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Abstract
This paper provides a theoretical study of reconstructing absorption and
scattering coefficients based on the radiative transport equation (RTE) by using
the total variation regularization method. The function space for solutions of
the RTE is a natural one from the form of the boundary value problem of the
RTE. We analyze the continuity and differentiability of the forward operator.
We then show that the total variation regularization method can be applied for
a stable solution. Convergence of the total variation-minimizing solution in the
sense of the Bregman distance is also obtained.

1. Introduction

The radiative transport equation (RTE) as a forward model to describe the propagation or
radiation of particles inside a medium arises in a wide variety of applications in sciences and
engineering, including neutron transport, optical molecular imaging, infrared and visible light
photography in space and atmosphere, heat transfer, astrophysics, atmospheric science (which
is also known as remote sensing) and so on. In these areas, based on suitably chosen function
spaces, solvability of the RTE, properties of the solutions and numerical analysis of the RTE
are intensively studied. We refer the reader to [1, 11–13, 31, 34, 36, 37] and the references
therein for details on this subject.

As RTE-based inverse problems are difficult to study theoretically and to solve
numerically, so far, many studies of the RTE-based inverse problems are limited to employing
an approximation of the RTE as the forward model. One of the most popular approximation
models is based on the diffusion approximation of the RTE. Theoretical and numerical
analysis of diffusion-based biomedical molecular imaging problems can be found in numerous
papers; for example, in [16], following the procedure of the standard regularization method
with a quadratic penalty term, rigorous theoretical analysis of diffusion-based coefficients
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reconstruction optical tomography is investigated; in [24], mathematical theory and numerical
analysis of diffusion-based bioluminescence tomography (BLT) are provided; in [25], solution
existence and convergence of numerical methods are for a BLT approach which optimizes
optical coefficients when an underlying bioluminescent source distribution is reconstructed
to match the measured data. In addition to diffusion-based biomedical molecular imaging, in
[22], a theoretical framework of x-ray dark tomography based on the modified Leakeas–Larsen
approximation is investigated.

Recently, there has been much research interest in inverse problems based on the RTE
in biomedical imaging applications. For linear light source inverse problems, in [23], a
comprehensive mathematical framework on the solution existence, uniqueness, continuous
dependence on the data and convergence of numerical methods for the BLT problem via
standard Tikhonov regularization is established, and in [21, 30], numerical implementations
in the two-dimensional case are described. For nonlinear coefficient identification problems,
in [7, 33], by analyzing the singular decomposition of the albedo operator in different regimes,
stability estimate is derived and uniqueness of the coefficient identification is proved, and in
[2, 3, 14, 15], numerical techniques are proposed based on the L1 space, considered to be the
‘physically relevant’ function space. For general references on the mathematical background
and imaging techniques, we refer the reader to [32] and references therein.

In this paper, we provide a theoretical study of reconstructing the absorption and scattering
coefficients based on the RTE by using the total variation regularization method.

In the study of the forward model, we use L∞-norm for the parameters and choose a
function space HA(X ×�) for the solution of the RTE problem. The function space HA(X ×�)

is a natural one from the form of the RTE and the inflow boundary condition, i.e., it is the
space of all functions that are square integrable together with the spatial directional derivative
along the angular direction and are such that their values on the incoming boundary are square
integrable. We show the continuity and differentiability of the forward operator with respect
to the chosen norms.

The inverse problem of parameter identifications is ill-posed and regularization is needed
in solving the inverse problem. Since the parameters are piecewise smooth functions or
even piecewise constants in applications, it is beneficial to use total variation regularization.
Regularization methods for parameter identifications have attracted much attention and many
papers are devoted to study the solution existence, uniqueness and, most importantly, the
stability, convergence and convergence rate of regularization methods. A general reference
on the regularization methods is [17]. For total variation regularization methods on nonlinear
inverse problems, theoretical analysis on the convergence and convergence rate can be found in
[6, 8–10, 18, 20, 28, 29, 35]. From these papers, under some source conditions, if the forward
operator satisfies the nonlinearity conditions in the sense of metric or Bregman distance, the
convergence rate can be obtained. But in many practical parameter identification problems,
the nonlinearity conditions for the forward problem are difficult to check, especially when the
selected parameter space is a non-reflexive Banach space, e.g. a BV space. In [26], with the
use of the compactness properties of the forward solution spaces, convergence rate for the total
variation regularization of coefficient identification problems in elliptic problems is obtained.
In this paper, we demonstrate that the total variation regularization method can be applied for
a stable solution and show the convergence of the solutions of the regularized problem as the
regularization parameter approaches zero. The convergence is in the sense of the Bregman
distance.

The rest of the paper is organized as follows. In section 2, we introduce the notation
and function spaces used in this paper and then review the solvability result of the RTE
problem based on a naturally chosen function space HA(X × �). In section 3, we analyze the
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continuity and differentiability of the forward operator and then identify the adjoint problem.
In section 4, we study the solution existence, stability estimate and convergence of the total
variation-minimizing solutions in the sense of Bregman distance.

2. Notation and physical model

The propagation of light within biological media is described by the RTE. In this section, we
discuss the RTE problem.

2.1. Notation and the radiative transport equation

We assume that the spatial domain X ⊂ R
3 is bounded with a C1 boundary ∂X . The outward

normal vector is denoted by ν(x) for x ∈ ∂X . By � := {
ω ∈ R

3 | |ω| = 1
}
, we denote the

unit sphere. We will need the following incoming and outgoing boundaries as subsets of
� = ∂X × �:

�− = {(x,ω) ∈ ∂X × � | ω · ν(x) < 0}, �+ = {(x,ω) ∈ ∂X × � | ω · ν(x) > 0}.
Denote by dσ (ω) the infinitesimal area element on the unit sphere �. In the spherical coordinate
system, ω = (sin θ cos ψ, sin θ sin ψ, cos θ )T , for 0 � θ � π and 0 � ψ < 2π , we have
dσ (ω) = sin θ dθ dψ . We need an integral operator S defined by

(Su)(x,ω) =
∫

�

η(x,ω · ω̂) u(x, ω̂) dσ (ω̂) (2.1)

with η a nonnegative normalized phase function:∫
�

η(x,ω · ω̂) dσ (ω̂) = 1 ∀ x ∈ X, ω ∈ �. (2.2)

In many applications, the function η is independent of x. However, in our general study, we
allow η to depend on x. Moreover, we can allow η to be a general function of x, ω and ω̂, i.e.,
in the form η(x,ω, ω̂). One well-known example is the Henyey–Greenstein phase function
(cf [27]):

η(t) = 1 − g2

4π(1 + g2 − 2gt)3/2
, t ∈ [−1, 1], (2.3)

where the parameter g ∈ (−1, 1) is the anisotropy factor of the scattering medium. Note that
g = 0 for isotropic scattering, g > 0 for forward scattering and g < 0 for backward scattering.

With the above notation, we can write the boundary value problem (BVP) of the RTE:

ω · ∇u(x,ω) + μt (x)u(x,ω) = μs(x)Su(x,ω) + f (x,ω) in X × �, (2.4)

u(x,ω) = uin(x,ω) on �−. (2.5)

Here μt = μa + μs, μa is the macroscopic absorption cross section, μs is the macroscopic
scattering cross section, uin is the incoming flow on the incoming boundary and f (x,ω) is the
internal source function. The expression ω · ∇u(x,ω) is a directional derivative,

ω · ∇u(x,ω) = ∂

∂s
u(z + sω,ω)|s=0.

In this paper, we consider the inverse problem of parameter identification through
knowledge of the incoming flow and corresponding measurement data um on the outgoing
boundary. There is no internal source so that the forward problem is

ω · ∇u(x,ω) + μt (x)u(x,ω) = μs(x)Su(x,ω) in X × �, (2.6)

u(x,ω) = uin(x,ω) on �−. (2.7)

We impose the following assumptions on the coefficients.
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Assumptions

(A1) The function μt (x) is uniformly positive and bounded; i.e., there exist two positive
constants μ1

t and μ2
t , such that 0 < μ1

t � μt � μ2
t < ∞ a.e. in X .

(A2) The function μs(x) is uniformly positive and bounded; i.e., there exist two positive
constants μ1

s and μ2
s , such that 0 < μ1

s � μs � μ2
s < ∞ a.e. in X .

(A3) There is a constant c0 > 0 such that μt − μs � c0 > 0 a.e. in X .

Next, we will introduce a function space for u(x,ω), and show the regularity of solution
of the above BVP under this space frame.

2.2. Function spaces

We introduce some function spaces that will be needed later in the paper:

H1,2(X × �) := {v ∈ L2(X × �) | ω · ∇v ∈ L2(X × �)}
is a Hilbert space with the inner product

(u, v)H1,2(X×�) :=
∫

X×�

(ω · ∇uω · ∇v + uv) dx dσ (ω)

and the corresponding norm ‖v‖H1,2(X×�) := (v, v)
1/2
H1,2(X×�)

. We also need the function space
L2(�±) on �±, which are Hilbert spaces of functions v on �± with the inner products

(u, v)L2(�± ) :=
∫

�±
|ω · ν(x)|u(x,ω)v(x,ω) da dσ (ω)

and corresponding norms ‖v‖L2(�±).
From a result on the trace of an H1,2(X × �) function ([1]), we know that if

v ∈ H1,2(X × �) and v|�− ∈ L2(�−), then v|�+ ∈ L2(�+), and for some constant c depending
only on X , the following inequality holds:

‖v‖L2(�+ ) � c[‖v‖H1,2(X×�) + ‖v‖L2(�−)]. (2.8)

It is known that for each uin ∈ L2(�−), the problem (2.6)–(2.7) has a unique
solution u ∈ H1,2(X × �). The solution of the BVP (2.6)–(2.7) will be sought from the
function space

HA(X × �) := {v ∈ H1,2(X × �) | v|�− ∈ L2(�−)}
with the norm

‖v‖HA(X×�) := [‖v‖2
H1,2(X×�)

+ ‖v|�−‖2
L2(�− )

]1/2
.

Proposition 2.1. If v ∈ HA(X × �), then v|�± ∈ L2(�±), and for some constant c depending
only on X,

‖v|�±‖L2(�±) � c‖v‖HA(X×�).

Obviously, we can take c = 1 in the above inequality in bounding ‖v|�−‖L2(�− ).
Corresponding to equation (2.6), we introduce the linear integro-differential operator L

by the formula

Lv(x,ω) = ω · ∇v(x,ω) + μt (x)v(x,ω) − μs(x)(Sv)(x,ω).

Then we have the following result (cf [1, theorem 3.1]).

Proposition 2.2. Under the assumption on coefficients, in the space HA(X × �), the norm
‖ · ‖HA(X×�) is equivalent to the following norm:

[v]A = [‖v‖2
L2(�− )

+ ‖Lv‖2
L2(X×�)

]1/2
.
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2.3. Solvability of the RTE problem

Consider the BVP (2.6)–(2.7), assuming that uin ∈ L2(�−). Introduce the following variational
problem.

Variational problem. Find a function u ∈ HA(X × �), such that

J(u) = inf {J(v) | v ∈ HA(X × �)} , (2.9)

where

J(v) = ‖v − uin‖2
L2(�− )

+ ‖Lv‖2
L2(X×�)

. (2.10)

The following result is standard (cf [1]).

Theorem 2.1. Assume (A1)–(A3). Let uin ∈ L2(�−). Then

(1) there exists a unique solution u ∈ HA(X × �) to the variational problem (2.9);
(2) the solution u satisfies the equation (2.6) a.e. in X × � and the boundary condition (2.7)

a.e. on �−;
(3) for some constants c and c̃ > 0, independent of u and uin, the following bounds hold:

c‖uin‖L2(�−) � ‖u‖HA(X×�) � c̃‖uin‖L2(�− ). (2.11)

Based on (2.9), we introduce the weak formulation of the BVP (2.6)–(2.7):

find u ∈ HA(X × �) : a(u, v) = (uin, v)L2(�−) ∀ v ∈ HA(X × �), (2.12)

where

a(u, v) = (u, v)L2(�− ) + (Lu, Lv)L2(X×�). (2.13)

Recall the assumptions (A1)–(A3). With the norm equivalence result, proposition 2.2, we
can show the boundedness and V-ellipticity of the bilinear form a(·, ·):

|a(u, v)| � M‖u‖HA‖v‖HA ∀u, v ∈ HA(X × �),

a(v, v) � α‖v‖2
HA

∀v ∈ HA(X × �).

Applying the Lax–Milgram lemma, we conclude that the weak formulation (2.12) has a unique
solution u ∈ HA(X × �). We will use the weak formulation to analyze the properties of the
forward operator.

2.4. Measurements

The measured light intensity in the optical tomography experiments is generally taken on
the boundaries of the regions of interest. There are mainly two types of imaging systems
for measurements frequently used in optical tomography, namely, optical fiber-based imaging
systems and CCD camera-based imaging systems ([2, 33]). We can treat the measurement
data from the imaging system as angularly averaged data or angularly resolved data. Let B be
the measurement operator acting in the space HA(X × �). For angularly averaged data, the
measurement operator can be defined as

B : HA(X × �) → L2(∂X ), (Bu)(x) =
∫

�x,+
ω · ν(x) u(x,ω) dσ (ω), (2.14)

where

�x,+ := {ω ∈ � | ω · ν(x) > 0} .

This is, the outgoing current of photons on the boundary. For the angularly resolved data, the
measurement operator can be defined as ([33])

B : HA(X × �) → L2(�+), (Bu)(x,ω) = u(x,ω)|�+ .

5
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This is simply the outgoing boundary value of the solution of the transport equation.
Obviously, the angularly resolved data are richer than the angularly averaged data because
angular dependence is allowed. However, in practice, collecting angularly resolved data is too
expensive and angularly averaged data are more popularly in use. In this paper, we will focus
on angularly averaged measurement data (2.14).

Proposition 2.3. The angularly averaged measurement data-based measurement operator
B : HA(X × �) → L2(∂X ) is well defined, linear and bounded, and for some constant c > 0
depending only on X, we have

‖Bu‖L2(∂X ) � c ‖u‖HA(X×�) ∀ u ∈ HA(X × �). (2.15)

Proof. From proposition 2.1,

‖u‖L2(�+ ) � ‖u‖HA(X×�) ∀u ∈ HA(X × �).

Let us bound ‖Bu‖L2(∂X ) in terms of ‖u‖L2(�+ ):

‖Bu‖2
L2(∂X )

=
∫

∂X

∣∣∣∣
∫

�x,+
ν(x) · ωu(x,ω) dσ (ω)

∣∣∣∣
2

da

� 4π

∫
∂X

∫
�x,+

|ν(x) · ω| u(x,ω)2 dσ (ω) da

= 4π‖u‖2
L2(�+ )

.

Thus, (2.15) holds. �

3. Forward operator

In an optical tomography problem, the object is illuminated by an incident light source on
the boundary and the resulting light intensity u is measured on the boundary, denoted as Bu;
as is mentioned previously, we use the angularly averaged measurement. This establishes a
nonlinear relation between the optical coefficients μt and μs, characterizing the medium and
the corresponding measurements Bu on the boundary ∂X . The mathematical model is the
following.

Forward operator. For a given light source uin ∈ L2(�−), define

F : D(F ) → L2(∂X ), (μt, μs) �→ Bu, (3.1)

where u denotes the solution of the BVP (2.6)–(2.7), whereas the admissible set is

D(F ) = {(μt, μs) ∈ L∞(X ) × L∞(X ) | Assumptions (A1)–(A3) are satisfied}.
From theorem 2.3 and proposition 2.4, we see that the forward operator is well defined on
D(F ).

In the following, we analyze properties of the forward operator.

3.1. Continuity and differentiability

To prove the continuity and differentiability of the forward operator F , we first recall the
solvability of the governing BVP

Lu = f in X × �, u = uin on �−,

where f ∈ L2(X × �). Similar to theorem 2.3, the following result holds.

6



Inverse Problems 29 (2013) 095002 J Tang et al

Theorem 3.1. Assume (A1)–(A3) and f ∈ L2(X × �), uin ∈ L2(�−). Then there is a unique
solution u ∈ HA(X × �) to the variational problem:

(u, v)L2(�− ) + (Lu, Lv)L2(X×�) = ( f , Lv)L2(X×�) + (uin, v)L2(�− ) ∀v ∈ HA(X × �).

Moreover,

‖u‖HA(X×�) � C(‖ f ‖L2(X×�) + ‖uin‖L2(�−))

with a constant C depending only on the domain and the bounds of the coefficients.

Theorem 3.2. Assume (A1)–(A3) on (μt, μs) and (μ̃t, μ̃s), and let u and ũ denote the
solutions of (2.6)–(2.7) with uin ∈ L2(�−) corresponding to coefficients (μt, μs) and (μ̃t, μ̃s),
respectively. Then

‖u − ũ‖HA(X×�) � C(‖μt − μ̃t‖L∞(X ) + ‖μs − μ̃s‖L∞(X ))‖uin‖L2(�−), (3.2)

with a constant C depending only on the domain and the bounds of the coefficients.

Proof. We use the weak formulation (2.12) for the solution ũ with the parameters (μ̃t, μ̃s)

and the solution u with the parameters (μt, μs). Then the difference w := u − ũ satisfies

(w, v)L2(�−) + (Lw, Lv)L2(X×�) = −((L − L̃)ũ, Lv)L2(X×�) ∀v ∈ HA(X × �),

where L̃ denotes the linear operator in (2.6) corresponding to (μ̃t, μ̃s) and we used the fact
that L̃ũ = 0 a.e. in X × �.

Applying theorem 3.1,

‖w‖HA(X×�) � c‖(L − L̃)ũ‖L2(X×�).

Observe that

(L − L̃)(·) = (μt − μ̃t )(·) − (μs − μ̃s)S(·).
We can then obtain the inequality (3.2). �

As a corollary of theorem 3.2 and proposition 2.4, we can obtain the Lipsichitz continuity
property of the forward operator.

Theorem 3.3 (Lipsichitz continuity). Let the assumptions (A1)–(A3) hold. Then the forward
operator F : D(F ) → L2(∂X ) is Lipschitz continuous with respect to the topologies of
L∞(X ) × L∞(X ) and L2(∂X ).

The Lipschitz continuity of the forward operator F indicates a certain differentiability.
Differentiability is very important in analyzing convergence properties of the regularization
method.

Theorem 3.4 (Differentiability). Let uin ∈ L2(�−) be given, and let (μt, μs) ∈ D(F ),
(δμt, δμs) ∈ D(F ) such that (μt + αδμt, μs + αδμs) ∈ D(F ) for all α ∈ R with |α|
sufficiently small. Then the Fréchet derivative of the forward operator F at (μt, μs) in the
direction (δμt, δμs) is given by

F ′(μt, μs)[δμt, δμs] =
∫

�x,+
|ω · ν(x)|w(x,ω) dσ (ω),

where w is the solution of the following problem:

(w, v)L2(�−) + (Lw, Lv)L2(X×�) = −(δμtu, Lv)L2(X×�) + (δμsSu, Lv)L2(X×�) (3.3)

for all v ∈ HA(X × �), and u is the solution of BVP (2.6)–(2.7). Moreover,

‖F ′(μt, μs)[δμt, δμs]‖L2(∂X ) � C(‖δμt‖L∞(X ) + ‖δμs‖L∞(X ))‖uin‖L2(�− ) (3.4)

with a constant C depending only on the domain and the bounds of the coefficients.
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The proof of theorem 3.4 is similar to that of theorem 3.2 and that of theorem 3.5 below,
and is hence omitted. Thus, F ′(μt, μs) defines a bounded linear operator mapping from
L∞(X ) × L∞(X ) to L2(∂X ) and the estimate (3.4) holds.

Theorem 3.5. The linear Taylor expansion of the forward operator F around (μt, μs) ∈ D(F )

is second-order accurate, i.e., for (μ̃t, μ̃s) ∈ D(F ) the following bound holds:

‖ũ − u − w‖L2(�+ ) � CL(‖μ̃t − μt‖2
L∞(X ) + ‖μ̃s − μs‖2

L∞(X ))‖uin‖L2(�−) (3.5)

with a constant CL > 0 depending only on the domain and the bounds of the coefficients,
where ũ and u are the solutions of the BVP (2.6)–(2.7) corresponding to (μ̃t, μ̃s) and (μt, μs),
respectively, and w is the solution to the problem (3.3).

Proof. Let m := ũ − u − w. Using (2.12) and (3.3), we can obtain

(m, v)L2(�− ) + (Lm, Lv)L2(X×�) = −(δμt (ũ − u), Lv)L2(X×�) + (δμsS(ũ − u), Lv)L2(X×�)

for all v ∈ HA(X × �). Applying theorems 3.1 and 3.2, we obtain from the previous equality
that

‖m‖HA(X×�) � C(‖δμt‖L∞(X ) + ‖δμs‖L∞(X ))‖ũ − u‖L2(X×�)

� C(‖δμt‖L∞(X ) + ‖δμs‖L∞(X ))‖ũ − u‖HA(X×�)

� C(‖δμt‖2
L∞(X ) + ‖δμs‖2

L∞(X ))‖uin‖L2(�−).

The result (3.5) then follows. �

3.2. Adjoint problem

A formula for the derivative operator F ′(μt, μs) was derived in theorem 3.4. Here, we derive
an adjoint equation for the calculation of the adjoint of the derivative operator F ′(μt, μs).
The adjoint equation is important in numerical calculations as well as in analyzing the back
transport effect in application. Recall that the Fréchet derivative of the forward operator F can
be computed by solving the following BVP (cf (3.3)):

ω · ∇w + μtw − μsSw = −δμtu + δμsSu in X × �, (3.6)

w = 0 on �−. (3.7)

Theorem 3.6 (Adjoint problem). Let (μt, μs) ∈ D(F ). Assume uin ∈ L∞(�−). Then the
adjoint of the derivative operator F ′(μt, μs) is given by

F ′(μt, μs)
∗ : L2(∂X ) → L∞(X )∗ × L∞(X )∗,

ζ �→ (dμt, dμs),

where

dμt := −
∫

�

u(x,ω)ϕ(x,ω) dσ (ω), (3.8)

dμs :=
∫

�

(Su)(x,ω)ϕ(x,ω) dσ (ω). (3.9)

Here, u denotes the solution to the forward problem (2.6)–(2.7) and ϕ(x,ω) is the solution of
the following adjoint problem:

−ω · ∇ϕ(x,ω) + μtϕ(x,ω) − μs(Sϕ)(x,ω) = 0 in X × � (3.10)

ϕ = ζ on �+. (3.11)
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Proof. We multiply both sides of the equation (3.6) by ϕ and integrate∫
X

dx
∫

�

dσ (ω) (ω · ∇w + μtw − μsSw) ϕ =
∫

X
dx

∫
�

dσ (ω) (−δμtu + δμsSu) ϕ. (3.12)

The left side of (3.12) is equal to∫
�

ω · νwϕ dσ (ω) da +
∫

X×�

(−ω · ∇ϕ + μtϕ − μsSϕ) w dx dσ (ω)

=
∫

�+
ω · νwϕ dσ (ω) da

=
∫

∂X

(∫
�x,+

|ω · ν|w dσ (ω)

)
ϕ da,

whereas the right side of (3.12) is∫
X

{
−δμt

∫
�

uϕ dσ (ω) + δμs

∫
�

Suϕ dσ (ω)

}
dx.

So

F ′(μt, μs)
∗ζ = (dμt, dμs)

with dμt defined by (3.8) and dμs defined by (3.9).
Since uin ∈ L∞(�−), by [1, lemma 3.2], u ∈ L∞(X × �). By a variant of theorem 2.3,

ϕ ∈ L2(X × �). Then it is easy to see dμt ∈ L2(X ). Similarly, dμs ∈ L2(X ). �

4. Inverse problem

The goal of the inverse problem is to reconstruct the optical properties of tissues, i.e.,
the functions μt (x) and μs(x), from knowledge of the map � : uin �→ Bu. In practice,
only a finite source–detector pair can be used in the measurement process, i.e., we have
only partial information on the map �. This makes the problem undetermined, causing the
parameter identification problem to be severely ill-posed. To overcome the ill-posedness,
multiple excitation and finite observations are used in the numerical analysis, where the
finite observations are the discretized measurements at some locations on ∂X ([16]). Here,
for convenience in presenting the theory, we consider the observation corresponding to every
excitation in the continuous form. We do the experiment a few times and determine (μt, μs) by
matching the predictions calculated from the forward problem with the measured data on ∂X .
More precisely, let k0 be the number of experiments. For k = 1, . . . , k0, let us denote by uin,k the
inflow value function for the kth experiment and by mk the corresponding angularly averaged
measurement. Then our inverse problem is to determine (μt, μs) such that for k = 1, . . . , k0,
the solution uk := uk(μt, μs) of the BVP (2.6)–(2.7) with uin replaced by uin,k satisfies∫

�x,+
ν(x) · ωuk(x,ω) dσ (ω) = mk(x) for x ∈ ∂X .

Mathematically, it means to solve a system of nonlinear equations:

Fk(μt, μs; x) = mk(x), (μt, μs) ∈ D(F ), 1 � k � k0, (4.1)

where Fk(μt, μs; x) is the forward operator corresponding to the inflow boundary value
uin,k. Because of the effects of the experimental environment and the accuracy of laboratory
equipment, the measurement mk is not accurate. For k = 1, . . . , k0, let δk � 0 be the noise
level, i.e. ‖mk − mt,k‖L2(∂X ) � δk, where mt,k denotes the true value of mk on ∂X . Then define
a noise level vector δ = (δ1, . . . , δk0 ). The inverse problem (4.1) is ill-posed; hence some

9
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regularization methods are used in order to obtain a stable solution. To treat well the possibly
discontinuous or highly oscillating coefficients, we use the output least-squares method with
total variation regularization. That is, we minimize the following functional:

Jβ (μt, μs) := 1

2

k0∑
k=1

‖Fk(μt, μs) − mk‖2
L2(∂X )

+ β

(∫
X

|∇μt | +
∫

X
|∇μs|

)
(4.2)

over the admissible set

Qad = (Q1 ∩ BV (X )) × (Q2 ∩ BV (X ))

for the coefficient pair μ = (μt, μs). Here β > 0 is a regularization parameter,

Q1 := {
μt | μt ∈ L∞(X ), 0 < μ1

t � μt � μ2
t < ∞}

,

Q2 := {
μs | μs ∈ L∞(X ), 0 < μ1

s � μs � μ2
s < ∞}

.

The symbol
∫

X |∇μt | denotes the total variation semi-norm ([19]) of μt ∈ L1(X ):∫
X

|∇μt | := sup

{∫
X

μtdivϕ dx | ϕ ∈ C∞
0 (X; R

3), ‖ϕ‖L∞(X;R3) � 1

}
and

∫
X |∇μs| is defined similarly. BV (X ) denotes the bounded variation space

BV (X ) =
{
μt ∈ L1(X ) |

∫
X

|∇μt | < ∞
}

.

It is a Banach space under the norm

‖μt‖BV (X ) := ‖μt‖L1(X ) +
∫

X
|∇μt |.

For k = 1, . . . , k0, let {mt,k}k0
k=1 be the exact measurement data on ∂X . To simplify the

notation, we denote (μt, μs) as μ, and denote the first item on the right hand of (4.2) as J1(μ),
the second item as βJ2(μ). Then our purpose is to analyze the minimization problem:

(Pβ ) inf
μ∈Qad

J1(μ) + βJ2(μ).

In the following, we will prove that the problem (Pβ ) has a solution μβ . Furthermore, the
problem

(P) inf
μ∈Qad({mt,k})

J2(μ)

also has a solution μ† which is called the total variation-minimizing solution of the system of
equations Fk(μ) = mt,k, 1 � k � k0, where

Qad({mt,k}) := {μ ∈ Qad | Fk(μ) = mt,k, 1 � k � k0}.

4.1. The regularized problems

The main result here is on the solution existence to both problems (Pβ ) and (P). First, we
recall some properties of the BV (X ) space ([5, 19]).

Proposition 4.1.

(i) Let {μn} be a bounded sequence in BV (X ). Then there are a subsequence {μn j } and an
element μ ∈ BV (X ) such that {μn j } converges to μ in L1(X ).

(ii) Let {μn} be a sequence in BV (X ) which converges to μ in L1(X ). Then μ ∈ BV (X ) and∫
X

|∇μt | +
∫

X
|∇μs| � lim inf

n→∞

∫
X

|∇μn
t | +

∫
X

|∇μn
s |.

10
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Note that if {μn} ⊂ BV (X ) converges to μ ∈ BV (X ), then

lim
n→∞

∫
X

|∇μn
t | +

∫
X

|∇μn
s | =

∫
X

|∇μt | +
∫

X
|∇μs|. (4.3)

Theorem 4.1.

(i) A solution μβ of the problem (Pβ ) exists.
(ii) A solution μ† of the problem (P) exists.

Proof. (i) It is clear that Jβ (μ) � 0 on the admissible set Qad. There exists a minimizing
sequence {μn} ∈ Qad such that

lim
n→∞ Jβ (μn) = inf

μ∈Qad

Jβ (μ). (4.4)

Hence {Jβ (μn)} is bounded, Jβ (μn) � J0 for some constant J0. By the definition of Jβ (μ)

with μ replaced by μn,

1

2

k0∑
k=1

‖mn
k − mk‖2

L2(∂X )
+ β

(∫
X

|∇μn
t | +

∫
X

|∇μn
s |

)
� J0.

Here, we denote by un
k = Uk(μ

n) the solution of the BVP (2.6)–(2.7) with μ replaced by μn,
and

mn
k (x) =

∫
�x,+

ν · ωun
k dσ (ω)

is the corresponding measurement on the boundary. From the last inequality, {mn
k} is bounded

in L2(∂X ), {μn
t } and {μn

s } are bounded in BV (X ). On the other hand, from theorem 2.3,

‖un
k‖HA(X×�) � C‖uin,k‖L2(�− ).

So {un
k} is uniformly bounded in HA(X ×�). By possibly extracting a subsequence, there exist

μ∗
t , μ∗

s and u∗
k satisfying

μn1
t → μ∗

t and μn1
s → μ∗

s in L1(X ), un1
k ⇀ u∗

k in HA(X × �). (4.5)

Then, there exist further subsequences {μn2
t } ⊂ {μn1

t } and {μn2
s } ⊂ {μn1

s } such that μ
n2
t → μ∗

t
and μn2

s → μ∗
s a.e. on X . Note that

un2
k ⇀ u∗

k in HA(X × �). (4.6)

Since μ
n2
t ∈ Q1 for all n2, we have μ∗

t ∈ Q1, and hence μ∗
t ∈ Q1 ∩ BV (X ). Similarly,

μ∗
s ∈ Q2 ∩ BV (X ). From proposition 4.1,∫

X
|∇μ∗

t | � lim inf
n2→∞

∫
X

|∇μn2
t |,

∫
X

|∇μ∗
s | � lim inf

n2→∞

∫
X

|∇μn2
s |. (4.7)

Now let us show that for k = 1, . . . , k0, Fk(μ
∗) = m∗

k on ∂X . We first note that

(un2
k , v)L2(�−) + (Ln2 un2

k , Ln2v)L2(X×�) = (uin,k, v) ∀v ∈ HA(X × �). (4.8)

Here, Ln2 denotes the linear integro-differential operator corresponding to the coefficients μn2 .
Next, let us denote by L∗ the linear integro-differential operator with the coefficients μ∗. Let
v ∈ HA(X × �) be arbitrary but fixed. We will show that

(un2
k , v)L2(�− ) + (Ln2 un2

k , Ln2v)L2(X×�) → (u∗
k , v)L2(�− ) + (L∗u∗

k , L∗v)L2(X×�). (4.9)

Since un2
k ⇀ u∗

k in HA(X ×�), by the definition of space HA(X ×�), un2
k ⇀ u∗

k also in L2(�−),
which implies that

(un2
k , v)L2(�−) → (u∗

k , v)L2(�− ).

11
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Moreover,∣∣(Ln2 un2
k , Ln2v) − (L∗u∗

k , L∗v)
∣∣ �

∣∣(Ln2 un2
k , (Ln2 − L∗)v

)∣∣
+ ∣∣((Ln2 − L∗)un2

k , L∗v
)∣∣ + ∣∣(L∗(un2

k − u∗
k ), L∗v

)∣∣ . (4.10)

For the first item on the right,∣∣(Ln2 un2
k , (Ln2 − L∗)v

)∣∣ = ∣∣(Ln2 un2
k , (μn2

t − μ∗
t )v − (μn2

t − μ∗
t )Sv

)∣∣
�

∣∣(Ln2 un2
k , (μn2

t − μ∗
t )v

)∣∣ + ∣∣(Ln2 un2
k , (μn2

s − μ∗
s )Sv

)∣∣ .
Now, ∣∣(Ln2 un2

k , (μn2
t − μ∗

t )v
)∣∣ �

∥∥Ln2 un2
k

∥∥
L2(X×�)

∥∥(μn2
t − μ∗

t )v
∥∥

L2(X×�)
.

The values {‖Ln2 un2
k ‖L2(X×�)} are uniformly bounded. Since |μn2

t − μ∗
t | � μ2

t − μ1
t and μ

n2
t

converge to μ∗
t almost everywhere, an application of the Lebesgue dominant convergence

theorem on the term
∥∥(μ

n2
t − μ∗

t )v
∥∥

L2(X×�)
shows that∣∣(Ln2 un2

k , (μn2
t − μ∗

t )v
)∣∣ → 0.

Similarly, ∣∣(Ln2 un2
k , (μn2

s − μ∗
s )Sv

)∣∣ → 0.

Thus, we obtain∣∣(Ln2 un2
k , (Ln2 − L∗)v

)∣∣ → 0.

For the second term on the right of (4.10), write(
(Ln2 − L∗)un2

k , L∗v
) = (

un2
k , (μn

t − μt )L
∗v

) + (
Sun2

k , (μn
s − μs)L

∗v
)
.

By the same argument, we then conclude that∣∣((Ln2 − L∗)un2
k , L∗v

)∣∣ → 0.

For the last term on the right of (4.10), we have∣∣(L∗(un2
k − u∗

k ), L∗v
)∣∣ → 0

due to the condition that un2
k ⇀ u∗

k in HA(X × �).
Combining the above results, we see that (4.9) is valid, implying that for 1 � k � k0, u∗

k
is the solution of the BVP (2.6)–(2.7) with the coefficients μ∗

t and μ∗
s corresponding to the

inflow value uin,k. Furthermore, Fk(μ
∗) = m∗

k on ∂X .
Now, let us check that u∗

k is a minimizer of problem (Pβ ). Note that un2
k ⇀ u∗

k in HA(X×�),
so by the definition of space HA(X × �) and [1, lemma 2.2], we can conclude that mn2

k ⇀ m∗
k

in L2(∂X ). Then, by [4, exercise 2.7.2], for 1 � k � k0,

‖m∗
k − mk‖L2(∂X ) � lim inf

n2→∞ ‖mn2
k − mk‖L2(∂X ),

so

1

2

k0∑
k=1

‖m∗
k − mk‖2

L2(∂X )
� lim inf

n2→∞
1

2

k0∑
k=1

‖mn2
k − mk‖2

L2(∂X )
.

Together with (4.7), we have

Jβ (μ∗
t , μ

∗
s ) � lim inf

n2→∞ Jβ (μn2
t , μn2

s ) = inf
μ∈Qad

Jβ (μ).

This completes the proof of (i).
(ii) Let {μn} be a sequence in Qad({mt,k}) such that

lim
n

J2(μ
n) = inf

μ∈Qad({mt,k})
J2(μ). (4.11)

12



Inverse Problems 29 (2013) 095002 J Tang et al

From the assumption on the absorption and scattering coefficients, it is obvious that {μn} is
bounded in L1(X ). Following from (4.11), we know that {μn} is bounded in BV (X ). Hence,
there exist a subsequence {μn1} of {μn} and an element μ† such that {μn1} converges to μ† in
L1(X ) and

J2(μ
†) � lim inf

n
J2(μ

n1 ). (4.12)

A subsequence {μn2} of {μn1} exists, converging to μ† a.e. on X . Since {μn2} ⊂ Q1 × Q2,
μ† ∈ Qad. On the other hand, for k = 1, . . . , k0, we have

(uin,k, v) = (un2
k , v)L2(�−) + (Ln2 un2

k , Ln2v)L2(X×�) ∀v ∈ HA(X × �).

As in the proof of (i), we have un2
k ⇀ u†

k in HA(X × �), u†
k is the solution of the BVP:

(uin,k, v) = (u†
k, v)L2(�−) + (L†u†

k, L†v)L2(X×�)

and satisfies the measurement boundary condition. Thus, μ† ∈ Qad({mt,k}). Furthermore, from
inequalities (4.11) and (4.12), we have

J2(μ
†) � inf

μ∈Qad({mt,k})
J2(μ).

This means μ† is a solution of the problem (P). Thus, the proof is completed. �

Theorem 4.2 (Stability). Let the regularization parameter β > 0 be fixed. For 1 � k � k0,
let {mn

k} be a sequence which converges to mk in L2(∂X ), and let μn
β be the minimizers of the

problems:

inf
μ∈Qad

J1(μ; mn
k ) + βJ2(μ).

Here, to show explicitly the dependence of J1 on the measurement data, we use J1(μ; mn
k )

instead of J1(μ). Then, a subsequence {μn2
β } of {μn

β} and μ̃ ∈ Qad exist, such that {μn2
β }

converges to μ̃ in L1(X ) and

lim
n2→∞

(∫
X

|∇(μt )
n2
β | +

∫
X

|∇(μs)
n2
β |

)
=

∫
X

|∇μ̃t | +
∫

X
|∇μ̃s|. (4.13)

Furthermore, μ̃ is a solution to (Pβ ).

Proof. For all n and μ ∈ Qad, we have

J1(μ
n
β; mn

k ) + βJ2(μ
n
β ) � J1(μ; mn

k ) + βJ2(μ). (4.14)

Since {mn
k} is a bounded sequence in L2(∂X ), from the above inequality, it follows that the

sequence {μn
β} is bounded in BV (X ). By proposition 4.1, a subsequence {μn1

β } of {μn
β} and

μ̃ ∈ BV (X ) exist such that {μn1
β } converges to μ̃ in L1(X ) and

J2(μ̃) � lim inf
n1→∞ J2(μ

n1
β ). (4.15)

Since μ
n1
β ∈ Q1 × Q2 for all n1, it follows that μ̃ ∈ Q1 × Q2. Hence, μ̃ ∈ Qad. By the argument

used in the proof of theorem 4.2, a subsequence {μn2
β } of {μn1

β } exists such that Uk(μ
n2
β ) weakly

converges to Uk(μ̃) in HA(X × �), and Fk(μ
n2
β ) weakly converges to Fk(μ̃) in L2(∂X ). Thus,

we have

‖Fk(μ̃) − mk‖L2(∂X ) � lim inf
n2

‖Fk(μ
n2
β ) − mk‖L2(∂X )

� lim inf
n2

(
‖Fk(μ

n2
β ) − mn2

k ‖L2(∂X ) + ‖mn2
k − mk‖L2(∂X )

)
= lim inf

n2

‖Fk(μ
n2
β ) − mn2

k ‖L2(∂X ).

13



Inverse Problems 29 (2013) 095002 J Tang et al

So

1

2

k0∑
k=1

‖Fk(μ̃) − mk‖2
L2(∂X )

� lim inf
n2

1

2

k0∑
k=1

‖Fk(μ
n2
β ) − mn2

k ‖2
L2(∂X )

,

which means that

J1(μ̃; mk) � lim inf
n2→∞ J1(μ

n2
β ; mn2

k ). (4.16)

Together with (4.14) and (4.15), we obtain that for any μ ∈ Qad,

J1(μ̃; mk) + βJ2(μ̃) � lim inf
n2

J1(μ
n2
β ; mn2

k ) + βJ2(μ
n2
β )

� lim sup
n2

J1(μ
n2
β ; mn2

k ) + βJ2(μ
n2
β )

� lim sup
n2

J1(μ; mn2
k ) + βJ2(μ)

= lim
n2

J1(μ; mn2
k ) + βJ2(μ)

= J1(μ; mk) + βJ2(μ).

This implies that μ̃ is a solution of the problem (Pβ ) and

lim
n2

J1(μ
n2
β ; mn2

k ) + βJ2(μ
n2
β ) = J1(μ̃; mk) + βJ2(μ̃). (4.17)

Finally, let us show (4.13) holds, that is, J2(μ
n2
β ) → J2(μ̃) as n2 → ∞. Assume

J2(μ
n2
β ) � J2(μ̃). Then from (4.15), we have

J2(μ̃) < lim sup
n2

J2(μ
n2
β ) := J0. (4.18)

From the definition of limit superior, there exists a subsequence {μn3
β } of {μn2

β } such that μ
n3
β

converges to μ̃ almost everywhere, Fk(μ
n3
β ) ⇀ Fk(μ̃) and J2(μ

n3
β ) → J0. Since (4.17) holds,

we obtain that

lim
n3

J1(μ
n3
β ; mn3

k ) = J1(μ̃; mk) + β(J2(μ̃) − lim
n3

J2(μ
n3
β ))

= J1(μ̃; mk) + β(J2(μ̃) − J0)

< J1(μ̃; mk),

which contradicts (4.16). Thus J2(μ
n2
β ) → J2(μ̃), i.e., (4.13) holds. �

4.2. Convergence

We will show that the solutions of the problem (Pβ ) with the noisy measurement data {mn
t,k}

converge toward a solution of the problem (P) as β → 0 and the noise level δn
k → 0,

1 � k � k0. For the noise level vector δn = (δn
1, . . . , δ

n
k0

), the arithmetic mean of the square

of k0 noise levels is m(δn) = [(
δn

1

)2 + · · · + (
δn

k0

)2]
/k0.

We measure the convergence with respect to the Bregman distance, which is briefly
recalled here. Let B be a Banach space with B∗ being the dual space of it; R : B → (−∞,∞]
is a proper convex functional and ∂R(q) stands for the subdifferential of R at q ∈ Dom R :=
{q ∈ B | R(q) < ∞} 
= ∅ defined by

∂R(q) := {q∗ ∈ B∗ | R(p) � R(q) + 〈q∗, p − q〉(B∗,B) for all p ∈ B}.
The set ∂R(q) may be empty; however, if R is continuous at q, then it is nonempty. Furthermore,
∂R(q) is convex and weak* compact. In the case ∂R(q) 
= ∅, for any fixed p ∈ B, we denote

DR(p, q) := {R(p) − R(q) + 〈q∗, p − q〉(B∗,B) | q∗ ∈ ∂R(q)}.
14
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Then for a fixed element q∗ ∈ ∂R(q),

Dq∗
R (p, q) := R(p) − R(q) − 〈q∗, p − q〉(B∗,B)

is called the Bregman distance with respect to R and q∗ of two elements p, q ∈ B.
The Bregman distance is not a metric on B. However, for each q∗ ∈ ∂R(q), the

Dq∗
R (p, q) � 0 for any p ∈ B and Dq∗

R (q, q) = 0. Furthermore, in the case R is the strictly
convex function, Dq∗

R (p, q) = 0 if and only if p = q.

Theorem 4.3. (Convergence) For any positive vector sequence δn → 0 such that for
βn := β(δn) → 0, m(δn)/βn → 0 as n → ∞, let {mn

k} be a sequence in L2(∂X ) such
that for every k, ‖mn

k − mt,k‖L2(∂X ) � δn
k , and let {μn

βn
} be the minimizers of the problems

min
μ∈Qad

J1(μ; mn
k ) + βnJ2(μ).

Then, a subsequence {μn2
βn2

} of {μn
βn

} and an element μ̂ ∈ Qad({mt,k}) exist such that

lim
n2→∞ ‖μn2

βn2
− μ̂‖L1(X ) = 0 (4.19)

and

lim
n2→∞ J2(μ

n2
βn2

) = J2(μ̂). (4.20)

Furthermore, μ̂ is a solution to the problem (P) and for all l ∈ ∂(
∫

X |∇(·)|)(μ̂),

lim
n2→∞ Dl

J2
(μ

n2
βn2

, μ̂) = 0. (4.21)

Proof. For all n, by the definition of μn
βn

, for any μ ∈ Qad, we have

J1(μ
n
βn

; mn
k ) + βnJ2(μ

n
βn

) = 1

2

k0∑
k=1

‖Fk(μ
n
βn

) − mn
k‖2

L2(∂X )
+ βnJ2(μ

n
βn

)

� 1

2

k0∑
k=1

‖Fk(μ) − mn
k‖2

L2(∂X )
+ βnJ2(μ).

In particular, for any μ ∈ Qad({mt,k}),
1

2

k0∑
k=1

‖Fk(μ
n
βn

) − mn
k‖2

L2(∂X )
+ βnJ2(μ

n
βn

) � 1

2

k0∑
k=1

‖mt,k − mn
k‖2

L2(∂X )
+ βnJ2(μ).

From the above inequality, we have

J2(μ
n
βn

) � 1

2

k0m(δn)

βn
+ J2(μ) ∀μ ∈ Qad({mt,k}). (4.22)

Since m(δn)/βn → 0, {μn
βn

} is bounded in BV (X ). By proposition 4.1, we conclude that there
exist a subsequence {μn1

βn1
} of {μn

βn
} and μ̂ ∈ Qad, such that

μ
n1
βn1

→ μ̂ in L1(X ), (4.23)

J2(μ̂) � lim inf
n1→∞ J2(μ

n1
βn1

). (4.24)

By the same reasoning as in the proof of theorem 4.3, a subsequence {μn2
βn2

} of {μn1
βn1

} exists,
such that, for 1 � k � k0,

Uk(μ
n2
βn2

) ⇀ Uk(μ̂) in HA(X × �); Fk(μ
n2
βn2

) ⇀ Mk(μ̂) in L2(∂X ).
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On the other hand,

1

2

k0∑
k=1

‖Fk(μ
n2
βn2

) − mn2
k ‖2

L2(∂X )
� 1

2

k0∑
k=1

‖mt,k − mn2
k ‖2

L2(∂X )
+ βn2 J2(μ).

When βn2 → 0 and m(δn2 ) → 0, the first item on the right of the above inequality approaches
zero, and so

1

2

k0∑
k=1

‖F(μ
n2
βn2

) − mn2
k ‖2

L2(∂X )
→ 0.

Moreover, from

‖Fk(μ
n2
βn2

) − mt,k‖L2(∂X ) � ‖Fk(μ
n2
βn2

) − mn2
k ‖L2(∂X ) + ‖mn2

k − mt,k‖L2(∂X )

and ‖mn2
k − mt,k‖L2(∂X ) � δ

n2
k → 0, we conclude that

1

2

k0∑
k=1

‖Fk(μ
n2
βn2

) − mt,k‖2
L2(∂X )

→ 0,

i.e., Fk(μ
n2
βn2

) → mt,k as n → ∞ in L2(∂X ). Recall that Fk(μ
δn2
βn2

) ⇀ Mk(μ̂) in L2(∂X ). By the
uniqueness of the weak limit, Mk(μ̂) = mt,k, i.e., μ̂ ∈ Qad({mt,k}).

It remains to prove (4.21). For any μ ∈ Qad({mt,k}), by (4.22) and (4.24), we have

J2(μ̂) � lim inf
n2→∞

(
m(δn2 )

βn2

+ J2(μ)

)
= J2(μ).

This means that μ̂ is a solution to the problem (P). Again using (4.22) and (4.24), we have

lim sup
n2→∞

J2(μ
n2
βn2

) � J2(μ̂), J2(μ̂) � lim inf
n2→∞ J2(μ

n2
βn2

).

So

lim
n2→∞ J2(μ

n2
βn2

) = J2(μ̂). (4.25)

From (4.23) and (4.25), by [5, proposition 10.1.2], the sequence {μn2
βn2

} weakly converges to
μ̂ in BV (X ) . Thus, for all l ∈ ∂(

∫
X |∇(·)|)(μ̂) ,

lim
n2→∞ Dl

J2
(μ

n2
βn2

, μ̂) = 0

which is (4.21). �

5. Summary

In this paper, we present a theoretical analysis of the parameter identification problem
for the radiative transport equation (RTE) with angularly averaged measurement data. The
parameters are sought in subspaces of L∞(X ), whereas the solution of the RTE BVP is from
the space of square integrable functions that have square integrable directional derivatives
along the angular direction and that have square integrable traces on the incoming boundary.
We analyze properties of the forward operator in this function space setting, including the
continuity and differentiability with respect to the parameters. The total variation regularization
method is considered for the parameter identification problem where the parameters may have
discontinuity or high oscillation and we show that the method leads to a stable solution. We also
show the convergence of the total variation-minimizing solution in the sense of the Bregman
distance. Lack of compactness property of the function spaces presents a major challenge for
the theoretical analysis of the problem and this challenge is overcome with careful arguments.
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