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Abstract
Bioluminescence tomography (BLT) is a rapidly developing new area
of molecular imaging. The goal of BLT is to produce a quantitative
reconstruction of a bioluminescent source distribution within a living mouse
from bioluminescent signals measured on the body surface of the mouse.
While in most BLT studies so far the optical parameters of the key anatomical
regions are assumed known from the literature or diffuse optical tomography
(DOT), these parameters cannot be very accurate in general. In this paper, we
propose and study a new BLT approach that optimizes optical parameters when
an underlying bioluminescent source distribution is reconstructed to match
the measured data. We prove the solution existence and the convergence of
numerical methods. Also, we present numerical results to illustrate the utility
of our approach and evaluate its performance.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A major topic in post-genomic research is studies on relationships between genes and
phenotypic expressions. In this regard, mice as human disease models are being extensively
studied with various imaging techniques including optical imaging methods. In such
optical small animal imaging, mouse organs and tissues are often tagged with fluorescent or
bioluminescent probes that help reveal physiological and pathological information at cellular,
sub-cellular and molecular levels. Since 2002 our group has pioneered bioluminescence
tomography (BLT) systems [7, 20, 21]. Our systems and others prototypes are all
demonstrated to enable quantitative 3D reconstructions of internal bioluminescent sources
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from bioluminescent measurement on the mouse body surface. Now, BLT has been recognized
as a promising area for implementation of the well-known NIH roadmap.

In contrast to the homogeneous mouse model-based method, the major advantage of our
BLT approach is the capability of compensating for the heterogeneous optical attenuation
maps within a mouse. In the early stage, we segmented a CT scan of a mouse into
major anatomical regions, assigned optical parameters to each of the regions according to
the literature data, and then performed BLT reconstructions. Quickly, we realized that
in vivo DOT measurements in combination with the CT scan would produce better results
(http://mips.stanford.edu/public/mi seminar05.adp). Nevertheless, neither of the two ways
could produce accurate optical parameters because of the complexity of the biological
processes. Hence, it is clear that how to handle this uncertainty for superior imaging
performance is a key issue for success of BLT in biomedical applications.

In the conventional BLT problem, the optical parameters are assumed to be known exactly,
and the only unknown is the light source function. Such a formulation has been theoretically
studied in [12, 21]. In this paper, we upgrade the conventional BLT framework to include
the feature of self-adjustment of the optical parameters. In the upgraded BLT framework,
we know the optical parameters only approximately, and we want to reconstruct the light
source and at the same time determine more accurate values of the optical parameters from the
boundary measurements. We form the upgraded BLT framework in section 2 for simultaneous
reconstructions of both the underlying bioluminescent source distribution and the involved
optical parameters given their approximate initial values and corresponding constraints, and
prove the solution existence. In section 3, we discuss numerical approximations and show the
convergence of numerical methods. In section 4, we present numerical results to illustrate the
utility of our approach and evaluate its performance. Finally, in the last section we discuss
relevant issues and conclude the paper.

2. Formulation and solution existence

The bioluminescent photon transport in the biological medium is described by the radiative
transfer equation (RTE) [1, 16]. Let � be a domain in R

3 with boundary � = ∂�, q be
a bioluminescent source function in � and u(x, θ, t) the radiance in θ ∈ S2 (S2: the unit
sphere) at x ∈ �. Then the RTE is

1

c

∂u

∂t
+ θ · ∇xu + µu = µs

∫
S2

η(θ · θ′)u(x, θ′, t) dθ ′ + q,

where c denotes the photon speed, µ = µa + µs with µa and µs being the absorption
and scattering coefficients, and the scattering kernel η satisfies

∫
S2 η(θ · θ′) dθ ′ = 1.

Mathematically, BLT is the source inversion problem that is to recover q from optical
measurement on the domain boundary �, utilizing detailed knowledge of the optical properties
of �. Note that obtaining the individualized spatially variant optical properties is critical for
BLT to work effectively.

Because the RTE is difficult to handle and because in the range of around 600 nm photon
scattering outperforms absorption in a mouse, usually a diffusion approximation is used
[1, 16]. For the steady state case, we have the following boundary value problem (BVP):

−div(D∇u0) + µu0 = pχ�0 in �, (2.1)

u0 + 2AD
∂u0

∂ν
= g− on �, (2.2)

http://mips.stanford.edu/public/mi_seminar05.adp
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where u0(x) = ∫
S2 u(x, θ) dθ, g− is the incoming flux on � and is zero in most

applications, D = 1/[3(µa + µ′
s)], µ

′
s = (1 − η)µs, η = ∫

S2 θ · θ′η(θ · θ′) dθ ′, and p(x) =∫
S2 q(x, θ) dθ/(4π). The appearance of the parameter A in the boundary condition (2.2) is to

incorporate diffuse boundary reflection arising from a refractive index mismatch between the
body � and the surrounding medium. We have

A = (1 + R)/(1 − R), (2.3)

with R being a directionally varying refraction parameter. The set �0 is a measurable subset
of � (�0 = � is allowed), χ�0 is the characteristic function of �0, i.e., its value is 1 in �0,
and is 0 in �\�0. Thus, the light source exists only in �0, known as the permissible region.
Note that the subset �0 itself can be the union of a collection of disjoint subsets of �. The
measurement is

f̃ = −D
∂u

∂ν
on �. (2.4)

Then, the BLT problem is to find a source function q0 given g− and g such that (2.1), (2.2)
and (2.4) are satisfied. We call this the pointwise formulation. The pointwise formulation is
ill posed: (1) in general, there are infinite many solutions; (2) when the form of the source
function is specified, generally there are no solutions. Moreover, the source function does not
depend continuously on the data.

To avoid complicated subscripts, we simplify the notation by expressing the new BLT
approach as the determination of the parameters D,µ, and a source function p of the boundary
value problem

−div (D∇u) + µu = pχ�0 in �, (2.5)

u + 2AD
∂u

∂ν
= 0 on �, (2.6)

such that its solution u takes on the measured flux quantity

f̃ = −D
∂u

∂ν
= 1

2A
u on �0 (2.7)

and D ≈ D(0), µ ≈ µ(0) with given D(0) and µ(0). Here D = [3(µ + µ′)]−1, µ and µ′ are
absorption and reduced scattering coefficients, respectively, and �0 ⊂ �. Note that we allow
the measurement to be available only on a proper part �0 of the boundary �.

In practical applications of BLT, the coefficients D and µ are piecewise constants.
In other words, the biological medium � consists of a finite number (M) of subdomains
�m, 1 � m � M , such that � = ∪M

m=1�m,�m ∩ �n = ∅ for m 	= n, and

D(x) = Dm, µ(x) = µm, x ∈ �m, 1 � m � M. (2.8)

Moreover, based on past experimental results, the coefficients D and µ are expected to be
close to known piecewise constant functions D(0) and µ(0):

D(0)(x) = D(0)
m , µ(0)(x) = µ(0)

m , x ∈ �m, 1 � m � M,

with D(0)
m > 0 and µ(0)

m > 0, 1 � m � M .
For the given data, we assume � ⊂ R

d (d � 3) is a non-empty, open, bounded set with a
Lipschitz boundary � and �0 is a Lipschitz part of �. We also assume �0 ⊂ � is a non-empty,
open, bounded set with a Lipschitz boundary. Denote f = 2Af̃ , and assume f ∈ L2(�0).
Also assume A > 0 and A−1 ∈ L∞(�); these conditions are always satisfied in applications.

Suppose we seek the source function p in a closed convex subset Qp of the space L2(�0).
Examples include Qp = L2(�0), or the subset of L2(�0) of non-negatively valued functions,
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or a finite-dimensional subspace or subset of linear combinations of specified functions such
as the characteristic functions of certain subsets of �. Furthermore, for given non-negative
numbers rD,m ∈ [

0,D(0)
m

)
and rµ,m ∈ [

0, µ(0)
m

)
, 1 � m � M , we introduce the sets

QD = {
D | D|�m

= Dm ∈ R,
∣∣Dm − D(0)

m

∣∣ � rD,m, 1 � m � M
}
, (2.9)

Qµ = {
µ | µ|�m

= µm ∈ R,
∣∣µm − µ(0)

m

∣∣ � rµ,m, 1 � m � M
}
. (2.10)

Note that it is allowed to have rD,m = 0 or rµ,m = 0 for some values of m. In such a situation,
we have Dm = D(0)

m or µm = µ(0)
m , and these parameters are no longer unknowns of the

problem. Denote the admissible set

Qad = QD × Qµ × Qp.

We denote by u = u(D,µ, p) ∈ V ≡ H 1(�) the solution of the boundary value problem∫
�

(D∇u · ∇v + µuv) dx +
∫

�

1

2A
uv ds =

∫
�0

pv dx ∀ v ∈ V. (2.11)

By the well-known Lax–Milgram lemma (e.g. [2, 11]), due to the assumptions made on the
data, for any (D,µ, p) ∈ Qad , the solution u(D,µ, p) exists and is unique.

For εD � 0, εµ � 0 and εp � 0, denote ε = (εD, εµ, εp). Following the idea of
regularization [19, 10], let

Jε(D,µ, p) = 1
2

[‖u(D,µ, p) − f ‖2
L2(�0)

+ εD‖D − D(0)‖2
L2(�)

+ εµ‖µ − µ(0)‖2
L2(�) + εp‖p‖2

L2(�0)

]
(2.12)

and introduce the following problem for simultaneous determination of the parameters D and
µ, and the source function p:

inf{Jε(D,µ, p) | (D,µ, p) ∈ Qad}. (2.13)

Theorem 2.1. Assume εp > 0 or Qp ⊂ L2(�0) is bounded. Then problem (2.13) has a
solution.

Proof. Denote by α � 0 the infimum value of (2.13). By the definition of infimum, there is a
sequence {(Dn, µn, pn)}n�1 ⊂ Qad such that

Jε(Dn, µn, pn) → α as n → ∞.

Because of the compactness of the intervals
[
D(0)

m − rD,m,D(0)
m + rD,m

]
and

[
µ(0)

m − rµ,m, µ(0)
m +

rµ,m

]
, 1 � m � M , there are a subsequence of {n}, still denoted by {n},D∞ ∈ QD and

µ∞ ∈ Qµ such that

Dn → D∞, µn → µ∞ in L∞(�), as n → ∞.

Under the assumption that ε > 0 or Qp ⊂ L2(�0) is bounded, {pn} is a bounded sequence in
L2(�0). Therefore, resorting to a further subsequence if necessary, there is p∞ ∈ Qp such
that we have the weak convergence

pn ⇀ p∞ in L2(�0), as n → ∞.

Write un = u(Dn, µn, pn). Then it is easy to know that the sequence {‖un‖V } is bounded.
So again resorting to a further subsequence if necessary, there is u∞ ∈ V such that

un ⇀ u∞ in V, as n → ∞.

This in particular implies un → u in L2(�).
Let n → ∞ in∫

�

(Dn∇un · ∇v + µnunv) dx +
∫

�

1

2A
unv ds =

∫
�0

pnv dx ∀ v ∈ V
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to get∫
�

(D∞∇u∞ · ∇v + µ∞u∞v) dx +
∫

�

1

2A
u∞v ds =

∫
�0

p∞v dx ∀ v ∈ V. (2.14)

Hence, u∞ = u(D∞, µ∞, p∞). Moreover,

Jε(D∞, µ∞, p∞) � lim
n→∞ Jε(Dn, µn, pn) = α.

Therefore, (D∞, µ∞, p∞) ∈ Qad is a solution of problem (2.13). �

This theorem states that problem (2.13) has solutions. The next result provides a necessary
condition for a solution of problem (2.13).

Proposition 2.2. Let (D∞, µ∞, p∞) ∈ Qad be a solution of problem (2.13) and denote
u∞ = u(D∞, µ∞, p∞). Then

(u∞ − f,w∞)L2(�0) + εD(D∞ − D(0), D − D∞)L2(�) + εµ(µ∞ − µ(0), µ − µ∞)L2(�)

+ εp(p∞, p − p∞)L2(�0) � 0 ∀ (D,µ, p) ∈ Qad, (2.15)

where w∞ = w∞(D − D∞, µ − µ∞, p − p∞) ∈ V is the solution of the boundary value
problem∫

�

(D∞∇w∞ · ∇v + µ∞w∞v) dx +
∫

�

1

2A
w∞v ds =

∫
�0

(p − p∞)v dx

−
∫

�

[(D − D∞)∇u∞ · ∇v + (µ − µ∞)u∞v] dx ∀ v ∈ V. (2.16)

Proof. Define ut ∈ V as the solution of the boundary value problem∫
�

[
(D∞ + t (D − D∞))∇ut · ∇v + (µ∞ + t (µ − µ∞))utv

]
dx +

∫
�

1

2A
utv ds

=
∫

�0

(p∞ + t (p − p∞))v dx ∀ v ∈ V. (2.17)

Consider the function

g(t) = 1
2

[‖ut − f ‖2
L2(�0)

+ εD‖D∞ + t (D − D∞) − D(0)‖2
L2(�) + εµ‖µ∞ + t (µ − µ∞)

−µ(0)‖2
L2(�) + εp‖p∞ + t (p − p∞)‖2

L2(�0)

]
, 0 � t � 1.

Then g(t) has its minimum at t = 0 for t ∈ [0, 1], and so

g′(0+) � 0.

Now

g′(t) =
(

ut − f,
∂ut

∂t

)
L2(�0)

+ εD(D∞ + t (D − D∞) − D(0), D − D∞)L2(�)

+ εµ(µ∞ + t (µ − µ∞) − µ(0), µ − µ∞)L2(�)

+ εp (p∞ + t (p − p∞), p − p∞)L2(�0)
.

Differentiate (2.17) with respect to t to obtain∫
�

[
(D∞ + t (D − D∞))∇ ∂ut

∂t
· ∇v + (µ∞ + t (µ − µ∞))

∂ut

∂t
v

]
dx +

∫
�

1

2A

∂ut

∂t
v ds

=
∫

�0

(p − p∞)v dx −
∫

�

[(D − D∞)∇ut · ∇v + (µ − µ∞)utv] dx ∀ v ∈ V.

(2.18)
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Obviously, ut : t ∈ [0, 1] → V is continuous as a function of t. So ut → u∞ in V as t → 0+.
Let t → 0+ in (2.18) to obtain (2.16) for

w∞ = lim
t→0+

∂ut

∂t
.

Thus,

g′(0+) = (u∞ − f,w∞)L2(�0) + εD(D∞ − D(0), D − D∞)L2(�)

+ εµ(µ∞ − µ(0), µ − µ∞)L2(�) + εp(p∞, p − p∞)L2(�0) � 0,

i.e., (2.15) holds. �

Solution uniqueness for problem (2.13) is a difficult question, even in the case εp > 0.
In this regard, the above necessary condition of a solution may be useful. Since a solution
to the problem with εp > 0 and rD,m = rµ,m = 0 for 1 � m � M is unique and depends
continuously on the data [12], we expect a solution to problem (2.13) for εp > 0 is unique
when rD,m and rµ,m, 1 � m � M , are assumed small and changes of the optical parameters
are restricted in certain ways.

3. Numerical approximations

We now turn to a discussion of numerical solutions of problem (2.13). For simplicity in
discussion, we assume �m, 1 � m � M , and �0 to be unions of polygonal (for d = 2) or
polyhedral (for d = 3) domains. Let {T }h>0 (h: mesh size) be a regular family of finite
element partitions of � that respect the domain splitting � = ∪M

m=1�m, i.e. if one side of an
element K ∈ Th intersects the boundary of a region �m at more than one point, then the entire
element side lies on the boundary of �m. For each triangulation Th = {K}, let V h ⊂ V be the
corresponding finite element space of continuous piecewise linear functions. Let {TH,�0} (H:
mesh size) be a regular family of finite element partitions of �0. Note that the partitions {Th}
and {TH,�0} are allowed to be independent of each other. Let QH

p be the piecewise constant
finite element subset approximating Qp. Then QH

p is non-empty, closed and convex, and we
have the property

∀ q ∈ Qp, ∃qH ∈ QH
p such that ‖qH − q‖L2(�0) → 0 as H → 0.

Indeed, we may simply take qH to be the piecewise average of q over TH,�0 . Denote
uhH = uhH (D,µ, pH ) ∈ V h for the solution of the problem∫

�

(D∇uhH · ∇vh + µuhH vh) dx +
∫

�

1

2A
uhHvh ds =

∫
�0

pHvh dx ∀ vh ∈ V h. (3.1)

By the Lax–Milgram lemma, the solution uhH exists and is unique. Let

J hH
ε (D,µ, pH ) = 1

2

[‖uhH (D,µ, pH ) − f ‖2
L2(�0)

+ εD‖D − D(0)‖2
L2(�)

+ εµ‖µ − µ(0)‖2
L2(�) + εp‖pH ‖2

L2(�0)

]
. (3.2)

Denote QH
ad = QD × Qµ × QH

p . We then introduce the following discretization of
problem (2.13):

inf
{
J hH

ε (D,µ, pH )
∣∣ (D,µ, pH ) ∈ QH

ad

}
. (3.3)

Like for problem (2.13), under the assumption of theorem 2.1, there is a solution to the
discrete problem (3.3). Denote by αhH the infimum value of (3.3). Let us first show the
following convergence result on the discrete minimum values.
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Theorem 3.1. As h,H → 0, αhH → α.

Proof. Let (D∞, µ∞, p∞) ∈ Qad be a solution of (2.13). Choose pH
∞ ∈ QH

p such that

pH
∞ → p∞ in L2(�0), as H → 0. (3.4)

Note that u∞ = u(D∞, µ∞, p∞) satisfies (2.14). Denote uhH
∞ = uhH

(
D∞, µ∞, pH

∞
)
. Then

by (3.1),∫
�

(
D∞∇uhH

∞ · ∇vh + µ∞uhH
∞ vh

)
dx +

∫
�

1

2A
uhH

∞ vhds =
∫

�0

pH
∞vhdx ∀ vh ∈ V h.

Subtract this from (2.14),∫
�

[
D∞∇(

u∞ − uhH
∞

) · ∇vh + µ∞
(
u∞ − uhH

∞
)
vh

]
dx +

∫
�

1

2A

(
u∞ − uhH

∞
)
vhds

=
∫

�0

(
p∞ − pH

∞
)
vhdx ∀ vh ∈ V h.

From this error relation, we obtain the following result through a standard argument:
∥∥u∞ − uhH

∞
∥∥

V
� c

[
inf

vh∈V h
‖u∞ − vh‖V +

∥∥p∞ − pH
∞

∥∥
L2(�0)

]
→ 0 as h,H → 0.

Since αhH � J hH
ε

(
D∞, µ∞, pH

∞
)
, we have

lim sup
h,H→0

αhH � lim
h,H→0

J hH
ε

(
D∞, µ∞, pH

∞
) = α. (3.5)

Conversely, any sequence {(DhH ,µhH , phH )} ⊂ QH
ad contains a subsequence, still

denoted by {(DhH ,µhH , phH )}, such that

DhH → D, µhH → µ in L∞(�), phH ⇀ p in L2(�0), as h,H → 0

(3.6)

for some D ∈ QD,µ ∈ Qµ, and p ∈ Qp. Let us show that

uhH (DhH ,µhH , phH ) ⇀ u(D,µ, p) in V, as h,H → 0.

First, by (3.1)∫
�

(DhH∇uhH · ∇vh + µhHuhHvh) dx +
∫

�

1

2A
uhHvh ds =

∫
�0

phHvh dx ∀ vh ∈ V h.

(3.7)

It can be shown that {‖uhH‖V } is uniformly bounded, independent of h and H. So there exists
a subsequence {uhH }, still denoted by {uhH }, and u ∈ V such that uhH ⇀ u in V . Taking
h,H → 0 along this subsequence in (3.7) to get∫

�

(D∇u · ∇v + µuv) dx +
∫

�

1

2A
uv ds =

∫
�0

pv dx ∀ v ∈ V,

i.e. the limit u = u(D,µ, p). Since the limit u is unique, the entire sequence converges:
uhH ⇀ u in V as h,H → 0. A consequence of this is uhH (DhH ,µhH , phH ) → u(D,µ, p)

in L2(�). Hence,

Jε(D,µ, p) � lim inf
h,H→0

J hH
ε (DhH ,µhH , phH ) (3.8)

and so

α � lim inf
h,H→0

αhH . (3.9)

Combining (3.5) and (3.9), we complete the proof. �
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Thus, the discrete minimum objective function values converge to the original minimum
objective function value.

We also have convergence of the numerical solutions.

Theorem 3.2. Any sequence of solutions of problem (3.3) contains a subsequence converging
to a solution of problem (2.13). Moreover, any converging sequence of solutions of problem
(3.3) converges to a solution of problem (2.13).

Proof. Let {(DhH ,µhH , phH )} be a sequence of solutions of (3.3). Then as in the second part
of the proof of theorem 3.1, there is a subsequence, still denoted as {(DhH ,µhH , phH )}, and
(D,µ, p) ∈ Qad such that (3.6) holds. Let (D∞, µ∞, p∞) be a solution of (2.13), and choose
pH

∞ ∈ QH
p satisfying (3.4). Then by (3.5),

J hH
ε

(
D∞, µ∞, pH

∞
) → Jε(D∞, µ∞, p∞),

and by (3.8),

lim sup
h,H→0

J hH
ε (DhH ,µhH , phH ) � Jε(D,µ, p).

Now

J hH
ε (DhH ,µhH , phH ) � J hH

ε

(
D∞, µ∞, pH

∞
)
.

Combining these relations,

Jε(D,µ, p) � Jε(D∞, µ∞, p∞),

i.e., the limit (D,µ, p) is a solution of (2.13).
The above argument also proves the second part of the theorem. �

This result shows that we can get arbitrarily accurate approximation of a solution of
problem (2.13) from any sequence of discrete solutions when the finite element mesh sizes
go to zero.

4. Numerical examples

In this section, we present numerical results from two examples for simulation of the upgraded
BLT model. In the first example, we examine the convergence behaviour of the numerical
solution as the mesh size is made progressively smaller. In the second example, we consider
a more realistic problem setting to assess the practicality of the proposed approach.

Example 4.1. We demonstrate the feasibility of the numerical method discussed in section 3
through a simple two-dimensional sample problem described by the boundary value problem
(2.5)–(2.6) with the measurement (2.7), where A is given by (2.3) for

R = −1.4399η−2 + 0.7099η−1 + 0.6681 + 0.0636η, (4.1)

with the refractive index η = 1.33. Let � = (0, 1) × (0, 1) be the domain. The closed region
� is divided into four subregions �m, 1 � m � 4, with �1 = (0, 0.5) × (0, 0.5),�2 =
(0.5, 1) × (0, 0.5),�3 = (0, 0.5) × (0.5, 1), and �4 = (0.5, 1) × (0.5, 1); see figure 1. In
each subregion �m, 1 � m � 4, the values of the optical parameters D and µ are constant.
The true values of µ and D are taken as

(µ,D) =




(0.02, 0.3268) in �1,

(0.14, 0.1916) in �2,

(0.01, 0.5464) in �3,

(0.08, 0.2415) in �4.
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Figure 1. The domain �.

As their approximate values, we choose

(µ(0), D(0)) =




(0.05, 0.6) in �1,

(0.1, 0.12) in �2,

(0.035, 0.35) in �3,

(0.05, 0.6) in �4.

The bounds in defining the sets QD of (2.9) and Qµ of (2.10) are rD = [0.5, 0.1, 0.3, 0.5]T ,

rµ = [0.04, 0.05, 0.03, 0.04]T , respectively. The regularization parameters are εD = 10−4,

εµ = 10−4 and εp = 10−7. The source p is placed in the region �0 = (0.25, 0.375) ×
(0.25, 0.5), and the true source function p is taken to be 10. We divide �0 into four congruent
triangles, labelled upward; the admissible set QH

p consists of correspondingly piecewise
constant functions.

We use linear elements on uniform triangular partitions of the domain �. The uniform
meshes are obtained by dividing the interval [0, 1] into 1/h equal parts in both x and y

directions. We start with an initial mesh with h = 1/8 and then successively halve h to obtain
more refined meshes. We take the numerical solution of the boundary value problem (2.11)
computed using the exact values of D,µ and p, and on the mesh with mesh size h = 1/512
as the true solution and use it to obtain the measured quantity f on �0 = �.

The numerical solutions of problem (3.3) are then computed using this value of f on
the meshes with the mesh size h = 1/8, 1/16, 1/32, 1/64 using Matlab and its optimization
toolbox. The optimization part is terminated when the change in the relative function value is
less than the tolerance FunTol = 10−8.

Note that the numerical solutions of problem (3.3) depend on the regularization parameters
εD, εµ and εp. Also note that H is fixed in this example. For these reasons, we denote the
numerical solutions by Dh

ε , µh
ε and ph

ε . Computed values of Dh
ε , µh

ε and ph
ε for various choices

of h along with the norm of errors between exact values and the computed values are given in
tables 1–3. The plots of the norm of the errors are given in figures 2–4.

Example 4.2. To demonstrate the feasibility of the proposed numerical reconstruction method
for a more realistic problem, we consider a heterogeneous phantom occupying a circle of
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Figure 2. Plot of the error ‖D − Dh
ε ‖L2(�).

Table 1. Numerical results for Dh
ε .

�1 �2 �3 �4 ‖D − Dh
ε ‖L2(�)

h = 1/8 0.3642 0.1906 0.5517 0.2436 4.3792 × 10−2

h = 1/16 0.3356 0.1905 0.5509 0.2439 1.4525 × 10−2

h = 1/32 0.3290 0.1906 0.5463 0.2427 2.2364 × 10−3

h = 1/64 0.3273 0.1911 0.5465 0.2416 1.3788 × 10−4

Table 2. Numerical results for µh
ε .

�1 �2 �3 �4 ‖µ − µh
ε‖L2(�)

h = 1/8 0.0763 0.1222 0.0050 0.0900 4.3532 × 10−2

h = 1/16 0.0424 0.1304 0.0099 0.0900 2.2669 × 10−2

h = 1/32 0.0182 0.1321 0.0050 0.0845 1.0210 × 10−2

h = 1/64 0.0179 0.1361 0.0091 0.0802 6.7959 × 10−3

Table 3. Numerical results for ph
ε .

Element 1 Element 2 Element 3 Element 4 ‖p − ph
ε ‖L2(�0)

h = 1/8 8.8623 10.5454 11.5751 9.8358 1.7897 × 10−1

h = 1/16 9.8603 10.2733 10.4859 9.7880 5.4145 × 10−2

h = 1/32 9.9007 9.9788 10.2561 9.7022 3.5857 × 10−2

h = 1/64 9.9770 10.0012 10.2276 9.6908 3.3992 × 10−2

radius 1 cm centred at the origin. The unit circle is split into four annular regions �1,�2,�3

and �4, defined by circles of radii 1.0, 0.9, 0.8 and 0.7, all centred at the origin. See
figure 5 for the geometric setting. A light source with power of 6.0 nW is uniformly distributed
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Figure 3. Plot of the error ‖µ − µh
ε‖L2(�).
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Figure 4. Plot of the error ‖p − ph
ε ‖L2(�0).

on a circle with radius 0.03 cm centred at (0, 0.6). The true optical parameters (µ,D) (unit:
(cm−1, cm)) are taken to be

(µ,D) =




(0.6, 0.042 735) in �1,

(0.1, 0.128 21) in �2,

(1.2, 0.024 331) in �3,

(0.8, 0.033 67) in �4.

The phantom is discretized into 5400 triangle elements with 2791 nodes. The 180 outer
boundary nodes are used to record photon flux density on the outer boundary. In practice,
the measurement modality can be realized using non-contact imaging, which is able to collect
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Figure 5. Geometry of phantom.

large data sets by using highly sensitive charge-coupled device (CCD) cameras as detectors.
Boundary reflection coefficient R is computed using (4.1), and in this example, we choose
η = 1.37 for the refractive index. As known approximate values, we take

(µ(0), D(0)) =




(0.48, 0.034 188) in �1,

(0.08, 0.102 57) in �2,

(0.96, 0.019 465) in �3,

(0.64, 0.026 936) in �4.

In (2.9) and (2.10), the sets QD and Qµ are defined through specifying values of the radii for
rD and rµ. All the theoretical results in previous sections are valid also for the case where QD

and Qm are specified by bounded closed intervals on the positive axis for each component of
rD and rµ. In this example, we specify

µ1 ∈ [0.42, 0.78], µ2 ∈ [0.07, 0.13], µ3 ∈ [0.84, 1.56], µ4 ∈ [0.56, 1.04];
D1 ∈ [0.029 915, 0.055 556], D2 ∈ [0.089 744, 0.166 67],

D3 ∈ [0.017 032, 0.031 63], D4 ∈ [0.023 569, 0.043 771]

in defining Qµ and QD . We choose the regularization parameters to be εD = 10−5, εµ = 10−5

and εp = 10−7. The measured data on the boundary are generated from the solution of the
boundary value problem (2.5)–(2.7), corrupted by 5% Gaussian noise, as shown in figure 6.
The permissible region �0 is set to a circle with radius of 0.06 cm centred at (0, 0.6). Then
we solve the reconstruction problem (3.3) to identify the optical parameters and light source
distribution. Again we use the Matlab optimization toolbox in implementation.

The reconstructed coefficients for (µ,D) are

(
µh

ε ,D
h
ε

) =




(0.624 21, 0.047 11) in �1,

(0.0949, 0.105 71) in �2,

(1.3079, 0.019 465) in �3,

(0.816 04, 0.027 086) in �4.
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Figure 6. Measurement data.

The maximum relative errors of absorption coefficients between true and calculated optical
parameters are less than 9%, the maximum relative errors of the diffusion coefficients
between true and calculated optical parameters are less than 19.9% and relative error of
the reconstructed total light source power are less than 1%. We observe a good agreement
between the reconstructed values of the optical parameters, the light source power and their true
values.

Despite the lack of a theoretical result on solution uniqueness, in the previous two examples,
we obtain rather good numerical results. We owe this largely to the assumptions that the
parameters D and µ are piecewise constants, and the regions where D and µ are piecewise
constants are pre-determined.

5. Concluding remarks

In the conventional BLT problem, the optical parameters are assumed to be known exactly,
and the only unknown is the light source function. Such a formulation has been theoretically
studied in [12, 21]. We emphasize that in reality, the optical parameters are known only
approximately. Thus, there is a need to estimate these parameters more accurately and improve
the BLT reconstruction accordingly. In this paper, we have developed a novel framework
integrating diffuse optical tomography (DOT) and conventional bioluminescence tomography
(BLT) in a truly synergic fashion so that optical parameters are optimally estimated while an
underlying bioluminescent source distribution is reconstructed. We have proved the existence
of solutions to this generalized BLT problem and the convergence of the numerical solutions,
as have been illustrated in our numerical simulation.

Finally, some comments on the uniqueness of the analytical and numerical solutions are
in order. It is well known that in the general case the solution to the BLT problem is not unique
unless adequate constraints are imposed such as when the solution is sought in a certain sense
in a specified space. Similarly, we recognize that the solution to the upgraded BLT problem
considered in this paper is not unique either but uniqueness may be achieved under sufficient
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restrictions. In the BLT area, multi-spectral data were already utilized to overcome the ill-
posed nature of BLT and generated encouraging results [4, 6, 9, 13, 14, 23]. Furthermore,
temperature-modulated BLT was recently proposed to transform the ill-posed BLT problem
into a much better conditioned problem [22]. Along these directions, our new BLT formulation
may be extended for even better reconstruction results. Further work is currently underway.
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[16] Natterer F and Wübbeling F 2001 Mathematical Methods in Image Reconstruction (Philadelphia, PA: SIAM)
[17] Ntziachristos V et al 2002 Fluorescence molecular tomography resolves protease activity in vivo Nat.

Med. 8 757–61
[18] Rice B W et al 2001 In vivo imaging of light-emitting probes J. Biomed. Opt. 6 432–40
[19] Tikhonov A N 1963 Regularization of incorrectly posed problems Sov. Dokl. 4 1624–7
[20] Wang G et al 2003 Development of the first bioluminescent CT scanner Radiology 229 566
[21] Wang G, Li Y and Jiang M 2004 Uniqueness theorems in bioluminescence tomography Med. Phys. 31 2289–99
[22] Wang G, Shen H, Cong W X, Zhao S and Wei G 2006 Temperature-modulated bioluminescence tomography

Opt. Exp. 14 7852–71
[23] Wang G, Shen H, Kumar D, Qian X and Cong W X 2006 The first bioluminescence tomography system for

simultaneous acquisition of multi-view and multi-spectral data Int. J. Biomed. Imaging 2006 (Article ID
58601) 8 pages

[24] Weissleder R and Ntziachristos V 2003 Shedding light onto live molecular targets Nat. Med. 9 123–8

http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1088/0031-9155/50/23/001
http://dx.doi.org/10.1364/OPEX.13.006756
http://dx.doi.org/10.1002/jmri.10178
http://dx.doi.org/10.1364/OL.31.000365
http://dx.doi.org/10.1088/0266-5611/22/5/008
http://dx.doi.org/10.1093/imamat/hxl031
http://dx.doi.org/10.1126/science.1090585
http://dx.doi.org/10.1038/nm729
http://dx.doi.org/10.1117/1.1413210
http://dx.doi.org/10.1118/1.1766420
http://dx.doi.org/10.1364/OE.14.007852
http://dx.doi.org/10.1038/nm0103-123

	1. Introduction
	2. Formulation and solution existence
	3. Numerical approximations
	4. Numerical examples
	5. Concluding remarks
	Acknowledgments
	References

