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Abstract

Over the last couple of years molecular imaging has been rapidly developed to study

physiological and pathological processes in vivo at the cellular and molecular levels. Among

molecular imaging modalities, optical imaging stands out for its unique advantages, espe-

cially performance and cost-effectiveness. Bioluminescence tomography (BLT) is an emerg-

ing optical imaging mode with promising biomedical advantages. In this survey paper, we

explain the biomedical significance of BLT, summarize theoretical results on the analysis

and numerical solution of a diffusion based BLT model, and comment on a few extensions

for the study of BLT.
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1. Introduction

Tomography is an important branch of imaging science and technology which targets image

reconstruction from indirect measurement of an object under consideration. Among its numer-

ous applications, tomography has been the driving force in biomedical imaging. As cornerstones

of modern hospitals and clinics, x-ray computed tomography (CT), magnetic resonance imaging

(MRI), nuclear and ultrasound imaging are widely applied for spatial and temporal reconstruc-

tions of anatomical and functional features, generated tremendous healthcare benefits over the

past decades.

Guided by the so-called NIH Roadmap, molecular imaging has been rapidly developed to

study biological processes in vivo at the cellular and molecular levels [27,29]. While some clas-

sic microscopic and spectroscopic techniques do reveal information on micro-structures of the

tissues, only recently have molecular probes been utilized along with imaging technologies to

detect and image molecular targets sensitively, specifically, and non-invasively. Among molec-

ular imaging modalities, optical imaging is most attractive because of its unique advantages,

especially performance and cost-effectiveness [8,20,30]. Fluorescent and bioluminescent probes
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are commonly used for optical molecular imaging in preclinical studies of mice and rats as mod-

els of various human diseases, as well as to a limited extent in clinical research. In this context,

fluorescence molecular tomography (FMT) [21] and bioluminescence tomography (BLT) [26,28]

are emerging as complementary optical molecular tomography modes.

Given the fast pace of the development in the BLT area and the major needs for more

mathematical work, we present this survey as a reference for those mathematicians who are

interested in solving cutting edge inverse problems for biomedical applications. In the following,

first we explain the biomedical significance of BLT in Section 2. Then, we summarize theoretical

results on the analysis and numerical solution of a diffusion-approximation based BLT model

in Section 3. Finally, we discuss a few extensions of BLT in Section 4.

2. Biomedical Background

In the post-genomic era, great efforts are being made to associate genes to phenotypes for

development of systems medicine that are predictive, preventive and personalized. An impor-

tant aspect of this perspective is small animal imaging that allows in vivo studies at anatomical,

functional, cellular and molecular levels. In molecular/cellular imaging, small animal features

of interest are labeled with molecular probes [18,30]. A molecular probe has a high affinity for

attaching itself to a target molecule and a tagging ability with a marker molecule that can be

tracked outside a living body. Optical imaging methods include florescence molecular tomog-

raphy (FMT) [21] and bioluminescent imaging (BLI) [22], which are most promising because of

their performance and cost-effectiveness, and already successfully used to investigate tumorige-

nesis, cancer metastasis, cardiac diseases, cystic fibrosis, gene therapies, drug designs and so on.

Particularly, bioluminescent imaging has unique capabilities in probing molecular and cellular

processes, and produces superior signal-to-noise ratios with little background auto-fluorescence.

In the March 2005 issue of the Molecular Imaging Outlook1) , Contag mentioned that BLI arose

out of the frustration with sampling limitations of the standard assay techniques. Also, since

the genes are duplicated with the cell division, BLI is more sensitive than other techniques such

as nuclear imaging in which the radioactive signal is reduced with the cell division. Piwnica-

Worms underlined in the same report that BLI could be applied to study almost all diseases in

every small animal model.

Dr. Wang’s group conceptualized and developed the first bioluminescence tomography (BLT)

prototype which compensates for heterogeneous scattering properties of a mouse and performs

quantitative 3D reconstruction of internal sources from bioluminescent views measured on the

external surface of the mouse [7, 26, 28]. BLT has now become a rapidly developing area for

optical molecular imaging. The introduction of BLT relative to planar bioluminescent imaging

(BLI) can be in a substantial sense compared to the development of x-ray CT based on radiog-

raphy. Without BLT, bioluminescent imaging is primarily qualitative. With BLT, quantitative

and localized analysis on a bioluminescent source distribution become feasible inside a living

mouse

The pre-requisites for BLT are bioluminescent probes, corresponding substrates, and sub-

sequent signal collection. Naturally-occurring luciferases exhibit emission maxima between

480nm and 635 nm. In principle, we may use luciferases with different spectral properties

to sense various biological events. Recent results in the luciferase technology have confirmed

spectrally-shifted signals from luciferases in various species and/or by mutagenesis. Among

1) http://www.diagnosticimaging.com/molecularimagingoutlook/2005mar/02.jhtml
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the current options, combining firefly (Photinus pyralis) luciferase (λmax = 562nm) and click

beetle (Pyrophorus plagiopthalamus) (λmax = 615nm) seems attractive because they utilize

the same non-toxic substrate. There are also areas for further development of bioluminescence

reporters that could expand the utility of bioluminescent imaging. These include isolation

of novel luciferases, mutation of known luciferases, luminescence-resonance energy transfer to

red-emitting fluorescent proteins, and development of luciferase substrate analogs with differ-

ent emission properties. Coincidentally, the latest development in the cooled-CCD camera

technology has reached the point that allows us to detect very weak optical signals such as

bioluminescent signals on the mouse body surface.

3. Study of a Diffusion Based BLT Model

We use the symbol Ω ⊂ R
3 for the domain occupied by a biological medium under consider-

ation. The boundary of Ω is denoted by Γ, which is assumed to be at least Lipschitz continuous.

Thus, the unit outward normal vector ν exists almost everywhere (a.e.) on Γ.

Light propagation in the biological medium is described by the radiative transfer equation

(RTE) [2, 19]. Denote by S
2 the unit sphere, and let µa = µa(x) and µs = µs(x) be the

absorption and scattering coefficients of the medium. The steady state RTE is

θ · ∇xφ + µaφ = µs

∫

S2

k(θ · θ′)φ(x, θ′) dθ′ + q, (3.1)

where φ = φ(x, θ) represents the expected number of photons per unit volume at location

x ∈ Ω with a velocity in the direction θ ∈ S
2, and q = q(x, θ) is a light source function. The

scattering kernel function k is non-negative and is normalized by the condition
∫

S2

k(θ · θ′) dθ′ = 1.

In applications, Henyey-Greenstein scattering kernel function is widely used:

kHG(s) =
1

4π

1 − g2
a

(1 + g2
a − 2gas)3/2

, −1 ≤ s ≤ 1.

Here the parameter ga ∈ (−1, 1) is a measure for anisotropy, with ga = 0 corresponding to

isotropic scattering.

The RTE (3.1) is to be supplemented by appropriate boundary value conditions. The

forward model, namely the problem of determining the function φ from the RTE and the

boundary value condition with a known light source function q, has been theoretically studied

extensively in the literature; see, e.g., [9] for results on existence and uniqueness of solutions.

Mathematically, BLT is the source inversion problem to recover q from optical measurement

on the domain boundary Γ, utilizing detailed knowledge on the optical properties of Ω. Note

that knowledge of the individualized spatially variant optical properties is critical for BLT to

work effectively.

The RTE is highly dimensional and presents a serious challenge for its accurate numerical

simulations given the current level of development in computer software and hardware. However,

since in the range of around 600 nm photon scattering outperforms absorption in a mouse,

usually a diffusion approximation of the RTE is employed [2, 19]. The diffusion approximation

of the RTE (3.1) is the following equation:

−div (D∇u) + µau = q0 in Ω, (3.2)
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where

u(x) =
1

4π

∫

S2

φ(x, θ) dθ, q0(x) =
1

4π

∫

S2

q(x, θ) dθ

are the averaged quantities for φ and q in all the directions. Here, D = 1/[3 (µa + µ′

s)],

µ′

s = (1 − k)µs is the reduced scattering coefficient with

k =
1

4π

∫

S2

θ · θ′k(θ · θ′) dθ′,

which is independent of θ. The equation (3.2) is to be supplemented by the boundary condition

u + 2 AD
∂u

∂ν
= g− on Γ, (3.3)

where g− is the incoming flux on Γ, and the differential operator ∂/∂ν denotes the outward

normal derivative on Γ. The appearance of the parameter A in the boundary condition (3.3) is

to incorporate diffuse boundary reflection arising from a refractive index mismatch between the

body Ω and the surrounding medium. Discussion of the value of the parameter can be found

in [1, 5]. Usually, this parameter is computed by the formula

A = (1 + R)/(1 − R)

with a directionally varying refraction parameter

R = −1.4399 η−2 + 0.7099 η−1 + 0.6681 + 0.0636 η

for some refractive index η. In BLT applications, the measurement is

g = −D
∂u

∂ν
on Γ or part of Γ. (3.4)

The BLT problem we study is then to find a source function q0 given g− and g such that (3.2),

(3.3) and (3.4) are satisfied. Inverse source problems in such a pointwise formulation are the

subject of numerous references. A recent reference is [10], where the objective is to identify

the source function as a linear combination of monopolar and dipolar sources. We comment in

passing that there is a related but different problem, the so-called diffuse optical tomography

(DOT), also based on the diffusion approximation, where the aim is to find optical properties

(absorption and reduced scattering coefficients) of an object from diffuse signals generated by

a controllable optical stimulation and measured on the external surface of the object. Some

theoretical studies on the DOT problem are reported in [2, 3, 13, 24].

It is helpful to incorporate as much known information as possible in the problem formulation

so as to reconstruct the source function more accurately. We call a subset of Ω the support

of the light source if the light source function is nonzero in the subset and is zero outside the

subset. In applications, usually a rough bound on the support of the light source is available.

Thus, we suppose Ω0 ⊂ Ω is a region that contains the light source support. The set Ω0 is

known as the permissible region in the literature. It is desirable to have Ω0 exactly the light

source support. But even if Ω0 is larger than the light source support, knowledge of a known

Ω0 is still helpful in reconstruction of the light source. Accordingly, the differential equation

(3.2) is written in the following more precise form:

−div (D∇u) + µau = p χΩ0
in Ω. (3.5)
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Here χΩ0
denotes the characteristic function of Ω0, i.e., its value is 1 in Ω0, and is 0 in Ω\Ω0.

To avoid complicated notation, we express the BLT problem as the determination of a source

function p in the differential equation (3.5) from two boundary conditions:

u + 2 AD
∂u

∂ν
= g1 on Γ, (3.6)

AD
∂u

∂ν
= g3 on Γ, (3.7)

i.e., we use the symbol g1 for g−, g3 for −Ag, and assume the measurement (3.4) is available

on the entire boundary Γ. We can also consider the case where the measurement is available

only on a part of the boundary. Note that the influx g1 is zero in a typical BLT problem where

the experiment is done in a dark environment. Combining (3.6) and (3.7) we obtain a third

possible boundary condition

u = g2 ≡ g1 − 2 g3 on Γ. (3.8)

Only two of the three boundary conditions (3.6)-(3.8) are independent. To determine the source

function p, we may associate one of the three boundary conditions (3.6), (3.7) or (3.8) with the

differential equation (3.5) to form a boundary value problem, and choose one of the remaining

boundary conditions to form the inverse problem for p. To be definite, in the rest of the section,

we choose (3.6) as the boundary condition for the boundary value problem, and use (3.8) for the

recovery of the source function p. In other words, we study the following problem, in pointwise

form.

Problem 3.1. Given suitably smooth functions D > 0, A > 0, µa ≥ 0, g1 and g2, find a source

function p such that the solution of the boundary value problem

− div (D∇u) + µau = p χΩ0
in Ω, (3.9)

u + 2 AD
∂u

∂ν
= g1 on Γ (3.10)

satisfies

u = g2 on Γ. (3.11)

It is pointed out in [14] that Problem 3.1 is ill-posed: (1) in general, there are infinite many

solutions; (2) when the form of the source function is specified, generally there are no solutions;

and (3) the source function does not depend continuously on the data (instability). Since the

BLT problem has to be solved through numerical means, lack of solution stability prevents

the direct use of the pointwise formulation for practical simulations. We will study the BLT

problem through minimizing the mismatch between predictions from the BVP and available

measurements coupled with a regularization for stabilization.

We will use standard function spaces such as V = H1(Ω), V0 = H1
0 (Ω), Q = L2(Ω0), L2(Ω),

L∞(Ω), and L∞(Γ). For the given data, we assume D ∈ L∞(Ω), D ≥ D0 a.e. in Ω for some

constant D0 > 0; A ∈ L∞(Γ), A1 ≤ A ≤ A2 for some constants A2 ≥ A1 > 0; and µa ∈ L∞(Ω),

µa ≥ 0 a.e. in Ω. We also assume g1 ∈ L2(Γ) and g2 ∈ L2(Γ).

Suppose we seek the source function p in a closed convex subset Qad of the space Q. A

typical choice in BLT applications is

Qad = {q ∈ Q | q ≥ 0 a.e. in Ω0} .
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We may also choose Qad to be the subset of non-negatively valued functions from a finite

dimensional subspace of linear combinations of specified functions such as the characteristic

functions of certain subsets of Ω.

For any q ∈ Q, the following weak formulation of the boundary value problem (3.9)-(3.10)
∫

Ω

(D∇u · ∇v + µau v)dx +

∫

Γ

1

2A
u v ds =

∫

Ω0

q v dx +

∫

Γ

1

2A
g1v ds ∀ v ∈ V (3.12)

has a unique solution u = u(q) ∈ V by an application of the Lax-Milgram Lemma [4, 12].

Following the idea of Tikhonov regularization (e.g., [11, 25]), we let

Jε(q) =
1

2
‖u(q) − g2‖

2
L2(Γ) +

ε

2
‖q‖2

Q, ε ≥ 0

and introduce the following problem which is similar to the one studied in [14].

Problem 3.2. Find pε ∈ Qad such that Jε(pε) = inf {Jε(q) : q ∈ Qad}.

We have the following results concerning Problem 3.2.

• For any ε > 0, Problem 3.2 has a unique solution pε ∈ Qad. Moreover, the solution

pε ∈ Qad is characterized by a variational inequality

(u(pε) − g2, u(q) − u(pε))L2(Γ) + ε (pε, q − pε)Q ≥ 0 ∀ q ∈ Qad.

When Qad ⊂ Q is a subspace, the variational inequality is reduced to a variational equation

(u(pε) − g2, u(q) − u(0))L2(Γ) + ε (pε, q)Q = 0 ∀ q ∈ Qad.

• The solution pε of Problem 3.2 depends continuously on all the data.

• Assume the solution set S0 for Problem 3.2 with ε = 0 is nonempty (this is valid if e.g.,

Qad is bounded). Then it is closed and convex. Moreover,

pε → p0 in Q, as ε → 0,

where p0 ∈ S0 is the unique element with minimal Q-norm among the solutions of Problem 3.2

for ε = 0:

‖p0‖Q = inf
q∈S0

‖q‖Q.

• If S0 = {p}, then we have the convergence

pε → p in Q, as ε → 0.

For a numerical approximation of Problem 3.2, we use the finite element method to solve the

boundary value problem (3.12). Let {Th}h (h: meshsize) be a regular family of finite element

partitions of Ω such that each element at the boundary Γ has at most one non-straight face (or

at most one curved side when we consider a two-dimensional analogue of the BLT problem).

For each triangulation Th, let V h ⊂ H1(Ω) be the corresponding linear element space. For any

q ∈ Q, denote uh = uh(q) ∈ V h the finite element solution of the problem (3.12) defined by the

relation
∫

Ω

(

D∇uh · ∇vh + µauhvh
)

dx +

∫

Γ

1

2A
uhvhds

=

∫

Ω0

q vhdx +

∫

Γ

1

2A
g1v

hds ∀ vh ∈ V h. (3.13)
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Corresponding to the functional Jε(·), let

Jh
ε (q) =

1

2
‖uh(q) − g2‖

2
L2(Γ) +

ε

2
‖q‖2

Q, ε ≥ 0.

The admissible source function set Qad may or may not need to be discretized. In general, let

Q̃ad ⊂ Qad be non-empty, closed and convex. Later in the section, we will consider two possible

choices of Q̃ad. We then introduce the following discretization of Problem 3.2.

Problem 3.3. Find ph
ε ∈ Q̃ad such that Jh

ε (ph
ε ) = inf

{

Jh
ε (q) : q ∈ Q̃ad

}

.

Problem 3.3 has properties similar to those listed above for Problem 3.2.

For error estimation, we assume additionally that Γ ∈ C1,1, D ∈ C0,1(Ω), A−1 ∈ H1/2(Γ),

and g1 ∈ H1/2(Γ). We say the admissible set Qad and the boundary data g1, g2 are compatible

if for some p1 ∈ Qad, u(p1) = g2 on Γ. The compatibility assumption is valid, e.g. where

Ω0 = Ω ∈ C1,1, g2 ∈ H1/2(Γ) and Qad = L2(Ω). It is also valid when g2 is the trace of some

solution of the boundary value problem (3.12).

We distinguish two cases regarding the choice of the set Q̃ad. First, with the choice Q̃ad =

Qad, it can be shown that for some constant c > 0 independent of ε and h,

‖u(pε) − uh(ph
ε )‖L2(Γ) + ε1/2‖pε − ph

ε‖Q

≤c h3/4‖u(pε) − g2‖
1/2
L2(Γ)‖pε − ph

ε‖
1/2
Q + c h3/2

[

‖pε‖Q + ‖g1‖H1/2(Γ)

]

.

Consequently, if Qad is a bounded set in L2(Ω), then

‖u(pε) − uh(ph
ε )‖L2(Γ) + ε1/2‖pε − ph

ε‖Q ≤ c h3/4.

And if Qad, g1 and g2 are compatible, then

‖u(pε) − uh(ph
ε )‖L2(Γ) + ε1/2‖pε − ph

ε‖Q ≤ c h3/2.

Next, consider the case where Q̃ad is constructed with a discretization of the set Qad.

In addition to the regular family of finite element partitions {Th}h of Ω, let {T0,H}H be a

regular family of finite element partitions of Ω0 such that each element at the boundary ∂Ω0

has at most one non-straight face (at most one curved side for a two-dimensional version of

the BLT problem). The partitions Th and T0,H do not need to be related; however, Th is

allowed to be constructed based on T0,H . Let QH ⊂ Q be the piecewise constant space. Define

Q̃ad = QH
ad ≡ QH ∩ Qad. We denote the solution of Problem 3.3 by ph,H

ε . Denote by

EH(pε) = inf
{

‖pε − qH‖Q : qH ∈ QH
ad

}

the best approximation error in Q-norm of pε by functions from QH
ad. Then, for some constant

c > 0 independent of ε, h and H ,

‖u(pε) − uh(ph,H
ε )‖L2(Γ) + ε1/2‖pε − ph,H

ε ‖Q

≤c ‖u(pε) − g2‖
1/2
L2(Γ)

[

H1/2EH(pε)
1/2 + h3/4‖pε − ph,H

ε ‖
1/2
Q

]

+ c H EH(pε) + c h3/2
[

‖pε‖Q + ‖g1‖H1/2(Γ)

]

.

Consequently, if Qad is bounded in Q, then

‖u(pε) − uh(ph,H
ε )‖L2(Γ) + ε1/2‖pε − ph,H

ε ‖Q ≤ c
[

H1/2EH(pε)
1/2 + h3/4

]

.
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And when Qad, g1 and g2 are compatible,

‖u(pε) − uh(ph,H
ε )‖L2(Γ) + ε1/2‖pε − ph,H

ε ‖Q

≤c
[

h3/2 + H1/2ε1/4EH(pε)
1/2 + H EH(pε)

]

.

Numerical examples can be found in [14] showing the performance of the proposed numerical

methods.

4. Extensions

In this section, we point out a few extensions of the BLT model studied in Section 3.

First, recall that the goal of BLT is to produce a quantitative reconstruction of a biolumi-

nescent source distribution within a living mouse from bioluminescent signals measured on the

body surface of the mouse. While in most BLT studies so far the optical parameters of the key

anatomical regions are assumed known from the literature or diffuse optical tomography (DOT),

these parameters cannot be very accurate in general. In [16], we propose and study a new BLT

approach that optimizes optical parameters when an underlying bioluminescent source distri-

bution is reconstructed to match the measured data. We prove the solution existence and the

convergence of numerical methods. Also, we present numerical results to illustrate the utility

of our approach and evaluate its performance.

Second, a two regularization parameter framework for the BLT problem is introduced and

analyzed in [6]. Similar to the discussion in [6], for any q ∈ Q, we denote by u1 = u1(q) ∈ V the

solution of the problem (3.12), and denote by u2 = u2(q) ∈ g2 + V0 the solution of the problem

∫

Ω

(D∇u2 · ∇v + µau2v) dx =

∫

Ω0

qv dx ∀ v ∈ V0.

This is a weak formulation of the boundary value problem defined by (3.9) and (3.11). For

fixed constants r1, r2 ≥ 0 with r1 + r2 = 1, we define the functional

Jε,r1,r2
(q) =

r1

2
‖u1(q) − g2‖

2
L2(Γ) +

r2

2
‖AD∂νu2(q) − g3‖

2
L2(Γ) +

ε

2
‖q‖2

Q, ε ≥ 0,

and introduce the following problem.

Problem 4.1. Find pε,r1,r2
∈ Qad such that Jε,r1,r2

(pε,r1,r2
) = inf{Jε,r1,r2

(q) : q ∈ Qad}.

All the theoretical results presented in the previous section can be extended to the analysis of

Problem 4.1 and its numerical approximations. Note that when r2 = 0, Problem 4.1 reduces

to Problem 3.2. Numerical results reported in [6] suggest that it is beneficial to choose the two

regularization parameters r1, r2 and the finite element mesh-size h such that r2 = O(r1h).

Third, let us discuss at some length a general mathematical theory for the study of multi-

spectral BLT. With simultaneous use of multiple optical reporters it becomes feasible to capture

and decompose composite molecular and cellular signatures under in vivo conditions. That is,

multispectral data can be measured in spectral bands on the body surface of a mouse, and

the distributions of multiple biomarkers can be reconstructed in an integrated fashion using a

sophisticated algorithm. In [17], a comprehensive mathematical framework for multispectral

BLT is introduced and analyzed for the most general situation of using multiple bioluminescent



332 W. HAN AND G. WANG

reporters whose spectral characteristics may be affected by their in vivo environment. In multi-

spectral BLT, the spectrum is divided into certain numbers of bands, say i0 bands Λ1, · · · , Λi0 ,

with

Λi = [λi−1, λi), 1 ≤ i ≤ i0 − 1, Λi0 = [λi0−1, λi0 ].

Here, λ0 < λ1 < · · · < λi0 is a partition of the spectrum range. Let there be j0 biomarkers with

bioluminescent source distributions pjχΩj , 1 ≤ j ≤ j0. Here, Ωj is a measurable subset of Ω,

and χΩj is the characteristic function of Ωj . The set Ωj is the permissible region for the source

pj . For each biomarker, its bioluminescent source distribution within the band Λj is ωijpjχΩj ,

1 ≤ i ≤ i0, with the weights ωij > 0 satisfying
∑i0

i=1 ωij = 1, for any 1 ≤ j ≤ j0. Denote by

pij = ωijpj the portion of the source function pj in the band Λi. We allow variation of the

source spectrum caused by the environment. Thus, we will reconstruct sources pij such that

pij ≈ ωijpj with pj =
∑i0

i=1 pij . For each spectral band Λi, 1 ≤ i ≤ i0, we use the following

diffusion equations to describe the photon density uij in Λi:

−div (Di∇uij) + µa,iuij = pijχΩj in Ω. (4.1)

Here, Di(x) = 1/[3 (µa,i(x) + µ′

s,i(x))], µa,i(x) and µ′

s,i(x) are the absorption coefficient and

the reduced scattering coefficient within the band Λi. The bioluminescent imaging experiments

are usually performed in a dark environment so that the natural boundary condition takes the

form

uij + 2ADi
∂uij

∂ν
= 0 on Γ. (4.2)

With the emission filters of bandpasses Λi, the measured quantities are the outgoing flux den-

sities [23]:

f̃i = −Di
∂

∂ν

j0
∑

j=1

uij(qij) =
1

2A

j0
∑

j=1

uij(qij) on Γi, 1 ≤ i ≤ i0. (4.3)

We assume that Γi is a non-trivial part of the boundary, i.e., meas (Γi) > 0. Thus, we allow

the situation where the measurement of the outgoing flux densities is available only on parts of

the boundary Γ.

Let us introduce some notations to simplify the exposition. The range of the index i is

{1, · · · , i0}, and that of j is {1, · · · , j0}; in particular,
∑

i stands for
∑i0

i=1, and
∑

j stands

for
∑j0

j=1. Matrix (Ri0×j0) valued variables, as well as their row or column vectors, will be

indicated by Euler Fraktur alphabets, e.g., p = (pij), q = (qij), u = (uij), and

q
∗j = (q1j , · · · , qi0j)

T , qi∗ = (qi1, · · · , qij0).

Vector valued variables are indicated by boldface math fonts. We denote

S(q
∗j) =

∑

i

qij , ℓi(q∗j) = qij − ωijS(q
∗j), ℓ(q) = (ℓi(q∗j)),

Ui(qi∗) =
∑

j

uij(qij), U(q) = (Ui(qi∗)) .

Then the boundary measurement equation (4.3) can be written as

f̃i = −Di
∂Ui(qi∗)

∂ν
=

1

2A
Ui(qi∗) on Γi.
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For a vector valued variable with a subscript, we use “,j” to indicate its jth component, e.g.,

pε = (pε,j). Similarly, for a matrix valued variable with a subscript, we use “,ij” for its (i, j)th

component, e.g., pεM = (pεM,ij).

Let Qj = L2(Ωj), Gi = L2(Γi). Denote by Qad,j the admissible set for pij . We assume

Qad,j is a closed convex subset of the space Qj . Let

Q = {q = (qij) : qij ∈ Qj}

with the inner product and norm:

(p, q)Q =
∑

i,j

wij(pij , qij)Qj , ‖q‖Q = (q, q)
1/2
Q

for some positive weighting constants wij . We seek the unknown source field p = (pij) of the

multispectral BLT problem in

Qad = {q ∈ Q : qij ∈ Qad,j} .

With possibly different positive weighting constants wℓ,ij , we let

(ℓ(p), ℓ(q))
Ql

=
∑

i,j

wℓ,ij

(

ℓi(p∗j), ℓi(q∗j)
)

Qj
, |ℓ(q)|Ql

= (ℓ(q), ℓ(q))
1/2
Ql

.

We also need the space G = G1 × G2 × · · · × Gi0 , endowed with the inner product and norm

(f , g)G =
∑

i

wi(fi, gi)Gi , ‖g‖G = (g, g)
1/2
G

with positive constants wi.

We assume Ω ⊂ R
d (d ≤ 3) is a non-empty, open, bounded set with a Lipschitz boundary

Γ, A(x) ∈ [Al, Au] for some constants 0 < Al ≤ Au < ∞, Di ∈ L∞(Ω), Di ≥ D0 a.e. in Ω for

some constant D0 > 0, µa,i ∈ L∞(Ω), µa,i ≥ 0 a.e. in Ω, f̃i ∈ L2(Γi).

For any q ∈ Qj, define uij(q) ∈ V to be the unique solution of the problem

∫

Ω

[Di∇uij(q) · ∇v + µa,iuij(q) v] dx +

∫

Γ

1

2 A
uij(q) v ds =

∫

Ωj

q v dx ∀ v ∈ V. (4.4)

Write fi = 2Af̃i, f = (fi). Let ε ≥ 0, M > 0, and define a penalized Tikhonov regularization

functional

JεM (q) =
1

2

[

‖U(q) − f‖2
G + ε ‖q‖2

Q + M |ℓ(q)|2Ql

]

.

We then introduce the following problem.

Problem 4.2. Find pεM ∈ Qad such that JεM (pεM ) = inf {JεM (q) : q ∈ Qad}.

We have the following results for the problem.

• Problem 4.2 with ε > 0 has a unique solution pεM ∈ Qad, and the solution pεM ∈ Qad is

characterized by a variational inequality

(U(pεM ) − f , U(q − pεM ))G

+ ε (pεM , q − pεM )
Q

+ M (ℓ(pεM ), ℓ(q − pεM ))
Ql

≥ 0 ∀q ∈ Qad.
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When Qad,j ⊂ Qj are subspaces, the inequality is reduced to a variational equation

(U(pεM ) − f , U(q))G + ε (pεM , q)Q + M (ℓ(pεM ), ℓ(q))
Ql

= 0 ∀q ∈ Qad.

• The solution pεM of Problem 3.2 depends continuously on the data.

• Suppose 0 ∈ Qad,j. Then as M → ∞, pεM → pε = (ωijpε,j) in Q, where pε = (pε,j) with

pε,j = S(pε,∗j), and pε ∈ Qad is the unique solution of the problem

Jε(pε) = inf {Jε(q) : q ∈ Qad} , Jε(q) =
1

2

[

‖W (q) − f‖2
G + ε ‖q‖2

Q

]

,

where Q = Q1 × · · · × Qj0 and Qad = Q1,ad × · · · × Qj0,ad.

• Assume S0M , the solution set of Problem 4.2 with ε = 0, is nonempty. Then S0M is

closed and convex. Moreover,

pεM → p0M in Q, as ε → 0,

where p0M ∈ S0M satisfies

‖p0M‖Q = inf {‖q‖Q : q ∈ S0M} .

In particular, if the solution set S0M = {pM} is a singleton. Then

pεM → pM in Q, as ε → 0.

One particular multispectral BLT problem is discussed in [15], where some numerical results

are reported.

Finally, we remark that the RTE based BLT problem is being under investigation.
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