ(ω) = sinθdθdψ. By using the spherical coordinate system (3.5), we
obtain

∫

Ω
F(ω)dσ(ω)=

∫ 2π

0

∫ π

0
F̄(θ,ψ)sinθdθdψ.

One family of quadratures for the above integral is given by the product numerical
integration formulas. For example,

∫

Ω
F(ω)dσ(ω)≈

π

m

2m

∑
j=1

m

∑
i=1

wiF̄(θi,ψj), (3.6)

where {θi} are chosen so that {cosθi} and {wi} are the Gauss-Legendre nodes and
weights on [−1,1]. The points {φj} are evenly spaced on [0,2π] with a spacing of π/m.
Regarding the accuracy of the quadrature (3.6), we have (see, e.g. [18])

∣

∣

∣

∣

∣

∫

Ω
F(ω)dσ(ω)−

L

∑
l=0

wlF(ωl)

∣

∣

∣

∣

∣

≤ csn
−s‖F‖s,Ω ∀F∈Hs(Ω), s>1, (3.7)

where cs is a positive constant depending only on s, and n denotes the degree of precision
of the quadrature.

3.1.3 Discrete-ordinate method

Based on the numerical quadrature (3.1), the integral operator S is approximated by a
discretized operator Sd given by

Sdu(x,ω)=
L

∑
i=0

wig(x,ω·ωi)u(x,ωi). (3.8)

For later analysis, we define

m(x)= max
0≤l≤L

L

∑
i=0

wig(x,ωl ·ωi). (3.9)

In the 2D case, if g(x,t) is continuous in x∈X and twice continuously differentiable with
respect to t∈ [−1,1], then we get from (3.4) and (2.1) that

∣

∣

∣

∣

∣

1−
L

∑
i=0

wig(x,ωl ·ωi)

∣

∣

∣

∣

∣

≤O(h2
θ). (3.10)
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This implies

‖m(x)‖0,∞,X ≤1+O(h2
θ). (3.11)

Therefore, for hθ sufficiently small, there exists a positive constant c′0 satisfying

σt−m(x)σs ≥σt−σs−O(h2
θ)σs ≥ c0−O(h2

θ)σs ≥ c′0 ∀x∈X. (3.12)

In the 3D case, if g(x,ωl ·) is an Hs(Ω) (s>1) function for any fixed x∈X and ωl ∈Ω,
then we get from (3.7) and (2.1) that

∣

∣

∣

∣

∣

1−
L

∑
i=1

wlg(ωl ·ωi)

∣

∣

∣

∣

∣

≤ csn
−s‖g(ωl ·)‖s,Ω. (3.13)

This also implies that ‖m(x)‖0,∞,X ≈1 and (3.12) holds in the 3D case when a high-order
quadrature rule is used.

Remark 3.1. Numerical tests are provided in [16] to demonstrate that (3.13) holds for the
Henyey-Greenstein phase function (2.2).

Using the operator Sd, we can discretize the radiative transfer equation (2.3)-(2.4) in
each angular direction ωl to get

ωl ·∇ul+σtu
l =σs

L

∑
i=0

wig(·,ωl ·ωi)u
i+ fl in X, ul =0 on ∂l

−X, 0≤ l≤ L, (3.14)

where fl= f (x,ωl) and ul=ul(x) is an approximation of u(x,ωl). Here and below, we use
the simplified notation ∂l

±X :=∂Xωl ,±.

Remark 3.2. Note that the Henyey-Greenstein function (2.2) is smooth for η<1. Formally,
η=1 corresponds to the case where there is no scattering among different directions and
(Su)(x,ω)= u(x,ω). As a result, the system (3.14) is reduced to a set of uncoupled first
order transfer equations, which can be solved easily, and the analysis is the same as that
for a single transfer equation.

3.2 Spatial discretization

After the angular discretization, the RTE is reduced to a system of first-order hyperbolic
partial differential equations in space. Now we discretize (3.14) by the discontinuous-
streamline diffusion method.

Let {Th}h be a regular family of finite element partitions of X, h being the mesh size
parameter. Denote by nK the unit outward normal to ∂K for K∈Th. Let Ei

h be the set of all
interior boundaries (faces for d=3 or edges for d=2) of Th. For any positive integer k, let
Pk(K) be the set of all polynomials on K of a total degree no more than k.
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For a fixed direction ωl , we define the incoming and outgoing boundaries of K ∈ Th

by

∂l
−K={x∈∂K : ωl ·n(x)<0}, ∂l

+K={x∈∂K : ωl ·n(x)≥0}.

We remark that each edge of an element K ∈ Th is either an incoming boundary or an
outgoing boundary.

Let Kl
+ and Kl

− be two adjacent elements sharing e∈Ei
h, where the normal direction nl

e

pointing from Kl
− to Kl

+ satisfies ω·nl
e ≥ 0 (cf. Fig. 1). For a scalar-valued function v, we

define

vl
+=v|Kl

+
, vl

−=v|Kl
−

, and [vl ]=vl
+−vl

− on e.

For any domain D⊆X with boundary ∂D (resp. ∂l
±D), let (·,·)D and 〈·,·〉∂D (resp. 〈·,·〉∂l

±D)

be the L2 inner product on D and on ∂D (resp. ∂l
±D).

· ≥

n
l
e

Kl
−

Kl
+

e

ωl

Figure 1: An example of Kl
−, Kl

+, and nl
e in 2D.

Using the above notation, the DODG method, which has been developed in [16], is to
find ul

h∈Pk(K) such that for any K∈Th, 0≤ l≤ L,

(

ωl ·∇ul
h+σtu

l
h,vl

h

)

K
+
〈

[ul
h],v

l
+|ωl ·n|

〉

∂l
−K

=

(

σs

L

∑
i=0

wig(·,ωl ·ωi)u
i
h+ fl ,v

l
h

)

K

∀vl
h ∈Pk(K) (3.15)

with

ul
−=0 on ∂l

−K⊂∂l
−X. (3.16)

We now replace the Galerkin elements in the above DODG formulation (3.15) by the
SD framework, and add an artificial diffusion term in the test function. Then the discrete-
ordinate discontinuous-streamline diffusion (DODSD) method can be described as fol-
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lows: to find ul
h∈Pk(K) such that for any K∈Th, 0≤ l≤ L,

(

ωl ·∇ul
h+σtu

l
h,vl

h+δωl ·∇vl
h

)

K
+
〈

[ul
h],v

l
+|ωl ·n|

〉

∂l
−K

=

(

σs

L

∑
i=0

wig(·,ωl ·ωi)u
i
h+ fl ,v

l
h+δωl ·∇vl

h

)

K

∀vl
h ∈Pk(K) (3.17)

with

ul
−=0 on ∂l

−K⊂∂l
−X. (3.18)

Here δ= c̄h is an artificial diffusion parameter with some c̄>0 and vl
± :=(vl

h)±.

Obviously, the DODG method is the special case of the DODSD method with δ= 0.
The effect of adding the diffusion parameter will be analyzed in the next section, and
illustrated by some numerical results in Section 5.2.

4 Error analysis

In order to analyze the proposed DODSD method, we first present the global formulation
of the discrete method (3.17)-(3.16). Associated with a direction ωl , we define

V l
h ={v∈L2(X) : v|K ∈Pk(K) ∀K∈Th}, (4.1)

W l
h =
{

w∈L2(X) : w|K ∈C(K)∩H1(K) ∀K∈Th

}

. (4.2)

Letting Vh =
(

V l
h

)L+1
and Wh :=

(

W l
h

)L+1
, we have Vh ⊂Wh. A generic element in Vh will

be denoted by vh :={vl
h}

L
l=0 or simply vh :={vl

h}.

The global formulation of the DODSD method (3.17)-(3.16) is then expressed as: Find
{ul

h}∈Vh such that

L

∑
l=0

wl ∑
K∈Th

(

ωl ·∇ul
h+σtu

l
h,vl

h+δωl ·∇vl
h

)

K
+

L

∑
l=0

wl ∑
K∈Th

〈

[ul
h],v

l
+|ωl ·n|

〉

∂l
−K

=
L

∑
l=0

wl ∑
K∈Th

(

σs

L

∑
i=0

wig(·,ωl ·ωi)u
i
h+ fl ,v

l
h+δωl ·∇vl

h

)

K

∀{vl
h}∈Vh (4.3)

with

ul
−=0 on ∂l

−K⊂∂l
−X, 0≤ l≤ L. (4.4)
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We define a bilinear form ah :Wh×Wh →R as

ah(uh,vh)=
L

∑
l=0

wl ∑
K∈Th

(

ωl ·∇ul
h+σtu

l
h,vl

h+δωl ·∇vl
h

)

K

+
L

∑
l=0

wl ∑
K∈Th

〈

[ul
h],v

l
+|ωl ·n|

〉

∂l
−K

−
L

∑
l=0

wl ∑
K∈Th

(

σs

L

∑
i=0

wig(·,ωl ·ωi)u
i
h,vl

h+δωl ·∇vl
h

)

K

and a linear form f :Wh →R by

f (vh)=
L

∑
l=0

wl ∑
K∈Th

(

fl ,v
l
h+δωl ·∇vl

h

)

K
.

Then we rewrite the DODSD method for the problem (2.3)–(2.4): Find uh ∈Vh such
that

ah(uh,vh)= f (vh) ∀vh∈Vh, (4.5)

with
[ul

h]=ul
+ on ∂l

−K⊂∂l
−X, 0≤ l≤ L. (4.6)

4.1 Stability and unique solvability

We begin with a useful lemma.

Lemma 4.1. For any vh={vl
h}, wh={wl

h}∈
(

L2(Ω)
)L+1

, we have

L

∑
l=0

wl

(

σs

L

∑
i=0

wig(·,ωl ·ωi)v
i
h,wl

h

)

X

≤

[

L

∑
l=0

wl

(

mσsv
l
h,vl

h

)

X

]
1
2
[

L

∑
l=0

wl

(

mσswl
h,wl

h

)

X

]
1
2

.

Proof. Interchanging the order of summation, we have

I :=
L

∑
l=0

wl

(

σs

L

∑
i=0

wig(·,ωl ·ωi)v
i
h,wl

h

)

X

=
L

∑
i=0

wi

L

∑
l=0

(

σswlg(·,ωl ·ωi)v
i
h,wl

h

)

X
.

Using the Cauchy-Schwarz inequality, we get

I≤
L

∑
i=0

wi

[

L

∑
l=0

(

σswlg(·,ωl ·ωi)v
i
h,vi

h

)

X

]
1
2
[

L

∑
l=0

(

σswlg(·,ωl ·ωi)w
l
h,wl

h

)

X

]
1
2

. (4.7)
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It follows from the definition (3.9) that

L

∑
l=0

(

σswlg(·,ωl ·ωi)v
i
h,vi

h

)

X
≤
(

mσsv
i
h,vi

h

)

X
.

Therefore, a combination of the inequality (4.7) and the Cauchy-Schwarz inequality leads
to

I≤
L

∑
i=0

wi

[(

mσsv
i
h,vi

h

)

X

]
1
2

[

L

∑
l=0

(

σswlg(·,ωl ·ωi)w
l
h,wl

h

)

X

]
1
2

≤

[

L

∑
i=0

wi

(

mσsv
i
h,vi

h

)

X

]
1
2
[

L

∑
i=0

wi

L

∑
l=0

(

σswlg(·,ωl ·ωi)w
l
h,wl

h

)

X

]
1
2

≤

[

L

∑
i=0

wi

(

mσsv
i
h,vl

h

)

X

]
1
2
[

L

∑
l=0

wl

(

mσswi
h,wl

h

)

X

]
1
2

,

which completes the proof of the lemma.

For any vh∈Wh, we define a norm |||·||| by

|||vh|||
2 =

L

∑
l=0

wl ∑
K∈Th

c′0‖vl
h‖

2
0,K+

L

∑
l=0

wl ∑
∂l
+K⊂∂l

+X

〈

vl
−,vl

−ωl ·n
〉

∂l
+K

+δ
L

∑
l=0

wl ∑
K∈Th

‖ωl ·∇vl
h‖

2
0,K+

L

∑
l=0

wl ∑
K∈Th

〈

[vl
h],[v

l
h]|ωl ·n|

〉

∂l
−K

.

We remark that [vl
h]=vl

+ on ∂l
−K⊂∂l

−X, l=0,··· ,L.

Then we prove a stability estimate for the method (4.5)-(4.6).

Lemma 4.2. For sufficiently small h, we have

|||vh|||
2 ≤3ah(vh,vh) ∀vh∈Wh.

Proof. Noting that ωl is a constant vector, we get from the Green formula that

(ωl ·∇vh,vh)K =−(vh,ωl ·∇vh)K+〈vh,vhωl ·n〉∂K =
1

2
〈vh,vhωl ·n〉∂K . (4.8)

Thus,

ah(vh,vh)=
L

∑
l=0

wl ∑
K∈Th

δ‖ωl ·∇vl
h‖

2
0,K+

L

∑
l=0

wl ∑
K∈Th

(

σtv
l
h,vl

h

)

K
+ I1+ I2+ I3+ I4,
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where

I1=
L

∑
l=0

wl ∑
K∈Th

(

δσtv
l
h,ωl ·∇vl

h

)

K
,

I2=
L

∑
l=0

wl ∑
K∈Th

(

1

2

〈

vl
h,vl

hωl ·n
〉

∂K
+
〈

[vl
h],v

l
+|ωl ·n|

〉

∂l
−K

)

,

I3=−
L

∑
l=0

wl ∑
K∈Th

(

σs

L

∑
i=0

wig(·,ωl ·ωi)v
i
h,vl

h

)

K

,

I4=−
L

∑
l=0

wl ∑
K∈Th

(

σs

L

∑
i=0

wig(·,ωl ·ωi)v
i
h,δωl ·∇vl

h

)

K

.

By the Cauchy-Schwarz inequality, we get

|I1|≤

[

L

∑
l=0

wl ∑
K∈Th

(

δσtv
l
h,σtv

l
h

)

K

]
1
2
[

L

∑
l=0

wl ∑
K∈Th

(

δωl ·∇vl
h,ωl ·∇vl

h

)

K

]
1
2

≤
1

2
δ

L

∑
l=0

wl ∑
K∈Th

(

σtv
l
h,σtv

l
h

)

K
+

1

2

L

∑
l=0

wl ∑
K∈Th

(

δωl ·∇vl
h,ωl ·∇vl

h

)

K
.

A simple calculation yields

I2=
L

∑
l=0

wl ∑
K∈Th

(

−
1

2

〈

vl
+,vl

+ |ωl ·n|
〉

∂l
−K

+
1

2

〈

vl
−,vl

−ωl ·n
〉

∂l
+K

+
〈

[vl
h],v

l
+|ω·n|

〉

∂l
−K

)

=
L

∑
l=0

wl ∑
K∈Th

(

−
1

2

〈

vl
+,vl

+ |ωl ·n|
〉

∂l
−K

+
1

2

〈

vl
−,vl

− |ωl ·n|
〉

∂l
−K

+
〈

[vl
h],v

l
+|ω·n|

〉

∂l
−K

)

+
L

∑
l=0

wl ∑
∂l
+K⊂∂l

+X

1

2

〈

vl
−,vl

− |ωl ·n|
〉

∂l
+K

=
L

∑
l=0

wl ∑
K∈Th

(

1

2

〈

[vl
h],[v

l
h]|ωl ·n|

〉

∂l
−K

)

+
L

∑
l=0

wl ∑
∂l
+K⊂∂l

+X

1

2

〈

vl
−,vl

− |ωl ·n|
〉

∂l
+K

,

where the condition that vl
−=0 on ∂l

−K⊂∂l
−X is used.

Using Lemma 4.1, we get

|I3|≤
L

∑
l=0

wl ∑
K∈Th

(

mσsv
l
h,vl

h

)

K
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and

|I4|≤

[

L

∑
l=0

wl ∑
K∈Th

(

mσsvl
h,vl

h

)

K

]
1
2
[

L

∑
l=0

wl ∑
K∈Th

(

mσsδ
2
ωl ·∇vl

h,ωl ·∇vl
h

)

K

]
1
2

≤
1

2
δ

2
3

L

∑
l=0

wl ∑
K∈Th

(

mσsvl
h,vl

h

)

K
+

1

2
δ

4
3

L

∑
l=0

wl ∑
K∈Th

(

mσsωl ·∇vl
h,ωl ·∇vl

h

)

K
.

Combining the above inequalities, we have

ah(vh,vh)≥
L

∑
l=0

wl ∑
K∈Th

(

1

2
δ
(

1−δ
1
3 mσs

)

ωl ·∇vl
h,ωl ·∇vl

h

)

K

+
L

∑
l=0

wl ∑
K∈Th

((

σt−
1

2
δσ2

t −(1+δ
2
3 )mσs

)

vl
h,vl

h

)

K

+
L

∑
l=0

wl ∑
K∈Th

(

1

2

〈

[vl
h],[v

l
h]|ωl ·n|

〉

∂l
−K

)

+
L

∑
l=0

wl ∑
∂l
+K∈∂l

+X

1

2

〈

vl
−,vl

− |ωl ·n|
〉

∂l
+K

.

Then the lemma can be obtained by taking a sufficiently small h.

The unique solvability of the method (4.5)-(4.6) is a direct consequence of the above
lemma.

Theorem 4.1. For sufficiently small h, the DODSD method (4.3) has a unique solution.

4.2 Error estimate

For any K∈Th, let PK be the orthogonal projection operator from L2(K) onto Pk(K). Then
by the scaling argument and the trace theorem we can easily obtain the following result
(cf. [7]).

Lemma 4.3. For all v∈H1+r(K) with r>0 and K∈Th, we have

‖v−PKv‖0,K+hK‖v−PKv‖1,K+h
1
2
K‖v−PKv‖0,∂K ≤Ch

1+min{r,k}
K ‖v‖r+1,K.

For later analysis, we make a regularity assumption:

for some r>0, ul ∈H1+r(X)∩C(X), 0≤ l≤ L. (4.9)

Theorem 4.2. Let {ul} and uh be the solutions of (3.14) and (4.5)-(4.6), respectively. Under
assumptions (2.5) and (4.9), we have a constant C>0 such that for all sufficiently small h,

|||{ul}−uh|||≤Chmin{r,k}+ 1
2

(

L

∑
l=0

‖ul‖r+1,X

)
1
2

. (4.10)
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Proof. By the regularity assumption (4.9), we have

ah

(

{ul},{vl
h}
)

=0 ∀{vl
h}∈Vh. (4.11)

Subtracting the above equality from (4.5), we obtain the Galerkin orthogonality

ah

(

{ul}−uh,{vl
h}
)

=0 ∀{vl
h}∈Vh. (4.12)

Let Ph denote the L2-orthogonal operator onto V l
h, 0≤ l ≤ L, in an elementwise way,

i.e., for v∈L2(X), let

Phv|K :=PKv ∀K∈Th.

Set

ηl =ul−Phul , ξ l =Phul−ul
h, and el =ul−ul

h.

Note that el
−|∂l

−K =0 for each ∂l
−K⊂∂l

−X.

From Lemma 4.2 and the Galerkin orthogonality (4.12), we have

|||{el}|||2 ≤3ah

(

{el},{el}
)

=3ah

(

{el},{ηl}
)

. (4.13)

On the other hand, by the definition of the bilinear form ah(·,·), we have

ah

(

{el},{ηl}
)

= I1+ I2+ I3+ I4+ I5, (4.14)

where

I1=
L

∑
l=0

wl ∑
K∈Th

(

ωl ·∇el ,ηl
)

K
,

I2=
L

∑
l=0

wl ∑
K∈Th

δ
(

ωl ·∇el ,ωl ·∇ηl
)

K
,

I3=
L

∑
l=0

wl ∑
K∈Th

(

σte
l ,ηl+δωl ·∇ηl

)

K

I4=
L

∑
l=0

wl ∑
K∈Th

(

σs

L

∑
i=0

wig(x,ωl ·ωi)e
i,ηl+δωl ·∇ηl

)

K

,

I5=
L

∑
l=0

wl ∑
K∈Th

〈

[el ],ηl
+|ωl ·n|

〉

∂l
−K

.
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By using the Cauchy-Schwarz inequality, Young’s inequality, and Lemma 4.3, we get

|I1|≤
L

∑
l=0

wl ∑
K∈Th

‖ωl ·∇el‖0,K‖ηl‖0,K

≤
L

∑
l=0

wl ∑
K∈Th

Ch
1+min{r,k}
K ‖ωl ·∇el‖0,K‖ul‖r+1,K

≤
L

∑
l=0

wl ∑
K∈Th

(

1

6
δ‖ωl ·∇el‖2

0,K+Ch
2+2min{r,k}
K δ−1‖ul‖2

r+1,K

)

, (4.15)

|I2|≤
L

∑
l=0

wl ∑
K∈Th

(

δ‖ωl ·∇el‖0,K‖ωl ·∇ηl‖0,K

)

≤
L

∑
l=0

wl ∑
K∈Th

δh
min{r,k}
K ‖ωl ·∇el‖0,K‖ul‖r+1,K

≤
L

∑
l=0

wl ∑
K∈Th

(

1

6
δ‖ωl ·∇el‖2

0,K+Ch
2min{r,k}
K δ‖ul‖2

r+1,K

)

, (4.16)

|I3|≤
L

∑
l=0

wl ∑
K∈Th

(

‖σte
l‖0,K‖ηl+δωl ·∇ηl‖0,K

)

≤
L

∑
l=0

wl ∑
K∈Th

(

1

6
c′0‖el‖2

0,K+C
(

‖ηl‖2
0,K+δ‖ωl ·∇ηl‖2

0,K

)

)

≤
L

∑
l=0

wl ∑
K∈Th

(

1

6
c′0‖el‖2

0,K+C
(

h
2+2min{r,k}
K ‖ul‖2

r+1,K+δh
2min{r,k}
K ‖ul‖2

r+1,K

)

)

, (4.17)

|I4|≤C

[

L

∑
l=0

wl ∑
K∈Th

‖el‖2
0,K

]
1
2
[

L

∑
l=0

wl ∑
K∈Th

‖ηl+δωl ·∇ηl‖2
0,K

]
1
2

≤
L

∑
l=0

wl ∑
K∈Th

1

6
c′0‖el‖2

0,K+C
L

∑
l=0

wl ∑
K∈Th

(

‖ηl‖2
0,K+δ‖ωl ·∇ηl‖2

0,K

)

≤
L

∑
l=0

wl ∑
K∈Th

1

6
c′0‖el‖2

0,K+C
L

∑
l=0

wl ∑
K∈Th

(

h
2+2min{r,k}
K ‖ul‖2

r+1,K+δh
2min{r,k}
K ‖ul‖2

r+1,K

)

,

(4.18)

|I5|≤
L

∑
l=0

wl ∑
K∈Th

(

1

6

〈

[el ],[el ]|ωl ·n|
〉

∂l
−K

+C
〈

ηl
+,ηl

+|ωl ·n|
〉

∂l
−K

)

≤
L

∑
l=0

wl ∑
K∈Th

(

1

6

〈

[el ],[el ]|ωl ·n|
〉

∂l
−K

+Ch
1+2min{r,k}
K ‖ul‖2

r+1,K

)

. (4.19)
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Combining (4.13)-(4.19), we obtain

|||{el}|||2 ≤
1

2
|||{el}|||2+Ch

1+2min{r,k}
K

L

∑
l=0

wl ∑
K∈Th

‖ul‖2
r+1,K, (4.20)

where δ= c̄h is used. Thus we complete the proof of this theorem.

Remark 4.1. Note that ‖ωl ·∇(ul−ul
h)‖0,K is included in the norm |||{ul}−uh|||, there-

fore (4.10) also gives a stability estimate for ‖ωl ·∇(ul−ul
h)‖0,K in terms of ‖ul‖r+1,X. We

remark that this estimate was not established for the DODG approximation solution of
the RTE, cf. Theorem 4.6 in [16].

Error estimates between the solution u to the RTE and the solution {ul} to the semi-
discretized equation (3.14) have been proved in [16].

Theorem 4.3. Let {ul} and u be the solutions of (3.14) and (2.3)-(2.4), respectively. In 3D, if
the regularity assumption (4.9) holds, then we have

(

l

∑
l=0

wl ∑
K∈Th

∥

∥

∥
ul(·)−u(·,ωl)

∥

∥

∥

2

0,K

)
1
2

≤Cn−r−1

(

∫

X
‖u(·,·)‖2

r+1,Ωdx

)
1
2

, (4.21)

where C is a positive constant depending on r and the phase function g.

Similarly, we can obtain the following theorem.

Theorem 4.4. Let {ul} and u be the solutions of (3.14) and (2.3)-(2.4), respectively. In 2D, if
the solution u to RTE (2.3)-(2.4) is in L2(X,C2(Ω)) and there exists a positive constant C such
that

sup
x∈X, ω∈Ω

‖g′′(x,ω·)‖0,∞,Ω ≤C, (4.22)

where g′′(x,t)= ∂2g(x,t)
∂t2 , then we have

(

l

∑
l=0

wl ∑
K∈Th

∥

∥

∥
ul(·)−u(·,ωl)

∥

∥

∥

2

0,K

)
1
2

=O(h2
θ), (4.23)

when hθ is sufficiently small.

Combining the above three theorems, we obtain the following results.

Theorem 4.5. Let uh and u be the solutions of (4.5)-(4.6) and (2.3)-(2.4), respectively. Under
the assumption of Theorem 4.3, we have

(

l

∑
l=0

wl ∑
K∈Th

∥

∥

∥
ul

h(·)−u(·,ωl)
∥

∥

∥

2

0,K

)
1
2

≤C1hmin{r,k}+ 1
2

(

L

∑
l=0

wl ∑
K∈Th

‖ul‖2
r+1,K

)
1
2

+C2n−r−1

(

∫

X
‖u(·,·)‖2

r+1,Ωdx

)
1
2

, (4.24)

when h is sufficiently small.
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Theorem 4.6. Let uh and u be the solutions of (4.5)-(4.6) and (2.3)-(2.4), respectively. Under
the assumption of Theorem 4.4, we have

(

l

∑
l=0

wl ∑
K∈Th

∥

∥

∥
ul

h(·)−u(·,ωl)
∥

∥

∥

2

0,K

)
1
2

≤Chmin{r,k}+ 1
2

(

L

∑
l=0

wl ∑
K∈Th

‖ul‖2
r+1,K

)
1
2

+O(h2
θ), (4.25)

when h is sufficiently small.

5 Numerical experiments

In this section, we present some numerical examples of the discrete-ordinate
discontinuous-streamline diffusion method for the radiative transfer equation (2.3)-(2.4)
in the 2D case. The main purpose is to illustrate the convergence performance of the
proposed DODSD method and the effect of the added diffusion parameter.

5.1 Implementation

First, we briefly describe the implementation of the DODSD method. For a mesh shown
in Fig. 2, the DODSD method can be carried out for one direction ω in the following
order:

Step 1. Denote by T
(1)
h the elements for which all incoming boundary ∂l

−K⊂ ∂l
−X. In

Fig. 2, T
(1)
h ={Ki : i=2,3}. We first compute ul

h for K∈T
(1)
h .

Step 2. For Th\T
(1)
h , let ∂l,1

− X = {e ⊂ ∂l
−K : K ∈ Th\T

(1)
h , and ul

+|e has been computed

or given} denote its incoming edge. In Fig. 2, ∂l,1
− is the broken line ACDEF. Similarly,

we define the set T
(2)
h and compute ul

h for K∈T
(2)
h . In Fig. 2, T

(2)
h ={Ki : i=9,10}.

Step 3. Repeating step 2, we obtain the non-ovrelapping decomposition Th = T
(1)
h ∪

T
(2)
h ∪···∪T

(s)
h . The computation should follow this sequence; that is, start the computa-

tion with the elements in T
(1)
h and end with the elements in T

(s)
h .

In the above procedure, the unknown function ul
h on each element K is computed by

following the source iteration scheme of (3.17), that is, with an initial guess ul,0
h ∈ Pk(K),

0≤ l≤ L, for j=1,2,··· , we seek u
l,j
h ∈Pk(K), 0≤ l≤ L, such that

(

ωl ·∇u
l,j
h +σtu

l,j
h ,vl

h+δωl ·∇v
l,j
h

)

K
+
〈

[u
l,j
h ],vl

+|ωl ·n|
〉

∂l
−K

=

(

σs

L

∑
i=0

wig(·,ωl ·ωi)u
i,j−1
h + fl ,v

l
h+δωl ·∇vl

h

)

K

∀vl
h ∈Pk(K) (5.1)
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ω
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Figure 2: A example of Th in 2D.

with
u

l,j
− |∂l

−K =0, ∂l
−K⊂∂l

−X. (5.2)

For any K∈Th and vh ∈Pk(K), it is easy to prove that there exists a positive constant CK

satisfying

CK

(

‖vh‖
2
0,K+δ‖ωl ·∇vh‖

2
0,K+

1

2

〈

vl
−,vl

− |ωl ·n|
〉

∂l
+K

)

≤(ωl ·∇vh+σtvh,vh+δωl ·∇vh)K+
〈

vl
+,vl

+|ωl ·n|
〉

∂l
−K

when h is sufficiently small. Then the unique solvability of (5.1)-(5.2) can be obtained by
the above inequality and the Lax-Milgram lemma (see e.g. [10]).

We perform the above procedure for all directions in one iteration step, and stop the

iteration if some stopping condition is met, and take {u
l,j
h } as {ul

h}.

5.2 Numerical experiments

Let X =(0,1)×(0,1). We consider the following four examples of the radiative transfer
equation (2.3)-(2.4):

Example 1. the H-G phase function with η=0.2.

Example 2. the H-G phase function with η=0.5.

Example 3. the H-G phase function with η=0.9.

Example 4. the phase function

g(x,t)=
1

2π

(

1+
t

2

)

.

For Examples 1-3, the true solution is

u(x,ω)=sin(πx1)sin(πx2).
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And for Example 4, the true solution is

u(x,ω)= e−ax1−bx2 (1+ccosθ),

with a=b= σa
3 and c= σa

σa+6σs
. We set the right hand function f (x,ω) to satisfy the radiative

transfer equation.

Let T0 =Th0
be an initial triangulation of X with a mesh size h0 ≈0.1. Then we recur-

sively generate a sequence of nested triangulations Tl = Thl
, l = 1,2,3, by dividing each

triangle in the previous mesh Tl−1 into four sub-triangles by connecting the midpoints
of the edges; hl =2−lh0. Based on these meshes, the linear finite element spaces are con-
structed and used in the spatial discretization. For the angular discretization, we employ
the composite trapezoidal rule (3.3) with hθ =π/10, π/20, π/30 and π/10 for the above
four examples respectively.

We shall use the DODSD method with δ=hl to solve these examples. To measure the
difference between the true solution and its approximate solution, we define the quantity

|||u−uh|||h :=

(

4

∑
i=1

(

|||u−uh|||
(i)
)2
)

1
2

with

|||v|||(1)=

( L

∑
l=0

wl ∑
K∈Th

‖vl‖2
0,K

)
1
2

, |||v|||(2)=

( L

∑
l=0

wl ∑
∂l
+K⊂∂l

+X

〈

vl
−,vl

−ωl ·n
〉

∂l
+K

)
1
2

,

|||v|||(3)=

( L

∑
l=0

wl ∑
K∈Th

hK‖ωl ·∇vl‖2
0,K

)
1
2

, |||v|||(4)=

( L

∑
l=0

wl ∑
K∈Th

〈

[vl ],[vl ]|ωl ·n|
〉

∂l
−K

)
1
2

.

5.2.1 Numerical convergence rates

In this subsection, we take σt = 10, σs = 0.1. Errors for these four examples are reported
in Tables 1-4 and Figs. 3-6. For all these examples, we can see that |||u−uh|||

(i), i=1,2,3,
are approximately O(h2), and that |||u−uh|||

(4)≈O(h1.5). Since |||u−uh|||≈ |||u−uh |||h,
we can conclude that |||u−uh|||=O(h1.5) for all these examples, which agrees with our
theoretical error estimates.

5.2.2 Comparison with the DODG method

In order to show the effects of adding the artificial diffusion term, we report the error of
the DODG method in norm |||·|||h for the four examples in Table 5. The comparisons of
the DODSD method and the DODG method are also shown in Fig. 7. We observe that:
1) both the DODSD method and the DODG method have the similar convergence rates;
2) the DODSD method can lead to some improvement of the accuracy in norm |||·|||h
compared to the DODG method.
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Table 1: Error for Example 1.

l |||u−uh|||
(1) |||u−uh|||

(2) |||u−uh|||
(3) |||u−uh|||

(4) |||u−uh|||h
0 5.3989e-3 6.1012e-3 7.6011e-2 3.3398e-2 8.3424e-2

1 1.3923e-3 1.6388e-3 2.6936e-2 1.2970e-2 2.9973e-2

2 3.5459e-4 4.3395e-4 9.5335e-3 4.8451e-3 1.0709e-2

3 8.9879e-5 1.1300e-4 3.3722e-3 1.7661e-3 3.8094e-3

Table 2: Error for Example 2.

Tl |||u−uh|||
(1) |||u−uh|||

(2) |||u−uh|||
(3) |||u−uh|||

(4) |||u−uh|||h
0 5.3951e-3 6.1766e-3 7.6014e-2 3.3452e-2 8.3453e-2

1 1.3904e-3 1.6591e-3 2.6937e-2 1.2994e-2 2.9985e-2

2 3.5412e-4 4.4085e-4 9.5337e-3 4.8564e-3 1.0714e-2

3 8.9791e-5 1.1504e-4 3.3723e-3 1.7711e-3 3.8119e-3

Table 3: Error for Example 3.

l |||u−uh|||
(1) |||u−uh|||

(2) |||u−uh|||
(3) |||u−uh|||

(4) |||u−uh|||h
0 5.3969e-3 6.1958e-3 7.6013e-2 3.3459e-2 8.3456e-2

1 1.3910e-3 1.6639e-3 2.6936e-2 1.2996e-2 2.9986e-2

2 3.5655e-4 4.4334e-4 9.5332e-3 4.8567e-3 1.0714e-2

3 9.9651e-5 1.1797e-4 3.3719e-3 1.7711e-3 3.8118e-3

Table 4: Error for Example 4.

l |||u−uh|||
(1) |||u−uh|||

(2) |||u−uh|||
(3) |||u−uh|||

(4) |||u−uh|||h
0 3.6110e-3 2.6820e-3 3.1865e-2 1.2766e-2 3.4620e-2

1 9.1999e-4 7.8409e-4 1.1233e-2 5.1355e-3 1.2410e-2

2 2.3272e-4 2.1117e-4 3.9834e-3 1.9544e-3 4.4481e-3

3 5.8632e-5 5.5119e-5 1.4122e-3 7.1893e-4 1.5867e-3

Table 5: Results of the DODG method.

l Example 1 Example 2 Example 3 Example 4

0 9.6214e-2 9.6254e-2 9.6265e-2 3.8551e-2

1 3.5124e-2 3.5140e-2 3.5141e-2 1.4422e-2

2 1.2668e-2 1.2674e-2 1.2673e-2 5.2930e-3

3 4.5303e-3 4.5324e-3 4.5316e-3 1.9121e-3
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Figure 3: Loglog convergence plot of |||u−uh|||
(i) (i=1,2,3,4) vs. h for Example 1.
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Figure 4: Loglog convergence plot of |||u−uh|||
(i) (i=1,2,3,4) vs. h for Example 2.

10−1.8 10−1.6 10−1.4 10−1.2 10−1

10−4

10−3

10−2

10−1

1.5

1

2.0

1

h

er
ro

r

|||u−uh |||
(1)

|||u−uh |||
(2)

|||u−uh |||
(3)

|||u−uh |||
(4)

Figure 5: Loglog convergence plot of |||u−uh|||
(i) (i=1,2,3,4) vs. h for Example 3.
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Figure 6: Loglog convergence plot of |||u−uh|||
(i) (i=1,2,3,4) vs. h for Example 4.
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Figure 7: Loglog convergence plot of |||u−uh|||h vs. h (red line: DODG method; blue line: DODSD method).

6 Conclusion

In this paper, we present a discrete-ordinate discontinuous-streamline diffusion method
for solving the radiative transfer equation. This method applies the discrete ordinate
technique to deal with the integration term of the radiative transfer equation in the an-
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gular discretization, and employs the discontinuous-streamline diffusion method for the
spatial discretization. The stability property and unique solvability of the discrete sys-
tem are proved. Under suitable solution regularity assumptions, error estimates for the
numerical solutions are derived in a norm including the directional gradient. Numerical
results confirm the convergence behavior of the proposed method.

The main difference between the DODSD method and the DODG method is in the
additional artificial diffusion term. Our numerical experiments show that such a modifi-
cation can improve the accuracy of numerical solutions in term of |||·|||h norm in compar-
ison with the DODG method. As for the effect of the artificial diffusion parameter δ, we
remark that it may reduce the error |||u−uh|||

(3) and |||u−uh|||
(4) while increase the error

|||u−uh|||
(1) and |||u−uh|||

(2). Since |||u−uh|||
(1) and |||u−uh|||

(2) converge faster than
|||u−uh|||

(3) and |||u−uh|||
(4), the DODSD method with an appropriate δ is expected to

be more accurate in |||·||| norm in comparison with the DODG method.
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