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a b s t r a c t

This paper presents a fast and optimal multigrid solver for the radiative transfer equation.
A discrete-ordinate discontinuous-streamline diffusion method is employed to discretize
the radiative transfer equation. Instead of utilizing conventionalmultigridmethods for spa-
tial variables only, a spatial cascadicmultigridmethod and a full cascadicmultigridmethod
are developed to achieve rapid convergence in iterative calculation. Preliminary analysis is
also conducted, suggesting the optimal convergence rate. Numerical tests show a signifi-
cant reduction of the computational time compared to conventional iterative methods for
the radiative transfer equation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The radiative transfer equation (RTE), which describes the scattering and absorbing of radiation through amedium, plays
an important role in a wide range of applications such as astrophysics [1], atmosphere and ocean [2–4], heat transfer [5],
neutron transport and nuclear physics [6,7], and so on. Substantial research effort on the RTE began in the middle of last
century. Today, research on the RTE remains to be a very active and important area, see e.g., the collections [8,9]. Recent
development in biomedical engineering, such as radiotherapy dose calculations [10,11] and optical tomography [12–18],
stimulates another giant wave of research in the area of radiative transfer calculations. To provide crucial information
on the properties of the biological tissues, the radiative transfer cannot be ignored in a strongly spatially heterogeneous
medium [19,20]. This spatial heterogeneity, on the other hand, escalates the complexity of the radiative transfer process,
and results in high computational cost. Therefore, it is necessary to develop radiative transfer calculation schemes that are
more suited for application to biomedical medium with a variety of tissues.

Due to the involvement of both integration and differentiation in the equation, as well as the high dimension of the
problem, it is challenging to develop effective numerical schemes for solving the RTE. In the existing literature, the dis-
cretization schemes for the RTE are broadly categorized into two groups: deterministic (or explicit) and stochastic (or prob-
abilistic). Stochastic methods [21–24] are usually employed for trajectory calculation, and are commonly considered as the
golden-standard in terms of solution accuracy. However, that accuracy comes with a significant increase in both computa-
tional cost and memory requirement. In a deterministic approach, discretization of the RTE is usually carried out separately
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for the spatial and angular variables. Popular spatial discretizations include finite difference methods [25], finite element
methods [26,27], finite volume methods [28], and so on. Various angular discretizations exist: discrete ordinate (Sn) meth-
ods [25,29], methods using spherical harmonics (Pn methods, [6]), etc. Some earlier references on this topic include [30,25],
while a fewmore recent references are [31–33]. It is also worth mentioning that to deal with the strongly asymmetric scat-
tering, such as highly forward-peaked scattering, various approximations to the RTE were developed (see, e.g., [34,35] and
references therein).

The choice of a particular method depends on the conditions and purposes of the radiative transfer calculation, because
deterministic and stochastic approaches have their own advantages and disadvantages. One of the advantages of the deter-
ministic approach is that it is generally capable of providing the entire spatial and angular distribution of the radiation field
at once. This means that all radiative quantities, such as the intensity of radiance in an arbitrary direction, the net flux or
the flux in a particular direction, can be derived from the same basic calculation result. Another advantage is that it is free
of statistical noise, which is inevitable in stochastic methods due to the finite number of photons employed in practice, and
therefore deterministicmethods are highly competent for quantitative estimation of the effects of changes in optical param-
eters on the radiation distribution. However, deterministic methods still require considerable computational resources and
calculation times to obtain accurate results. Therefore, it is necessary to develop fast solver for the deterministic methods
satisfying the conditions of both accuracy and feasibility required in various applications.

The multigrid method (see e.g. [36,37]) has been proved to be able to efficiently accelerate convergence and thus signifi-
cantly reduce the computation time. For the radiative transfer equation, D. Balsara developed and studied a full approxima-
tion scheme (FAS) incorporated with the discrete ordinate method [38]; in [39,40], a parallel spatial/angular agglomeration
multigrid method employing the FAS was developed to accelerate the finite-volumemethod for the radiative transfer equa-
tions; in [41], both FAS and fullmultigrid (FMG)methodwere applied to the spatial and angular variables for the steady-state
or frequency domain radiative transfer equation.

The purpose of this paper is to study the performance of the cascadic multigrid method (CMG) for solving the RTE.
As a ‘‘one-way multigrid’’ method, a distinctive feature of the CMG is the total absence of coarse grid corrections, which
indicates that this type of multigrid method is easier to implement than the conventional multigrid methods. The CMG
is not brand new, and has been proposed and analyzed for elliptic and parabolic partial differential equations in [42–47].
However, to the best of our knowledge, the CMGhas not been applied to the RTE. In the proposed CMG, the discrete-ordinate
discontinuous-streamline diffusion schemes developed in [48] are employed to discretize the RTE. Both spatial CMGmethod
and full CMG method are considered. Different from the spatial cascadic multigrid (SCMG) method that uses the same
angular partition for all multigrid levels, the angular and spatial cascadic multigrid (ASCMG) method employs coarser
angular partition for coarser spatial mesh while keeps the finest angular partition on the finest level, and therefore can
further accelerate the computation significantly. On the other hand, since different angular partitions are employed, the
ASCMGmethod needs an additional interpolation operator involved. Our numerical results indicate that such interpolation
errors can be easily swept out by the smoothing iterations. Moreover, the numerical experiments show that the proposed
CMGmethods lead to a significant reduction of the computational time compared to conventional iterative methods for the
radiative transfer equation, and the ASCMG method achieves a faster convergence in comparison with the SCMG method.

The rest of this paper is organized as follows: In next section,we introduce the radiative transfer equation, the relevant no-
tation, and recall the corresponding existence and uniqueness result. In Section 3, we shall briefly review a discrete-ordinate
discontinuous-streamline diffusion method for the radiative transfer equation proposed in [48]. We then present details of
the CMG for the radiative transfer equation and analyze the convergence properties in Section 4. In Section 5, several numer-
ical examples are presented to illustrate the effectiveness and convergence properties of the proposed method. Concluding
comments and remarks on future work are given in Section 6.

2. Radiative transfer equation

Let X be a bounded domain in Rd (d = 2, 3) with a smooth boundary ∂X . Denote by n(x) the unit outward normal at
x ∈ ∂X . Let Ω be the angular space, i.e., the unit circle in R2 for d = 2, or the unit sphere in R3 for d = 3. For each fixed
direction ω ∈ Ω , we introduce the following subsets of ∂X:

∂Xω,− = {x ∈ ∂X : ω · n(x) < 0}, ∂Xω,+ = {x ∈ ∂X : ω · n(x) ≥ 0}.

Then, we define

Γ− = {(x,ω) : x ∈ ∂Xω,−,ω ∈ Ω}, Γ+ = {(x,ω) : x ∈ ∂Xω,+,ω ∈ Ω}

as the incoming and outgoing boundaries.
Let u(x,ω) be the radiative intensity at position x ∈ X along direction ω ∈ Ω . We define the integral operator S by

(Su)(x,ω) =


Ω

g(x,ω · ω̂)u(x, ω̂) dσ(ω̂), (1)

with g a non-negative phase function satisfying the normalization condition
Ω

g(x,ω · ω̂) dσ(ω̂) = 1 ∀ x ∈ X, ω ∈ Ω. (2)
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In most applications, the function g is independent of x. As an example, a commonly used phase function g in the literature
is the following Henyey–Greenstein (H–G) phase function [49,41]:

g(t) =


1 − η2

2π(1 + η2 − 2ηt)
, d = 2,

1 − η2

4π(1 + η2 − 2ηt)3/2
, d = 3,

(3)

where the parameter η ∈ (−1, 1) is the anisotropy factor of the scatteringmedium. Note that η = 0 for isotropic scattering,
η > 0 for forward scattering, and η < 0 for backward scattering.

With the above notation, a boundary value problem of the radiative transfer equation (RTE) reads

ω · ∇u(x,ω)+ σt(x)u(x,ω) = σs(x)(Su)(x,ω)+ f (x,ω), (x,ω) ∈ X ×Ω, (4)
u(x,ω) = 0, (x,ω) ∈ Γ−. (5)

Here σt = σa + σs, σa is the macroscopic absorption cross section, σs is the macroscopic scattering cross section, and f is a
source function. We assume these given functions have the properties that

σt , σs ∈ L∞(X), σs ≥ 0 a.e. in X, and σt − σs ≥ c0 in X for a constant c0 > 0, (6)

f (x,ω) ∈ L2(X ×Ω) and is continuous in ω ∈ Ω. (7)

The boundary condition (5) corresponds to a physical setting of completely dark environment.
It is known (see, e.g., [50]) that under assumptions (6) and (7), the problem (4)–(5) has a unique solution u ∈ H1

2 (X ×Ω),
where

H1
2 (X ×Ω) := {v ∈ L2(X ×Ω) : ω · ∇v ∈ L2(X ×Ω)},

with ω · ∇v denoting the generalized directional derivative of v in the direction ω.

3. Discrete-ordinate discontinuous-streamline diffusion method for RTE

In this section, a discrete-ordinate discontinuous-streamline diffusion method [48] is presented for solving the radiative
transfer problem (4)–(5). The numerical scheme is formed in two steps. First, we use the discrete-ordinate (DO) method to
approximate the integral term in the RTE, resulting in a system of linear hyperbolic equations. Then these coupled linear
hyperbolic partial differential equations are discretized by the discontinuous-streamline diffusion (DSD) method.

3.1. Angular discretization

To approximate the integration term Su, we introduce a numerical quadrature of the form
Ω

F(ω) dσ(ω) ≈

L
l=0

wlF(ωl), wl > 0, ωl ∈ Ω, 0 ≤ l ≤ L, (8)

where F is a continuous function over the unit sphereΩ .

3.1.1. Quadrature scheme in the two-dimensional (2D) domain
We introduce the spherical coordinates

ω = (cos θ, sin θ)T , 0 ≤ θ ≤ 2π. (9)

Noting that dσ(ω) = dθ for the coordinate system (9), we have
Ω

F(ω) dσ(ω) =

 2π

0
F̄(θ) dθ,

where F̄ stands for the representation of F in the spherical coordinates.
One possible quadrature scheme for the above integral is the composite trapezoidal formula 2π

0
F̄(θ) dθ ≈

hθ
2


F̄(θ0)+

L−1
i=1

2F̄(θi)+ F̄(θL)


:=

L
i=0

wiF̄(θi),

where L ≥ 1 is a positive integer, {θi} are evenly spaced nodes on [0, 2π ] with a spacing hθ = 2π/L, i.e., θi = ihθ for
0 ≤ i ≤ L, and for the weights,w0 = wL =

hθ
2 , andwi = hθ for 1 ≤ i ≤ L − 1. It is known [51] that 2π

0
F̄(θ) dθ −

hθ
2


F̄(θ0)+

L−1
i=1

2F̄(θi)+ F̄(θL)


= −

πh2
θ

6
F̄ ′′(θc), θc ∈ [0, 2π ]. (10)
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3.1.2. Quadrature scheme in the three-dimensional (3D) domain
We introduce the spherical coordinates

ω = (sin θ cosψ, sin θ sinψ, cos θ)T , 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π. (11)

Then dσ(ω) = sin θdθdψ . By using the spherical coordinate system (11), we obtain
Ω

F(ω) dσ(ω) =

 2π

0

 π

0
F̄(θ, ψ) sin θ dθdψ.

One family of quadratures for the above integral is given by the product numerical integration formulas. For example,
for a positive integerm ≥ 1,

Ω

F(ω) dσ(ω) ≈
π

m

2m
j=1

m
i=1

wiF̄(θi, ψj), (12)

where {θi} are chosen so that {cos θi} and {wi} are the Gauss–Legendre nodes andweights ofm points on [−1, 1]. The points
{ψj} are evenly spaced on [0, 2π ] with a spacing of π/m. Regarding the accuracy of the quadrature (12), we have [52]


Ω

F(ω) dσ(ω)−
π

m

2m
j=1

m
i=1

wiF̄(θi, ψj)

 ≤ csn−s
∥F∥s,Ω ∀ F ∈ Hs(Ω), s > 1, (13)

where cs is a positive constant depending only on s, and n denotes the degree of precision of the quadrature. Note that for
the above integration methods, we have n = 2m − 1.

3.1.3. Discrete-ordinate method
Based on the numerical quadratures (8), the integral operator S can be approximated by a discretization operator Sd

given by

Sdu(x,ω) =

L
i=0

wig(x,ω · ωi)u(x,ωi). (14)

Using the operator Sd, we can discretize the radiative transfer equation (4)–(5) in each angular direction ωl to get

ωl · ∇ul
+ σtul

= σs

L
i=0

wig(x,ωl · ωi)ui
+ fl in X, ul

= 0 on ∂ l
−
X, 0 ≤ l ≤ L, (15)

where fl = f (x,ωl) and ul
= ul(x) is an approximation of u(x,ωl). Here and below, we use the simplified notation

∂ l
±
X := ∂Xωl,±.

3.2. Space discretization

The angular discretization of the RTE leads to a hyperbolic system (15) of first-order partial differential equations in
space. Now we discretize (15) by use of the discontinuous-streamline diffusion method [48].

Let {Th}h be a regular family of partitions of X with h the mesh size parameter. Denote by nK the unit outward normal
to ∂K for K ∈ Th. Let E i

h be the set of all interior boundaries (faces for d = 3 and edges for d = 2) of Th. For any positive
integer k, let Pk(K) be the set of all polynomials on K of a total degree no more than k. We introduce a finite element space
Vh := {vh ∈ L2(X) : v|K ∈ Pk(K) ∀ K ∈ Th}.

For a fixed direction ωl, we define the incoming and outgoing boundaries of K ∈ Th by

∂ l
−
K = {x ∈ ∂K : ωl · nK (x) < 0}, ∂ l

+
K = {x ∈ ∂K : ωl · nK (x) ≥ 0}.

We remark that each edge of an element K ∈ Th is on either the incoming boundary or the outgoing boundary.
Let K l

+
and K l

−
be two adjacent elements sharing e ∈ E i

h, where the normal direction nl
e pointing from K l

−
to K l

+
satisfies

ω · nl
e ≥ 0 (cf. Fig. 1). For a scalar-valued function v, we define

vl
+

= v|K l
+
, vl

−
= v|K l

−
, and [v] = vl

+
− vl

−
on e.

For any domain D ⊆ X with boundary ∂D (resp. ∂ l
±
D), let (·, ·)D and ⟨·, ·⟩∂D (resp. ⟨·, ·⟩∂ l

±
D) be the L

2 inner products on D and

on ∂D (resp. ∂ l
±
D).

Using the above notation, we define the discrete-ordinate discontinuous-streamline diffusion (DODSD) method as
follows.
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Fig. 1. An example of K l
−
, K l

+
, and nl

e in 2D.

Find {ul
h}0≤l≤L ⊂ (Vh)

L+1 such that for any K ∈ Th, 0 ≤ l ≤ L,
ωl · ∇ul

h + σtul
h, v

l
h + δ ωl · ∇vlh


K +


[ul

h], v
l
+
|ωl · n|


∂ l
−
K

=


σs

L
i=0

wig(x,ωl · ωi)ui
h + fl, vlh + δ ωl · ∇vlh


K

∀ vlh ∈ Pk(K) (16)

with

ul
−

= 0 on ∂ l
−
K ⊂ ∂ l

−
X . (17)

Here, δ = c̄ h is an artificial diffusion parameter with some constant c̄ > 0 and vl
±

:= (vlh)±. As is shown in [48], (16)–(17)
has a unique solution.

For any vh = {vlh}0≤l≤L ∈ Wh :=

L2(X)

L+1, define

∥vh∥X =

 L
l=0

wl


K∈Th

∥vlh∥
2
0,K

 1
2

. (18)

For the error analysis, we make a regularity assumption:

for some r > 0, ul
∈ H1+r(X) ∩ C(X), 0 ≤ l ≤ L. (19)

In [48], it is proved that (16)–(17) has a unique solution and the following error estimate holds.

Theorem 3.1. Let {ul
} and uh be the solutions of (15) and (16)–(17), respectively. Under assumptions (6), (7), and (19), we have

{ul
} − uh


X ≤ Chmin{r,k}+ 1

2


L

l=0

∥ul
∥
2
r+1,X

 1
2

. (20)

4. Cascadic multigrid method

4.1. Iteration schemes

In this subsection, we present two iteration schemes to solve the DODSD problem (16)–(17), which will be used as the
smoother of the cascadic multigrid method. For simplicity, we only describe the implementation of the iteration schemes
in 2D.

We first define a sequence of subsets of the set {K : K ∈ Th} with respect to a given direction ωl as follows, using the
mesh shown in Fig. 2 for illustration.

Step 1. Denote by T (l,1)h the subset of the elements for which all incoming boundary ∂ l
−
K ⊂ ∂ l

−
X . In Fig. 2, T (l,1)h = {Ki :

i = 2, 3}.
Step 2. For Th \ T (l,1)h , let ∂ l,1− X = {e ⊂ ∂ l

−
K : K ∈ Th \ T (l,1)h , and ul

+
|e has been computed or given} denote its incoming

edge. In Fig. 2, ∂ l,1− X is the broken line ACDEF . Similarly, we define the subset T (l,2)h . In Fig. 2, T (l,2)h = {Ki : i = 9, 10}.
Step 3. Repeating step 2, we obtain the non-overlapping splitting Th = T (l,1)h ∪ T (l,2)h ∪ · · · ∪ T (l,S)h .
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Fig. 2. A example of Th in 2D.

4.1.1. Source iteration
Source iteration [53] is a popular method for solving the discretized linear system of RTE. In this iterative procedure, the

scattering entirely lags one step behind the transport.
For each fixed direction, the transport equation can be solved efficiently by the source iteration. The computation follows

the order in the subset sequence of the elements; that is, start the computation with the elements in T (l,1)h and end with the
elements in T (l,S)h . For each elementK ∈ T (l,s)h , the unknown function ul

h is computed by the following source iteration scheme
of (16): find ul,j+1

h ∈ Pk(K) such that
ωl · ∇ul,j+1

h + σtu
l,j+1
h , vlh + δ ωl · ∇vlh


K

+


ul,j+1

+ , vl
+
|ωl · n|


∂ l
−
K

=


σs

L
i=0

wig(x,ωl · ωi)u
l,j
h + fl, vlh + δ ωl · ∇vlh


K

+


ul,j+1

− , vl
+
|ωl · n|


∂ l
−
K

∀ vlh ∈ Pk(K) (21)

with the given ul,j+1
− |∂ l

−
K and ul,j

h . Here ul,j
h denotes the approximation of ul

h obtained in the previous iteration.

We remark that ul,j+1
h on the elements in each T (L,i)h can be computed independently. Furthermore, in 2D cases, if we use

linear finite elements for the space discretization, then the coefficient matrix of the linear system generated by (21) is a
3-by-3 square matrix, the combined coefficient matrix for the computation of ul

h on T (i)h is a reducible tridiagonal matrix,
and the linear system can be easily solved by the tridiagonal matrix algorithm.

The source iteration scheme can be described as follows:

Algorithm 1: Source iteration
Set parameters: tol, δ
Initialization: {ul,0

h } = {0}, err = tol + 1, j = 0
while err ≥ tol do

Set {ul,j+1
h } = {ul,j

h }

Compute Sd

{ul,j

h }


=
L

i=0wig(x,ωl · ωi)u
l,j
h

for l = 0 to L do % cycle for direction
for s = 1 to S do % cycle for T (l,s)h

Update ul,j+1
h on all elements K in T (l,s)h by solving the problem (21)

end for
end for

Compute err =

{ul,j+1
h } − {ul,j

h }


X

Set j = j + 1
end while

4.1.2. Gauss–Seidel (GS) iteration
The source iteration converges slowly when the scattering is dominant, e.g., in the optically thick regime where the do-

main size is large in terms ofmean free paths. Therefore, we present a Gauss–Seidel like iteration scheme [41] in Algorithm2.
The Gauss–Seidel iteration scheme utilizes the most updated value of ul

h, and computes the numerical approximation Shθd
for each iteration. That is, for each element K ∈ T (l,s)h , the unknown function ul

h is computed by the following Gauss–Seidel
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iteration scheme of (16): ul,j+1
h ∈ Pk(K) such that

ωl · ∇ul,j+1
h + σtu

l,j+1
h , vlh + δ ωl · ∇vlh


K

+


ul,j+1

+ , vl
+
|ωl · n|


∂ l
−
K

=


σs

L
i=0

wig(x,ωl · ωi)û
l,j+1
h + fl, vlh + δ ωl · ∇vlh


K

+


ul,j+1

− , vl
+
|ωl · n|


∂ l
−
K

∀ vlh ∈ Pk(K) (22)

where

ûl,j+1
h =


ul,j+1
h if ul,j+1

h is available,

ul,j
h otherwise.

(23)

In Section 5, we show the improvement of the Gauss–Seidel iteration scheme by numerical tests.

Algorithm 2: Gauss–Seidel iteration
Set parameter: tol, δ
Initialization: {ul,0

h } = {0}, err = tol + 1, j = 0
while err ≥ tol do

Set {ul,j+1
h } = {ul,j

h }

for l = 0 to L do % cycle for direction
Compute Sd


{ul,j+1

h }


=
L

i=0wig(x,ωl · ωi)u
i,j+1
h

for s = 1 to S do % cycle for T (l,s)h
Update ul,j+1

h on all elements K in T (l,s)h by solving the problem (21)
end for

end for

Compute err =

{ul,j+1
h } − {ul,j

h }


X
Set j = j + 1

end while

4.2. Spatial cascadic multigrid method

For later presentation, we denote by the operator RTEI an iteration scheme for the numerical approximation of the RTE,
that is,

uh = RTEI(T X
h , T

Ω
hθ , S

hθ
d , u

0
h,M), (24)

where T X
h denotes the partition of X , TΩhθ denotes the partition of Ω , Shθd represents the numerical approximation of the

operator S with the parameter hθ , u0
h represents the initial value of the iteration scheme, and M stands for the number of

iteration.
Let T X

0 := T X
h0

be an initial triangulation of X with mesh size h0. Then we recursively generate a sequence of nested trian-
gulations T X

j := T X
hj
, j = 1, 2, . . . , J , by dividing each triangle in the previousmesh T X

j−1 into four sub-triangles by connecting
the midpoints of the edges; hj = 2−jh0.

Based on the operator RTEI and the meshes T X
j , we describe the spatial cascadic multigrid method for the RTE in

Algorithm 3.

Algorithm 3: Spatial cascadic multigrid method (SCMG)

For level j = 0: Let u0
h0

be the DODSD approximation of RTE on T0.

For level j ≥ 1: Let u0
hj

= I jj−1u
∗

hj−1
; compute u∗

hj
= RTEI(T X

j , T
Ω
hθ
, Shθd , u

0
hj
,Mj).

Since the discrete spaces on {Tj} are nested, the intergrid transfer operator I jj−1 is the identity operator.
Following [42], we call a cascadic multigrid method optimal for level j (with respect to the weighted L2 norm ∥ · ∥X

of (18)) if

∥uhj − u∗

hj∥X ≈ ∥u − uhj∥X , (25)
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meaning that the iteration error is comparable to the approximation error, and multigrid complexity

amount of work = O(Nj), (26)

where Nj denotes the total number of unknowns associated with the partition {Tj}.

4.3. Analysis of complexity and accuracy

Letting NK
j be the number of elements in Tj, we have NK

j+1 = 2dNK
j . If we apply the DODSD method with linear finite

element space, then there are (d + 1)NK
j unknowns for each direction with respect to Tj.

Use of the iteration defined earlier in the section implies that for each element, we need to solve a linear system of d+ 1
equations, which costs about 1

3 (d+1)3 with the Gaussian elimination. Since there are NK
j elements, the total computational

cost of one iteration is 1
3 (d + 1)3NK

j for each direction.
Assume that the number of iteration for level j satisfies

Mj ≤ MJβ
J−j, β < 2d. (27)

Then the cascadic multigrid method is optimal in computational complexity.

Lemma 4.1. If the assumption (27) holds, then the cascadic multigrid method is optimal in computational complexity, that is, the
total computational cost for each direction is proportional to the number of unknowns with respect to TJ .

Proof. By the definition of DODSD method, we know that the total number of unknowns for one direction with respect to
the finest mesh TJ is NJ = (d + 1)NK

J .
On the other hand, the amount of computation for each direction is

M1


1
3
(d + 1)3NK

1


+ M2


1
3
(d + 1)3NK

2


+ · · · + MJ


1
3
(d + 1)3NK

J


=

1
3
(d + 1)3(M12(−J+1)d

+ M22(−J+2)d
+ · · · + MJ)NK

J

≤
1
3
(d + 1)3


β

2d

J−1

+


β

2d

J−2

+ · · · + 1


MJNK

J

≤
1
3
(d + 1)2

2d

2d − β
MJNJ . (28)

This implies that the total computational cost for solving the RTE is proportional to the number of unknowns of the J level,
which completes the proof of this lemma. �

We comment that in our numerical experiments to be reported in Section 5, the condition (27) is satisfied with β = 1.
Next, we analyze the convergence property of the iteration scheme RTEI , which will be used as the smoother of the

cascadic multigrid method.
In [54], a one-dimensional model for finite homogeneous medium problem

µ
∂Ψ

∂x
(x, µ)+ΣtΨ (x, µ) =

Σs

2

 1

−1
Ψ (x, µ′) dµ′

+
Q (x)
2
, (29)

is used to quantitatively describe the performance of the SI scheme. The corresponding SI scheme is defined by

µ
∂Ψ (k+1)

∂x
(x, µ)+ΣtΨ

(k+1)(x, µ) =
Σs

2

 1

−1
Ψ (k)(x, µ′) dµ′

+
Q (x)
2
. (30)

By the Fourier analysis, it was proved thatΨ (x, µ)− Ψ (k)(x, µ)
 ≤ Bck, (31)

where c =
Σs
Σt
< 1 is the scattering ratio. We may replace the above inequality byΨ (x, µ)− Ψ (k+1)(x, µ)

 ≤ c
Ψ (x, µ)− Ψ (k)(x, µ)

 . (32)

For later analysis, we assume that the solution at each iteration for the discrete problem satisfies a similar relation:

∥uk+1
h − uh∥X ≤ Λ∥uk

h − uh∥X (33)

with a constant Λ ∈ (0, 1) independent of h. In Section 5, some numerical examples are provided to illustrate the validity
of the relation (33) for the source iteration and the Gauss–Seidel iteration.
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We have the next result.

Lemma 4.2. Assume (33) holds for the RTEI smoother. If the number of iterations Mj satisfies

2
3
2ΛMj ≤ C1, j = 1, . . . , J, (34)

with some constant C1 ∈ (0, 1), then the cascadic multigrid method is optimal in accuracy, that is, the solution obtained by use of
the cascadic multigridmethod has the same convergence rate in ∥·∥X as the standard DODSD approximation on the finest mesh TJ .

Proof. Let u∗

hj
and uhj be the solutions of the cascadic multigrid method and the DODSD method, respectively. It follows

from (33) and Theorem 3.1 that

∥u∗

hj − uhj∥X = ∥u
Mj
hj

− uhj∥X ≤ ΛMj∥u0
hj − uhj∥X

≤ ΛMj∥u∗

hj−1
− uhj−1∥X +ΛMj∥uhj−1 − uhj∥X

≤ ΛMj∥u∗

hj−1
− uhj−1∥X + CΛMj


h

3
2
j + h

3
2
j−1

 L
l=0

∥ul
∥
2
r+1,X

 1
2

= ΛMj∥u∗

hj−1
− uhj−1∥X + C


1 + 2

3
2


ΛMjh

3
2
j


L

l=0

∥ul
∥
2
r+1,X

 1
2

. (35)

We apply (35) repeatedly,

∥u∗

hJ − uhJ ∥X ≤ ΛMJΛMJ−1∥u∗

hJ−2
− uhJ−2∥X

+ C

1 + 2

3
2


ΛMJΛMJ−1h

3
2
J−1


L

l=0

∥ul
∥
2
r+1,X

 1
2

+ C

1 + 2

3
2


ΛMJ h

3
2
J


L

l=0

∥ul
∥
2
r+1,X

 1
2

= ΛMJΛMJ−1∥u∗

hJ−2
− uhJ−2∥X + C


1 + 2

3
2


ΛMJΛMJ−1h

3
2
J−1 +ΛMJ h

3
2
J

 L
l=0

∥ul
∥
2
r+1,X

 1
2

. (36)

Processing in this way and noting that u∗

h0
= u0

h0
, we have

∥u∗

hJ − uhJ ∥X ≤ C

1 + 2

3
2


ΛMJΛMJ−1 · · ·ΛM1h

3
2
1 + · · · +ΛMJ h

3
2
J

 L
l=0

∥ul
∥
2
r+1,X

 1
2

= C

1 + 2−

3
2


h

3
2
J


ΛMJ 2

3
2ΛMJ−12

3
2 · · ·ΛM12

3
2 + · · · +ΛMJ 2

3
2

 L
l=0

∥ul
∥
2
r+1,X

 1
2

. (37)

Using the assumption (34), we get

∥u∗

hJ − uhJ ∥X ≤ C

1 + 2−

3
2


h

3
2
J


C J
1 + C J−1

1 · · · + C1

 L
l=0

∥ul
∥
2
r+1,X

 1
2

.

Note that C1 ∈ (0, 1). Thus we get

∥u∗

hJ − uhJ ∥X ≤ C

1 + 2−

3
2


h

3
2
J min


J, C1(1 − C1)

−1 L
l=0

∥ul
∥
2
r+1,X

 1
2

. (38)

It follows from Theorem 3.1 that

∥uhJ − ul
∥X ≤ Ch

3
2
J


L

l=0

∥ul
∥
2
r+1,X

 1
2

. (39)

Combining the above two inequalities, we obtain the stated result. �

From the above two lemmas, we deduce the following

Theorem 4.3. Assume (33) holds for the RTEI smoother. If the number of iterationsMj = MJ , β = 1, j = 1, . . . , J , and (34) holds,
then the cascadic multigrid method is optimal in both accuracy and computational complexity.
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4.4. Full cascadic multigrid method

In the previous subsections, we proposed and analyzed the cascadic multigrid method only in the spatial variable, which
uses the same angular partition for all levels. Now we consider the full cascadic multigrid method, which employs the
cascadic multigrid method for both spatial and angular variables.

As in Section 4.3, let T X
j := Tj be a sequence of nested meshes for X with a mesh size hj, j = 1, 2, . . . , J . Let TΩj be a

sequence of partitions for Ω with mesh sizes hθj , j = 1, 2, . . . , J . Thus for each level of the cascadic multigrid method, we
have a partition T X

j for the spatial variable and a partition TΩj for the angular variable.
Since the discrete spaces {Vhj} on {Tj} are nested, the interpolation operator from Vhj−1 to Vhj is the identity operator.

As for the angular discretization, the numerical solution with respect to the directionωl on TΩj may not have its counterpart
at the last level, since TΩj−1 may not include the direction ωl. Thus, we need to define the intergrid transfer operator I jj−1. For
any direction ωl

j ∈ TΩj , let ωp
j−1, ω

q
j−1 be the nearest directions to ωl

j in TΩj−1. Let u
p
hj−1

(and uq
hj−1

) be the numerical solution

at level j− 1 with respect to the direction ωp
j−1 (and ω

q
j−1). Then we define the part of I jj−1uhj−1 associated with the direction

ωl
j to be the linear interpolation of up

hj−1
and uq

hj−1
.

Thus, the cascadic multigrid method in both space and angle for the RTE can be stated as in Algorithm 4.

Algorithm 4: Full cascadic multigrid method (FCMG)

For level j = 0: Let u0
h0

be the DODSD approximation of RTE on T0.

For level j ≥ 1: Let u0
hj

= I jj−1u
∗

hj−1
; compute u∗

hj
= RTEI(T X

j , T
Ω
j , S

hθj
d , u0

hj
,Mj).

Different from the spatial cascadic multigrid method, the intergrid transfer operator I jj−1 in Algorithm 4 does not equal
the identity operator, which will cause some additional interpolation error. As we shall see in the next section, the angular
and spatial cascadic multigrid method needs some more smoothing iterations to reduce the error due to the interpolation.

5. Numerical experiments

In this section, we present some numerical examples to show the performance of the proposed cascadic multigrid
methods for solving the radiative transfer equation (4)–(5).

Let the domain X = (0, 1) × (0, 1), and T0 = Th0 be an initial triangulation of X with a mesh size h0 = 0.1. Then we
recursively generate nested triangulations Tj = Thj , j = 1, 2, 3, by dividing each triangle in the previous mesh Tj−1 into
four sub-triangles by connecting the midpoints of the edges. The linear element is employed on the spatial mesh with three
refinements including 697, 2705, and 10657 vertices, respectively.

Problem 1. Consider the RTE (4)–(5) with the Henyey–Greenstein phase function (3). The true solution is

u(x,ω) = sin(πx1) sin(πx2).

We determine the right-hand side function f (x,ω) from the radiative transfer equation. Corresponding to level j, we use
δ = 10−5hj.

Problem 2. Consider the RTE (4)–(5) with the phase function

g(x, t) =
1
2π


1 +

t
2


.

The true solution is

u(x,ω) = e−ax1−bx2 (1 + c cos θ) ,

with a = b =
σa
3 and c =

σa
σa+6σs

. We determine the right-hand side function f (x,ω) from the radiative transfer equation.
Corresponding to level j, we use δ = 10−5hj.

5.1. Verification of the assumption (33)

The main purpose of this subsection is to illustrate the convergence performance of the source iteration scheme and the
Gauss–Seidel iteration scheme.

First, we perform two tests on validity of the assumption (33) for the source iteration. For all numerical calculations, we
consider the two model problems with σt = 1.0, σs = 0.4, and take hθ =

π
10 for Problem 1.
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Table 1
Error of SI scheme for Problem 1 with η = 0.2.

Iter. no. ∥u∗

h0
− uh0∥X Λ ∥u∗

h1
− uh1∥X Λ ∥u∗

h2
− uh2∥X Λ ∥u∗

h3
− uh3∥X Λ

1 2.0885e−01 – 2.0888e−01 – 2.0889e−01 – 2.0889e−01 –
2 2.7327e−02 0.13 2.7328e−02 0.13 2.7328e−02 0.13 2.7328e−02 0.13
3 3.5824e−03 0.13 3.5825e−03 0.13 3.5825e−03 0.13 3.5825e−03 0.13
4 4.7906e−04 0.13 4.7908e−04 0.13 4.7908e−04 0.13 4.7908e−04 0.13
5 6.4593e−05 0.13 6.4597e−05 0.13 6.4597e−05 0.13 6.4597e−05 0.13
6 8.7320e−06 0.14 8.7325e−06 0.14 8.7326e−06 0.14 8.7327e−06 0.14
7 1.1813e−06 0.14 1.1813e−06 0.14 1.1814e−06 0.14 1.1814e−06 0.14
8 1.5982e−07 0.14 1.5984e−07 0.14 1.5984e−07 0.14 1.5984e−07 0.14
9 2.1618e−08 0.14 2.1626e−08 0.14 2.1627e−08 0.14 2.1627e−08 0.14

10 2.9188e−09 0.14 2.9253e−09 0.14 2.9262e−09 0.14 2.9262e−09 0.14
11 3.8867e−10 0.13 3.9497e−10 0.14 3.9582e−10 0.14 3.9582e−10 0.14
12 4.6322e−11 0.12 5.2594e−11 0.13 5.3443e−11 0.14 5.3443e−11 0.14

Table 2
Error of SI scheme for Problem 2.

Iter. no. ∥u∗

h0
− uh0∥X Λ ∥u∗

h1
− uh1∥X Λ ∥u∗

h2
− uh2∥X Λ ∥u∗

h3
− uh3∥X Λ

1 3.2828e−01 – 3.2831e−01 – 3.2832e−01 – 3.2832e−01 –
2 4.8073e−02 0.15 4.8076e−02 0.15 4.8077e−02 0.15 4.8077e−02 0.15
3 6.9483e−03 0.14 6.9487e−03 0.14 6.9488e−03 0.14 6.9488e−03 0.14
4 9.9732e−04 0.14 9.9739e−04 0.14 9.9740e−04 0.14 9.9740e−04 0.14
5 1.4303e−04 0.14 1.4304e−04 0.14 1.4304e−04 0.14 1.4304e−04 0.14
6 2.0508e−05 0.14 2.0509e−05 0.14 2.0510e−05 0.14 2.0510e−05 0.14
7 2.9404e−06 0.14 2.9407e−06 0.14 2.9407e−06 0.14 2.9407e−06 0.14
8 4.2159e−07 0.14 4.2163e−07 0.14 4.2164e−07 0.14 4.2164e−07 0.14
9 6.0443e−08 0.14 6.0453e−08 0.14 6.0454e−08 0.14 6.0454e−08 0.14

10 8.6630e−09 0.14 8.6671e−09 0.14 8.6673e−09 0.14 8.6678e−09 0.14
11 1.2389e−09 0.14 1.2422e−09 0.14 1.2423e−09 0.14 1.2427e−09 0.14
12 1.7450e−10 0.14 1.7766e−10 0.14 1.7766e−10 0.14 1.7811e−10 0.14

Table 3
Error of GS scheme for Problem 1 with η = 0.1.

Iter. no. ∥u∗

h0
− uh0∥X Λ ∥u∗

h1
− uh1∥X Λ ∥u∗

h2
− uh2∥X Λ ∥u∗

h3
− uh3∥X Λ

1 1.8577e−01 – 1.8580e−01 – 1.8580e−01 – 1.8580e−01 –
2 1.6551e−02 0.09 1.6552e−02 0.09 1.6552e−02 0.09 1.6552e−02 0.09
3 1.2348e−03 0.07 1.2349e−03 0.07 1.2349e−03 0.07 1.2349e−03 0.07
4 8.5717e−05 0.07 8.5725e−05 0.07 8.5726e−05 0.07 8.5727e−05 0.07
5 5.8296e−06 0.07 5.8301e−06 0.07 5.8302e−06 0.07 5.8303e−06 0.07
6 3.9690e−07 0.07 3.9694e−07 0.07 3.9695e−07 0.07 3.9695e−07 0.07
7 2.7127e−08 0.07 2.7130e−08 0.07 2.7131e−08 0.07 2.7131e−08 0.07
8 1.8560e−09 0.07 1.8562e−09 0.07 1.8568e−09 0.07 1.8568e−09 0.07
9 1.2646e−10 0.07 1.2648e−10 0.07 1.2703e−10 0.07 1.2703e−10 0.07

For Problem 1, the convergence history of the source iteration scheme is reported in Table 1. From Table 1, we can see
that: (1) the assumption (33) holds with a constant Λ ≈ 0.14. (2) For the mesh on each level j, the source iterations have
almost a same convergence rate. This implies that the convergence factor of the source iteration is not sensitive to hj.

The results of the source iteration scheme for Problem 2 are reported in Table 2, which also confirm the validity of
assumption (33).

The convergence history of the Gauss–Seidel iteration for solving Problems 1 and 2 is reported in Tables 3 and 4, which
indicate that the assumption (33) also holds withΛ ≈ 0.09 andΛ ≈ 0.06 for these two examples respectively. Besides, we
can see that for both problems the Gauss–Seidel iteration scheme offers a faster convergence rate than the source iteration
scheme.

5.2. Spatial cascadic multigrid method

Themain purpose of this subsection is to illustrate the accuracy of the proposed spatial cascadicmultigridmethod for the
RTE. Since for both these examples, the Gauss–Seidel iteration scheme converges faster than the source iteration scheme,
we only consider the spatial cascadic multigrid method with the Gauss–Seidel iteration smoother.

First, we consider Problems 1 and 2 with σt = 1.0 and σs = 0.4, and use the spatial cascadic multigrid method with the
Gauss–Seidel smoother to solve these two problems on Thj , j = 1, 2, 3. The coarsest grid is Th0 . The iteration number on each
level j is one, i.e.,Mj = 1 trivially. So the assumption (34) holds. By Theorem 4.3, the spatial cascadic multigrid method with
the Gauss–Seidel iteration smoother is optimal in both accuracy and computational complexity. The numerical results are
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Table 4
Error of GS scheme for Problem 2.

Iter. no. ∥u∗

h0
− uh0∥X Λ ∥u∗

h1
− uh1∥X Λ ∥u∗

h2
− uh2∥X Λ ∥u∗

h3
− uh3∥X Λ

1 2.1248e−01 – 2.1250e−01 – 2.1250e−01 – 2.1251e−01 –
2 1.3514e−02 0.06 1.3515e−02 0.06 1.3516e−02 0.06 1.3516e−02 0.06
3 6.8299e−04 0.05 6.8303e−04 0.05 6.8304e−04 0.05 6.8304e−04 0.05
4 3.1428e−05 0.05 3.1430e−05 0.05 3.1430e−05 0.05 3.1430e−05 0.05
5 1.4020e−06 0.04 1.4020e−06 0.04 1.4021e−06 0.04 1.4021e−06 0.04
6 6.2233e−08 0.04 6.2237e−08 0.04 6.2237e−08 0.04 6.2237e−08 0.04
7 2.7679e−09 0.04 2.7680e−09 0.04 2.7683e−09 0.04 2.7683e−09 0.04
8 1.2309e−10 0.04 1.2310e−10 0.04 1.2333e−10 0.04 1.2333e−10 0.04

Fig. 3. Loglog convergence plot of ∥u− uh∥X for Problem 1 with η = 0.2. GS (blue) denotes the results by use of the Gauss–Seidel iteration without CMG.
SCMG (red) denotes the results by use of the SCMG. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Loglog convergence plot of ∥u − uh∥X for Problem 2. GS (blue) denotes the results by use of the Gauss–Seidel iteration without CMG. SCMG (red)
denotes the results by use of the SCMG. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

shown in Figs. 3 and 4. From these figures, we observe that SCMG with one smoothing still keeps the optimal convergence
rate in norm ∥ · ∥X , which is the same as the convergence rate of the approximation solutions obtained by the Gauss–Seidel
iteration.

Next, we consider the spatial cascadic multigrid method for Problem 1 with different parameters. From Tables 5–12, we
can conclude that SCMG is optimal in accuracy.
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Table 5
Convergence of SCMG for Problem1 (σt = 2.0,σs = 1.0,
η = 0.3, hθ =

π
10 ).

Mj ∥u∗

h1
− u∥X ∥u∗

h2
− u∥X ∥u∗

h3
− u∥X

1 1.6653e−03 4.1755e−04 1.0452e−04
2 1.6506e−03 4.1546e−04 1.0429e−04
3 1.6505e−03 4.1545e−04 1.0429e−04

Table 6
Convergence of SCMG for Problem1 (σt = 2.0,σs = 1.0,
η = 0.6, hθ =

π
25 ).

Mj ∥u∗

h1
− u∥X ∥u∗

h2
− u∥X ∥u∗

h3
− u∥X

1 1.6701e−03 4.1762e−04 1.0449e−04
2 1.6515e−03 4.1523e−04 1.0424e−04
3 1.6513e−03 4.1522e−04 1.0424e−04

Table 7
Convergence of SCMG for Problem1 (σs = 2.0,σs = 1.0,
η = 0.9, hθ =

π
50 ).

Mj ∥u∗

h1
− u∥X ∥u∗

h2
− u∥X ∥u∗

h3
− u∥X

1 1.6967e−03 4.2338e−04 1.0856e−04
2 1.6597e−03 4.1714e−04 1.0786e−04
3 1.6589e−03 4.1704e−04 1.0785e−04

Table 8
Convergence of SCMG for Problem1 (σt = 2.0,σs = 1.0,
η = 0.99, hθ =

π
500 ).

Mj ∥u∗

h1
− u∥X ∥u∗

h2
− u∥X ∥u∗

h3
− u∥X

1 1.7206e−03 4.3355e−04 1.1586e−04
2 1.6682e−03 4.2030e−04 1.1365e−04
3 1.6657e−03 4.1960e−04 1.1360e−04

Table 9
Convergence of SCMG for Problem 1 (σt = 1.0, σs =

0.01, η = 0.3, hθ =
π
10 ).

Mj ∥u∗

h1
− u∥X ∥u∗

h2
− u∥X ∥u∗

h3
− u∥X

1 1.6930e−03 4.2219e−04 1.0516e−04
2 1.6736e−03 4.1924e−04 1.0482e−04
3 1.6734e−03 4.1921e−04 1.0482e−04

Table 10
Convergence of SCMG for Problem 1 (σt = 1.0, σs =

0.01, η = 0.6, hθ =
π
25 ).

Mj ∥u∗

h1
− u∥X ∥u∗

h2
− u∥X ∥u∗

h3
− u∥X

1 1.6994e−03 4.2214e−04 1.0508e−04
2 1.6744e−03 4.1886e−04 1.0474e−04
3 1.6742e−03 4.1884e−04 1.0474e−04

Table 11
Convergence of SCMG for Problem 1 (σt = 1.0, σs =

0.01, η = 0.9, hθ =
π
50 ).

Mj ∥u∗

h1
− u∥X ∥u∗

h2
− u∥X ∥u∗

h3
− u∥X

1 1.7389e−03 4.3219e−04 1.1300e−04
2 1.6852e−03 4.2187e−04 1.1155e−04
3 1.6837e−03 4.2166e−04 1.1151e−04
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Table 12
Convergence of SCMG for Problem 1 (σt = 1.0, σs =

0.01, η = 0.99, hθ =
π
500 ).

Mj ∥u∗

h1
− u∥X ∥u∗

h2
− u∥X ∥u∗

h3
− u∥X

1 1.7831e−03 4.5535e−04 1.2756e−04
2 1.7002e−03 4.2739e−04 1.2205e−04
3 1.6947e−03 4.2631e−04 1.2191e−04

Table 13
Convergence and computational time of FCMG for Problem 1 (σt = 1.0, σs = 0.01,
η = 0.9, hθ =

π
40 ,

π
80 ,

π
160 , at level 1, 2, 3, respectively).

Mj ∥u∗

h1
− u∥X t ∥u∗

h2
− u∥X t ∥u∗

h3
− u∥X t

1 1.6678e−03 44.2 4.1797e−04 152.8 1.0461e−04 769.1
2 1.6675e−03 64.6 4.1793e−04 278.8 1.0460e−04 1480.1
3 1.6675e−03 87.3 4.1793e−04 409.7 1.0460e−04 2251.0

Table 14
Convergence and computational time of SCMG for Problem 1 (σt = 1.0, σs = 0.01,
η = 0.9, hθ =

π
160 ,

π
160 ,

π
160 , at level 1, 2, 3, respectively).

Mj ∥u∗

h1
− u∥X t ∥u∗

h2
− u∥X t ∥u∗

h3
− u∥X t

1 1.6675e−03 258.3 4.1796e−04 486.0 1.0461e−04 1113.7
2 1.6672e−03 338.4 4.1792e−04 773.8 1.0460e−04 1972.2
3 1.6672e−03 432.5 4.1792e−04 1089.7 1.0460e−04 2934.4

Table 15
Convergence and computational time of FCMG for Problem 1 (σt = 1.0, σs = 0.01,
η = 0.95, hθ =

π
80 ,

π
160 ,

π
320 , at level 1, 2, 3, respectively).

Mj ∥u∗

h1
− u∥X t ∥u∗

h2
− u∥X t ∥u∗

h3
− u∥X t

1 1.6676e−03 91.5 4.1798e−04 327.0 1.0461e−04 1611.7
2 1.6673e−03 138.2 4.1793e−04 596.7 1.0460e−04 3098.2
3 1.6673e−03 163.5 4.1793e−04 767.6 1.0460e−04 4308.3

Table 16
Convergence and computational time of SCMG for Problem 1 (σt = 1.0, σs = 0.01,
η = 0.95, hθ =

π
320 ,

π
320 ,

π
320 , at level 1, 2, 3, respectively).

Mj ∥u∗

h1
− u∥X t ∥u∗

h2
− u∥X t ∥u∗

h3
− u∥X t

1 1.6676e−03 465.1 4.1797e−04 876.6 1.0461e−04 2001.6
2 1.6673e−03 633.2 4.1792e−04 1448.7 1.0460e−04 3675.1
3 1.6673e−03 800.9 4.1792e−04 2022.4 1.0460e−04 5349.8

5.3. Full cascadic multigrid method

In this section, we employ the full cascadic multigrid method described in Section 4.4 to solve Problems 1 and 2. We take
σt = 1.0, σs = 0.01 for Problem 1, and σt = 1.0, σs = 0.4 for Problem 2. The Gauss–Seidel iteration smoother is employed
in all the following examples. The numerical results are reported in Tables 13–18. For comparison, the results by use of the
SCMG and the conventional Gauss–Seidel iteration scheme with the finest mesh are also included. The computational time
(t) has unit second.

From Tables 13–18, we can conclude that the full cascadic multigrid method with different iteration numbers preserves
the same optimal convergence rate in ∥·∥X as in the spatial cascadicmultigridmethod. Another conclusion is that, generally,
one, or at most two iterations at each level provides sufficient accuracy. It can also be observed that the result in Lemma 4.1
holds not only for SCMG but also for FCMG, i.e., the computational costs for SCMG and FCMG are approximately proportional
to the number of unknownswith respect to both angular and spatial meshes. Thus these twomultigridmethods are optimal
for these examples.

The comparison of the errors and computational times generated by use of FCMG, SCMG, and the conventional
Gauss–Seidel iteration schemeare reported in Tables 19–21. These results indicate that FCMG can accelerate the computation
significantly. Furthermore, the proposed cascadic multigrid methods are effective for highly forward-peaked cases.
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Table 17
Convergence and computational time of FCMG for Problem 2 (σt = 1.0, σs = 0.4,
hθ =

π
10 ,

π
20 ,

π
40 , at level 1, 2, 3, respectively).

Mj ∥u∗

h1
− u∥X t ∥u∗

h2
− u∥X t ∥u∗

h3
− u∥X t

1 2.3806e−04 16.6 5.6945e−05 46.7 1.3579e−05 212.9
2 1.6767e−05 22.9 4.1551e−06 82.8 1.0375e−06 411.3
3 1.7820e−05 29.8 4.4605e−06 124.8 1.1164e−06 667.2

Table 18
Convergence and computational time of SCMG for Problem 2 (σt = 1.0, σs = 0.4,
hθ =

π
40 ,

π
40 ,

π
40 , at level 1, 2, 3, respectively).

Mj ∥u∗

h1
− u∥X t ∥u∗

h2
− u∥X t ∥u∗

h3
− u∥X t

1 2.0392e−05 101.7 5.2337e−06 163.7 1.3143e−06 322.4
2 1.8136e−05 136.3 4.5365e−06 258.9 1.1347e−06 595.2
3 1.8030e−05 156.1 4.5099e−06 346.9 1.1281e−06 865.5

Table 19
Comparison of the computational time for the FCMG (Mj = 1), SCMG
(Mj = 1), and the Gauss–Seidel (GS) iteration without CMG for
Problem 1 (σt = 1.0, σs = 0.01, η = 0.9, hθ =

π
160 ).

Method ∥u∗

h3
− u∥X t

FCMG 1.0461e−04 769.1
SCMG 1.0461e−04 1113.7
GS 1.0460e−04 2455.4

Table 20
Comparison of the computational time for the FCMG (Mj = 5 and
55 iterations at the coarsest grid to reach the accuracy set by the
tolerance 10−4), SCMG (Mj = 5 and 55 iterations at the coarsest grid
to reach the accuracy set by the tolerance 10−4), and the GS scheme
(76 iterations) without CMG for Problem 1. (σt = 100.0, σs = 90.0,
η = 0.9, hθ =

π
64 ,

π
128 ,

π
256 for FCMG, and hθ =

π
256 for SCMG and GS).

Method ∥u∗

h2
− u∥X t

FCMG 3.8320e−04 3905.3
SCMG 3.8377e−04 7370.7
GS 3.7906e−04 26361.6

Table 21
Comparison of the computational time for the FCMG (Mj = 3), SCMG
(Mj = 3), and the Gauss–Seidel (GS) iteration without CMG for
Problem 2 (σt = 1.0, σs = 0.4, hθ =

π
40 ).

Method ∥u∗

h3
− u∥X t

FCMG 1.1164e−06 667.2
SCMG 1.1281e−06 865.5
GS 1.1277e−06 1173.8

5.4. Comparison with the conventional MG methods

In this subsection, we present some numerical results about the comparison between the CMG and conventional MG
methods. Here the conventional MGmethods are referred to the MG1, MG2, MG3 andMG4methods proposed in [41]. Note
that one needs to solve the elemental subproblem (22) on each element in one smoothing step for the CMG method and
needs to solve the elemental subproblem (27) of [41] for the conventional MGmethods. Since both elemental subproblems
are 3 × 3 linear systems, the computational costs for solving these elemental subproblems are nearly identical. Therefore,
we measure the computational cost in terms of the number of such linear systems involved for comparison.

We consider the settings of Problem 1, and take σt = 100, σs = 10, and η = 0.9. The spatial meshes have 328, 1312,
5248 triangular elements at level 1, 2, and 3, respectively. The angular partitions have 128, 256, and 512 nodes at level 1, 2,
and 3, respectively. We use the term level (i, j) to represent the combination of angular level i and spatial level j.

To solve this problem, the CMG method takes 55 iterations at level (1, 1), 5 iterations at level (2, 2), and 5 iterations at
level (3, 3). Totally, the number of 3-by-3 linear systems involved is

328 × 128 × 55 + 256 × 1312 × 5 + 512 × 5248 × 5 = 17 423 360,



204 Q. Sheng et al. / Journal of Computational and Applied Mathematics 303 (2016) 189–205

Table 22
Comparison between the CMGand conventionalMGmethods.

Method ∥u∗

h − u∥X Computational cost

CMG 3.5e−3 17423360
MG1 7.1e−3 56006656
MG2 7.1e−3 55838720
MG3 7.1e−3 39380992
MG4 7.0e−3 41984000

which represents the computational cost for the CMG method. As for the conventional MG methods, we use the codes by
the authors of the Ref. [41], available from the public domain (https://sites.google.com/site/rtefastsolver/). TheMG4method
takes 16 iterations at level (1, 1), 14 iterations at level (1, 2), 12 iterations at level (2, 2), 10 iterations at level (2, 3), and 8
iterations at level (3, 3). Hence the computational cost of the MG4 method is

328 × 128 × 16 + 128 × 1312 × 14 + 256 × 1312 × 12 + 256 × 5248 × 10 + 512 × 5248 × 8 = 41984000.

The computational costs of other conventional MGmethods are calculated in the same way. All these results, together with
the errors in ∥ · ∥X norm, are reported in Table 22.

From this table, we observe that the computational cost of the CMG method is less than the conventional MG methods.
We remark that the discrete-ordinate discontinuous-streamline diffusion scheme is employed in our algorithm while the
discrete-ordinate discontinuous Galerkinmethod is employed in the conventionalMGmethods. This difference is the reason
why the CMG method is more accurate than the conventional MG method for this example.

6. Conclusion

In this paper,we develop two cascadicmultigridmethods for solving the RTEwhich use an iteration scheme satisfying the
assumption (33) as the smoother, and take the iteration number satisfying the condition (34) on each level. Our numerical
experiments show that both the proposed CMG methods are optimal in accuracy and computational complexity, and the
ASCMGmethod achieves a faster convergence in comparison with the SCMGmethod since the cascadic multigrid algorithm
is applied to both spatial and angular variables in the ASCMG method.

While the investigations of basic aspects of the cascadic multigridmethod in this paper indicate themethod is promising
in solving the RTE, there is much to be done in the future, including estimating the convergence factorΛ, selecting the best
smoother, designing a more efficient stopping condition other than (34), and constructing the interpolation operator for
different angular partitions.
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