
Applied Mathematics and Computation 300 (2017) 70–78 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Radiative transfer with delta-Eddington-type phase functions 

Weimin Han 

a , ∗, Feixiao Long 

b , Wenxiang Cong 

b , Xavier Intes b , Ge Wang 

b 

a Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA 
b Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA 

a r t i c l e i n f o 

Keywords: 

Radiative transfer equation 

Generalized delta-Eddington phase function 

Existence 

Uniqueness 

Continuous dependence 

a b s t r a c t 

The radiative transfer equation (RTE) arises in a wide variety of applications, in particular, 

in biomedical imaging applications associated with the propagation of light through the bi- 

ological tissue. However, highly forward-peaked scattering feature in a biological medium 

makes it very challenging to numerically solve the RTE problem accurately. One idea to 

overcome the difficulty associated with the highly forward-peaked scattering is through 

the use of a delta-Eddington phase function. This paper is devoted to an RTE framework 

with a family of delta-Eddington-type phase functions. Significance in biomedical imaging 

applications of the RTE with delta-Eddington-type phase functions are explained. Math- 

ematical studies of the problems include solution existence, uniqueness, and continuous 

dependence on the problem data: the inflow boundary value, the source function, the ab- 

sorption coefficient, and the scattering coefficient. Numerical results are presented to show 

that employing a delta-Eddington-type phase function with properly chosen parameters 

provides accurate simulation results for light propagation within highly forward-peaked 

scattering media. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The radiative transfer equation (RTE) arises in a wide variety of applications, such as astrophysics [22] , atmosphere and

ocean [26,31] , heat transfer [20] , neutron transport [7,9] , optical molecular imaging [21,28] , and so on. Recently, there is

much interest in analysis and numerical simulation of the RTE and its related inverse problems, motivated by applications

in biomedical optics [2,3,5,11–15,23,25] . 

Photon propagation in biological or engineered tissues can be well described by the radiative transport equation (RTE).

However, the direct solution of the RTE is computationally expensive because of the dimensionality of the equation and the

complexity of the phase function. It is rather common in practice that the diffusion approximation is based upon to enable

optical molecular tomographic techniques that reveal optically labeled molecular and cellular activities in vivo. A majority

of such studies target small animal models of human diseases and 3D tissue engineering constructs of regenerative func-

tionalities. Photon propagation in these media is strongly affected by scattering. When samples are not large, characteristic

forward scattering is observable and responsible for substantial components in the measurement. Inspired by this obser-

vation, delta-Eddington-type phase functions were proposed to model the underlying physics, simplify the solution of the

RTE, and successfully applied in multiple applications. Therefore, it is desirable and timely to generalize this approach and
establish its theoretical foundation. 
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The RTE for the complicated process of absorption and scattering of light within the biological medium is 

ω ·∇u + μt u − μs Su = f in X × �. (1.1)

Here, X is a domain in R 

3 occupied by the biological medium and � is the unit sphere in R 

3 for the directions of the photon

propagation. A generic point in X is denoted by x whereas a generic point in � is denoted by ω. The symbol ∇ stands for

the gradient with respect to the spatial variable x . The unknown function u ( x , ω) is the angular flux at the point x in the

direction ω. The RTE (1.1) contains two medium parameters, the total cross-section μt ( x ) and the scattering cross-section

μs ( x ), that are related by μt = μa + μs with μa being the absorption cross-section. The integral operator S is given by the

formula 

Su (x, ω) = 

∫ 
�

p( ̂  ω ·ω) u (x, ˆ ω ) d ̂  ω , (1.2)

where the phase function p( ̂  ω ·ω) is non-negative and is normalized: ∫ 
�

p( ̂  ω ·ω) d ̂  ω = 1 , 

or equivalently, ∫ 1 

−1 

p(t) dt = 

1 

2 π
. 

The function f ( x , ω) represents a source density. 

The phase function p describes the scattering property of the biological medium. The precise form of the phase function

is usually unknown for applications, and a benchmark choice is the Henyey–Greenstein phase function (cf. [16] ): 

p HG,g (t) = 

1 − g 2 

4 π
(
1 + g 2 − 2 gt 

)3 / 2 
, t := ˆ ω ·ω ∈ [ −1 , 1] , 

where the parameter g ∈ (−1 , 1) is the anisotropy factor of the scattering medium. For isotropic scattering, g = 0 ; for for-

ward scattering, g > 0; and for backward scattering, g < 0. For applications in biomedical imaging, the value of g is typically

between 0.9 and 0.95. For this range of the value of g , the corresponding integral operator (1.2) presents numerical singu-

larity, bringing in additional difficulty in numerically solving the RTE problem. The biological tissue scatters light strongly

in the forward direction, and so it is natural to approximately model the effect of the strongly forward scattering through

the inclusion of a delta function in the phase function. In this paper, we consider the RTE problem with a general delta-

Eddington-type phase function of the following form 

p(t) = 

1 

4 π
[ (1 − p 0 ) r(t) + 2 p 0 δ(1 − t) ] , (1.3)

where p 0 ∈ [ −1 , 1] is the weighting factor measuring the anisotropy of the photon scattering, δ is the Dirac delta function,

and r ( t ) represents a remainder part of the phase function which is smooth and slowly varying. For strongly forward peaked

media, p 0 is less than but close to 1: 

1 − ε < p 0 < 1 , 

where ε > 0 is a small number. Physical considerations dictate that the remainder function r ( t ) satisfies the following

condition: 

r(t) ≥ 0 , 
1 

2 

∫ 1 

−1 

r(t) dt = 1 . (1.4)

The formula (1.3) includes as particular cases several phase functions proposed in the literature. We list some of them in

the following. 

The transport approximation [10] corresponds to the choice r(t) = 1 , i.e., the phase function is the sum of a forward

delta function and an isotropic scattering function. 

The delta-Eddington phase function [17] 

p dE (t) = 

1 

4 π

[
(1 − p 0 ) 

(
1 + 3 g ′ t 

)
+ 2 p 0 δ(1 − t) 

]
, (1.5)

corresponds to the choice 

r(t) = 1 + 3 g ′ t, (1.6)

where g ′ is an asymmetry factor of the phase function used to modulate the weakly anisotropic scattering. The phase func-

tion (1.5) is a linear combination of a forward delta function and a weakly anisotropic scattering function. Formally, the

transport approximation is a special case of the delta-Eddington phase function with g ′ = 0 . Note that the condition (1.4) re-

duces to 

−1 ≤ g ′ ≤ 1 

. 

3 3 
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Since the anisotropic scattering is weak, the asymmetry factor g ′ of the phase function is a small positive number. Thus, for

the phase function (1.5) , we have the following characteristics: 

1 − ε < p 0 < 1 , 0 < g ′ ≤ 1 

3 

. (1.7) 

In [8] , for a reflection boundary condition, the boundary value problem of the RTE (1.1) with the phase function (1.5) is

transformed to a system of two integral equations, which provides convenience to numerical treatment in some applications.

Some other related references include [6,18,24] . 

The delta- M method [29] is an extension of the delta-Eddington approximation and has the following form for the re-

mainder function: 

r(t) = 

N ∑ 

n =0 

( 2 n + 1 ) a n P n (t) , 

where N is a non-negative integer and P n is the Legendre polynomial of degree n . The coefficients { a n } N n =0 are chosen so

that the delta- M phase function has certain number of correct moments. 

For the delta-Henyey–Greenstein phase function, the remainder function is [19] 

r(t) = p HG,g 0 (t) , 

where g 0 ∈ [0, 1) is chosen so that the delta-Henyey–Greenstein phase function has the correct values of the first couple of

moments. The usefulness of this approach is that due to the presence of the delta function term in the phase function, the

parameter g 0 is expected to be much smaller than the anisotropy factor g of the scattering medium, and then the numerical

treatment of the RTE with the delta-Henyey–Greenstein phase function can be conducted much more efficiently. 

In this paper, we explore the solution existence, uniqueness and continuous dependence properties for the RTE (2.1) with

the general delta-Eddington-type phase function (1.3) , and provide numerical evidence that properly chosen values of the

parameters in the phase function leads to accurate numerical simulation results. The rest of the paper is organized as fol-

lows. In Section 2 , we state the boundary value problem of the RTE and introduce some function spaces needed in the

mathematical study of the problem. In Section 3 , we show rigorously the well-posedness of the problem. In Section 4 , we

present results from numerical experiments. The paper ends with a section of concluding remarks. 

2. Preliminaries 

We will assume that X is a domain in R 

3 with a Lipschitz boundary ∂X . For each fixed direction ω ∈ �, introduce a new

Cartesian coordinate system ( z 1 , z 2 , s ) by the relations x = z + sω, z = z 1 ω 1 + z 2 ω 2 , where ( ω 1 , ω 2 , ω) is an orthonormal

basis of R 

3 , z 1 , z 2 , s ∈ R . With respect to this new coordinate system, we denote by X ω the projection of X on the plane

s = 0 in R 

3 , and by X ω, z ( z ∈ X ω ) the intersection of the straight line { z + sω | s ∈ R } with X . We assume that the domain X

is such that for any ( ω, z ) with z ∈ X ω , X ω, z is the union of a finite number of line segments: 

X ω , z = ∪ 

N( ω , z ) 
i =1 

{ z + sω | s ∈ (s i, −, s i, + ) } . 
Here s i, ± = s i, ±(ω, z) depend on ω and z , and x i, ± := z + s i, ±ω are the intersection points of the line { z + sω | s ∈ R } with

∂X . We assume sup ω , z N(ω, z) < ∞ ; this assumption is known as a generalized convexity condition in the literature [27] . A

convex domain X satisfies the generalized convexity condition, since sup ω , z N(ω, z) = 1 . Consider the following subsets of

∂X : 

∂X ω , ± = { z + s i, ±ω | 1 ≤ i ≤ N(ω, z) , z ∈ X ω } , 
and introduce the following incoming and outgoing boundaries as subsets of � = ∂X × �: 

�− = { (x, ω) | x ∈ ∂X ω , −, ω ∈ �} , �+ = { (x, ω) | x ∈ ∂X ω , + , ω ∈ �} . 
Consider a Dirichlet boundary value problem for the RTE (1.1) , i.e. the following boundary value problem: 

ω ·∇u + μt u − μs Su = f in X × �, (2.1) 

u = u in on �−. (2.2) 

We need some function spaces in studying the boundary value problem (2.1) and (2.2) . Let 

Q := L 2 (X × �) , (2.3) 

be the Hilbert space of measurable functions on X × � with the inner product 

(u, v ) Q := 

∫ 
X×�

u (x, ω) v (x, ω) d x d ω 
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and the norm ‖ v ‖ Q := (v , v ) 1 / 2 
Q 

. The solution u of the boundary value problem (2.1) and (2.2) will be sought from the space

V := { v ∈ Q | ω ·∇v ∈ Q } . (2.4)

This space is denoted as H 

1, 2 ( X × �) in [1] , and is a Hilbert space with the inner product 

(u, v ) V := 

∫ 
X×�

[ ω ·∇u (x, ω ) ω ·∇v (x, ω ) + u (x, ω) v (x, ω) ] d x d ω, 

and the norm ‖ v ‖ V := (v , v ) 1 / 2 
V 

. We also need function spaces L 2 ( �±) on �±. They are Hilbert spaces of functions v on �±
with inner products 

(u, v ) L 2 (�±) := 

∫ 
�

dω 

∫ 
X ω 

N(ω,z) ∑ 

i =1 

u (z + s i, ±ω , ω ) v (z + s i, ±ω , ω ) dz, 

and corresponding norms ‖ v ‖ L 2 (�±) . We have the following statement for the trace of functions in V [1] . If v ∈ V and v | �− ∈
L 2 (�−) , then v | �+ ∈ L 2 (�+ ) and for some constant c depending only on X , 

‖ v ‖ L 2 (�+ ) ≤ c 
[‖ v ‖ V + ‖ v ‖ L 2 (�−) 

]
. (2.5)

The statement remains valid by switching �+ and �−. 

3. Well-posedness of the problem 

This section is devoted to a well-posedness analysis of the boundary value problem (2.1) and (2.2) with the phase func-

tion (1.3) . Without loss of generality, we prove the well-posedness result for the case where X is a convex domain in R 

3 .

This allows us to simplify various expressions and to focus on the essentials in the argument. All the discussions in the

rest of the paper can be extended to the general case where the domain X satisfies the generalized convexity condition.

Under the convexity assumption on X , for each ω ∈ � and z ∈ X ω , X ω , z := { z + sω | s ∈ (s −, s + ) } is a line segment, where

s ± = s ±(ω, z) depend on ω and z , and x ± := z + s ±ω are the intersection points of the line { z + sω | s ∈ R } with ∂X . 

Theorem 3.1. Assume 0 < p 0 < 1, (1.4) , μa , μs ∈ L ∞ ( X ), μa , μs ≥ 0 a.e. in X , and 

κ := sup 

x ∈ X 

( 1 − p 0 ) μs (x ) 

μa (x ) + ( 1 − p 0 ) μs (x ) 
< 1 . (3.1)

Then, given 

f ∈ Q, u in ∈ L 2 (�−) , (3.2)

the problem (2.1) and (2.2) with the phase function (1.3) has a unique solution u ∈ V , and 

‖ u ‖ V ≤ c 
[‖ u in ‖ L 2 (�−) + ‖ f‖ Q 

]
. (3.3)

Moreover, the solution depends continuously on all the data. 

Proof. We define modified scattering parameter ˜ μs and the modified total attenuation parameter ˜ μt as follows: 

˜ μs = ( 1 − p 0 ) μs , ˜ μt = μa + ˜ μs . 

Then with the phase function (1.3) , we can rewrite the RTE (2.1) as 

ω ·∇u (x, ω) + ˜ μt (x ) u (x, ω) = ˜ μs S 1 u (x, ω) + f (x, ω) , (3.4)

where 

S 1 u (x, ω) = 

1 

4 π

∫ 
�

r( ̂  ω ·ω) u (x, ˆ ω ) d ̂  ω . (3.5)

Let us convert the boundary value problem (3.4) and (2.2) to a fixed-point formulation. In the following, we write s ±
instead of s ±( ω, z ) wherever there is no danger for confusion. We write the Eq. (3.4) as 

∂ 

∂s 
u (z + sω , ω ) + ˜ μt (z + sω ) u (z + sω , ω ) = ˜ μs (z + sω) S 1 u (z + sω , ω ) + f (z + sω , ω ) (3.6)

and multiply it by an integrating factor λ(s ) := exp 

(∫ s 
s − ˜ μt (z + sω) ds 

)
to obtain 

∂ 

∂s 
[ λ(s ) u (z + sω , ω ) ] = λ(s ) [ ̃  μs (z + sω) S 1 u (z + sω , ω ) + f (z + sω , ω ) ] . 

Integrate this equation from s − to s : 

λ(s ) u (z + sω , ω ) − u in (z + s −ω , ω ) = 

∫ s 

s −
λ(t) [ ̃  μs (z + tω) S 1 u (z + tω , ω ) + f (z + tω , ω ) ] dt. 
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Thus, 

u = Au + F , (3.7) 

where 

Au (z + sω , ω ) = λ(s ) −1 

∫ s 

s −
λ(t) ˜ μs (z + tω) S 1 u (z + tω , ω ) dt, 

F (z + sω , ω ) = λ(s ) −1 

[
u in (z + s −ω , ω ) + 

∫ s 

s −
λ(t) f (z + tω , ω ) dt 

]
. 

Reversing the above procedure, we can derive (3.6) , and then (2.1) and (2.2) , from (3.7) . 

Let Q ˜ μt 
be the space of L 2 ( X × �) functions with the weighted norm 

‖ v ‖ Q ˜ μt 
:= 

[∫ 
X×�

˜ μt (x ) v (x, ω) 2 d x d ω 

]1 / 2 

. 

This weighted norm is equivalent to the norm ‖ v ‖ Q for v ∈ Q . Hence, Q ˜ μt 
is also a Hilbert space. We will show the operator

A : Q ˜ μt 
→ Q ˜ μt 

is a contraction. We start with the inequality 

∫ s + 

s −
˜ μt (z + sω) | Au (z + sω , ω ) | 2 ds ≤

∫ s + 

s −

˜ μt (z + sω) 

λ(s ) 2 

[∫ s 

s −
λ(t) ˜ μs (z + tω) dt 

]

·
[∫ s 

s −
λ(t) ˜ μs (z + tω) | S 1 u (z + tω , ω ) | 2 dt 

]
ds. 

The assumption (3.1) implies 

κ = sup 

x ∈ X 

˜ μs (x ) 

˜ μt (x ) 
< 1 . 

Since ∫ s 

s −
λ(t) ˜ μs (z + tω) dt ≤ κ

∫ s 

s −
λ(t) ˜ μt (z + tω) dt = κ( λ(s ) − 1 ) < κ λ( s ) , 

we have ∫ s + 

s −
˜ μt (z + sω) | Au (z + sω , ω ) | 2 ds 

≤ κ

∫ s + 

s −
λ(s ) −1 ˜ μt (z + sω) 

∫ s 

s −
λ(t) ˜ μs (z + tω) | S 1 u (z + tω , ω ) | 2 d t d s 

= κ

∫ s + 

s −
λ(t) ˜ μs (z + tω) | S 1 u (z + tω , ω ) | 2 

[∫ s + 

t 

λ( s ) −1 ˜ μt ( z + sω) ds 

]
dt. 

Now ∫ s + 

t 

λ(s ) −1 ˜ μt (z + sω) ds = λ(t) −1 − λ(s + ) −1 < λ(t) −1 , 

we obtain ∫ s + 

s −
˜ μt (z + sω) | Au (z + sω , ω ) | 2 ds ≤ κ

∫ s + 

s −
˜ μs (z + tω) | S 1 u (z + tω , ω ) | 2 dt 

≤ κ2 

∫ s + 

s −
˜ μt (z + tω) | S 1 u (z + tω , ω ) | 2 dt. 

Integrating the above inequality first with respect to z ∈ X ω and then with respect to ω ∈ �, we have thus proved the

inequality 

‖ Au ‖ Q ˜ μt 
≤ κ ‖ S 1 u ‖ Q ˜ μt 

. (3.8) 

Furthermore, we have 

‖ S 1 u ‖ 

2 
Q ˜ μt 

= 

∫ 
X×�

˜ μt (x ) | S 1 u (x, ω) | 2 d x d ω 

= 

1 

(4 π) 2 

∫ 
X×�

˜ μt (x ) 

∣∣∣
∫ 
�

r( ̂  ω ·ω) u (x, ˆ ω ) d ̂  ω 

∣∣∣2 

d x d ω. 
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Note that ∣∣∣
∫ 
�

r( ̂  ω ·ω) u (x, ˆ ω ) d ̂  ω 

∣∣∣2 

≤
∫ 
�

r ( ̂  ω ·ω) d ̂  ω 

∫ 
�

r ( ̂  ω ·ω) u (x, ˆ ω ) 2 d ̂  ω 

= 4 π

∫ 
�

r( ̂  ω ·ω) u (x, ˆ ω ) 2 d ̂  ω , 

and ∫ 
X×�

˜ μt (x ) 

∫ 
�

r( ̂  ω ·ω) u (x, ˆ ω ) 2 d ̂  ω d x d ω = 4 π

∫ 
X×�

˜ μt (x ) u (x, ˆ ω ) 2 d x d ̂  ω . 

Thus, 

‖ S 1 u ‖ 

2 
Q ˜ μt 

≤ ‖ u ‖ 

2 
Q ˜ μt 

, 

i.e., 

‖ S 1 u ‖ Q ˜ μt 
≤ ‖ u ‖ Q ˜ μt 

. (3.9)

Combining (3.8) and (3.9) , we see that the operator A : Q ˜ μt 
→ Q ˜ μt 

is contractive and 

‖ Au ‖ Q ˜ μt 
≤ κ ‖ u ‖ Q ˜ μt 

. (3.10)

By an application of the Banach fixed-point theorem (cf. [4] or [32] ), we conclude that the Eq. (3.7) has a unique solution

u ∈ Q ˜ μt 
, i.e., u ∈ Q . We further deduce from the Eq. (3.4) that ω · ∇u ( x , ω) ∈ Q . Therefore, the solution u ∈ V . Using (3.10) , 

‖ u ‖ Q ˜ μt 
≤ ‖ Au ‖ Q ˜ μt 

+ ‖ ̃  μ1 / 2 
t F ‖ L 2 (X×�) ≤ κ ‖ u ‖ Q ˜ μt 

+ c 
[‖ u in ‖ L 2 (�−) + ‖ f‖ L 2 (X×�) 

]
. 

Thus, 

‖ u ‖ Q ≤ c 
[‖ u in ‖ L 2 (�−) + ‖ f‖ Q 

]
, 

and furthermore, by (3.4) we have the bound (3.3) . 

The Lipschitz continuity of the solution with respect to the source function f ∈ Q and the inflow value function

u in ∈ L 2 (�−) follows from (3.3) . 

Finally consider continuous dependence of the solution on the optical parameters μt and μs . Let ( μt , 1 , μs , 1 ) and ( μt , 2 ,

μs , 2 ) be two sets of the parameters satisfying the stated assumptions, and let u 1 ∈ V and u 2 ∈ V be the solutions of the

corresponding boundary value problems. The difference e := u 1 − u 2 satisfies the equation 

ω ·∇e + μt, 2 e − μs, 2 Se = −( μt, 1 − μt, 2 ) u 1 + ( μs, 1 − μs, 2 ) Su 1 in X × �, 

together with the homogeneous boundary condition on �−. Applying (3.3) , we have 

‖ e ‖ V ≤ c 
[‖ ( μt, 1 − μt, 2 ) u 1 ‖ Q + ‖ ( μs, 1 − μs, 2 ) Su 1 ‖ Q 

]
≤ c 

[‖ 

μt, 1 − μt, 2 ‖ L 2 (X ) ‖ u 1 ‖ Q + ‖ 

μs, 1 − μs, 2 ‖ L 2 (X ) ‖ Su 1 ‖ Q 

]
. 

So we have local Lipschitz continuous dependence of the solution with respect to the optical parameters in the L 2 ( X )

norm. �

Note that the condition (3.1) is trivially satisfied as long as the absorption effect cannot be ignored. 

We now provide a positivity property for the model (3.4) and (2.2) . This property is required for the model to be physi-

cally meaningful. 

Proposition 3.2. Keep the assumptions stated in Theorem 3.1 . If f ≥ 0 a.e. in X × � and u in ≥ 0 a.e. on �−, then for the solution

of the problem (3.4) and (2.2) , u ≥ 0 a.e. in X × �. 

Proof. From (3.7) , 

u = (I − A ) −1 F = 

∞ ∑ 

j=0 

A 

j F . 

By the assumptions, F ≥ 0 a.e. in X × �. Let us prove that this implies AF ≥ 0 a.e. in X × �. By definition of A , 

AF (z + sω , ω ) = λ(s ) −1 

∫ s 

s −
λ(t ) ˜ μs (z + t ω) S 1 F (z + t ω , ω ) dt. 

j 
Thus, AF ≥ 0 a.e. in X × �, and then for any positive integer j , A F ≥ 0 a.e. in X × �. Therefore, u ≥ 0 a.e. in X × �. �
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Fig. 1. 3D cube with μa = 0 . 1 mm 

−1 , μs = 15 mm 

−1 and g = 0 . 9 . For delta-Eddington phase function, p 0 = 0 . 85 , g ′ = 0 . 12 . The internal source is located at 

(0 , 0 , −1) . (a) The mesh of 3D cube; (b) The detector distribution at the bottom surface of the phantom. 

Fig. 2. Comparison between RTE and Monte Carlo (MC). (a) Comparison of normalized fluence obtained from RTE with Henyey–Greenstein phase function 

and MC simulation; (b) Comparison of normalized fluence obtained from RTE with delta-Eddington function and MC simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Numerical results 

We report numerical simulation results on an example. For this example, we use a homogeneous cubic phantom with

the geometric dimensions 10 × 10 × 8 mm 

3 , with coordinates [ −5 , 5] × [ −5 , 5] × [ −8 , 0] , and assign values of the optical

parameters for the phantom as follows: μa = 0 . 1 mm 

−1 , μs = 15 mm 

−1 , the anisotropy factor g = 0 . 9 and refractive index

1.0. The detectors are distributed at the bottom surface of the phantom, as shown in Fig. 1 . A Gaussian beam whose center

located at the position (0, 0, 0) is used to simulate photon propagation inside media. The Gaussian beam has intensity

distribution 

g(x, y ;σ ) = 

1 

2 π σ 2 
e −(x 2 + y 2 ) / (2 σ 2 ) , 

where σ controls the beam width and is set to be 0.5. 

Using the Henyey–Greenstein (H–G) scattering phase function, radiative transport equation (RTE) simulator and Monte 

Carlo simulation are implemented respectively to simulate photons propagation in the object and the photon fluence is

recorded by virtual detectors on the surface of the object. In our example, a mesh-based Monte Carlo (MC) with wide-filed

sources simulation [30] was employed with 10 8 photons. Meanwhile, the delta-Eddington scattering phase function (1.5) is

used to simulate photon propagation. According to our theoretical analysis, the parameters of the delta-Eddington (D-E)

phase function stay in the range (1.7) . The coefficients of the corresponding Legendre polynomial series for the remainder

function r ( t ) are a 0 = 1 and a 1 = g ′ . Here, we choose the anisotropy factor g = 0 . 9 , and take the parameters as p 0 = 0 . 85 and

g ′ = 0 . 12 in the delta-Eddington phase function. Based on the delta-Eddington scattering phase function, RTE is performed to

acquire the photon fluence on the surface of the object. Fig. 2 gives the comparison of the photon fluences between the two

scattering phase functions. The photon fluence on the surface of the phantom is in good agreement with the counterpart

obtained from the Monte Carlo simulation with the Henyey–Greenstein scattering phase function. 
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Fig. 3. Contours of logarithm of photon density acquired by solving RTE with the delta-Eddington phase function. The solid curves represent the solution 

to RTE and the dashed curves represent the Monte Carlo (MC) results. (a) Oyz -plane. The values from innermost curve to the outer curve are −1 , −2 , −3 , 

and −4 , respectively. (b) Ozx -plane. The values form innermost curve to the outer curve are −1 , −2 , −3 , and −4 , respectively. (c) The plane z = −4 mm . 

The values from innermost curve to the outer curve are −3 , −3 . 5 , and −4 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To illustrate the accuracy of the proposed method, the comparison of the light field propagated in the object is also

performed. Contours of logarithm of photon density distribution in the phantom acquired from the solutions of RTE with

the delta-Eddington phase function are shown in Fig. 3 . The photon fluence in the phantom is also in excellent agreement

with the counterpart obtained from the Monte Carlo simulation with the Henyey–Greenstein scattering phase function. 

5. Concluding remarks 

In this paper, we introduce a family of delta-Eddington-type phase functions for the radiative transfer equation (RTE). A

proper selection of the delta-Eddington phase function can lead to much simplification in solving the RTE, and is thus of

fundamental importance for applications in biomedical optics. A rigorous mathematical theory is developed for the RTE with

a general delta-Eddington-type phase function. Numerical experiments show that with a proper choice of the parameter, the

RTE with a generalized delta-Eddington phase function is able to provide accurate simulation results for light propagation

within highly forward-peaked scattering media. 
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