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A numerical method for generalized Fokker-Planck equations

Weimin Han, Yi Li, Qiwei Sheng, and Jinping Tang

Abstract. Generalized Fokker-Planck (GFP) equations have been employed
to approximate the radiative transfer equation in applications of highly for-
ward peaked biological media. In this paper, we discuss a numerical method
for solving GFP equations. The numerical method is based on a variational
formulation involving even and odd components of the solution. We show the
well-posedness of the variational formulation and develop a Galerkin method
where spherical harmonics are used for the angular approximation and finite
elements are used for spatial discretization. An iteration procedure is intro-
duced to solve the problem and its convergence is shown.

1. Introduction

The radiative transfer equation (RTE) arises in a wide range of applications,
such as neutron transport, heat transfer, radiation in atmosphere and ocean, optics.
The RTE also describes the light propagation within biological media ([NW01]),
and for this reason, in recent years, there has been active research in the community
of medical optics on direct and inverse problems of the RTE (cf. e.g. [A99,B09,
HEHL11]). The steady state monochromatic form of the RTE is ([LM84,A98])

(1.1) ω·∇u+ μtu = μs Su+ f in Q := X × Ω.

Here X is a bounded domain in R
3, Ω is the unit sphere in R

3, μt = μa + μs, μa

is the absorption coefficient, μs is the scattering coefficient, f is a source function,
and S is an integral operator of the form

Su(x,ω) =

∫
Ω

η(x,ω·ω′) u(x,ω′) dσ(ω′)

with the phase function η(x,ω·ω′) ≥ 0 satisfying the normalization condition∫
Ω

η(x,ω·ω′) dσ(ω′) = 1 ∀ω ∈ Ω, ∀x ∈ X.

A well-known example is the Henyey-Greenstein phase function (cf. [HG41])

(1.2) η(t) =
1− g2

4π(1 + g2 − 2gt)3/2
, t ∈ [−1, 1].
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The parameter g ∈ (−1, 1) is the anisotropy factor of the scattering medium: g > 0
for forward scattering, and the bigger the value of g, the stronger the degree of
forward scattering. In biomedical optics, g is close to 1.

We assume the boundary ∂X is C1 and use ν(x) to denote the unit outward
normal vector at x ∈ ∂X. Let Γ be the boundary of the set Q and define the
inflow boundary Γ− = {(x,ω) ∈ Γ : ν(x)·ω < 0} and outgoing boundary Γ+ =
{(x,ω) ∈ Γ : ν(x)·ω > 0}. We assume

μt, μs ∈ L∞(X), μs ≥ 0 a.e. in X, μa ≥ c0 > 0 a.e. in X,(1.3)

f ∈ L2(Q).(1.4)

These assumptions are naturally valid in applications.
Due to the high dimensionality and integro-differential form of the equation, it is

very challenging to numerically solve the RTE accurately. Moreover, in applications
in biomedical optics, the light propagation within the biological media is highly
forward peaked, leading to additional numerical difficulties for solving the RTE. It
is shown in the literature (e.g. [KimK03]) that for applications in highly forward
peaked biological media, the following generalized Fokker-Planck equation (GFPE)
is a good approximation to RTE:

(1.5) ω·∇u+ μtu = μs(I − αΔ∗)−1u+ f in Q.

Here, α(x) ≥ 0 and Δ∗ is the Laplace–Beltrami operator, i.e., the restriction of the
Laplace operator on the unit sphere ([AH12]). For the Henyey-Greenstein phase
function (1.2), α = (1 − g)/(2g) is a constant. In this paper, we consider any
GFPE of the form (1.5) with α bounded and positively-valued. The equation (1.5)
is supplemented by the following boundary condition:

(1.6) u = uin on Γ−.

Introduce a function space

H1,2(Q) := {v ∈ L2(Q) | ω·∇v ∈ L2(Q)},

ω·∇v being the generalized directional derivative of v in the direction ω. We denote
by (u, v)Q the integral of uv on Q, and similarly define (·, ·)Γ, (·, ·)Γ− , (·, ·)Ω. We
assume

(1.7) uin ∈ L2
∗(Γ−),

where L2
∗(Γ−) denotes the space of measurable functions v on Γ− such that the

norm ‖v‖L2
∗(Γ−) := (|ν·ω| v, v)1/2Γ−

< ∞. It is shown in [HECW11] that under the

assumptions (1.3)–(1.4) and (1.7), the problem (1.5)–(1.6) has a unique solution
u ∈ H1,2(Q) and this solution is Lipschitz continuous with respect to the source
function f and the boundary condition uin. Moreover, if f ≥ 0 and uin ≥ 0, then
u ≥ 0. This property is desirable for the GFPE to be a physically meaningful
model.

In [ES12], a mixed weak framework is studied for RTE. In this paper, we
introduce a similar weak formulation for the problem (1.5)–(1.6) and study its
numerical approximation. Although it is possible to give the presentation for any
spatial dimension, for definiteness and due to the importance and relevance in
applications, we focus on the case of three spatial dimension.
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2. Spaces and operators

We introduce additional function spaces and operators that will be needed later.
Let V0 := L2(Q) and let V1 be the subspace of H1,2(Q) with traces on Γ in L2

∗(Γ).
Define the transport operator from V1 to V0 by v(x,ω) �→ ω · ∇v(x,ω), and

the removal operator R : V0 → V0 by

(Rv)(x,ω) := μt(x) v(x,ω)− μs(x) (I − αΔ∗)−1 v(x,ω).

We have the following properties for the removal operator R.

Proposition 2.1. The operator R : V0 → V0 is linear, and is
(a) self-adjoint: (Ru, v)Q = (u,Rv)Q ∀u, v ∈ V0,
(b) bounded: ‖Rv‖V0

≤ c1‖v‖V0
∀ v ∈ V0,

(c) elliptic: (Rv, v)Q ≥ c0‖v||2V0
, c0 > 0, ∀ v ∈ V0.

Proof. The linearity and self-adjointness of R are easily seen.
Let w = (I − αΔ∗)

−1
v. Then w − αΔ∗w = v, and

(w, z)Ω + α (∇∗w,∇∗z)Ω = (v, z)Ω ∀ z ∈ H1(Ω),

where H1(Ω) :=
{
z ∈ L2(Ω) : |∇∗z| ∈ L2(Ω)

}
. Take z = w to obtain

‖w‖2L2(Ω) + α ‖|∇∗w|‖2L2(Ω) ≤ ‖v‖L2(Ω)‖w‖L2(Ω) ≤
1

2
‖w‖2L2(Ω) +

1

2
‖v‖2L2(Ω).

Thus,

(2.1) ‖w‖2L2(Ω) ≤ ‖v‖2L2(Ω).

Therefore, ‖w‖V0
≤ ‖v‖V0

, and the boundedness (b) is valid:

‖Rv‖V0
≤ ‖μtv‖V0

+ ‖μsw‖V0
≤ c1‖v‖V0

, c1 = ‖μt‖L∞(X) + ‖μs‖L∞(X).

By the Cauchy-Schwarz inequality,

(μsw, v)Q ≤ (μsw,w)
1/2
Q (μsv, v)

1/2
Q ≤ (μsv, v)Q .

Hence,

(Rv, v)Q = (μtv, v)Q − (μsw, v)Q ≥ (μtv, v)Q − (μsv, v)Q

= (μav, v)Q ≥ c0‖v‖2V0
,

i.e., the ellipticity (c) holds. �

Given the properties stated in Proposition 2.1, we can apply the Lax-Milgram
Lemma to conclude the following result.

Corollary 2.2. The operator R has an inverse R−1 : V0 → V0 that is linear,
self-adjoint, bounded and elliptic. Moreover, operators R±1/2 are well-defined. The

expressions ‖v‖R := (Rv, v)
1/2
Q and ‖v‖R−1 :=

(
R−1v, v

)1/2
Q

define norms on V0 that

are equivalent to the standard norm ‖v‖V0
.

The weak formulations studied in this paper involve the splitting of a function
v into even part v+ and odd part v−, defined by

v+(x,ω) :=
1

2
(v(x,ω) + v(x,−ω)) , v−(x,ω) :=

1

2
(v(x,ω)− v(x,−ω)) .
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Then given a function space V , we define V ± to be the subspaces of V consisting of
even and odd functions in V . In particular, we will use the space W := V +

1 ⊕ V −
0 .

The norm in the space W is

‖v‖W :=
(
‖ω·∇v+‖2R−1 + ‖v‖2R + ‖v+‖2L2

∗(Γ)

)1/2

,

where ‖v‖2R = (Rv, v)Q, ‖v‖2R−1 = (R−1v, v)Q.

It is easy to see that ω·∇∗v ∈ V ∓
0 for v ∈ V ±

1 . Moreover, the removal operator
R is parity preserving, i.e., R : V +

1 → V +
1 , and V −

0 → V −
0 .

3. A weak formulation

To derive the weak formulation, rewrite the equation (1.5) as

ω·∇u+Ru = f.

Multiply the equation by a smooth function v and integrate,

(ω·∇u, v)Q + (Ru, v)Q = (f, v)Q .

Use the decomposition u = u++u− and v = v+ + v− in terms of the even and odd
components to obtain

(ω·∇u, v)Q =
(
ω·∇u+, v−

)
Q
+
(
ω·∇u−, v+

)
Q
.

Then perform an integration by parts,(
ω·∇u−, v+

)
Q
=

(
ν·ω u−, v+

)
Γ
−
(
u−,ω·∇v+

)
Q
.

Note that (
ν·ω u−, v+

)
Γ
= 2

(
ν·ω u−, v+

)
Γ−

= 2
(
ν·ω (uin − u+), v+

)
Γ−

= 2
(
ν·ω uin, v

+
)
Γ−

+
(
|ν·ω|u+, v+

)
Γ
,

where the boundary condition (1.6) is applied. Then for a solution of the problem
(1.5)–(1.6),

(Ru, v)Q −
(
u−,ω·∇v+

)
Q
+

(
ω·∇u+, v−

)
Q
+
(
|ν·ω|u+, v+

)
Γ

= (f, v)Q − 2
(
ν·ω uin, v

+
)
Γ−

for any smooth function v. Define a bilinear form and a linear form over W as
follows:

b(u, v) := (Ru, v)Q −
(
u−,ω·∇v+

)
Q
+
(
ω·∇u+, v−

)
Q
+
(
|ν·ω|u+, v+

)
Γ
,(3.1)

�(v) := (f, v)Q − 2
(
ν·ω uin, v

+
)
Γ−

.(3.2)

Then the weak formulation is

(3.3) u ∈ W, b(u, v) = �(v) ∀ v ∈ W.

Theorem 3.1. Under the assumptions (1.3)–(1.4) and (1.7), the problem (3.3)
has a unique solution, and the solution depends continuously on the data.

As in [ES12], Theorem 3.1 is proved by employing the following result adapted
from [B71].
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Theorem 3.2. Assume b(·, ·) is a bounded bilinear form on W and there exists
a constant b0 > 0 such that

(3.4) inf
u∈W

sup
v∈W

b(u, v)

‖u‖W ‖v‖W
≥ b0, inf

v∈W
sup
u∈W

b(u, v)

‖u‖W ‖v‖W
≥ b0.

Then for any � ∈ W ′, the problem (3.3) has a unique solution u ∈ W and for some
constant c, ‖u‖W ≤ c ‖�‖W ′ .

In applying Theorem 3.2 to prove Theorem 3.1, the crucial part is to show
(3.4). For the bilinear form defined by (3.1), let us prove below the first inequality
of (3.4); the second inequality can be proved similarly.

For u �= 0, let u = u+R−1(ω·∇u+). Then ‖u‖W ≤ c ‖u‖W and

b(u, u) = (Ru, u)Q +
(
u,ω·∇u+

)
Q
+
(
ω·∇u+, R−1(ω·∇u+)

)
Q
+
(
|ν·ω|u+, u+

)
Γ
.

Now (
u,ω·∇u+

)
Q
=

(
u−,ω·∇u+

)
Q
=

(
R1/2u−, R−1/2(ω·∇u+)

)
Q

≥ −1

2
‖ω·∇u+‖2R−1 −

1

2
‖u−‖2R−1 .

Hence,

b(u, u) ≥ 1

2
‖ω·∇u+‖2R−1 +

1

2
‖u‖2R + ‖u+‖2L2

∗(Γ)
≥ 1

2
‖u‖2W .

This inequality, combined with ‖u‖W ≤ c ‖u‖W , implies the first inequality of (3.4)
for some constant b0 > 0.

The rest of the assumptions of Theorem 3.2 can be verified easily. Thus, The-
orem 3.1 holds. As in [ES12], it can be further proved that the solution u of the
problem (3.3) satisfies the equation (1.5) a.e. in Q and the boundary condition (1.6)
a.e. on Γ−.

Using w := (I−αΔ∗)−1u as an unknown, we can rewrite the problem (3.3) as:
Find u+ ∈ V +

1 , u− ∈ V −
0 and w(x, ·) ∈ H1(Ω) for a.e. x ∈ X such that(

μtu
+ − μsw

+, v+
)
Q
−
(
u−,ω·∇v+

)
Q
+
(
|ν·ω|u+, v+

)
Γ

(3.5)

=
(
f+, v+

)
Q
− 2

(
ν·ω uin, v

+
)
Q

∀ v+ ∈ V +
1 ,(

μtu
− − μsw

−, v−
)
Q
+
(
ω·∇u+, v−

)
Q
=

(
f−, v−

)
Q

∀ v− ∈ V −
0 ,(3.6)

(w, v)Ω + α (∇∗w,∇∗v)Ω = (u, v)Ω ∀ v ∈ H1(Ω).(3.7)

4. Galerkin approximation

For a discretization of the problem (3.3), we use spherical harmonics of an
arbitrary order for the angular approximation and finite elements for spatial dis-
cretization. For this purpose, denote by h the meshsize of a finite element partition
of the domain X. Let V1,h be the linear element space of continuous piecewise lin-
ear functions and V0,h be the space of piecewise constant functions. For a positive
integer n, let {Yn,m}nm=−n be a basis of spherical harmonics of order n, e.g., in
spherical coordinates,

(−1)(m+|m|)/2
[
(2n+ 1) (n− |m|)!

4π (n+ |m|)!

] 1
2

(sin θ)mP (|m|)
n (cos θ) eimφ, −n ≤ m ≤ n,
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where P
(|m|)
n (t) is the |m|th derivative of Pn(t), the Legendre polynomial of degree

n. In real valued form, the following basis functions are used:[
(2n+ 1) (n−m)!

2π (n+m)!

] 1
2

(sin θ)mP (m)
n (cos θ) cos(mφ), 0 ≤ m ≤ n,

[
(2n+ 1) (n−m)!

2π (n+m)!

] 1
2

(sin θ)mP (m)
n (cos θ) sin(mφ), 1 ≤ m ≤ n.

See [AH12] for an introduction of spherical harmonics. We then define the following
finite dimensional spaces of combined finite elements and spherical harmonics:

V +
1,h,n =

⎧⎨
⎩v+h,n(x,ω) =

n∑
j=−n

2j∑
i=−2j

vh,2j,i(x)Y2j,i(ω) : vh,2j,i ∈ V1,h

⎫⎬
⎭ ,

V −
0,h,n =

⎧⎨
⎩v−h,n(x,ω) =

n∑
j=−n−1

2j+1∑
i=−(2j+1)

vh,2j+1,i(x)Y2j+1,i(ω) : vh,2j+1,i ∈ V0,h

⎫⎬
⎭ ,

and Wh,n = V +
1,h,n ⊕ V −

0,h,n. Then any function vh,n ∈ Wh,n can be expressed as

vh,n = v+h,n + v−h,n with v+h,n ∈ V +
1,h,n and v−h,n ∈ V −

0,h,n. Note that ω·∇v+h,n ∈ V −
0,h,n

for any v+h,n ∈ V +
1,h,n. This property ensures the discrete version of (3.4): For the

same constant b0 > 0,

inf
uh,n∈Wh,n

sup
vh,n∈Wh,n

b(uh,n, vh,n)

‖uh,n‖W ‖vh,n‖W
≥ b0,

inf
vh,n∈Wh,n

sup
uh,n∈Wh,n

b(uh,n, vh,n)

‖uh,n‖W ‖vh,n‖W
≥ b0.

Then the Galerkin approximation of the weak formulation (3.3)

(4.1) uh,n ∈ Wh,n, b(uh,n, vh,n) = �(vh,n) ∀ vh,n ∈ Wh,n

has a unique solution and for the error,

(4.2) ‖u− uh,n‖W ≤ 2 b0 inf
vh,n∈Wh,n

‖u− vh,n‖W .

It can be verified that similar to (3.5)–(3.7), the discrete problem (4.1) can be
rewritten as: Find u+

h,n ∈ V +
1,h,n, u

−
h,n ∈ V −

0,h,n and wh,n ∈ Wh,n such that

(
μtu

+
h,n − μsw

+
h,n, v

+
h,n

)
Q
−
(
u−
h,n,ω·∇v+h,n

)
Q
+
(
|ν·ω|u+

h,n, v
+
h,n

)
Γ

(4.3)

=
(
f+, v+h,n

)
Q
− 2

(
ν·ω uin, v

+
h,n

)
Q

∀ v+h,n ∈ V +
1,h,n,

(
μtu

−
h,n − μsw

−
h,n, v

−
h,n

)
Q
+
(
ω·∇u+

h,n, v
−
h,n

)
Q
=

(
f−, v−h,n

)
Q

∀ v−h,n ∈ V −
0,h,n,

(4.4)

(wh,n, vn)Ω + α (∇∗wh,n,∇∗vn)Ω = (uh,n, vn)Ω ∀ vn ∈ Vn.

(4.5)

Here,

Vn = span {Yj,i(ω) : −j ≤ i ≤ j, −2n− 1 ≤ j ≤ 2n+ 1} .
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5. An iteration procedure

The form (3.5)–(3.7) or the discrete version (4.3)–(4.5) naturally suggests an
iteration method for solving the problems. Here, to simplify the notation, we discuss
the iteration method for solving (3.5)–(3.7) as an example. With an initial guess
w0, say w0 = 0, we define a sequence {(uk, wk)}k≥1 by the following: u+

k ∈ V +
1 ,

u−
k ∈ V −

0 and wk(x, ·) ∈ H1(Ω) for a.e. x ∈ X such that(
μtu

+
k − μsw

+
k−1, v

+
)
Q
−
(
u−
k ,ω·∇v+

)
Q
+
(
|ν·ω|u+

k , v
+
)
Γ

(5.1)

=
(
f+, v+

)
Q
− 2

(
ν·ω uin, v

+
)
Q

∀ v+ ∈ V +
1 ,(

μtu
−
k − μsw

−
k−1, v

−)
Q
+
(
ω·∇u+

k , v
−)

Q
=

(
f−, v−

)
Q

∀ v− ∈ V −
0 ,(5.2)

(wk, v)Ω + α (∇∗wk,∇∗v)Ω = (uk, v)Ω ∀ v ∈ H1(Ω).(5.3)

The sequence is well defined. Here we focus on convergence of the iteration method.

Theorem 5.1. Under the assumptions (1.3)–(1.4) and (1.7), the iteration
method converges:

‖u− uk‖L2(Q) + ‖w − wk‖L2(Q) + ‖u+ − u+
k ‖L2

∗(Γ)
→ 0 as k → ∞.

Proof. Define the errors eu,k := u−uk, ew,k := w−wk, and their even and odd
components eu+,k = e+u,k = u+ − u+

k , etc. By subtracting the equations (5.1)–(5.3)

from the corresponding equations (3.5)–(3.7), we obtain the error relations(
μteu+,k, v

+
)
Q
−
(
eu−,k,ω·∇v+

)
Q
+
(
|ν·ω| eu+,k, v

+
)
Γ

(5.4)

=
(
μsew+,k−1, v

+
)
Q

∀ v+ ∈ V +
1 ,(

μteu−,k, v
−)

Q
+
(
ω·∇eu+,k, v

−)
Q
=

(
μsew−,k−1, v

−)
Q

∀ v− ∈ V −
0 ,(5.5)

(ew,k, v)Ω + α (∇∗ew,k,∇∗v)Ω = (eu,k, v)Ω ∀ v ∈ H1(Ω).(5.6)

Take v+ = eu+,k in (5.4), v− = eu−,k in (5.5), and add the two resulting inequalities,

(5.7) (μteu,k, eu,k)Q +
(
|ν·ω| eu+,k, eu+,k

)
Γ
= (μsew,k−1, eu,k)Q .

For a.e. x ∈ X, take v = ew,k in (5.6) to obtain

(5.8) (ew,k, ew,k)Ω + (α∇∗ew,k,∇∗ew,k)Ω = (eu,k, ew,k)Ω .

From the assumption (1.3), we know that

κ := sup
x∈X

μs(x)

μt(x)
< 1.

By (5.7), we then have
(5.9)

(μteu,k, eu,k)Q +
(
|ν·ω| eu+,k, eu+,k

)
Γ
≤ κ (μtew,k−1, ew,k−1)

1/2
Q (μteu,k, eu,k)

1/2
Q .

Then,

(μteu,k, eu,k)Q ≤ κ2 (μtew,k−1, ew,k−1)Q .

Using (5.9) again,

(5.10) (μteu,k, eu,k)Q +
(
|ν·ω| eu+,k, eu+,k

)
Γ
≤ κ2 (μtew,k−1, ew,k−1)Q .

From (5.8),

(5.11) (μtew,k, ew,k)Q ≤ (μteu,k, ew,k)Q .
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Combining (5.10) and (5.11),

(5.12) (μteu,k, eu,k)Q +
(
|ν·ω| eu+,k, eu+,k

)
Γ
≤ κ2 (μteu,k−1, eu,k−1)Q .

An induction on (5.12) shows that

(μteu,k, eu,k)Q +
(
|ν·ω| eu+,k, eu+,k

)
Γ
≤ κ2k (μteu,0, eu,0)Q → 0 as k → ∞.

Moreover, by (5.11), we also have

(μtew,k, ew,k)Q → 0 as k → ∞.

Thus, the stated convergence result holds. �

Implementation and simulation of the Galerkin method (4.1), as well as studies
of related inverse problems, are future research topics.
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