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SUMMARY

While diffuse optical tomography (DOT) has been studied for years, bioluminescence tomography (BLT)
is emerging as a promising optical molecular imaging tool. These two modalities have different goals.
DOT is for reconstruction of optical parameters of a medium such as a breast from surface measurements
induced by external sources. BLT is for reconstruction of a bioluminescent source distribution in a medium
such as a mouse from surface measurements induced by internal bioluminescent sources. However, an
important pre-requisite for BLT reconstruction is the knowledge on the distribution of optical parameters
within the medium, which is the output of DOT. In this paper, we propose a mathematical model integrating
BLT and DOT at the fundamental level; that is, performing the two types of reconstructions simultaneously
instead of doing them sequentially. The model is introduced through minimizing the difference between
predicted quantities and boundary measurements, as well as incorporating regularization terms. Then,
we show the solution existence, introduce numerical schemes and prove convergence of the numerical
solution. We also present numerical results to illustrate the utility of our approach. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Roughly speaking, the biomedical imaging technology is characterized by the traditional anatom-
ical imaging modes such as X-ray computed tomography (CT), the popular functional imaging
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modes such as functional magnetic resonance imaging (MRI), and the futuristic molecular imaging
modes such as various types of optical molecular imaging techniques. Bioluminescence tomog-
raphy (BLT), which we have been developing since 2002, is an emerging optical molecular
imaging tool. As compared with fluorescence-based imaging, bioluminescence imaging does not
suffer from background auto-fluorescence and has unique probing capabilities. With BLT, 3D
localization and quantitative analyses on a bioluminescent source distribution may be performed
in mouse models, which are important to study human disease progression and therapeutic
efficacy.

Currently, results from our and other groups all suggest that BLT does produce valuable tomo-
graphic information in cases of favorable source locations or with a priori knowledge. In an
important type of these cases, the distribution of optical parameters within a mouse is known, which
can be determined using diffuse optical tomography (DOT). Nevertheless, the DOT solution is not
accurate in general, and it is not always reliable either. In brief, it remains extremely challenging
to stabilize the BLT reconstruction and reduce its errors significantly.

In this paper, we develop the first mathematical model that allows the simultaneous reconstruction
of both optical parameters and bioluminescent source distributions within the mouse. The physical
experiment starts with applying several sets of external laser beams of appropriate wavelengths
on the mouse body surface to excite the biological medium, and subsequently collect photon
densities with charge-coupled device (CCD) detectors on certain parts of the boundary. Then,
the substrate is administrated into the blood circulation of the mouse to generate bioluminescent
photons, and the corresponding signals are similarly recorded on the mouse body surface. For the
mathematical model to be introduced next, we assume that the experiment is done in a totally dark
environment. Nevertheless, this assumption is neither essential for analysis of the model nor for
its implementation.

We proceed to describe the mathematical model in its classical formulation. To simplify the
notation, we use the subscript D for quantities related to the DOT part and the subscript B for the
BLT part. We also assume that all spaces related to DOT part are complex valued and the ones
related to BLT part are real valued.

Let �⊂Rd be the biological medium with the boundary �=��. Although the dimension d=3
for applications, the theory we develop is valid for any dimension. Suppose a total of I sets of
measurement data are available for the DOT part. We denote by �D,i , 1�i�I , subsets of � where
DOT measurement data are collected. We denote by �B the part of the boundary where the BLT
measurement data are collected. Note that these boundary subsets are allowed to be the entire
boundary. Given sources pD,i on �, modified measurements gD,i on �D,i , permissible region
�B ⊂�, and modified measurement gB on �B , we need to determine the optical parameters �,
� and the source function p such that for i=1, . . . , I , the solution uD,i of the boundary value
problem (BVP)

−div(�∇uD,i )+�uD,i + i�

c0
uD,i = 0 in � (1)

uD,i +2A�
�uD,i

��
= pD,i on � (2)

satisfies

uD,i =gD,i on �D,i (3)
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and the solution uB of the BVP

−div(�∇uB)+�uB = p�B in � (4)

uB +2A�
�uB

��
= 0 on � (5)

satisfies

uB =gB on �B (6)

In (1), c0 denotes the light speed and � is the modulation frequency. In (4), we use the notation
�B for the characteristic function of the set �B . The parameter �=1/[3(�+�′)], � and �′ being
absorption and reduced scattering coefficients. We use �/�� to denote the operator of outward
normal differentiation. The appearance of the parameter A in the boundary condition (2) and (5)
is to incorporate diffuse boundary reflection arising from a refractive index mismatch between the
body � and the surrounding medium.

A conventional DOT problem is to determine the optical parameters � and � from (1)–(3).
A summary account of DOT can be found in [1]. In the conventional BLT problem, the param-
eters � and � are assumed to be known exactly, and the only unknown is the source function
p. Theoretical studies of the BLT problem have been done in [2, 3], and that of multispectral
bioluminescence tomography are found in [4, 5]. We note that in the conventional BLT, since
the parameters � and � are determined from separate experiments of DOT, these parameters are
known only approximately. In this paper, we propose a new approach that combines DOT and
BLT together so as to reconstruct the optical parameters and the bioluminescent source distribution
simultaneously. In Section 2, we formulate the problem of simultaneous reconstruction of both the
bioluminescent source distribution and the optical parameters, and then prove the solution existence.
In Section 3, we discuss numerical approximations and the convergence of numerical methods. In
Section 4, we present numerical examples to illustrate the utility of our approach and evaluate its
performance.

2. FORMULATION AND THEORETICAL INVESTIGATION

To formulate the problem rigorously, we need to make some assumptions on the given data. We
assume �⊂Rd is a non-empty, open, bounded set with a Lipschitz boundary �, and �D,i , 1�i�m,
and �B are Lipschitz subsets of �. The parameter A is assumed to be bounded and bounded below
away from zero. We also assume gD,i ∈L2(�D,i ), 1�i�I , and gB ∈L2(�B). Note that L2(�D,i ),
1�i�I , are complex valued and L2(�B) is a real Hilbert space. In this paper, function spaces
with a subscript D are complex, whereas those with a subscript B are real.

In most applications of DOT and BLT, the parameters � and � are taken to be piecewise
constants. In other words, the biological medium � consists of J subdomains � j , 1� j�J , such
that �=⋃J

j=1� j , � j ∩�l =∅ for j 	= l, and restrictions of � and � on each � j are constants.
To allow a framework for more accurate identification of the parameters, we consider a general
situation where the restriction of � to each � j belongs to a finite-dimensional function space,
and � belongs to a general convex, closed set in the real space L2(�). Thus, over each � j , we
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introduce a finite-dimensional function space X j ⊂ L∞(� j ). For given constants � j ,� j ∈(0,∞),
1� j�J , let

Q� ={�∈L∞(�) |� j���� j a.e. in � j , �|� j ∈ X j , 1� j�J } (7)

be the set where we look for the parameter �. For given constants �
j
�0 and � j>0, 1� j�J , let

Q� ⊂{�∈L2(�) |�
j
���� j a.e. in � j , 1� j�J } (8)

be a closed, convex set of L2(�). The constants � j , � j , �
j
, and � j , 1� j�J , are selected based

on experimental results. In practice, X j is chosen to be the constant function space on � j , and
similarly, Q� is a set of piecewise constant functions.

Suppose, we seek the source function p in a closed convex subset Qp of the real Hilbert space
L2(�B):

Qp ⊂{p∈L2(�B) | p�0 a.e. in �B} (9)

For example, Qp may be chosen as a set of non-negatively valued functions from a finite-
dimensional space of linear combinations of specified functions such as the characteristic functions
of certain subsets of �B .

We then define the admissible set Qad=Q�×Q�×Qp. Also we denote by VD and QD the
complex Hilbert spaces H1(�) and L2(�), respectively, and by VB and QB the real spaces H1(�)

and L2(�), respectively.
For any (�,�)∈Q�×Q�, define uD,i =uD,i (�,�)∈VD by the BVP∫

�

[
�∇uD,i ·∇v̄+

(
�+ i�

c0

)
uD,i v̄

]
dx+

∫
�

1

2A
uD,i v̄ ds=

∫
�

1

2A
pD,i v̄ ds ∀v∈VD (10)

Additionally, with any p∈L2(�B), denote uB =uB(�,�, p)∈VB the solution of the BVP∫
�

(�∇uB ·∇v+�uBv) dx+
∫

�

1

2A
uBv ds=

∫
�B

pv dx ∀v∈VB (11)

Then the weak solution of the problem (1)–(2) is uD,i =uD,i (�,�), and that of (4)–(5) is uB =
uB(�,�, p). By the well-known Lax–Milgram Lemma (e.g. [6, 7]) and its complex version (e.g.
[8]), due to the assumptions made on the data, the problems (10) and (11) have a unique solution.

For ���0, ���0 and �p�0, denote �=(��,��,�p), and define the functional

J�(�,�, p) = 1

2

I∑
i=1

‖uD,i (�,�)−gD,i‖2L2(�D,i )
+ 1

2
‖uB(�,�, p)−gB‖2L2(�B )

+ ��
2

‖�‖2L2(�)
+ ��

2
‖�‖2L2(�)

+ �p
2

‖p‖2L2(�B )
(12)

We introduce the following problem for simultaneous determination of the parameters � and �,
and the source function p:

inf{J�(�,�, p) |(�,�, p)∈Qad} (13)

First, we address the solution existence.
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Theorem 2.1
Assume �p>0 or Qp ⊂ L2(�B) is bounded. Then the problem (13) has a solution.

Proof
Denote by ��0 the infimum value of (13). By the definition of infimum, there is a sequence
{(�n,�n, pn)}n�1⊂Qad such that

J�(�n,�n, pn)→� as n→∞
Denote uD,i,n =uD,i (�n,�n), uB,n =uB(�n,�n, pn). Then it is easy to see that the sequences

{‖uD,i,n‖VD } and {‖uB,n‖VB } are bounded. Under the assumption that �p>0 or Qp ⊂ L2(�B) is
bounded, {pn} is a bounded sequence in L2(�B). Since Q� is finite dimensional and {‖�n‖L2(�)}
is bounded, we can find a subsequence {n′} of the sequence {n}, and some functions �∞ ∈Q�,
�∞ ∈Q�, p∞ ∈Qp, uD,i,∞ ∈VD , and uB,∞ ∈VB such that as n′ →∞

�n′ → �∞ in L∞(�), �n′ ⇀�∞ in L2(�), pn′ ⇀ p∞ in L2(�B)

uD,i,n′ ⇀ uD,i,∞ in VD, uB,n′ ⇀uB,∞ in VB

uD,i,n′ → uD,i,∞ in QD, uB,n′ →uB,∞ in QB

Let us verify that uD,i,∞ =uD,i (�∞,�∞). From (10),∫
�

[
�n′∇uD,i,n′ ·∇v+

(
�n′ + i�

c0

)
uD,i,n′v

]
dx

+
∫

�

1

2A
uD,i,n′v ds=

∫
�

1

2A
pD,iv ds ∀v∈VD (14)

Fix an arbitrary v from the complex space C∞(�). Write∫
�
(�n′∇uD,i,n′ ·∇v−�∞∇uD,i,∞·∇v)dx =

∫
�

(�n′ −�∞)∇uD,i,n′ ·∇v dx

+
∫

�
�∞∇(uD,i,n′ −uD,i,∞) ·∇v dx

As n′ →∞, the first integral on the right side approaches zero since �n′ →�∞ in L∞(�) and
‖∇uD,i,n′‖L2(�) is uniformly bounded, and the second integral approaches zero since �∞∇v∈
[L2(�)]d and uD,i,n′ ⇀uD,i,∞ in VD . Thus,∫

�
�n′∇uD,i,n′ ·∇v dx→

∫
�

�∞∇uD,i,∞·∇v dx as n′ →∞

Write∫
�
(�n′uD,i,n′ −�∞uD,i,∞)v dx=

∫
�
(�n′ −�∞)uD,i,∞v dx+

∫
�

�n′(uD,i,n′ −uD,i,∞)v dx
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As n′ →∞, the first integral on the right side goes to zero since �n′ ⇀�∞ in L2(�) and uD,i,∞v∈
L2(�), and the second integral goes to zero since uD,i,n′ →uD,i,∞ in L2(�) and ‖�n′‖L2(�) is
uniformly bounded. Thus,∫

�
�n′uD,i,n′v dx→

∫
�

�∞uD,i,∞v dx as n′ →∞

Since uD,i,n′ →uD,i,∞ in L2(�) and uD,i,n′ →uD,i,∞ in L2(�)

∫
�
uD,i,n′v dx →

∫
�
uD,i,∞v dx

∫
�

1

2A
uD,i,n′v ds →

∫
�

1

2A
uD,i,∞v ds

as n′ →∞. So taking the limit n′ →∞ in (14) for v∈C∞(�), we obtain∫
�

[
�∞∇uD,i,∞·∇v+

(
�∞+ i�

c0

)
uD,i,∞v

]
dx+

∫
�

1

2A
uD,i,∞v ds=

∫
�

1

2A
pD,iv ds

Since C∞(�) is dense in VD , a density argument shows

∫
�

[
�∞∇uD,i,∞·∇v+

(
�∞+ i�

c0

)
uD,i,∞v

]
dx

+
∫

�

1

2A
uD,i,∞v ds=

∫
�

1

2A
pD,iv ds ∀v∈VD (15)

Thus, uD,i,∞ =uD,i (�∞,�∞).
A similar argument shows that uB,∞ =uB(�∞,�∞, p∞).
Therefore,

J�(�∞,�∞, p∞)� liminf
n′→∞

J�(�n′,�n′, pn′)=�

i.e. (�∞,�∞, p∞)∈Qad is a solution of the problem (13). �

We comment that the condition �p>0 is natural in practical simulations as the corresponding
term plays a regularization role.

The next result provides a necessary condition for a solution of the problem (13).

Proposition 2.2
Let (�0,�0, p0)∈Qad be a solution of the problem (13) and denote uD,i,0=uD,i (�0,�0) and
uB,0=uB(�0,�0, p0). Then

I∑
i=1

Re(uD,i,0−gD,i ,wD,i,0)L2(�D,i )
+(uB,0−gB,wB,0)L2(�B )+��(�0,�−�0)L2(�)

+��(�0,�−�0)L2(�)+�p(p0, p− p0)L2(�B )�0 ∀ (�,�, p)∈Qad (16)
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where wD,i,0=wD,i,0(�−�0,�−�0)∈VD is the solution of the BVP∫
�

[
�0∇wD,i,0 ·∇v+

(
�0+ i�

c0

)
wD,i,0v

]
dx+

∫
�

1

2A
wD,i,0v ds

=−
∫

�
[(�−�0)∇uD,i,0 ·∇v+(�−�0)uD,i,0v]dx ∀v∈VD (17)

whereas wB,0=wB,0(�−�0,�−�0, p− p0)∈VB is the solution of the BVP∫
�
(�0∇wB,0 ·∇v+�0wB,0v)dx+

∫
�

1

2A
wB,0v ds

=
∫

�B

(p− p0)v dx−
∫

�
[(�−�0)∇uB,0 ·∇v+(�−�0)uB,0v]dx ∀v∈VB (18)

Proof
Let t ∈[0,1] be a real variable. For any (�,�, p)∈Qad, write

�t = �0+ t (�−�0)

�t = �0+ t (�−�0)

pt = p0+ t (p− p0)

Define uD,i,t ∈VD and uB,t ∈VB to be the solutions of the following boundary value problems:∫
�

[
�t∇uD,i,t ·∇v+

(
�t+

i�

c0

)
uD,i,tv

]
dx+

∫
�

1

2A
uD,i,tv ds

=
∫

�

1

2A
pD,iv ds ∀v∈VD (19)

∫
�
[�t∇uB,t ·∇v+�t uB,tv]dx+

∫
�

1

2A
uB,tv ds=

∫
�B

ptv dx ∀v∈VB (20)

Consider the function

g(t)=
I∑

i=1
‖uD,i,t −gD,i‖2L2(�D,i )

+‖uB,t −gB‖2L2(�B )
+��‖�t‖2L2(�)

+��‖�t‖2L2(�)
+�p‖pt‖2L2(�B )

for t ∈[0,1]. Then g(t) has its minimum at t=0 for t ∈[0,1], and so

g′(0+)�0

Now

1

2
g′(t) =

I∑
i=1

Re

(
uD,i,t −gD,i ,

�uD,i,t

�t

)
L2(�D,i )

+
(
uB,t −gB,

�uB,t

�t

)
L2(�B )

+��(�t ,�−�0)L2(�)+��(�t ,�−�0)L2(�)+�p(pt , p− p0)L2(�B )

Copyright q 2008 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2009; 25:639–656
DOI: 10.1002/cnm



646 W. HAN ET AL.

Differentiate (19) with respect to t to obtain

∫
�

[
�t∇ �uD,i,t

�t
·∇v+

(
�t +

i�

c0

)
�uD,i,t

�t
v

]
dx+

∫
�

1

2A

�uD,i,t

�t
v ds

=−
∫

�
[(�−�0)∇uD,i,t ·∇v+(�−�0)uD,i,tv]dx ∀v∈VD (21)

Obviously, uD,i,t : t ∈[0,1]→VD is continuous as a function of t . So uD,i,t →uD,i,0 in VD as
t→0+. Let t→0+ in (21) to obtain (17) for

wD,i,0= lim
t→0+

�uD,i,t

�t

Similarly, we can derive the boundary value problem (18) for

wB,0= lim
t→0+

�uB,t

�t

Thus,

1

2
g′(0+) =

I∑
i=1

Re(uD,i,0−gD,i ,wD,i,0)L2(�D,i )
+(uB,0−gB,wB,0)L2(�B )

+��(�0,�−�0)L2(�)+��(�0,�−�0)L2(�)+�p(p0, p− p0)L2(�B )�0

i.e. (16) holds. �

The proposition gives a necessary condition for a solution of the problem (13). The result may
be useful in studying solution properties.

We have addressed the existence of a solution to Problem (13) in Theorem 2.1. Solution
uniqueness is an issue worth further exploring for both Problem (13) and its non-regularized limit
with �� =�� =�p =0. In the case of a pure BLT problem, a solution uniqueness result for the
counterpart of Problem (13) with �p>0 is proved in [3]. Moreover, it is shown there that as �p →0,
we will recover the minimal norm solution of the BLT problem without regularization. In the case
of a pure DOT problem, some solution uniqueness results are found in [9, 10] under the assumption
of availability of complete knowledge of the so-called Dirichlet-to-Neumann operator. In practice,
the optical parameters are usually assumed to be piecewise constants. For such situation, some
theoretical results on solution uniqueness can be found in the literature, e.g. [11, 12]. However,
the results are generally difficult to use for applications. In the case of piecewise constant optical
parameters, solution uniqueness is likely guaranteed with several sets of measurement data. Below,
we illustrate this by considering a simple 1D example with constant parameters. The example is
to determine two positive constants � and � such that

−�u′′+�u = 0 in (0,1)

u(0) = f0, u(1)= f1

−�u′(0) = g0, �u′(1)=g1
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for given values f0, f1, g0, and g1 with f1g0 	= f0g1. After some calculations, it can be shown that

( f1g0− f0g1) cosh(
√

�/�)= f0g0− f1g1 (22)

and

√
��=− g0 sinh(

√
�/�)

f1− f0 cosh(
√

�/�)
(23)

Obviously, if a solution (�,�) exists, then it is uniquely determined by (22) and (23).

3. NUMERICAL APPROXIMATIONS

In this section, we consider numerical solutions of the problem (13). Our discussion can be given
for the general sets Q� of (7) and Q� of (8) for the optical parameters, following the same kind
of arguments presented below, at the expense of more complicated notations and the mathematical
expressions. In order to focus on the essential parts of the arguments, in this section, we restrict
our discussion to the situation where the optical parameters are piecewise constants.

Let {Th} (h: meshsize) be a regular family of finite element partitions of � such that each
element at the boundary � has at most one non-straight face (for a three-dimensional domain) or
side (for a two-dimensional domain). For each triangulation, Th ={K }, let V h

D ⊂VD and V h
B ⊂VB

be the corresponding linear element spaces. Let {TH,�B } (H : meshsize) be a regular family of
finite element partitions of �B such that each element at the boundary ��B has at most one
non-straight face (for a three-dimensional domain) or side (for a two-dimensional domain). The
introduction of the second family of partitions {TH,�B } is for flexibility, and it is allowed to be
the restriction of the family {Th} on the set �B if the boundary ��B is the union of some sides
for any partition Th under consideration. Let QH

p be the piecewise constant finite element subset
approximating Qp. Then QH

p is non-empty, closed, and convex, and we have the property

∀q∈Qp, ∃qH ∈QH
p such that ‖qH −q‖L2(�B ) →0 as H →0

Indeed, we may simply take qH to be the piecewise average of q over TH,�B . Denote uhD,i =
uhD,i (�,�)∈V h

D for the solution of the problem

∫
�

[
�∇uhD,i ·∇vh+

(
�+ i�

c0

)
uhD,iv

h

]
dx+

∫
�

1

2A
uhD,iv

h ds=
∫

�

1

2A
pD,ivh ds ∀vh∈V h

D (24)

Also, let uhHB =uhB(�,�, pH )∈V h
B be the solution of the problem

∫
�
(�∇uhHB ·∇vh+�uhHB vh)dx+

∫
�

1

2A
uhHB vh ds=

∫
�B

pHvh dx ∀vh ∈V h
B (25)
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By the Lax–Milgram Lemma, both uhD,i and uhHB are uniquely defined. As an approximation of
the functional (12), we let

J hH� (�,�, pH ) = 1

2

I∑
i=1

‖uhD,i (�,�)−gD,i‖2L2(�D,i )
+ 1

2
‖uhHB (�,�, pH )−gB‖2L2(�B )

+ ��
2

‖�‖2L2(�)
+ ��

2
‖�‖2L2(�)

+ �p
2

‖pH‖2L2(�B )
(26)

We then introduce the following discretization of the problem (13):

inf{JhH� (�,�, pH ) |(�,�, pH )∈QH
ad} (27)

where QH
ad=Q�×Q�×QH

p is the admissible set for the discretized problem.
Like for the problem (13), under the assumption of Theorem 2.1, there is a solution to the

discrete problem (27). Let us show the following convergence result of the numerical method.

Theorem 3.1
(a) Any sequence of discrete solutions of the problem (27) corresponding to a sequence of meshsizes
contains a subsequence {(�hH ,�hH , phH )}h,H and a solution (�,�, p)∈Qad of the problem (13)
such that

�hH →� and �hH →� in L∞(�), phH → p in L2(�B) as h,H →0 (28)

(b) Any limiting point (�,�, p) of a sequence {(�hH ,�hH , phH )}h,H of discrete solutions defined
by the problem (27), in the sense of (28), is a solution of the problem (13).

(c) Denote by �hH the infimum value of (27). Then

�hH →� as h,H →0

Proof
Let (�∞,�∞, p∞)∈Qad be a solution of (13). Note that uD,i,∞ =uD,i (�∞,�∞)∈VD satisfies
(15). Denote uhD,i,∞ =uhD,i (�∞,�∞)∈V h

D . Then by (24), for any vh ∈V h
D∫

�

[
�∞∇uhD,i,∞·∇vh+

(
�∞+ i�

c0

)
uhD,i,∞vh

]
dx+

∫
�

1

2A
uhD,i,∞vh ds=

∫
�

1

2A
pD,ivh ds

By Cea’s inequality we have

‖uD,i,∞−uhD,i,∞‖VD�c inf
vh∈V h

D

‖uD,i,∞−vh‖VD →0 as h→0

Similarly, uB,∞ =uB(�∞,�∞, p∞)∈VB is the solution of the BVP∫
�
(�∞∇uB,∞·∇v+�∞uB,∞v)dx+

∫
�

1

2A
uB,∞v ds=

∫
�B

p∞v dx ∀v∈VB (29)

Choose pH∞ ∈QH
p such that

pH∞ → p∞ in L2(�0) as H →0 (30)
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By (25), uhHB,∞ ∈V h
B is the discrete solution defined by the relation∫

�
(�∞∇uhHB,∞·∇vh+�∞uhHB,∞vh)dx+

∫
�

1

2A
uhHB,∞vh ds=

∫
�B

pH∞vh dx ∀vh ∈V h
B

Subtract this relation from (29) to obtain∫
�
[�∞∇(uB,∞−uhHB,∞) ·∇vh+�∞(uB,∞−uhHB,∞)vh]dx+

∫
�

1

2A
(uB,∞−uhHB,∞)vh ds

=
∫

�B

(p∞− pH∞)vh dx ∀vh ∈V h
B

Using this, we obtain

‖uB,∞−uhHB,∞‖VB�c

[
inf

vh∈V h
B

‖uB,∞−vh‖VB +‖p∞− pH∞‖L2(�B )

]
→0 as h,H →0

Since �hH�J hH� (�∞,�∞, pH∞), we have

limsup
h,H→0

�hH� lim
h,H→0

J hH� (�∞,�∞, pH∞)=� (31)

Consider any sequence {(�hH ,�hH , phH )}h,H of solutions of the problem (27). Then there is
a subsequence, still denoted by {(�hH ,�hH , phH )}h,H , such that for some �∈Q�, �∈Q�, and
p∈Qp

�hH →� and �hH →� in L∞(�), phH ⇀ p in L2(�B) as h,H →0 (32)

Let us show that

uhHD,i =uhD,i (�
hH ,�hH )⇀uD,i (�,�) in VD as h,H →0

First, by (24), it can be shown that ‖uhHD,i‖VD is uniformly bounded, independent of h and H .

So there exists a subsequence of {uhHD,i }h,H , still denoted by {uhHD,i }h,H , and uD,i ∈VD such that

uhHD,i ⇀uD,i in VD . Taking h,H →0 along this subsequence in (24) with �=�hH and �=�hH

to get ∫
�

[
�∇uD,i ·∇v+

(
�+ i�

c0

)
uD,iv

]
dx+

∫
�

1

2A
uD,iv ds=

∫
�

1

2A
pD,iv ds ∀v∈VD

i.e. the limit uD,i =uD,i (�,�). Since the limit uD,i is unique, the entire family converges: uhHD,i ⇀

uD,i in VD as h,H →0. A consequence of this is uhD,i (�
hH ,�hH )→uD,i (�,�) in QD . Similarly,

uhHB =uhB(�hH ,�hH , phH )⇀uB(�,�, p) in VB and uhHB →uB(�,�, p) in QB . Hence,

J�(�,�, p)� liminf
h,H→0

J hH� (�hH ,�hH , phH ) (33)

and so

liminf
h,H→0

�hH�� (34)
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Combining (31) and (34), we see that the statement (c) holds. From (33), we deduce that (�,�, p)
is a solution of the problem (13). Moreover,

lim
h,H→0

J hH� (�hH ,�hH , phH )= J�(�,�, p)

and therefore,

lim
h,H→0

‖phH‖L2(�B ) =‖p‖L2(�B )

This relation and (32) together lead to (28) ([6]). Hence, the statement (a) is valid. The above
argument also shows that the statement (b) is valid. �

The theorem states that as the finite element meshsizes go to zero, we have convergence of
numerical solutions and convergence of the minimal discrete energy to the minimal energy.

4. NUMERICAL EXAMPLES

We report numerical results on two examples.
First, we consider a two-dimensional test problem. In this example, we take �=0, that is both

DOT and BLT are performed in continuous wave domain. Let �=(0,1)×(0,1) divide it into
two sub-regions: �1=(0,0.5)×(0,1) and �2=(0.5,1)×(0,1). In each region �m , m=1,2, the
values of the optical parameters � and � are assumed to be constant. The exact values of � and �
are taken to be

�=
{
0.3268 in �1

0.1916 in �2
�=

{
0.02 in �1

0.14 in �2

We specify the ranges for the optical parameters by �∈[0.01,2] and �∈[0.001,1.2]. We take six
different intensities of the source pD on the boundary �. We assume that each pD,i , 1�i�6, has
a constant value on �.

pD,1 = 3 on �

pD,2 = 4 on �

pD,3 = 6 on �

pD,4 = 7 on �

pD,5 = 8 on �

pD,6 = 10 on �

The source function pB is assumed to be piecewise constant. The source is placed in the permissible
region �0=[0.25,0.375]×[0.375,0.625], which is divided into four uniform triangular elements.
In each element, the value of source function pB is taken to be 10. In this example, we choose
A=1.
We use linear elements on uniform triangular partitions of the domain �. The uniform meshes

are obtained by dividing the interval [0,1] into 1/h equal parts in both x and y directions. We start
with an initial mesh with h= 1

8 and then successively halve h to obtain more refined meshes.
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The numerical solutions of the boundary value problems (10) and (11) computed using the exact
values of �, �, and pB , and on the mesh with mesh size h= 1

512 are taken as the true solutions.
These solutions are then used to obtain the measured quantity gD,i , 1�i�4, on �D =� and gB
on �B =�.

The numerical solutions of problem (13) are then computed using these values of gD,i , 1�i�4,
and gB on the meshes with mesh size h= 1

8 ,
1
16 ,

1
32 ,

1
64 , and regularization parameters �� =10−5,

�� =10−5 and �p =10−5.
Tables I–III give the computed values of �h , �h , and phB for various values of h and using just

one set of measurement data corresponding to pD,2. The norm of the error between the true and
computed values of �, �, and pB using various number of measurement data sets for gD and mesh
size h is given in Tables IV–VI. Errors of numerical solutions given in Tables I–III are shown
graphically in Figures 1–3.

Table I. Numerical results on parameter �.

Subdomain �1 �2

�h ,h= 1
8 0.3434 0.1993

�h ,h= 1
16 0.3320 0.1934

�h ,h= 1
32 0.3282 0.1919

�h ,h= 1
64 0.3272 0.1917

� 0.3268 0.1916

Table II. Numerical results on parameter �.

Subdomain �1 �2

�h ,h= 1
8 0.019374 0.139657

�h ,h= 1
16 0.019763 0.139995

�h ,h= 1
32 0.019926 0.140013

�h ,h= 1
64 0.019978 0.140008

� 0.02 0.14

Table III. Numerical results on source function pB .

Element 1 2 3 4

phB ,h= 1
8 9.6222 10.0785 9.6363 10.3618

phB ,h= 1
16 9.8517 10.0743 9.7969 10.1454

phB ,h= 1
32 9.9423 10.0665 9.8285 10.1010

phB ,h= 1
64 10.0035 10.0266 9.8371 10.1035

pB 10.0 10.0 10.0 10.0
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Table IV. ‖�−�h‖L2(�).

No. of data sets h= 1
8 h= 1

16 h= 1
32 h= 1

64

1 2.4336×10−2 6.9232×10−3 1.7439×10−3 4.6583×10−4

2 2.4427×10−2 6.9181×10−3 1.7907×10−3 4.4289×10−4

4 2.4446×10−2 7.1579×10−3 1.8736×10−3 4.8085×10−4

6 2.4440×10−2 7.1725×10−3 1.8763×10−3 4.8678×10−4

Table V. ‖�−�h‖L2(�).

No. of data sets h= 1
8 h= 1

16 h= 1
32 h= 1

64

1 9.6949×10−4 2.4187×10−4 6.0002×10−5 1.4517×10−5

2 9.7234×10−4 2.4265×10−4 5.9840×10−5 1.4655×10−5

4 9.7899×10−4 2.4443×10−4 5.9761×10−5 1.4501×10−5

6 9.7978×10−4 2.4470×10−4 5.9712×10−5 1.4243×10−5

Table VI. ‖pB − phB‖L2(�0)
.

No. of data sets h= 1
8 h= 1

16 h= 1
32 h= 1

64

1 5.6736×10−2 2.6500×10−2 1.9238×10−2 1.7225×10−2

2 5.7494×10−2 3.0657×10−2 2.2942×10−2 1.8501×10−2

4 6.6857×10−2 3.7110×10−2 2.1366×10−2 1.4309×10−2

6 6.8125×10−2 3.4272×10−2 2.0590×10−2 2.1809×10−2

To demonstrate the feasibility of the proposed numerical reconstruction method, in the second
example, we consider a cylindrical numerical phantom of radius 10mm and height 20mm, which
includes two regions �1 and �2, as shown in Figures 4 and 5. A spherical light source of
radius of 0.6mm with power of 1.16 nano-Watts is located at (−3,−1,10) in region �2. The
optical parameters (�,D) of the two regions are assigned as (0.06mm−1,0.42735mm), and
(0.12mm−1,0.24331mm) to simulate heterogeneous medium. The finite element method with
linear elements is applied to solve the boundary value problems. The phantom is discretized into
88 360 tetrahedral elements with 16 316 nodes. There are 3301 boundary nodes and we use them to
record photon flux density on the boundary. In practice, the measurement modality can be realized
using non-contact imaging using highly sensitive CCD camera. For the parameter A, we use, as
usual, the formula

A=(1+R)/(1−R)

with a directionally varying refraction parameter R computed by

R=−1.4399	−2+0.7099	−1+0.6681+0.0636	
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Figure 1. Graph of the error ‖�−�h‖L2(�).
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Figure 2. Graph of the error ‖�−�h‖L2(�).

In this example, we take the refractive index 	=1.37. The measured data on the boundary are
generated from the solution of the BVP (4)–(5), corrupted by 5% Gaussian noise, as shown in
Figure 6.

Four point sources of 10 nano-Watts with a modulation frequency of 100MHz located at
(0,−10,10), (0,10,11), (10,0,12), and (−10,0,13) on the boundary are employed to excite the
phantom, respectively, and the virtual detectors collect photon flux density on the boundary of the
phantom to get four sets of measurement data gD,i , 1�i�4, respectively, based on boundary value
problem (1)–(3). The measurement data gD,i , 1�i�4 are corrupted by 5% Gaussian noise. We
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Figure 3. Graph of the error ‖pB − phB‖L2(�).

Figure 4. Geometry of phantom: three-dimensional geometrical view.

have

pD,1(x, y, z) = 10
(x)
(y+10)
(z−10)e−i�

pD,2(x, y, z) = 10
(x)
(y−10)
(z−11)e−i�

pD,3(x, y, z) = 10
(x−10)
(y)
(z−12)e−i�

pD,4(x, y, z) = 10
(x+10)
(y)
(z−13)e−i�

where �=2�×frequency/(light speed)=(2/3)�×10−3. Note that with the four point sources on
the boundary, the right-hand side of the finite element system (24) is interpreted to be (1/2A)×
10×vh evaluated at the points (0,−10,10), (0,10,11), (10,0,12), and (−10,0,13), respectively.
With these point sources, the weak formulation (10) for the BVP (1)–(2) is not well defined.
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Figure 6. Measurement data.

However, we may interpret the solution of the system (24) as a finite element approximation of
the weak solution of the BVP (1)–(2) with a smoothed source function p̃D,i .

The source permissible region �0 is set to be a ball with radius 1.0mm and centered at
(−3,−1,10). The admissible ranges of optical parameters are chosen as

�1∈[0.03,0.12], �2∈[0.06,0.24], D1∈[0.21,0.85], D2∈[0.12,0.48]
The reconstruction problem is of the form (27) in identifying the optical parameters and light
source distribution. The regularization parameters are �� =10−5, �� =10−5, and �p =10−8. Matlab
Optimization Toolbox is used to solve the optimization problem (27). The reconstructed results of
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optical parameters and light source power are in good agreement with true values. The reconstructed
absorption coefficients of the two regions are 0.1265 and 0.0593, respectively. The relative errors
are 5.4, and 1.2% for the regions �1 and �2, respectively. The reconstructed diffusion coefficients
are 0.2457 and 0.4263, respectively. The relative errors are 1 and 0.3% for the regions �1 and �2,
respectively. The relative error of the reconstructed total light source power is 20%.

For comparison, we also report numerical results by using just one excitation light source
pD,1(x, y, z) and the corresponding measurement data gD,1 on the boundary. The reconstructed
absorption coefficients of the two regions are 0.1632 and 0.0598, respectively. The relative errors
are 36, and 0.3% for the regions �1 and �2, respectively. The reconstructed diffusion coefficients
are 0.1508 and 0.4270, respectively. The relative errors are 38 and 0.1% for the regions �1 and
�2, respectively. The relative error of the reconstructed total light source power is 25%.
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