
J Math Chem (2012) 50:689–702
DOI 10.1007/s10910-011-9916-2

ORIGINAL PAPER

On a family of differential approximations
of the radiative transfer equation

Weimin Han · Joseph A. Eichholz · Ge Wang

Received: 29 July 2011 / Accepted: 12 September 2011 / Published online: 1 October 2011
© Springer Science+Business Media, LLC 2011

Abstract The radiative transfer equation (RTE) arises in a variety of applications
and is challenging to solve numerically due to its integro-differential form and high
dimension. For highly forward-peaked media, it is even more difficult to solve RTE
since accurate numerical solutions require a high resolution of the direction variable.
For this reason, various approximations of RTE have been proposed in the literature.
In this paper, we study a family of differential approximations of the RTE in three
spatial variables. We explain the idea of constructing the differential approximations,
and comment on the usefulness of the approximations.

Keywords Radiative transfer equation · Highly forward-peaked scattering ·
Generalized Fokker–Planck equation · Differential approximation

1 Introduction

The radiative transfer equation (RTE) arises in a variety of applications of
physics, chemistry, and other areas of sciences and engineering; see, e.g.,
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[1,4,6–8,18,19,23,24]. Recently, there has been much research interest in inverse
problems related to RTE in biomedical imaging applications (e.g., [2,3,15]).

RTE is a high dimensional problem and is challenging to solve numerically ([11]). In
many applications, the light propagation is highly forward-peaked. For highly forward-
peaked media, it is even more difficult to solve RTE since accurate numerical solutions
require a high resolution of the direction variable. For this reason, various approxima-
tions of RTE have been proposed in the literature, e.g., the delta-Eddington approxima-
tion [13], the Fokker–Planck approximation [20,21], the Boltzmann–Fokker–Planck
approximation [22,5], the generalized Fokker-Planck approximation [16], the Fok-
ker–Planck–Eddington approximation and the generalized Fokker–Planck–Eddington
approximation [10]. For RTE with high absorption and small geometries, the simpli-
fied spherical harmonics (S PN )method ([14]) is shown to produce good approximate
solutions ([9]). Well-posedness of the (S PN ) method is shown in [25]. In this paper,
we provide a preliminary study of a family of differential approximations of RTE.

The approximations are similar to some generalized Fokker-Planck equations stud-
ied in [16]. However, one purpose of this paper is to take a first step in establishing a
framework for development of a sequence of differential operators that converges to
the integral operator of RTE. The approximations discussed in this paper automatically
mimic the limiting behavior of the eigenvalues of the integral operator of the RTE.
More precisely, for the eigenvalues {kn} of the integral operator and the eigenvalues
{k(a)n } of an approximation operator, we have

lim
n→∞ k(a)n = lim

n→∞ kn = 0.

In addition, the first several eigenvalues for the integral operator and the approximation
operators are pairwise equal.

After a review of RTE in Sect. 2, we introduce a general framework for the fam-
ily of differential approximation models in Sect. 3. In Sect. 4, we provide a detailed
discussion on conditions for positivity of the parameters in the one-term and two-
term approximation models. In Sect. 5, we consider the approximation models for the
case where the Henyey–Greenstein phase function is used. In the final section, some
concluding remarks are given.

2 The radiative transfer equation

Let X be a domain in R
3 with a Lipschitz boundary ∂X . Denote by� the unit sphere in

R
3. Let �− ⊂ ∂X ×� be the incoming boundary. Denote by dσ(ω) the infinitesimal

area element on the unit sphere�. If we introduce the spherical coordinate system by

ω = (sin θ cosψ, sin θ sinψ, cos θ)T , 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π, (2.1)

then dσ(ω) = sin θ dθ dψ . We will need an integral operator S defined by

(Su)(x,ω) =
∫

�

k(ω·ω̂) u(x, ω̂) dσ(ω̂) (2.2)
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with k a nonnegative normalized phase function:

∫

�

k(ω·ω̂) dσ(ω̂) = 1 ∀ω ∈ �. (2.3)

One well-known example is the Henyey–Greenstein phase function (cf. [12])

k(t) = 1 − g2

4π(1 + g2 − 2gt)3/2
, t ∈ [−1, 1], (2.4)

where the parameter g ∈ (−1, 1) is the anisotropy factor of the scattering medium.
Note that g = 0 for isotropic scattering, g > 0 for forward scattering, and g < 0 for
backward scattering.

With the above notation, a boundary value problem of the RTE reads (cf. [1,17])

ω·∇u(x,ω)+ μt (x) u(x,ω) = μs(x) (Su)(x,ω)+ f (x,ω),

(x,ω) ∈ X ×�, (2.5)

u(x,ω) = 0, (x,ω) ∈ �−. (2.6)

Here μt = μa + μs, μa is the macroscopic absorption cross section, μs is the mac-
roscopic scattering cross section, and f is a source function. We assume these given
functions satisfy

μt , μs ∈ L∞(X), μs ≥ 0 a.e. in X,

μt − μs ≥ c0 in X for some constant c0 > 0, (2.7)

f ∈ L2(X ×�). (2.8)

These assumptions are naturally valid in applications; the last part of (2.7) means that
the absorption effect is not negligible. The homogeneous boundary condition (2.6)
corresponds to a vacuum setting around X . It is equally well to consider a general
incoming flux boundary condition u(x,ω) = uin(x,ω) on �− with a given function
uin.

It is shown in [1] that the problem (2.5)–(2.6) has a unique solution u ∈ H1
2 (X ×�),

where

H1
2 (X ×�) := {v ∈ L2(X ×�) | ω·∇v ∈ L2(X ×�)}

with ω·∇v denoting the generalized directional derivative of v in the direction ω (cf.
[1]).

3 Approximation

For a spherical harmonic of order n,Yn(ω),

(SYn)(ω) = knYn(ω), (3.1)
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where

kn = 2π

1∫

−1

k(s) Pn(s) ds, Pn : the Legendre polynomial of degree n. (3.2)

The relation (3.1) states that kn is an eigenvalue of S with spherical harmonics of order
n as eigenfunctions. Since

‖Pn‖L2(−1,1) =
√

2

2n + 1
,

we have

|kn| ≤ 2π ‖k‖L2(−1,1)‖Pn‖L2(−1,1) = 2π

√
2

2n + 1
‖k‖L2(−1,1).

So

{kn} is bounded and kn → 0 as n → ∞. (3.3)

Denote by 	∗ the Laplace-Beltrami operator on the unit sphere �. Then,

− (	∗Yn)(ω) = n (n + 1) Yn(ω). (3.4)

Let {Yn,m | −n ≤ m ≤ n, n ≥ 0} be an orthonormalized basis in L2(�). We have
the expansion

u(ω) =
∞∑

n=0

n∑
m=−n

un,mYn,m(ω) in L2(�), un,m =
∫

�

u(ω) Yn,m(ω) dσ(ω). (3.5)

With such an expansion of u ∈ L2(�), we have an expansion for Su:

Su(ω) =
∞∑

n=0

kn

n∑
m=−n

un,mYn,m(ω) in L2(�). (3.6)

Now suppose there are real numbers {λi , αi }i≥1 such that

∞∑
i=1

λi

1 + n (n + 1) αi
= kn, n = 0, 1, . . . . (3.7)
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Then formally, we have

∞∑
i=1

λi (I − αi	
∗)−1u(ω) =

∞∑
n=0

n∑
m=−n

un,m

∞∑
i=1

λi

1 + n (n + 1) αi
Yn,m(ω)

=
∞∑

n=0

kn

n∑
m=−n

un,mYn,m(ω)

= Su(ω).

In other words,

S =
∞∑

i=1

λi (I − αi	
∗)−1. (3.8)

With n = 0 in (3.7),

∞∑
i=1

λi = 1;

consequently, a necessary condition for (3.7) is

λi → 0 as i → ∞.

The formal equality (3.8) motivates us to consider approximating S by operators
of the following form

S j =
j∑

i=1

λ j,i (I − α j,i	
∗)−1. (3.9)

The eigenvalues of S j are

j∑
i=1

λ j,i
(
1 + n (n + 1) α j,i

)−1

with associated eigenfunctions the spherical harmonics of order n:

(S j Yn)(ω) =
⎡
⎣

j∑
i=1

λ j,i

1 + n (n + 1) α j,i

⎤
⎦ Yn(ω).
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Note that for fixed j ,

j∑
i=1

λ j,i

1 + n (n + 1) α j,i
→ 0 as n → ∞.

Thus, the eigenvalue sequence of S j has a unique accumulation point 0, a property

shared by the operator S, cf. (3.3). Hence, we choose the parameters {λ j,i , α j,i } j
i=1 so

that for some integer n j depending on j ,

j∑
i=1

λ j,i

1 + n (n + 1) α j,i
= kn, n = 0, 1, . . . , n j − 1. (3.10)

We require

n j → ∞ as j → ∞. (3.11)

Theorem 3.1 Assume (3.10) holds and

sup
n≥n j

∣∣∣∣∣∣
j∑

i=1

λ j,i
(
1 + n (n + 1) α j,i

)−1

∣∣∣∣∣∣ → 0 as j → ∞. (3.12)

Then

‖S j − S‖L(L2(�),L2(�)) → 0 as j → ∞. (3.13)

Proof For any u ∈ L2(�), with the expansion (3.5), we have

(Su − S j u)(ω) =
∞∑

n=n j

n∑
m=−n

un,m

⎛
⎝kn −

j∑
i=1

λ j,i
(
1 + n (n + 1) α j,i

)−1

⎞
⎠ Yn,m(ω).

Thus,

‖Su − S j u‖2
0 =

∞∑
n=n j

n∑
m=−n

|un,m |2
∣∣∣∣∣∣kn −

j∑
i=1

λ j,i
(
1 + n (n + 1) α j,i

)−1

∣∣∣∣∣∣
2

≤ 4 sup
n≥n j

⎧⎨
⎩|kn|,

∣∣∣∣∣∣
j∑

i=1

λ j,i
(
1 + n (n + 1) α j,i

)−1

∣∣∣∣∣∣

⎫⎬
⎭

2

‖u‖2
0.

So we have the convergence (3.13) by (3.3) and (3.12). ��
A sufficient condition for (3.12) is that all λ j,i and α j,i are positive.
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Theorem 3.2 Assume (3.10) and λ j,i > 0 and α j,i > 0 for i = 1, . . . , j . Then (3.12)
holds.

Proof Since all λ j,i and α j,i are positive, for n ≥ n j ,

∣∣∣∣∣∣
j∑

i=1

λ j,i
(
1 + n (n + 1) α j,i

)−1

∣∣∣∣∣∣ ≤
j∑

i=1

λ j,i
(
1 + (

n j − 1
)

n jα j,i
)−1

= kn j → 0 as j → ∞.

Thus, (3.12) holds. ��
Notice that α j,i > 0 is needed to ensure ellipticity of the differential operator

(I − α j,i	
∗). When we discretize the operator S j , the positivity of {λ j,i } j

i=1 is desir-
able for numerical stability in computing approximations of S j .

Regarding the condition (3.11) for the system (3.10), let us show that n j ≥ j − 1.
Indeed, we have the following result.

Proposition 3.3 There exist pairwise distinct positive numbers α1, . . . , α j such that
the system (3.10) with n j = j − 1 is uniquely solvable for λ1, . . . , λ j .

Proof We use mathematical induction. The result is obvious for j = 1. Assume the
statement holds for j = k. Then the determinant

	k =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
1

1+2 α1

1
1+2 α2

· · · 1
1+2 αk

...
...

. . .
...

1
1+(k−1) k α1

1
1+(k−1) k α2

· · · 1
1+(k−1) k αk

∣∣∣∣∣∣∣∣∣
= 0.

For a real variable α, consider the function

	k+1(α) =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
1

1+2 α1

1
1+2 α2

· · · 1
1+2 αk

1
1+2 α

...
...

. . .
...

...
1

1+k (k+1) α1

1
1+k (k+1) α2

· · · 1
1+k (k+1) αk

1
1+k (k+1) α

∣∣∣∣∣∣∣∣∣
.

Obviously, 	k+1(α) is a rational function of α. Since

(1 + k (k + 1) α)	k+1(α) → 	k = 0 as α → −1/(k (k + 1)),

the rational function	k+1(α) is not identically zero. Therefore,	k+1(α) = 0 except
for finite number of values of α and the statement is true for j = k + 1. ��

Note that in the context of the proof of Theorem 3.3 with arbitrary choices of
α j,i > 0, 1 ≤ i ≤ j , there is no guarantee for λ j,i > 0, 1 ≤ i ≤ j .
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4 One-term and two-term approximations

We use an operator S j of the form (3.9) to approximate S. From now on, we drop the
letter j in the subscripts for λ j,i and α j,i . As noted after Theorem 3.2, to maintain
ellipticity of the differential operator (I − αi	

∗), we require

αi > 0, 1 ≤ i ≤ j. (4.1)

Moreover, for stable numerical approximation of the operator S j , it is desirable to
have

λi > 0, 1 ≤ i ≤ j, (4.2)

wherever possible. For the numbers {kn} defined in (3.2), recall the property (3.3) and
assume

k0 ≥ k1 ≥ · · · . (4.3)

This assumption is quite reasonable and is valid for phase functions in practical use.
More assumptions on these numbers will be introduced wherever needed.

Let j = 1. We have

S1Yn(ω) = k1,nYn(ω), k1,n = λ1

1 + α1n (n + 1)
. (4.4)

Equate the first two eigenvalues of S and S1:

λ1 = k0,
λ1

1 + 2α1
= k1.

Thus,

λ1 = k0, α1 = 1

2

(
k0

k1
− 1

)
. (4.5)

Observe that (4.1) and (4.2) are satisfied.
Then take j = 2,

S2 = λ1(I − α1	
∗)−1 + λ2(I − α2	

∗)−1 (4.6)

with the parameters satisfying

λ1 > 0, λ2 > 0, α1 > 0, α2 > 0, α1 = α2. (4.7)

We have

S2Yn(ω) = k2,nYn(ω), k2,n = λ1

1 + α1n (n + 1)
+ λ2

1 + α2n (n + 1)
. (4.8)
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Require the parameters to match the first three eigenvalues

k2,0 = k0, k2,1 = k1, k2,2 = k2,

i.e.,

λ1 + λ2 = k0, (4.9)
λ1

1 + 2 α1
+ λ2

1 + 2α2
= k1, (4.10)

λ1

1 + 6α1
+ λ2

1 + 6α2
= k2. (4.11)

Consider the system (4.9)–(4.11) for a general form solution. Use α1 as the param-
eter for the solution. Multiply (4.10) by (1+2 α1) and subtract (4.9) from the resulting
equation to obtain

2 (α1 − α2)

1 + 2α2
λ2 = (k1 − k0)+ 2 k1α1. (4.12)

Multiply (4.11) by (1 + 6α1) and subtract (4.9) from the resulting equation to obtain

6 (α1 − α2)

1 + 6α2
λ2 = (k2 − k0)+ 6 k2α1. (4.13)

Divide (4.12) from (4.13) to obtain

3 (1 + 2α2)

1 + 6α2
= (k2 − k0)+ 6 k2α1

(k1 − k0)+ 2 k1α1
.

Noticing that the left side equals 1 + 2/(1 + 6α2), we find

1 + 6α2

2
= (k1 − k0)+ 2 k1α1

(k2 − k1)+ 2 (3 k2 − k1) α1
. (4.14)

Thus,

α2 = 1

6
· (3 k1 − 2 k0 − k2)+ 6 (k1 − k2) α1

(k2 − k1)+ 2 (3 k2 − k1) α1
. (4.15)

Then we use (4.13) to get

λ2 = 2 [(k1 − k0)+ 2 k1α1] [(k2 − k0)+ 6 k2α1]

(2 k0 + k2 − 3 k1)+ 12 (k2 − k1) α1 + 12 (3 k2 − k1) α
2
1

. (4.16)

Finally, from (4.12),

λ1 = 1 − λ2. (4.17)
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We now investigate the issue of positivity of the one parameter solution
(α1, α2, λ1, λ2) given by the formulas (4.15)–(4.17), with α1 > 0. Since the differ-
ential approximation is intended mainly for applications with highly forward peaked
scattering, here we assume

3 k2 > k1, 3 k0k2 − k0k1 − 2 k1k2 > 0. (4.18)

The denominator of λ2 can be rewritten as

12 (3 k2 − k1)

(
α1 + k2 − k1

2 (3 k2 − k1)

)2

+ 2

3 k2 − k1
(3 k0k2 − k0k1 − 2 k1k2),

which is obviously positive under the assumption (4.18).
To have λ2 > 0, we need the two factors in the numerator be of the same sign. This

amounts to requiring

α1 > max

{
k0 − k1

2 k1
,

k0 − k2

6 k2

}
or α1 < min

{
k0 − k1

2 k1
,

k0 − k2

6 k2

}
.

Under the condition (4.18),

k0 − k1

2 k1
>

k0 − k2

6 k2
.

So the condition for λ2 > 0 is

α1 >
k0 − k1

2 k1
or 0 < α1 <

k0 − k2

6 k2
. (4.19)

To have α2 > 0, we need its numerator and denominator be of the same sign. This
amounts to requiring

α1 > max

{
2 k0 + k2 − 3 k1

6 (k1 − k2)
,

k1 − k2

2 (3 k2 − k1)

}
or

α1 < min

{
2 k0 + k2 − 3 k1

6 (k1 − k2)
,

k1 − k2

2 (3 k2 − k1)

}
.

Under the condition (4.18),

2 k0 + k2 − 3 k1

6 (k1 − k2)
>

k1 − k2

2 (3 k2 − k1)
.

So the condition for λ2 > 0 is

α1 >
2 k0 + k2 − 3 k1

6 (k1 − k2)
or 0 < α1 <

k1 − k2

2 (3 k2 − k1)
. (4.20)
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Under the condition (4.18),

2 k0 + k2 − 3 k1

6 (k1 − k2)
>

k0 − k1

2 k1
,

k1 − k2

2 (3 k2 − k1)
<

k0 − k2

6 k2
.

Combining (4.19) and (4.20), we conclude that a condition for α1 > 0, α2 > 0 and
λ2 > 0 is

α1 >
2 k0 + k2 − 3 k1

6 (k1 − k2)
or 0 < α1 <

k1 − k2

2 (3 k2 − k1)
. (4.21)

For λ1 > 0, we need λ2 < 1. This issue can usually be easily addressed for concrete
phase functions, and we consider such an example in the next section.

5 An example

In the following demonstration, we take the Henyey–Greenstein phase function as an
example; in this case,

kn = gn, n = 0, 1, . . . .

We use the operators {S j } j≥1 of (3.9) to approximate S. To maintain ellipticity of
the differential operator (I − αi	

∗), we require

αi > 0, 1 ≤ i ≤ j. (5.1)

Moreover, for the benefit of stable numerical approximation for the operator S j , it is
desirable to have

λi > 0, 1 ≤ i ≤ j, (5.2)

wherever possible.
For the one term approximation S1 = λ1(I − α1	

∗)−1, from (4.5) we have

λ1 = 1, α1 = 1 − g

2 g
. (5.3)

For the two term approximation S2 = λ1(I − α1	
∗)−1 + λ2(I − α2	

∗)−1, by
(4.15),

α2 = 1 − g

6g
· g − 2 + 6 g α1

g − 1 + 2 (3g − 1) α1
, (5.4)

by (4.16),

λ2 = 2 (g − 1 + 2gα1)
(
g2 − 1 + 6g2α1

)
(1 − g) (2 − g)+ 12g (g − 1) α1 + 12g (3g − 1) α2

1

, (5.5)
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and from (4.17),

λ1 = g (1 − g) (2g − 1)
(
1 + 8α1 + 12α2

1

)
(1 − g) (2 − g)+ 12g (g − 1) α1 + 12g (3g − 1) α2

1

. (5.6)

We now investigate the issue of positivity of the one parameter solution
(α1, α2, λ1, λ2) given by the formulas (5.4)–(5.6), with α1 > 0. The condition (4.18)
is equivalent to

g >
1

2
, (5.7)

a condition naturally valid in applications with highly forward peaked scattering.
Henceforth, we always assume (5.7). Since (4.18) holds, the common denominator of
λ1 and λ2 is positive and easily, λ1 > 0. Thus, by (4.21), the condition for a positive
solution (α1, α2, λ1, λ2) is

α1 >
2 − g

6g
or 0 < α1 <

1 − g

2 (3g − 1)
.

By the symmetry of S2 with respect to (α1, λ1) and (α2, λ2), we have the equivalence

α1 >
2 − g

6g
⇐⇒ 0 < α2 <

1 − g

2 (3g − 1)
,

0 < α1 <
1 − g

2 (3g − 1)
⇐⇒ α2 >

2 − g

6g
.

In conclusion, in the case g > 1/2, the condition for a positive solution
(α1, α2, λ1, λ2) is

α1 >
2 − g

6g
. (5.8)

Since α1 = 1/2 satisfies (5.8), one solution is

α1 = 1

2
, α2 = 1 − g

6 g
, λ1 = 4 g (1 − g)

4 g − 1
, λ2 = 4 g2 − 1

4 g − 1
. (5.9)

6 Concluding remarks

In this paper, we study a family of differential approximation models for the radiative
transfer equation (RTE), especially in the case of highly forward-peaked scattering.
For the approximation models, the scattering operator in RTE operators is approx-
imated by operators constructed from the Laplace–Beltrami operator such that the
eigenvalues of the scattering operator and those of the approximation operators have
the same limiting behavior and the first several eigenvalues are pairwise equal.

123



J Math Chem (2012) 50:689–702 701

After introducing a general framework for the family of differential approximation
models, we provide a detailed discussion on conditions for positivity of the parameters
in the one-term and two-term approximation models. Closeness of the approximation
models to the RTE can be illustrated through comparing eigenvalues of the integral
operator in the RTE with those of the approximate operators in the approximation
models.

Rigorous mathematical analysis and numerical analysis of the differential approx-
imation models, numerical simulation results on closeness of solutions of the dif-
ferential approximation models to the solution of the RTE, as well as related inverse
problems and thier applicaitons, will be given in sequels. In particular, it will be shown
that numerical simulation of the differential approximation models can be carried out
substantially simpler than that for the RTE.
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