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The radiative transfer equation (RTE) arises in a wide variety of applications. In
the literature, there has been much study of the RTE. The main purpose of the paper
is to present a unified framework to develop a posteriori estimates for numerical
solution errors and modeling errors, in an energy norm natural to the RTE problem.
The derivation of the error estimates is through duality arguments. A posteriori
error estimates in an L2 norm are also presented, extending existing results
available in the literature. The error estimates are completely computable in the
sense that no unspecified constants are involved. A posteriori error estimates
for numerical solutions are the basis for developing efficient adaptive solution
algorithms, whereas a posteriori estimates for modeling errors are useful to
analyze the effects of uncertainties in problem data on the solution.

Keywords: radiative transfer equation; weak formulation; variational principle;
dual formulation; a posteriori error estimation; parity equation

AMS Subject Classifications: 65N15; 49S05

1. Introduction

The radiative transfer equation (RTE) arises in a wide variety of applications, such as
astrophysics,[1] atmosphere and ocean,[2,3] heat transfer,[4] neutron transport,[5,6] optical
molecular imaging,[7] and so on. Substantial research effort on the RTE began in the middle
of last century. Today, research on the RTE remains to be a very active and important area,
see e.g. the collections.[8,9] Recently, there is much interest in analysis and numerical
simulation of the RTE and its related inverse problems, motivated by applications in
biomedical optics.[10–16]

The model boundary value RTE problem considered in this paper is given by

ω·∇u + μt u − Su = f in X × �, (1.1)

u = uin on �−. (1.2)

Throughout the paper, we denote by X a C1 domain in R
3, and by � the unit sphere in R

3.
A generic point in X is denoted by x, whereas a generic point in � is denoted by ω. The
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2518 W. Han

unknown function u(x,ω) is the angular flux at the point x in the direction ω. The RTE
(1.1) contains two medium parameters, the total cross section μt (x) and the differential
scattering cross section μs(x,ω·ω̂), which is the kernel function of the integral operator S:

Su(x,ω) =
∫

�

μs(x,ω·ω̂) u(x, ω̂) dω̂. (1.3)

The function f (x,ω) represents a source density. We use � = ∂ X ×� for the boundary of
X × �, and �− and �+ for the incoming and outgoing parts of the boundary:

�− := {(x,ω) ∈ � | ω·ν(x) < 0} ,

�+ := {(x,ω) ∈ � | ω·ν(x) > 0} ,

where ν(x) is the unit outward normal vector at x ∈ ∂ X . The relation (1.2) is an inflow
boundary condition with a given inflow function uin.

The RTE has been studied extensively, theoretically, and numerically. An early system-
atic mathematical study of the RTE problem is [17], where parity equation formulations
were also introduced. In [5], solution existence for the boundary value problem (1.1)–(1.2)
is shown by transforming it into an equivalent integral equation. In [18], a detailed treatment
of the RTE through the semi-group theory is given. Variational formulations of the RTE are
studied in detail in [19]. In [20], mixed variational formulations with different smoothness
requirements on the even-parity solution component and odd-parity solution component are
introduced and analyzed. The Ref. [21], written from an engineering perspective, contains
a wealth of materials on optimal principles, complementary variational formulations, and
numerical simulations of the RTE problems. One purpose of the present paper is to revisit
some variational principles, dual formulations, and parity equations for the RTE through a
concise approach, and to provide a solid mathematical foundation for all the relevant results.
Precise function space settings will be introduced in the studies. The dual formulations will
be derived based on the general framework presented in [22]. Parity formulations will be
deduced directly from the weak formulation of the RTE problem. This approach eliminates
the need to first figure out appropriate form of boundary conditions for the second-order
form of the RTE. We will derive a posteriori error estimates for the effects of numerical
discretizations and of uncertainties in the problem data. The error estimates will be given in
a natural energy norm of the function space, where the solution is sought, as well as in the
L2 norm. For the former type of error estimates, the duality theory in convex analysis will
be applied. The latter type of error estimates extend some existing results. A posteriori error
estimates for numerical solutions are the basis for developing efficient adaptive solution
algorithms, whereas a posteriori estimates for modeling errors are useful to analyze the
effects of uncertainties in problem data on the solution.[23]

In the study of the boundary value problem of the RTE, we need some function spaces.
Let

Q := L2(X × �) (1.4)

be the Hilbert space of measurable functions on X × � with the inner product (u, v)Q :=∫
X×�

u v and norm ‖v‖Q := (v, v)
1/2
Q . Here and below, to simplify the notation for an

integral, we usually do not explicitly display the infinitesimal volume or surface element
which can be easily identified by the domain where the integration is taken. Denote by
L2(�) the Hilbert space of functions v on � with the inner product (u, v)� := ∫

�
|ω·ν| u v
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Applicable Analysis 2519

and norm ‖v‖� := (v, v)
1/2
� . Similarly, we define the spaces L2(�±) with the inner products

(u, v)�± := ∫
�± |ω·ν| u v and norms ‖v‖�± := (v, v)

1/2
�± . We will need the Hilbert space

V :=
{
v ∈ L2(X × �) | ω·∇v ∈ L2(X × �), v|� ∈ L2(�)

}
. (1.5)

This space will be endowed with an inner product natural to the boundary value problem
(1.1)–(1.2) and the corresponding norm may be viewed as an energy norm; cf. Subsection
2.1.

We make the following assumptions on the data

μt ∈ L∞(X) and μt ≥ μ0 > 0 a.e. in X, (1.6)

μs ∈ L∞(X × (−1, 1)) and μs ≥ 0 a.e. in X × (−1, 1), (1.7)

κ := ess sup
x∈X

1

μt (x)

∫
�

μs(x,ω·ω̂) dω̂ < 1, (1.8)

f ∈ L2(X × �), uin ∈ L2(�−), (1.9)

where μ0 is a constant. For the assumption (1.8), note that∫
�

μs(x,ω·ω̂) dω̂ = 2 π

∫ 1

−1
μs(x, t) dt

is independent of ω. It is well known [19] that the boundary value problem (1.1)–(1.2) has
a unique solution in the space V .

The rest of the paper is organized as follows. In Section 2, we present a weak formulation
and a variational principle of the boundary value problem (1.1)–(1.2), and show that the
dual formulation of the variational formulation is itself. In Section 3, we provide two kinds
of a posteriori error bounds. In the first kind, the error is measured in the energy norm of
the space V , and the error bound is derived through an application of the duality theory in
convex analysis. In the second kind, the error is measured in L2 norms; the errors bounds
are derived directly and they extend some existing a posteriori error estimates found in the
literature. In Section 4, we consider the even-parity and odd-parity problems, which can
be constructed from the weak formulation of the boundary value problem (1.1)–(1.2) in a
straightforward manner. In Section 5, we show that the dual of the even-parity problem is
the odd-parity problem, and the dual of the odd-parity problem is the even-parity problem.
In Section 6, we apply the duality theory in convex analysis to derive a posteriori error
estimates for numerical solution errors and modeling errors in even-parity and odd-parity
problems. The paper ends with some concluding remarks in Section 7.

2. A variational principle and its dual

In this section, we consider a weak formulation and the corresponding variational principle
of the boundary value problem (1.1)–(1.2). Then, we show that the dual formulation of the
variational formulation is itself.

2.1. A variational principle

The RTE (1.1) is a first-order equation and thus itself is not the Euler equation of a
variational principle. To introduce a variational formulation for the problem (1.1)–(1.2), we
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2520 W. Han

first formally convert (1.1) to a second-order equation. We define an operator � : Q → Q
by the formula

�v := μtv − Sv, v ∈ Q. (2.1)

Lemma 2.1 Assume (1.6)–(1.8). Then for any r ∈ R, the power �r : Q → Q is well
defined, and is bounded, self-adjoint, and Q-elliptic. Moreover,

‖�−1‖ ≤ 1

(1 − κ) μ0
, ‖�−1/2‖ ≤ 1

[(1 − κ) μ0]1/2
. (2.2)

Proof First, we note that obviously, � ∈ L(Q) and is self-adjoint. Let us prove the
Q-ellipticity of �. Consider the quantity (�v, v)Q = (μtv, v)Q − (Su, v)Q . Let us bound
the term

(Sv, v)Q =
∫

X
dx

∫
�×�

μs(x,ω·ω̂) v(x, ω̂) v(x,ω) dω̂ dω.

Use the Cauchy–Schwarz inequality repeatedly,∣∣∣∣
∫

�×�

μs(x,ω·ω̂) v(x, ω̂) v(x,ω) dω̂ dω

∣∣∣∣ ≤
(∫

�

μs(x,ω·ω̂) dω̂

)( ∫
�

v(x,ω)2dω

)
.

Hence, (Sv, v)Q ≤ κ(μtv, v)Q , and

(�v, v)Q ≥ (1 − κ) (μtv, v)Q ≥ (1 − κ) μ0(v, v)Q . (2.3)

Thus, � is Q-elliptic.
Since � : Q → Q is bounded, self-adjoint, and Q-elliptic, for any r ∈ R, �r : Q → Q

is well-defined, and is bounded, self-adjoint, and Q-elliptic.
The bounds (2.2) follow from (2.3). �

Thanks to Lemma 2.1, we can introduce the following inner product and norm in the
space V :

(u, v)V :=
(
�−1(ω·∇u),ω·∇v

)
Q

+ (�u, v)Q + (u, v)�, (2.4)

‖v‖V :=
[∥∥∥�−1/2(ω·∇v)

∥∥∥2

Q
+

∥∥∥�1/2(v)

∥∥∥2

Q
+ ‖v‖2

�

]1/2

. (2.5)

The norm ‖ · ‖V is equivalent to the canonical norm ‖ · ‖V over V . As we will see later,
the inner product (2.4) is natural in the study of the RTE problem (1.1)–(1.2) and the norm
(2.5) may be viewed as an energy norm.

From Equation (1.1), we have

u = �−1( f − ω·∇u). (2.6)

Using this expression to rewrite the term ω·∇u in (1.1), we can formally write the RTE as
a second-order equation

ω·∇�−1( f − ω·∇u) + �u = f in X × �. (2.7)
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Applicable Analysis 2521

To determine appropriate forms of boundary conditions for this second-order equation,
we multiply Equation (2.7) by an arbitrary smooth function v, integrate over X × �, and
perform an integration by parts,∫

�

ω·ν �−1( f − ω·∇u) v +
∫

X×�

[
−�−1( f − ω·∇u)ω·∇v + �(u) v

]
=

∫
X×�

f v.

The boundary integral term is split into sub-integrals over �+ and �−; over �+, we use the
relation (2.6), whereas over �−, we use the relation (2.6) and the boundary condition (1.2):∫

�

ω·ν �−1( f − ω·∇u) v =
∫

�+
|ω·ν| u v +

∫
�−

|ω·ν| (u − 2 uin) v.

Summarizing, we have derived the following weak formulation for the boundary value
problem (1.1)–(1.2):

u ∈ V,

∫
X×�

[
�−1(ω·∇u)ω·∇v + �(u) v

]
+

∫
�

|ω·ν| u v

=
∫

X×�

[
f v + �−1( f )ω·∇v

]
+ 2

∫
�−

|ω·ν| uinv ∀ v ∈ V . (2.8)

Formally, the classical formulation of the problem (2.8) is

−ω·∇�−1(ω·∇u) + �u = f − ω·∇�−1( f ) in X × �, (2.9)

u + �−1(ω·∇u) = �−1( f ) on �+, (2.10)

u − �−1(ω·∇u) = 2 uin − �−1( f ) on �−. (2.11)

Applying the Lax–Milgram Lemma ([24, Theorem 8.3.4]), we see that the problem (2.8)
has a unique solution. Moreover, the variational principle for (2.8) is

inf
v∈V

E(v), (2.12)

where

E(v) :=
∫

X×�

[
1

2
�−1(ω·∇v)ω·∇v + 1

2
�(v) v − f v − �−1( f )ω·∇v

]

+
∫

�

1

2
|ω·ν| v2 − 2

∫
�−

|ω·ν| uinv.

2.2. Dual formulation

We next derive a dual formulation for the problem (2.12), following the framework presented
in [22]. Let U and P be two normed spaces, U∗ and P∗ denote their dual spaces. The duality
pairings in both U , U∗ and P , P∗ will be denoted by 〈·, ·〉. Let � ∈ L(U, P). Its transpose
�∗ ∈ L(P∗, U∗) is defined through the relation

〈�∗q∗, v〉 = 〈q∗,�v〉 ∀ v ∈ U, q∗ ∈ P∗.

Let J be a functional mapping U × P into R. We consider the minimization problem (the
primal problem)

inf
v∈U

J (v,�v). (2.13)
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2522 W. Han

Its dual problem is defined as

sup
q∗∈P∗

[ −J ∗(�∗q∗,−q∗)
]
, (2.14)

where J ∗ : U∗ × P∗ → R is the conjugate function of J :

J ∗(v∗, q∗) = sup
v∈U
q∈P

[ 〈v∗, v〉 + 〈q∗, q〉 − J (v, q)
]
, v∗ ∈ U∗, q∗ ∈ P∗. (2.15)

For the problem (2.12), we choose the space U to be V defined in (1.5) and P to be Q
by (1.4). We define the operator � by

�v(x,ω) := ω·∇v(x,ω). (2.16)

Obviously, � ∈ L(V, Q). For a function v ∈ V , we introduce a new variable q for
the function ω·∇v(x,ω). Based on the variational formulation (2.12), we introduce the
functional

J (v, q) :=
∫

X×�

[
1

2
�−1(q) q + 1

2
�(v) v − f v − �−1( f ) q

]

+
∫

�

1

2
|ω·ν| v2 − 2

∫
�−

|ω·ν| uinv. (2.17)

We follow the definition (2.15) to compute

J ∗(�∗q∗,−q∗) = sup
v∈V
q∈Q

[〈�∗q∗, v〉 − 〈q∗, q〉 − J (v, q)
]
.

For q∗ ∈ V , we can find that

J ∗(�∗q∗,−q∗) = 1

2

(
ω·∇q∗− f, �−1(ω·∇q∗ − f )

)
Q

+1

2

(
�q∗ − f, �−1(�q∗− f )

)
Q

+ 1

2
‖q∗‖2

�+ + 1

2
‖q∗ − 2 uin‖2

�− . (2.18)

Consider the dual problem (2.14). Since C∞(X × �) is dense in Q, V is also dense in
Q. Thus,

sup
q∗∈Q

[−J ∗(�∗q∗,−q∗)
] = sup

q∗∈V

[−J ∗(�∗q∗,−q∗)
]
.

We have, at a maximizer q∗ ∈ V , that(
�−1(ω·∇q∗ − f ),ω·∇δq∗)

Q
+ (

�q∗ − f, δq∗)
Q

+ (
q∗, δq∗)

�+ + (
q∗ − 2 uin, δq∗)

�− = 0 ∀ δq∗ ∈ V . (2.19)

Observe that problem (2.19) coincides with the original problem (2.8), i.e. the dual of the
problem (2.8) is itself.

3. A posteriori error estimation

In this section, we provide a posteriori error estimates for approximate solutions of the RTE
in the energy norm of the space V and in the L2 norm of Q.
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Applicable Analysis 2523

3.1. A posteriori error estimates in energy norm

We first recall a basic result in the duality theory; detailed discussion and proofs of these
results can be found in [22]. In [23], the duality theory is employed extensively to derive
a posteriori estimates for errors of numerical solutions and for errors in mathematical
modeling. We use the setting of Subsection 2.2. For the relation between problems (2.13)
and (2.14), we have the following duality theorem.

Theorem 3.1 Assume the following conditions:

(1) U is a reflexive Banach space and P is a normed space; � ∈ L(U, P).
(2) J : U × P → R is proper, lower semi-continuous, and convex.
(3) There exists u0 ∈ U such that J (u0,�u0) < ∞ and the mapping q → J (u0, q)

from P to R is continuous at �u0.
(4) J (v,�v) → +∞ as ‖v‖ → ∞, v ∈ U.

Then the problem (2.13) has a solution u ∈ U, the problem (2.14) has a solution p∗ ∈ P∗,
and

J (u,�u) = −J ∗(�∗ p∗,−p∗). (3.1)

Furthermore, if J (v,�v) is strictly convex in its effective domain, then a solution u of the
problem (2.13) is unique.

We now apply Theorem 3.1 to derive a posteriori error estimates for the RTE problem
(1.1)–(1.2). Let w be any given function from V . Consider the quantity

D(u, w) := J (w,�w) − J (u,�u). (3.2)

Using (2.8) with v = w − u, we can derive the following formula

D(u, w) = 1

2
‖w − u‖2

V (3.3)

where ‖ · ‖V is the energy norm over the space V defined in (2.5).
Applying Theorem 3.1, we have

D(u, w) ≤ J (w,�w) + J ∗(�∗q∗,−q∗) ∀ q∗ ∈ V . (3.4)

Through algebraic manipulations, we find that

J (w,�w) + J ∗(�∗q∗,−q∗) = 1

2

∫
X×�

�−1(ω·∇w + �w − f ) (ω·∇w + �w − f )

+ 1

2

∫
X×�

�−1(ω·∇q∗ + �q∗ − f
) (

ω·∇q∗ + �q∗ − f
)

+
∫

�−
|ω·ν|

[
(w − uin)

2 + (q∗ − uin)
2
]
.
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2524 W. Han

Therefore, we have the following a posteriori error estimate for any q∗ ∈ V :

‖w − u‖2
V ≤

∥∥∥�−1/2(ω·∇w + �w − f )

∥∥∥2

Q
+ 2 ‖w − uin‖2

�−

+
∥∥∥�−1/2(ω·∇q∗ + �q∗ − f

)∥∥∥2

Q
+ 2 ‖q∗ − uin‖2

�− . (3.5)

The function q∗ should be chosen as closely as possible to the solution of the dual
problem (2.14), equivalently, that of the original problem (2.8) (cf. (2.19)). When w is the
only approximation of u available, it is natural to choose q∗ = w. With q∗ = w in (3.5),
we have

‖w − u‖2
V ≤ 2

∥∥∥�−1/2(ω·∇w + �w − f )

∥∥∥2

Q
+ 4 ‖w − uin‖2

�− . (3.6)

In other words, an a posteriori error bound for ‖u − w‖V is given in terms of the equation
residual and boundary condition residual of w.

If w ∈ V is an approximation of the solution u, then (3.6) provides an a posteriori error
bound for the approximate solution. The approximate solution can be computed from a
numerical method. If a conforming finite element method is applied to solve (2.8), then the
finite element solution uh(x,ω) can be used as the approximate solution of u. An example
of a conforming finite element method is the projection of the problem (2.8) onto a con-
forming finite element space V h , consisting of functions that are piecewise constant in the
variable ω and are continuous piecewise linear in the variable x, corresponding to a finite
element partition of the domain X × �. The a posteriori error bound (3.6) applies with
w = uh .

The angular variable ω is usually discretized through a discrete-ordinate procedure:
the unit sphere � is split into a finite number of connected sub-regions: � = ∪L

l=1�l , a
representative value ωl is selected from �l , and the integral over � in the definition of
the operator S is approximated by a numerical quadrature with {ωl}L

l=1 as the nodes. The
RTE problem (1.1)–(1.2) is then reduced to a system of first-order equations in x along the
directions {ωl}L

l=1. Denote by uh
l (x) a finite element approximation of the solution u(x,ωl)

along the direction ωl . If the finite element space used to compute {uh
l (x)}L

l=1 consists of
continuous piecewise polynomials, then

uh(x,ω) =
L∑

l=1

χl(ω) uh
l (x) (3.7)

belongs to V and can be used as an approximate solution for which, the a posteriori error
bound (3.6) applies. Here, χl(ω) is the characteristic function of the sub-region �l , i.e. the
value of the function is 1 or 0, depending on whether the variable ω is in or outside �l .
If a discontinuous Galerkin finite element method is used to compute uh

l (x), as is the case
discussed in [25], then the function uh defined by (3.7) does not belong to V and (3.6) does
not apply directly. In this case, we define a new approximation

ūh(x,ω) =
L∑

l=1

χl(ω) ūh
l (x), (3.8)

where ūh
l (x) is constructed from uh

l (x) through an averaging procedure so as to ensure
ūh

l (x) is continuous on X . For simplicity in exposition, suppose {uh
l (x)}L

l=1 are linear
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Applicable Analysis 2525

discontinuous Galerkin finite element solutions. Then, at each finite element node xi , we
compute a weighted average of the values of uh

l (xi ) from all elements sharing the node
xi , and use the averaging values at all nodes to construct a piecewise linear interpolant
ūh

l (x). The functions {ūh
l (x)}L

l=1 are continuous on X . The approximation ūh defined in
(3.8) belongs to V , and hence the a posteriori error bound (3.6) applies on ‖ūh − u‖2

V .

Remark 3.2 The inequality (3.6) provides a robust upper bound for the error. A salient
feature of the error bound is completely computable. We comment that the error bound
is also efficient. To see this, we note that the error function e := w − u is a solution of
following problem

ω·∇e + μt e − Se = ω·∇w + �w − f in X × �,

e = w − uin on �−.

By [19, Theorem 3.3], there exists a constant c1 ∈ (0,∞) such that

‖ω·∇e‖2
Q + ‖e‖2

Q ≥ c1

[
‖ω·∇w + �w − f ‖2

Q + ‖w − uin‖2
�−,∗

]
,

where ‖ · ‖�−,∗ is an L2-like norm on �−, which is weaker than the norm ‖ · ‖�− . Using the
properties of the operator � from Lemma 2.1, we deduce from the above inequality that
there exists a constant c > 0 such that

‖w − u‖2
V ≥ c

[∥∥∥�−1/2(ω·∇w + �w − f )

∥∥∥2

Q
+ ‖w − uin‖2

�−

]
.

This shows the efficiency of the error estimate (3.6). Note that, however, it is not easy to
provide a reasonably good, explicit numerical value for the constant c.

Next, we derive an a posteriori bound for the error due to noise in data. Let uδ ∈ V be
the solution of a perturbed problem:

ω·∇uδ + μδ
t uδ − Sδuδ = f δ in X × �, (3.9)

uδ = uδ
in on �−, (3.10)

where

Sδu(x,ω) =
∫

�

μδ
s(x,ω·ω̂) u(x, ω̂) dω̂. (3.11)

Assume μδ
t and μδ

s satisfy (1.6) and (1.8), f δ and uδ
in satisfy (1.9). We apply the bound

(3.6) with w = uδ . Notice that
∥∥∥�−1/2(ω·∇uδ + �uδ − f

)∥∥∥2

Q
≤ 1

(1 − κ) μ0

∥∥ω·∇uδ + �uδ − f
∥∥2

Q ,

where (2.2) was used in the last step. So
∥∥∥�−1/2(ω·∇uδ + �uδ − f

)∥∥∥2

Q
≤ 1

(1 − κ) μ0

∥∥(
� − �δ

)
(uδ) + ( f δ − f )

∥∥2
Q . (3.12)

Define �δv := μδ
t v − Sδv. Then,

ω·∇uδ + �uδ − f = (
� − �δ

)
(uδ) + ( f δ − f )
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2526 W. Han

in which

(
� − �δ

)
(uδ) = (

μt − μδ
t

)
uδ −

∫
�

[
μs(x,ω·ω̂) − μδ

s(x,ω·ω̂)
]

uδ(x, ω̂) dω̂.

Thus,
∥∥(

� − �δ
)
(uδ) + ( f δ − f )

∥∥
Q

≤ ∥∥(
μt − μδ

t

)
uδ

∥∥
Q +

∥∥∥
∫

�

[
μs(·,ω·ω̂) − μδ

s(·,ω·ω̂)
]

uδ(·, ω̂) dω̂

∥∥∥
Q

+ ∥∥ f δ − f
∥∥

Q . (3.13)

Let

δt := ‖μt − μδ
t ‖L∞(X), δs :=

∥∥∥
∫

�

∣∣μs(x,ω·ω̂) − μδ
s(x,ω·ω̂)

∣∣ dω̂

∥∥∥
L∞(X)

, (3.14)

δ f := ‖ f − f δ‖Q, δin := ‖uin − uδ
in‖L2(�−). (3.15)

Then, it follows from (3.13) that
∥∥(

� − �δ
)
(uδ) + ( f δ − f )

∥∥
Q ≤ (δt + δs) ‖uδ‖Q + δ f .

Therefore, from (3.6), we conclude the a posteriori error bound

‖u − uδ‖2
V ≤ 2

(1 − κ) μ0

[
(δt + δs) ‖uδ‖Q + δ f

]2 + 4 δ2
in. (3.16)

In practice, available data contain noises and the RTE problem we solve is not (1.1) and
(1.2), but rather (3.9) and (3.10). The significance of the error bound (3.16) is that once the
solution uδ of the problem (3.9)–(3.10) is found, it can be used, together with knowledge
of levels of the noises, to generate a computable bound for the difference between uδ and
the solution of the original problem defined by (1.1) and (1.2).

The error bound (3.16) can be sharpened when certain additional information is avail-
able. For example, suppose μt and μδ

t are equal on a portion of the spatial domain X , and
so are μs and μδ

s , i.e.

μδ
t = μt in X/Xt , μδ

s = μs in X/Xs .

Then (3.16) can be replaced by

‖u − uδ‖2
V ≤ 2

(1 − κ) μ0

[
δt‖uδ‖L2(Xt ×�) + δs‖uδ‖L2(Xs×�) + δ f

]2 + 4 δ2
in. (3.17)

3.2. A posteriori error estimates in L2 norm

The L2 norm error estimates can be derived directly. For an approximate solution w ∈ V
of the problem (1.1)–(1.2), the error e := w − u is the solution of the problem

ω·∇e + μt e − Se = e f in X × �, (3.18)

e = ein on �−, (3.19)
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Applicable Analysis 2527

where

e f := ω·∇w + μtw − Sw − f in X × �, (3.20)

ein := w − uin on �− (3.21)

are the residuals of the Equation (1.1) and of the boundary condition (1.2). We multiply the
Equation (3.18) by e, integrate over X × �, and perform an integration by parts to obtain

1

2
‖e‖2

�+ +
∥∥∥�1/2e

∥∥∥2

Q
= (

e f , e
)

Q + 1

2
‖ein‖2

�− .

Using the Cauchy–Schwarz inequality, we conclude with the following a posteriori error
estimate: ∥∥∥�1/2(w − u)

∥∥∥2

Q
+ ‖w − u‖2

�+ ≤
∥∥∥�−1/2e f

∥∥∥2

Q
+ ‖ein‖2

�− , (3.22)

where e f and ein are defined by (3.20) and (3.21), respectively. This error estimate extends
the result in [26], which deals with the homogeneous inflow boundary condition, i.e. uin = 0,
and where the approximate solution w is also assumed to satisfy the homogeneous inflow
boundary condition.

Next, we consider the error due to perturbations in the problem data, i.e. the difference
eδ := uδ − u between the solutions of the problems (3.9)–(3.10) and (1.1)–(1.2). After
subtraction, we see that eδ satisfies

ω·∇eδ + μt e
δ − Seδ = eδ

f in X × �, (3.23)

eδ = eδ
in on �−, (3.24)

where

eδ
f := (

f δ − f
) − (

μδ
t − μt

)
uδ + (

Sδ − S
)

uδ in X × �, (3.25)

eδ
in := uδ

in − uin on �−. (3.26)

Applying the error bound (3.22), we have∥∥∥�1/2(uδ − u)

∥∥∥2

Q
+ ‖uδ − u‖2

�+ ≤
∥∥∥�−1/2eδ

f

∥∥∥2

Q
+ ‖eδ

in‖2
�− . (3.27)

Then, with the quantities defined in (3.14) and (3.15), using the bound (2.2), we can obtain
from (3.27) that∥∥∥�1/2(uδ − u)

∥∥∥2

Q
+ ‖uδ − u‖2

�+ ≤ 1

(1 − κ) μ0

[
(δt + δs) ‖uδ‖Q + δ f

]2 + δ2
in. (3.28)

4. Even-parity and odd-parity problems

Let Y be a subset of X ×�, or of �, or of �. We say Y is ω-symmetric if (x,ω) ∈ Y implies
(x,−ω) ∈ Y , or if ω ∈ Y implies −ω ∈ Y . Obviously, X × �, �, and � are ω-symmetric.
In the rest of the paper, the symbol Y always denotes a set with ω-symmetry. We say a
function v(x,ω) defined on Y is of even parity if v(x,−ω) = v(x,ω) on Y , and is of odd
parity if v(x,−ω) = −v(x,ω) on Y ; where Y is a subset of �, we suppress the variable x
in the above definition. The following orthogonality property will be used repeatedly:∫

Y
u v = 0, u of even-parity and v of odd-parity. (4.1)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

w
a 

L
ib

ra
ri

es
],

 [
W

ei
m

in
 H

an
] 

at
 1

2:
26

 2
4 

N
ov

em
be

r 
20

15
 



2528 W. Han

Even-parity and odd-parity components of u(x,ω) were first introduced in [17]:

u+(x,ω) = 1

2
[u(x,ω) + u(x,−ω)] , u−(x,ω) = 1

2
[u(x,ω) − u(x,−ω)] .

They are also called the even-parity angular flux and odd-parity angular flux. The inverse
transformation is

u(x,ω) = u+(x,ω) + u−(x,ω), u(x,−ω) = u+(x,ω) − u−(x,ω). (4.2)

The parity components of the angular flux u(x,ω) are useful in certain applications. E.g.
if the goal of computation is to determine the flux w(x) := ∫

�
u(x,ω), then it can also be

computed through w(x) = ∫
�

u+(x,ω). Note that it is less expensive to compute u+ than
u, since u+(x,ω) is even with respect to ω.

Similar to (4.2), we have the decomposition

μs(x,ω·ω̂) = μs+(x,ω·ω̂) + μs−(x,ω·ω̂)

with

μs+(x,ω·ω̂) = 1

2

[
μs(x,ω·ω̂) + μs(x,−ω·ω̂)

]
,

μs−(x,ω·ω̂) = 1

2

[
μs(x,ω·ω̂) − μs(x,−ω·ω̂)

]
.

We introduce two operators C and G−1 as follows [21]:

C(u+)(x,ω) := μt (x) u+(x,ω) −
∫

�

μs+(x,ω·ω̂) u+(x, ω̂) dω̂, (4.3)

G−1(u−)(x,ω) := μt (x) u−(x,ω) −
∫

�

μs−(x,ω·ω̂) u−(x, ω̂) dω̂. (4.4)

As will be seen from Lemma 4.1 below, the operator defined by the right side of (4.4) is
invertible and in the literature, it is denoted by G−1. C is called the removal operator, and
G is called the leakage operator. Then, the following result can be shown.

Lemma 4.1 Assume (1.6) and (1.8). Then, C : Q+ → Q+ has an inverse C−1 : Q+ →
Q+, and G−1 : Q− → Q− has an inverse G : Q− → Q−. Moreover, both C and C−1

are linear, bounded, self-adjoint, and elliptic operators on Q+; both G−1 and G are linear,
bounded, self-adjoint, and elliptic operators on Q−.

Through a formal calculation, the following formulas for C−1 and G can be derived
[21]:

C−1(u+)(x,ω) = μt (x)−1u+(x,ω) +
∫

�

k+(x,ω·ω̂) u+(x, ω̂) dω̂, (4.5)

G(u−)(x,ω) = μt (x)−1u−(x,ω) +
∫

�

k−(x,ω·ω̂) u−(x, ω̂) dω̂, (4.6)

where k+ and k− are the even-parity and odd-parity components of k, and k is defined by
the equation

k(x,ω·ω̂) = μt (x)−2μs(x,ω·ω̂) + μt (x)−1
∫

�

μs(x,ω·ω) k(x, ω̂·ω) dω. (4.7)
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Applicable Analysis 2529

The next result can be proved by applying the Banach fixed-point theorem (cf. e.g. [24,
Theorem 5.1.3]).

Proposition 4.2 Under the assumptions (1.6) and (1.8), the Equation (4.7) has a unique
and non-negative solution k(x,ω·ω̂) in L2(X × � × �).

It is well known [21] that the first-order transport Equation (1.1) is transformed into a
pair of second-order equations,

−ω·∇G(ω·∇u+) + C(u+) = f+ − ω·∇G( f−) (4.8)

−ω·∇C−1(ω·∇u−) + G−1(u−) = f− − ω·∇C−1( f+). (4.9)

Correspondingly, the boundary conditions for the even-parity Equation (4.8) are

u+(x,ω) − G(ω·∇u+(x,ω)) = uin(x,ω) − (G f−)(x,ω) for (x,ω) ∈ �−, (4.10)

u+(x,ω) + G(ω·∇u+(x,ω)) = uin(x,−ω) + (G f−)(x,ω) for (x,ω) ∈ �+, (4.11)

whereas for the odd-parity Equation (4.9),

u−(x,ω) − C−1(ω·∇u−(x,ω)) = uin(x,ω) − C−1 f+(x,ω) for (x,ω) ∈ �−, (4.12)

u−(x,ω) + C−1(ω·∇u−(x,ω)) = −uin(x,−ω) + C−1 f+(x,ω) for (x,ω) ∈ �+.

(4.13)

To study the well posedness of the even-parity and odd-parity problems, we need some
more function spaces. Let

V+ := {v ∈ V | v(x,−ω) = v(x,ω) ∀ x ∈ X, ω ∈ �} , (4.14)

V− := {v ∈ V | v(x,−ω) = −v(x,ω) ∀ x ∈ X, ω ∈ �} , (4.15)

Q+ := {q ∈ Q | q(x,−ω) = q(x,ω) ∀ x ∈ X, ω ∈ �} , (4.16)

Q− := {q ∈ Q | q(x,−ω) = −q(x,ω) ∀ x ∈ X, ω ∈ �} . (4.17)

Over the spaces Q+ and Q−, we use the inner product and norm of the space Q. We use
the following inner products

(u, v)V+ := (G(ω·∇u),ω·∇v)Q + (C(u), v)Q + (u, v)�,

(u, v)V− :=
(

C−1(ω·∇u),ω·∇v
)

Q
+

(
G−1(u), v

)
Q

+ (u, v)�,

and corresponding norms. Thanks to Lemma 4.1, the norm ‖ · ‖V+ is equivalent to the
canonical norm of V+ over V+, while the norm ‖ · ‖V− is equivalent to the canonical norm
of V− over V−.

The weak formulation of the boundary value problem of the even-parity equation,
defined by (4.8), (4.10), and (4.11), is

u+ ∈ V+,

∫
X×�

[G(ω·∇u+)ω·∇v + C(u+) v] +
∫

�

|ω·ν| u+v

=
∫

X×�

[ f+v + G( f−)ω·∇v] + 2
∫

�−
|ω·ν| uinv ∀ v ∈ V+. (4.18)

Applying the Lax–Milgram Lemma, we see that problem (4.18) has a unique solution.
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2530 W. Han

The weak formulation of the boundary value problem of the odd-parity equation, defined
by (4.9), (4.12), and (4.13), is

u− ∈ V−,

∫
X×�

[
C−1(ω·∇u−)ω·∇v + G−1(u−) v

]
+

∫
�

|ω·ν| u−v

=
∫

X×�

[
f−v + C−1( f+)ω·∇v

]
+ 2

∫
�−

|ω·ν| uinv ∀ v ∈ V−.

(4.19)

The unique solvability of the weak formulation (4.19) also follows from the Lax–Milgram
Lemma.

Actually, the problems for the even-parity and odd-parity components can be derived
directly from the weak formulation (2.8) of the RTE problem. The operator � can be split
into the sum of two parts:

�(u) = C(u+) + G−1(u−) (4.20)

where the operators C and G−1 are defined in (4.3) and (4.4). The following result [21]
provides a formula for the inverse of the operator �:

Lemma 4.3

�−1(u) = C−1(u+) + G(u−). (4.21)

Thanks to Lemma 4.1, real powers of C and G are well defined. Moreover, the formulas
(4.20) and (4.21) are extended to the following:

�r (u) = Cr (u+) + G−r (u−), r ∈ R. (4.22)

A consequence of (4.21) is

�−1(ω·∇u) = C−1(ω·∇u−) + G(ω·∇u+). (4.23)

Now taking v ∈ V+ arbitrary in (2.8) and using the formulas (4.20), (4.21), and (4.23), we
derive from (2.8) that∫

X×�

[(
C−1(ω·∇u−) + G(ω·∇u+)

)
ω·∇v +

(
C(u+) + G−1(u−)

)
v
]

+
∫

�

|ω·ν| (u+ + u−) v

=
∫

X×�

[
( f+ + f−) v +

(
C−1( f+) + G( f−)

)
ω·∇v

]
+ 2

∫
�−

|ω·ν| uinv.

An integral over � is zero if the integrand is a product of an even-parity function and
an odd-parity function (cf. (4.1)). Hence, the above relation simplifies to the even-parity
component problem (4.18). Similarly, taking v ∈ V− arbitrary in (2.8), we obtain the odd-
parity component problem (4.19).

5. Even-parity and odd-parity problems as dual to each other

We first derive a dual formulation for the even-parity problem.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

w
a 

L
ib

ra
ri

es
],

 [
W

ei
m

in
 H

an
] 

at
 1

2:
26

 2
4 

N
ov

em
be

r 
20

15
 



Applicable Analysis 2531

To use the framework given in Subsection 2.2, we choose the space U to be V+ according
to (4.15) and choose P to be Q−. We define the operator � = �+ by

�+v(x,ω) := ω·∇v(x,ω). (5.1)

Obviously, �+ ∈ L(V+, Q−). For a function v ∈ V+, we introduce a new variable q =
q(x,ω) for the function ω·∇v(x,ω). Corresponding to boundary value problem of the
even-parity equation, (4.8), (4.10), and (4.11), based on the weak formulation (4.18), we
introduce the functional

J+(v, q) := 1

2
(q, Gq)Q + 1

2
(v, Cv)Q + 1

2
‖v‖2

� − (q, G f−)Q − (v, f+)Q − 2 (uin, v)�− .

(5.2)
Let q∗ ∈ V−. We follow the definition (2.15) to find

J ∗+(�∗q∗,−q∗) = 1

2

(
ω·∇q∗ − f+, C−1(ω·∇q∗ − f+)

)
Q

+ 1

2

(
G−1q∗ − f−, G(G−1q∗ − f−)

)
Q

+ ‖q∗ − uin‖2
�− .

Since V− is dense in Q−, we consider the dual problem

sup
q∗∈Q−

[−J ∗+(�∗q∗,−q∗)
] = sup

q∗∈V−

[−J ∗+(�∗q∗,−q∗)
]
.

We have, at a maximizer q∗ ∈ V−, that(
C−1(ω·∇q∗ − f+),ω·∇δq∗)

Q
+

(
G−1q∗ − f−, δq∗)

Q

+ 2
(
q∗ − uin, δq∗)

�− = 0 ∀ δq∗ ∈ V−.

This is exactly the weak formulation (4.19) of the boundary value problem for the odd-
parity component. So the dual variable for the even-parity component is the odd-parity
component, and the dual problem of the even-parity component is the problem for the
odd-parity component.

Similarly, it can be shown that the dual problem of the odd-parity component is the
problem for the even-parity component.

6. Error estimation for parity solutions

For any w+ ∈ V+, we define the quantity

D+(u+, w+) := J+(w+,�+w+) − J+(u+,�+u+). (6.1)

Using (4.18), we can derive the following formula

D+(u+, w+) = 1

2
‖w+ − u+‖2

V +. (6.2)

Applying Theorem 3.1, for any q∗ ∈ V−,

D+(u+, w+) ≤ J+(w+,�+w+) + J ∗+(�∗+q∗,−q∗). (6.3)
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2532 W. Han

Then, we have the a posteriori error estimate: for any q∗ ∈ V−,

‖w+ − u+‖2
V + ≤

∥∥∥G1/2(ω·∇w+ + G−1(q∗) − f−)

∥∥∥2

Q

+
∥∥∥C−1/2(ω·∇q∗ + C(w+) − f+)

∥∥∥2

Q
+ 2 ‖w+ + q∗ − uin‖2

�− . (6.4)

Let w− ∈ V− be an approximation of u−. Then, we may take q∗ in (6.4) to be w− and
obtain the following a posteriori error estimate:

‖w+ − u+‖2
V + ≤

∥∥∥G1/2(ω·∇w+ + G−1(w−) − f−)

∥∥∥2

Q

+
∥∥∥C−1/2(ω·∇w− + C(w+) − f+)

∥∥∥2

Q
+ 2 ‖w+ + w− − uin‖2

�− .

(6.5)

Note that the RTE (1.1) can be written as

ω·∇u+ + ω·∇u− + C(u+) + G−1(u−) = f+ + f− in X × �.

Taking the even-parity part and odd-parity part of the equation, we obtain

ω·∇u− + C(u+) = f+ in X × � (6.6)

and
ω·∇u+ + G−1(u−) = f− in X × �, (6.7)

respectively. So the first two terms on the right side of (6.5) represent effects of the equation
residuals for (6.6) and (6.7). The last term on the right side of (6.5) is for the residual of
the boundary condition (1.2).

Based on the duality for the odd-parity solution, we can similarly derive the following
a posteriori error estimate:

‖w− − u−‖2
V − ≤

∥∥∥G1/2(ω·∇w+ + G−1(w−) − f−)

∥∥∥2

Q

+
∥∥∥C−1/2(ω·∇w− + C(w+) − f+)

∥∥∥2

Q
+ 2 ‖w+ + w− − uin‖2

�− .

(6.8)

The bounds (6.5) and (6.8) for the parity solutions together imply (3.6) for the original
RTE solution. This claim is based on the relation ‖v‖2

V = ‖v+‖2
V + + ‖v−‖2

V − and

∥∥∥�−1/2(ω·∇v + �(v) − f )

∥∥∥2

Q
=

∥∥∥C−1/2(ω·∇v− + C(v+) − f+)

∥∥∥2

Q

+
∥∥∥G1/2(ω·∇v+ + G−1(v−) − f−)

∥∥∥2

Q
.

7. Concluding remarks

This paper is devoted to a concise presentation of rigorous mathematical results on the RTE,
and to the development of a posteriori error estimates for numerical solutions of the RTE,
as well as for the effects of uncertainties in the problem data on the solution. The boundary
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value problem of the RTE with the incoming flow boundary condition is adopted as the
model for the presentation. It is shown that the boundary value problem of the RTE enjoys
beautiful mathematical structures, e.g. the dual of the problem is the problem itself, and the
even-parity problem and the odd-parity problem are dual to each other. A posteriori error
estimates for numerical solutions are the basis for developing efficient adaptive solution
algorithms,[27] whereas a posteriori estimates for modeling errors are useful to analyze
the effects of uncertainties in problem data on the solution.[23] Development of adaptive
numerical solution algorithms based on the a posteriori error estimates is under the way.

In the previous sections, the theoretical studies are made on the RTE (1.1) with the
boundary condition (1.2). We comment that the discussions can be extended to problems
with other kind of boundary conditions.
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