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ABSTRACT
Considered in this paper is an inverse Robin problem governed by a
steady-state diffusion equation. By the Robin inverse problem, one wants
to recover the unknown Robin coefficient on an inaccessible boundary
from Cauchy data measured on the accessible boundary. In this paper,
instead of reconstructing the Robin coefficient directly, we compute first
theCauchydataon the inaccessibleboundarywhich is a linear inverseprob-
lem, and then compute the Robin coefficient through Newton’s law. For
the Cauchy problem, a parameter-dependent coupled complex boundary
method (CCBM) is applied. The CCBM has its own merits, and this is partic-
ularly true when it is applied to the Cauchy problem. With the introduction
of a positive parameter, we can prove the regularized solution is uniformly
boundedwith respect to the regularization parameter which is a very good
property because the solution can now be reconstructed for a rather small
value of the regularization parameter. For the problem of computing the
Robin coefficient from the recovered Cauchy data, a least square output
Tikhonov regularization method is applied to Newton’s law to obtain a sta-
ble approximate Robin coefficient. Numerical results are given to show the
feasibility and effectiveness of the proposed method.
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1. Introduction

Let� ⊂ R
d (d ≤ 3: space dimension) be an open bounded set with a Lipschitz boundary � := ∂�,

which is split into two measurable subsets: � = �a
⋃
�u with �a

⋂
�u = ∅. In applications, �a and

�u are known as accessible and unaccessible parts of the boundary for the object of interest, respec-
tively. Denote by ν the unit outward normal to �. We consider the following inverse Robin problem
governed by the steady-state heat conductivity equation.

Problem 1.1: Given Cauchy data (�,T) on �a, find γ on �u such that the solution of the boundary
value problem (BVP):

−∇ · (σ∇u) = f in�,

σ∂νu = � on �a,

σ∂νu + γ u = g on �u

(1)
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satisfies

u = T on �a. (2)

The Robin inverse problem above arises in many applications such as corrosion detection [1],
the metal-to-silicon contact in semiconductor devices [2], designing gas turbine blades and nuclear
reactors and analyzing quenching processes [3]. Both identifiability and stability of inverse Robin
problems have been investigated intensively. For instance, if γ is (piecewise) continuous, it can be
uniquely determined by T in all dimensions [1,4,5]. A uniqueness result is proved in [6] when
σ ∈ C2(�̄) andmeas({x ∈ �u : u(γ )(x) = 0}) = 0.More recently, it is shown in [7] that for d= 2, an
L∞ Robin coefficient γ can be uniquely determined by T in the case � ∈ L2(�a) and σ ∈ W1,r(�)
with r> 2. Local Lipschitz and logarithmic stability are established in [4] and [8]. Stable numer-
ical methods to compute the Robin coefficient are also studies intensively using e.g. variational
approaches[9–11], the boundary integral method [12], the finite element methods [6,13].

The aforementioned work focuses on the ill-posedness and many regularization methods are
designed to deal with it. In this paper, we propose a new method with the starting point on the treat-
ment of the nonlinearity. Specifically, instead of reconstructing the Robin coefficient directly, we first
solve a linear inverse problem to compute the Cauchy data on the inaccessible boundary, and then
compute the Robin coefficient from Newton’s law. The linear inverse problem for the Cauchy data is
as follows.

Problem 1.2: Given f in �, and Cauchy data (�,T) on �a, find (φ, t) on �u such that the following
relations hold:

−∇ · (σ∇u) = f in�,
σ∂νu = �, u = T on �a,
σ∂νu = φ, u = t on �u.

(3)

Once Problem 3 is solved, the Robin coefficient γ is computed from the Newton’s law [6,14]:

γ = g − σ∂νu|�u
u|�u

= g − φ

t
. (4)

Contrary to Problem 1.1 which is nonlinear, Problem 1.2 is linear. Note that Problem 1.2, also known
as data completion [15], itself has wide applications in physics and engineering such as linear elasticity
[16], thermostatics [17], plasma physics [18], mechanical engineering [19] and electrocardiography
[20] etc., and thus has attracted a large amount of attention from mathematicians, physicists and
engineers. It is well-known that Problem1.2 is also ill-posed. A rigorous proof of the ill-posedness was
given in [21] for a general domain.Moreover, after reformulating the Cauchy problem as a variational
equation, Ben Belgacem showed in [22] that the Cauchy problem is exponentially ill-posed for both
smooth and non-smooth domains. Lavrent’ev demonstrated in [23] that the solution of the Cauchy
problem for the Laplace equation is stable given a supplementary condition. Payne in [24] generalized
the work of [23] and deduced a pointwise bound for the problem in n-dimensions. We also refer
to [25] for an overview on the stability of the Cauchy problem for general elliptic equations under
rather weak assumptions on the problem domain. Due to the severe ill-posedness of the Cauchy
problem, regularization strategies are needed to obtain a stable approximate solution, especially when
the measured data (�,T) are polluted inevitably by random noise. These regularization strategies
include quasi-reversibility method [26,27], iterative regularization [28,29], Lavrentiev regularization
[30,31], truncation regularization method [32,33], discretization method [34,35], moment problem
method [36,37], and perturbation regularization method [33,38] etc.. Among them, the Tikhonov
regularization methods [17,39–41] are the most popular and frequently used ones which convert
Problem 1.2 to data-fitting minimization problems with regularization terms.
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Recently, Cheng et al. [42] proposed a coupled complex boundary method (CCBM) for an inverse
source problem, where a complex Robin boundary condition is used to treat simultaneously both
Dirichlet andNeumann boundary conditions. As is shown in [42], the CCBMprovides amore robust
andmore efficient approach to solve inverse source problems. In the sequel [43], themethod is applied
successfully to the Cauchy problem. With CCBM, the data to fit is transferred from �a to �; the
missing data (φ, t) on �u can be reconstructed simultaneously; weaker regularity is sufficient on the
Dirichlet data for the forward problem to have an H1 solution. However, like other Tikhonov reg-
ularization methods, in the CCBM-based regularization framework, it is crucial to choose a proper
regularization parameter for the trade off between the accuracy and the stability of approximate solu-
tions. In [44], a new parameter-dependent CCBM is proposed for an inverse source problem arising
from bioluminescence tomography. With the introduction of a positive parameter α (see Section 2
below), the regularized solution is uniformly bounded with respect to the regularization parameter
which is a very good property because the solution can now be reconstructed with a rather small
value of the regularization parameter. In this paper, this parameter-dependent CCBM is applied to
Problem 1.2, and a Tikhonov regularization framework is proposed for solving the reduced inverse
problem. Moreover, different from using iterative schemes for the Robin inverse problem because of
this nonlinearity, the Cauchy problem is linear, and thus with the help of the adjoint equation, the
solution of the regularized reconstruction framework can be computed through a system of BVPs. As
a result, no iteration is needed and the computation is effective.

The structure of the rest of the paper is as follows. Applying CCBM, we present in Section 2 a
reformulation of Problem1.2 and then aTikhonov regularization reconstruction framework. Conver-
gence and uniform boundedness of the regularized solutions of Problem 1.2, are shown in Section 3.
Section 4 is devoted to a regularization method for implementing Newton’s law (4) numerically and
stably. A simple numerical scheme is given in Section 5. Several numerical examples are presented in
Section 6 to demonstrate the feasibility and efficiency of the proposed method. Finally, concluding
remarks are given in Section 7.

2. Parameter-dependent CCBM for Cauchy problem

We first introduce some notation. For a set G (e.g. �, �, �a or �u), we denote byWm,s(G) the stan-
dard Sobolev spaces with the norms ‖ · ‖m,s,G [45]. In particular, Ls(G) := W0,s(G), and Hm(G) :=
Wm,2(G)with the corresponding inner products (·, ·)m,G and norms ‖ · ‖m,G. LetHm(G) be the com-
plex version of Hm(G) with the inner product ((·, ·))m,G and norm ||| · |||m,G defined as follows:
∀ u, v ∈ Hm(G), ((u, v))m,G = (u, v̄)m,G, |||v|||2m,G = ((v, v))m,G, where v̄ is the complex conjugate
of v. Moreover, denote V = H1(�), Q = L2(�), Q� = L2(�), Q�a = L2(�a), Q�u = L2(�u), V =
H1(�). In addition, suppose the exact Cauchy data � ∈ Q�a and T ∈ H1/2(�a). In the following, c
denotes a constant which may have different values at different places.

With a constant parameter α > 0, we consider a complex BVP

−∇ · (σ∇u) = f in�,
σ∂νu + iα u = �+ iα T on �a,
σ∂νu + iα u = φ + iα t on �u,

(5)

where i = √−1 is the imaginary unit. Obviously, if (u,φ, t) satisfy (3), then (5) holds. Conversely, let
(u,φ, t) satisfy (5) and write u = u1 + i u2, u1 and u2 being the real and imaginary parts of u. Then
the real-valued functions u1, u2 satisfy

−∇ · (σ∇u1) = f in�,
σ∂νu1 − α u2 = � on �a,
σ∂νu1 − α u2 = φ on �u,

(6)
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and

−∇ · (σ∇u2) = 0 in�,
σ∂νu2 + α u1 = α T on �a,
σ∂νu2 + α u1 = α t on �u,

(7)

respectively. If u2 = 0 in �, then u2 = 0, ∂νu2 = 0 on �. As a result, from the BVPs (6)–(7) and
recalling α �= 0, there holds that (u1,φ, t) satisfy (3).

To sum up, we get an equivalent form of Problem 1.2:

Problem 2.1: Given f in�,�,T on �a, find φ, t on �u such that

u2 = 0 in�,

where u2 is the imaginary part of the solution u = u1 + i u2 of the BVP (5).

Suppose that instead of knowing the exact Cauchy data (�,T), we only have polluted ones:
�δ(x) = �(x)+ n1(x),Tδ(x) = T(x)+ n2(x), x ∈ �a with nj(x), j = 1, 2 being random noise of
some distributions. Then Problem 2.1 is modified to

Problem 2.2: Given f in�,�δ ,Tδ on �a, find φ, t on �u such that

uδ2 = 0 in�,

where uδ2 is the imaginary part of the solution of the BVP (5), with �,T being replaced by �δ ,Tδ , that
is, uδ solves

−∇ · (σ∇uδ) = f in�,
σ∂νuδ + iα uδ = �δ + iα Tδ on �a,
σ∂νuδ + iα uδ = φ + iα t on �u,

(8)

Remark 2.1: Note that Tδ ∈ H1/2(�a) is required for the equivalence of Problem 1.2 with polluted
data and Problem 2.2. However, for Problem 2.2, Tδ ∈ H−1/2(�a) is enough to have the solvability
and classical H1 regularity. Even if the exact Cauchy data (�,T) are smooth, since the noises n1 and
n2 are typically non-smooth, Tδ ∈ H1/2(�a) is not a realistic assumption for applications. In the case
where this regularity assumption is not satisfied, e.g.Tδ ∈ Q�a orH−1/2(�a), the reformulation above
provides a way of an approximate resolution of Problem 1.2 which may be unsolvable.

The weak form of the BVP (8) is

find uδ ∈ V, a(uδ , v) = Fδ(φ, t; v) ∀ v ∈ V. (9)

Here

a(u, v) =
∫
�

σ ∇u · ∇v̄ dx + iα
∫
�

u v̄ds ∀ u, v ∈ V,

Fδ(φ, t; v) =
∫
�

f v̄ dx +
∫
�a

(�δ + iα Tδ) v̄ ds +
∫
�u

(φ + iα t) v̄ ds ∀ v ∈ V.

About the variational problem (9), the following well-posedness holds.
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Proposition 2.3: Given f ∈ H−1(�), (�δ ,Tδ) ∈ H−1/2(�a)× H−1/2(�a), (φ, t) ∈ H−1/2(�u)×
H−1/2(�u), the problem (9) admits a unique solution u ∈ V which depends continuously on all data.
Moreover,

|||uδ|||1,� ≤ c (‖f ‖−1,� + ‖�δ‖−1/2,�a + α‖Tδ‖−1/2,�a + ‖φ‖−1/2,�u + α‖t‖−1/2,�u). (10)

Proposition 2.3 can be proved in a similar way as that of [43, Proposition 2.2], and is omitted here.
Although (φ, t) ∈ H−1/2(�u)× H−1/2(�u) suffices to guarantee the solvability of the forward

complex BVP, in this paper, approximations to (φ, t) are searched in a more natural space Q�u ×
Q�u . To the end, For any (ψ , τ) ∈ Q�u × Q�u , denote by uδ(ψ , τ) = uδ1(ψ , τ)+ i uδ2(ψ , τ) ∈ V the
solution of (9) with (φ, t) replaced by (ψ , τ). Define an objective functional

Jδε (ψ , τ) = 1
2
‖uδ2(ψ , τ)‖20,� + ε

2
‖ψ‖20,�u + ε

2
‖τ‖20,�u ,

and introduce the following Tikhonov regularization framework for Problem 2.2.

Problem 2.4: Find (φδε , tδε) ∈ Q�u × Q�u such that

Jδε (φ
δ
ε , t

δ
ε) = inf

(ψ ,τ)∈Q�u×Q�u
Jδε (ψ , τ).

We can verify that for any (φ, t), (ψ , τ) ∈ Q�u × Q�u ,

(Jδε )
′(φ, t) (ψ , τ) = (uδ2(φ, t), u

δ
2(ψ , τ)− uδ2(0, 0))0,� + ε (φ,ψ)0,�u + ε (t, τ)0,�u ,

(Jδε )
′′(φ, t) (ψ , τ)2 = ‖uδ2(ψ , τ)− uδ2(0, 0)‖20,� + ε‖ψ‖20,�u + ε‖τ‖20,�u .

Therefore, Jδε is strictly convex for any ε > 0, and we have the following well-posedness result.

Proposition 2.5: For any ε > 0, Problem 2.4 has a unique solution (φδε , tδε) ∈ Q�u × Q�u which
depends continuously on all data. Moreover, (φδε , tδε) is characterized by

φδε = −1
ε
wδε,2|�u , tδε = −α

ε
wδε,1|�u , (11)

where wδε,1 and w
δ
ε,2 are the real and imaginary parts of the weak solution wδε ∈ V of the adjoint BVP:

−∇ · (σ ∇wδε) = uδε,2 in�,
σ∂νwδε + iα wδε = 0 on �,

(12)

and uδε,2 is the imaginary part of the solution of Problem (9), with (φ, t) being replaced by (φδε , tδε).

Proof: The well-posedness of Problem 2.4 follows from a standard result on convex minimization
problems [46,47]. Moreover, the solution (φδε , tδε) is characterized by

(Jδε )
′(φδε , t

δ
ε) (ψ , τ) = 0 ∀ (ψ , τ) ∈ Q�u × Q�u . (13)

With arguments similar to those in the proof of [42, Proposition 3.1], we have

(uδ2(φ
δ
ε , t

δ
ε), u

δ
2(ψ , τ)− uδ2(0, 0))0,� = α(wδ1, τ)0,�u + (wδ2,ψ)0,�u .

Therefore,

(Jδε )
′(φδε , t

δ
ε) (ψ , τ) = (α wδ1 + ε tδε , τ)0,�u + (wδ2 + ε φδε ,ψ)0,�u . (14)

Substitute (14) into (13) and take ψ = wδ2|�u + ε φδε , τ = α wδ1|�u + ε tδε to get (11). �
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3. Convergence and uniform boundedness

We first present a result on the limiting behavior of (φδε , tδε) as δ, ε → 0. For this purpose, assume the
exact Cauchy data (φ,T) are compatible. Then Problem 1.2 admits a solution (φ∗, t∗) ∈ H−1/2(�u)×
H1/2(�u) ([48]) and the solution is unique ([49]). For our future theoretical analysis, we assume
additionally that φ∗ belongs to Q�u , and (�δ ,Tδ) ∈ Q�a × H1/2(�a) satisfying

‖�δ −�‖0,�a ≤ δ ‖�‖0,�a , ‖Tδ − T‖1/2,�a ≤ δ‖T‖1/2,�a .

with a known noise level δ.
Then the following result holds.

Proposition 3.1: Fixα > 0. Let ε = ε(δ) be chosen satisfying ε → 0 and δ2/ε → 0, as δ → 0. Denote
by (φδε , tδε) ∈ Q�u × Q�u the solution of Problem 2.4. Then the solution (φδε , tδε) converges to (φ∗, t∗) in
Q�u × Q�u as δ → 0.

The proof is similar to that of [43, Proposition 3.4] with slight modifications, and is hence omitted.
For future use, we record a stability result about the forward problem (9).

Lemma 3.2: For any (ψ , τ) ∈ Q�u × Q�u , denote by uδ(ψ , τ) = uδ1(ψ , τ)+ i uδ2(ψ , τ), u(ψ , τ) =
u1(ψ , τ)+ i u2(ψ , τ) ∈ V the unique solutions of the problem (9) for δ > 0 and δ = 0 respectively.
Then there holds

|||uδ(ψ , τ)− u(ψ , τ)|||1,� ≤ c δ. (15)

The proof of Lemma 3.2 is standard and is thus omitted.
We next give an estimate of the regularized solution with respect to the noise level δ. For this

purpose, we make the following assumption.
(A1) There is a pair (α, z∗) ∈ R

+ × Q such that

φ∗ = σ∂νw̃∗
1|�u , t∗ = α2 w̃∗

1 |�u , (16)

where R
+ := {s ∈ R | s > 0} and w̃∗

1 is the real part of the weak solution w̃∗ = w̃∗
1 + i w̃∗

2 ∈ V of the
adjoint BVP:

−∇ · (σ ∇w̃∗) = z∗ in�,
σ∂νw̃∗ + iα w̃∗ = 0 on �.

(17)

Note that Assumption (A1) can be viewed as a kind of source condition about the exact solution
(φ∗, t∗).

Theorem 3.3: Let Assumption (A1) hold. Then the solution (φδε , tδε) of Problem 2.4 satisfies the
following estimate

‖φδε − φ∗‖0,�u + ‖tδε − t∗‖0,�u ≤ c (α
√
ε + δ√

ε
). (18)

If we choose ε = c δ, then

‖φδε − φ∗‖0,�u + ‖tδε − t∗‖0,�u ≤ c (α + 1)
√
δ. (19)
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Proof: For any (ψ , τ) ∈ Q�u × Q�u , denote ũ(ψ , τ) = uδ(ψ , τ)− uδ(0, 0) ∈ V. Then ũ is bilinear
and there holds

(ũ2, z∗)0,� = (ψ , w̃2)0,�u + (α τ , w̃1)0,�u

or

(ũ2(ψ , 0), z∗)0,� = (ψ , w̃2)0,�u , (ũ2(0, τ), z∗)0,� = (α τ , w̃1)0,�u . (20)

From the definitions of (φδε , tδε) and (φ∗, t∗), we have

Jδε (φ
δ
ε , t

δ
ε) = 1

2
‖uδ2(φδε , tδε)‖20,� + ε

2
‖φδε‖20,�u + ε

2
‖tδε‖20,�u

≤ Jδε (φ
∗, t∗) = 1

2
‖uδ2(φ∗, t∗)‖20,� + ε

2
‖φ∗‖20,�u + ε

2
‖t∗‖20,�u

which implies

‖uδ2(φδε , tδε)‖20,� + ε‖φδε − φ∗‖20,�u + ε‖tδε − t∗‖20,�u
≤ ‖uδ2(φ∗, t∗)‖20,� − 2 ε(φ∗,φδε − φ∗)0,�u − 2 ε(t∗, tδε − t∗). (21)

Note that u2(φ∗, t∗) = 0 in�. Then from (15),

‖uδ2(φ∗, t∗)‖0,� = ‖uδ2(φ∗, t∗)− u2(φ∗, t∗)‖0,� ≤ c δ. (22)

Moreover, from Assumption (A1) and by using the equalities of (20), we have

(φ∗,φδε − φ∗)0,�u = α (z∗, ũ2(φδε − φ∗, 0))0,�, (23)

(t∗, tδε − t∗)0,�u = α (z∗, ũ2(0, tδε − t∗))0,�. (24)

Combine (21)–(24) to get

‖uδ2(φδε , tδε)‖20,� + ε‖φδε − φ∗‖20,�u + ε‖tδε − t∗‖20,�u
≤ c δ2 − 2 ε α (z∗, uδ2(φ

δ
ε , t

δ
ε)− uδ2(φ

∗, t∗))0,�

or
‖uδ2(φδε , tδε)+ ε α z∗‖20,� + ε‖φδε − φ∗‖20,�u + ε‖tδε − t∗‖20,�u

≤ c δ2 + 2 ε α (z∗, uδ2(φ∗, t∗))0,� + ε2 α2 ‖z∗‖20,�,
(25)

where we use the fact that

ũ2(φδε − φ∗, tδε − t∗) = ũ2(φδε , t
δ
ε)− ũ2(φ∗, t∗) = uδ2(φ

δ
ε , t

δ
ε)− uδ2(φ

∗, t∗).

Using Schwarz inequality and (15) again,

(z∗, uδ2(φ
∗, t∗))0,� ≤ c δ ‖z∗‖0,�.

Therefore, (25) implies

‖uδ2(φδε , tδε)+ ε α z∗‖20,� + ε‖φδε − φ∗‖20,�u + ε‖tδε − t∗‖20,�u ≤ c δ2 + ε2 α2 ‖z∗‖20,�
which leads to (18).

The error estimate (19) follows directly from (18) when we set ε = c δ. �
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Remark 3.1: For fixed α > 0, e.g. α = 1, we can also derive similar error estimates under the source
condition, Assumption (A1). However, allowing a variable α could relax the restriction of the source
condition.

Recall that the CCBM possesses many merits such as allowing weaker regularity of Dirichlet data
when solving the forward problem, and transferringthe data fitted from the boundary to the interior.
With the introduction of the parameterα, we can further expect an improvement of the error estimate
above and convenience of choosing the regularization parameter ε.

Lemma 3.4: For any (ψ , τ) ∈ Q�u × Q�u , denote by uδ(ψ , τ) = uδ1(ψ , τ)+ i uδ2(ψ , τ), u(ψ , τ) =
u1(ψ , τ)+ i u2(ψ , τ) ∈ V the unique solutions of the problem (9) for δ > 0 and δ = 0 respectively.
Then,

‖uδ2(ψ , τ)− u2(ψ , τ)‖1,� ≤ cα δ. (26)

Proof: Recall that in the weak sense, u2(ψ , τ) satisfies (7), with t replaced by τ and uδ2(ψ , τ) ∈ V
satisfies

−∇ · (σ∇uδ2) = 0 in�,
σ∂νuδ2 + α uδ1 = α Tδ on �a,
σ∂νuδ2 + α uδ1 = α τ on �u.

(27)

Denote δuj = uδj (ψ , τ)− uj(ψ , τ), j= 1,2. Subtract (7) from (27) to give

−∇ · (σ∇δu2) = 0 in�,
σ∂νδu2 + α δu1 = α (Tδ − T) on �a,
σ∂νδu2 + α δu1 = 0 on �u

(28)

whose weak form is

(σ∇δu2,∇v)0,� = −α(δu1, v)0,� + α(Tδ − T, v)0,�a ∀ v ∈ V .

Taking v = δ u2, we obtain

|δu2|21,� ≤ cα (‖δu1‖1/2,� + δ)‖δu2‖−1/2,� ≤ cα δ‖δu2‖−1/2,� . (29)

where we use, due to the estimate (15),

‖δu1‖1/2,� ≤ ‖δu1‖1,� ≤ c δ.

Next we estimate the ‖δu2‖−1/2,� . To the end, for any λ ∈ H1/2(�), define pλ ∈ V the weak solution
of the BVP:

−∇ · (σ ∇pλ) = 0 in�,

σ∂νpλ = λ on �,

satisfying
∫
ω
pλdx = 0. Multiply the first equation of (28) with pλ, integrate over �, and take

integration by part to produce

0 =
∫
�

(δu2σ∂νpλ − pλσ∂νδu2)ds

=
∫
�

λδu2ds + α

∫
�

pλδu1ds − α

∫
�a

pλ(Tδ − T)ds
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which gives
∫
�

λδu2ds = −α
∫
�

pλδu1ds + α

∫
�a

pλ(Tδ − T)ds

≤ cα‖pλ‖0,�‖δu1‖0,� + cα‖pλ‖0,�‖Tδ − T‖0,�
≤ cα δ‖pλ‖1,� ≤ cα δ‖λ‖−1/2,� ≤ cα δ‖λ‖1/2,� ,

where we use again the estimate, due to the estimate (15),

‖δu1‖0,� ≤ ‖δu1‖1,� ≤ c |‖δu|‖1,� ≤ c δ.

Hence,

‖δu2‖−1/2,� = sup
∫
�
λδu2ds

‖λ‖1/2,� ≤ cα δ. (30)

Substitute (30) back into (29) to obtain

|δu2|1,� ≤ cα δ. (31)

We finally estimate the ‖δu2‖0,�. For the purpose, let w = w1 + i w2 ∈ V be the weak solution of the
BVP:

−∇ · (σ ∇w) = δu2 in�,

σ∂νw + iαw = 0 on �.

Then the real part w1 satisfies

−∇ · (σ ∇w1) = δu2 in�,

σ∂νw1 = αw2 on �.

Multiply the first equation of the BVP above with δu2, integrate over�, and take integration by part
again to give

‖δu2‖20,� =
∫
�

(−∇ · (σ∇w1)δu2)dx

=
∫
�

[(σ∇δu2)w1 − (σ∇w1)δu2]ds

= α

∫
�a

(Tδ − T)w1ds − α

∫
�

δu1w1ds − α

∫
�

δu2w2ds

= cα δ(‖w1‖−1/2,� + ‖w2‖−1/2,�) ≤ cα δ|||w|||1,� ≤ cα δ‖δu2‖0,�
which leads to

‖δu2‖0,� ≤ cα δ. (32)

By combining (31) and (32), we arrive at (26). The proof is completed. �

Now we are in a position to give an improvement of the error estimate.

Theorem 3.5: Let Assumptions (A1) hold. Then for the solution (φδε , tδε) of Problem 2.4, the following
estimate holds:

‖φδε − φ∗‖0,�u + ‖tδε − t∗‖0,�u ≤ cα (
√
ε + δ√

ε
). (33)
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If we choose ε = c δ, then

‖φδε − φ∗‖0,�u + ‖tδε − t∗‖0,�u ≤ cα
√
δ. (34)

If we choose ε = c δ2, then

‖φδε − φ∗‖0,�u + ‖tδε − t∗‖0,�u ≤ cα. (35)

The proof is similar to that of Theorem 3.3, with (22) replaced by

‖uδ2(φ∗, t∗)‖0,� = ‖uδ2(φ∗, t∗)− u2(φ∗, t∗)‖0,� ≤ cα δ.

Remark 3.2: In the case α is small, the estimates (33) and (34) are better than the ones (18) and (19).
The estimate (35) indicates that when α is quite small, a small regularization parameter ε can also
lead to a reasonable solution.

Note that although an approximation of (φ∗, t∗) is sought in the space Q�u × Q�u , from the
optimality equalities (11), we actually have (φδε , tδε) ∈ H1/2(�u)× H1/2(�u). We finally give a uni-
form boundedness result of the solution (φδε , tδε) with respect to small values of the regularization
parameter, which is the motivation of introducing a parameter α in CCBM.

Theorem 3.6: Let α = O(√ε). Then for any fixed δ ≥ 0, both φδε and tδε are uniformly bounded in
H1/2(�u) and thus in Q�u as well, with respect to small ε > 0.

Proof: Recall that (φδε , tδε) is the optimal solution of Problem 2.4, and (φ∗, t∗) is the unique solution
of Problem 1.2 corresponding to noise-free data. Then, there holds

Jδε (φ
δ
ε , t

δ
ε) ≤ Jδε (φ

∗, t∗)

= 1
2
‖uδ2(φ∗, t∗)‖20,� + ε

2
‖φ∗‖20,�u + ε

2
‖t∗‖20,�u

≤ cα2 δ2 + ε

2
‖φ∗‖20,�u + ε

2
‖t∗‖20,�u ,

which gives

‖φδε‖20,�u + ‖tδε‖20,�u ≤ c
α2δ2

ε
+ ‖φ∗‖20,�u + ‖t∗‖20,�u ≤ c δ2 + ‖φ∗‖20,�u + ‖t∗‖20,�u , (36)

where we use the estimate (26). Therefore both φδε and tδε are uniformly bounded inQ�u with respect
to ε.

Note that uδε = uδ(φδε , tδε) = uδε,1 + i uδε,2 ∈ V is the solution of Problem (9), with (φ, t) being
replaced by (φδε , tδε), and wδε = wδε,1 + i wδε,2 ∈ V is the weak solutions of the adjoint problem (12).
Then due to (10), both uδε and wδε are bounded uniformly in V with respect to ε, that is,

|||uδε|||1,� ≤ c, |||wδε|||1,� ≤ c‖uδε,2‖0,� ≤ c.
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Following the similar arguments as those for δu2 in the proof of Lemma 3.4, we get

‖uδε,2‖1,� ≤ cα, |||wδε||| ≤ c‖uδε,2‖0,� ≤ cα.

Using the similar arguments as those for δu2 in the proof of Lemma 3.4 again, we further obtain

‖wδε,2‖1,� ≤ cα2.

Therefore, we have

‖φδε‖ 1
2 ,�u

= ‖ − 1
ε
wδε,2‖ 1

2 ,�u
≤ c

1
ε
‖wδε,2‖1,� ≤ c

α2

ε
= O(1),

‖tδε‖ 1
2 ,�u

= ‖ − α

ε
wδε,1‖ 1

2 ,�u
≤ c ‖α

ε
wδε,1‖1,� ≤ c

α

ε
‖wδε,1‖1,� ≤ c

α2

ε
= O(1)

and the proof is completed. �

Remark 3.3: Conventionally, instead of having the estimate (36), by using (15), and noticing
u2(φ∗, t∗) = 0, we have

Jδε (φ
δ
ε , t

δ
ε) ≤ Jδε (φ

∗, t∗)

= 1
2
‖uδ2(φ∗, t∗)‖20,� + ε

2
‖φ∗‖20,�u + ε

2
‖t∗‖20,�u

≤ c δ2 + ε

2
‖φ∗‖20,�u + ε

2
‖t∗‖20,�u ,

which gives

‖φδε‖20,�u + ‖tδε‖20,�u ≤ c
δ2

ε
+ ‖φ∗‖20,�u + ‖t∗‖20,�u .

This also lead to the uniform boundedness of φδε and tδε inQ�u under the assumption that δ2/ε → 0,
as ε → 0, which indicates the regularization parameter ε should be chosen not too small. However,
for the uniform boundedness in Theorem 3.6, no such assumption is made and thus a reasonable
solution could be obtained for any small value of ε for a fixed δ. This is a strong property because
the smaller the parameter ε is, the better the approximation to the original problem is. In addition,
Theorem 3.6 also provides a guidance on how to choose α properly; see the numerical experiments
reported in Section 6.

4. Recover the Robin coefficient from Cauchy data

This section is devoted to a stable computation of the Robin coefficient with the reconstructedCauchy
data (φδε , tδε) in Section 2 through the Newton law (4).

Suppose that instead of knowing g, we only have the noisy Robin data gδ ∈ Q�u satisfying

‖gδ − g‖0,�u ≤ δ ‖g‖0,�u .

Moreover, for later use, assume the exact Dirichlet data t∗ ∈ L∞(�u) and define

βδ(x) =

⎧⎪⎪⎨
⎪⎪⎩

ηδ, 0 ≤ tδε(x) ≤ δ,

−ηδ, −δ ≤ tδε(x) ≤ 0,

0, |tδε(x)| > δ,

x ∈ �u, (37)
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where η (≤ 1) is a small positive constant. It is easy to verify that βδ ∈ L∞(�u) and
∣∣∣∣ tδε
tδε + βδ

∣∣∣∣ ≤ 1. (38)

Then instead of using (4) directly, an approximation to γ ∗ is produced by

γ δε = gδ − φδε

tδε + βδ
. (39)

Compared with (4), which is equivalent to solving tδεγ = gδ − φδε for γ , the formula (39), which is
equivalent to solving (tδε + βδ)γ δε = gδ − φδε for γ δε , is a least square output Tikhonov regularization
with parameter βδ .

About γ δε , we have the following convergence result:

Theorem 4.1: Fix α > 0. Let ε = ε(δ) be chosen satisfying ε → 0 and δ2/ε → 0, as δ → 0. Denote
by γ δε the approximate Robin coefficient computed through (39), where (φδε , tδε) ∈ Q�u × Q�u is the
solution of Problem 2.4. Then the solution sequence {γ δε }δ>0 converges to γ ∗ in the following sense as
δ → 0,

lim
n→∞ ‖tδε t∗(γ δε − γ ∗)‖0,1,�u = 0. (40)

Proof: Recall that

γ ∗ = g − φ∗

t∗
.

Then from (37) to (39) and Proposition 3.1,

‖tδε t∗(γ δε − γ ∗)‖0,1,�u =
∫
�u

|tδε t∗(γ δε − γ ∗)|ds

=
∫
�u

|tδε t∗||
gδ − φδε

tδε + βδ
− g − φ∗

t∗
|ds

≤ |(gδ − g + φ∗ − φδε , t
∗)0,�u |

+ |(tδε − t∗,φ∗ − g)0,�u | + |(φ∗ − g,βδ)0,�u |
≤ c (δ + ‖φδε − φ∗‖0,�u + ‖tδε − t∗‖0,�u + ηδ|�δ|)
→ 0

as δ → 0. The proof is completed. �

Remark 4.1: Note that if t∗(x0) = 0 or tδε(x0) = 0 at a point x0 ∈ �u, we have no convergence
γ δε (x0) → γ ∗(x0). This is not surprising because in Robin problem (1)–(2), if t∗(x0) = 0, we can not
get any information about γ ∗(x0). Numerical experiments of Section 6 also show that the accuracy
of γ δε gets worse near the points where t∗ vanishes.

Remark 4.2: If |t∗| has positive lower bound, we can prove that (40) reduces to

lim
n→∞ ‖γ δnεn − γ ∗‖0,1,�u = 0.
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For instance, suppose there is a positive constant c0 such that

|t∗| ≥ c0 a.e. on �u.

We modify the definition of βδ to

βδ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηc0, 0 ≤ tδε(x) ≤ ηc0,

−ηc0, −ηc0 ≤ tδε(x) ≤ 0,

0, |tδε(x)| > c0/2,

x ∈ �u.

Let �δ := {x ∈ �u|βδ(x) �= 0}. Then
‖tδε − t∗‖0,�u ≥ ‖tδε − t∗‖0,�δ ≥ ‖t∗‖0,�δ − ‖tδε‖0,�δ

≥ c0|�δ|1/2 − ηc0|�δ|1/2 = (1 − η) c0|�δ|1/2 ≥ 0,

which leads to |�δ| → 0 as δ → 0. Therefore, with similar arguments as those in the proof of
Theorem 4.1, there holds

‖γ δnεn − γ ∗‖0,1,�u ≤ c (δn + ‖φδnεn − φ∗‖0,�u + ‖tδnεn − t∗‖0,�u + ηc0|�δ|) → 0.

5. A computational scheme for the regularized solution

By Proposition 2.5, the optimal regularized Cauchy solution (φδε , tδε) satisfies the system of (11), (12)
and

−∇ · (σ∇uδε) = f in�,
σ∂νuδε + iα uδε = �δ + iα Tδ on �a,
σ∂νuδε + iα uδε = φδε + iα tδε on �u.

(41)

Recall that uδε = uδε,1 + i uδε,2 and wδε = wδε,1 + i wδε,2. Then we introduce the following solver for
Problem 2.4:

Algorithm 5.1: Given problem domain�, functions f ,�δ ,Tδ , gδ and set parameters ε,α, η.
1. Solve

(σ ∇uδε,1,∇v)0,� − α (uδε,2, v)0,� + 1
ε
(wδε,2, v)0,�u

= (f , v)0,� + (�δ , v)0,�a ∀ v ∈ V ,

(σ ∇uδε,2,∇v)0,� + α (uδε,1, v)0,� + α2

ε
(wδε,1, v)0,�u = α (Tδ , v)0,�a ∀ v ∈ V ,

− (uδε,2, v)0,� + (σ ∇wδε,1,∇v)0,� − α (wδε,2, v)0,� = 0 ∀ v ∈ V ,

(σ ∇wδε,2,∇v)0,� + α (wδε,1, v)0,� = 0 ∀ v ∈ V . (42)

2. Compute

φδε = −1
ε
wδε,2|�u , tδε = −α

ε
wδε,1|�u . (43)

3. Compute βδ by (37) and

γ δε = gδ − φδε

tδε + βδ
. (44)
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For actual reconstruction, (42)–(44) need to be solved numerically. Standard conforming linear
finite element methods are applied to solve (42). Specifically, let {Th}h be a regular family of finite
element partitions of �̄ and define the linear finite element spaces

Vh = {v ∈ C(�) | v is linear in K ∀K ∈ Th},

where h> 0 is the meshsize. Then a finite element discretization of Algorithm 5.1 reads:

Algorithm 5.2: Given problem domain�, functions f ,�δ ,Tδ , gδ and set parameters ε,α, η.
1. Solve

(σ ∇uδ,hε,1,∇v)0,� − α (uδ,hε,2, v)0,� + 1
ε
(wδ,hε,2, v)0,�u

= (f , v)0,� + (�δ , v)0,�a ∀ v ∈ V , (45)

(σ ∇uδ,hε,2,∇v)0,� + α (uδ,hε,1, v)0,� + α2

ε
(wδ,hε,1, v)0,�u = α (Tδ , v)0,�a ∀ v ∈ V ,

− (uδ,hε,2, v)0,� + (σ ∇wδ,hε,1,∇v)0,� − α (wδ,hε,2, v)0,� = 0 ∀ v ∈ V ,

(σ ∇wδ,hε,2,∇v)0,� + α (wδ,hε,1, v)0,� = 0 ∀ v ∈ V . (46)

2. Compute

φδ,hε = −1
ε
wδ,hε,2|�u , tδ,hε = −α

ε
wδ,hε,1|�u . (47)

3. Compute βδ,h by (37) with tδε being replaced by tδ,hε , and

γ δ,hε = gδ − φδ,hε

tδ,hε + βδ,h
. (48)

6. Numerical results

In this section, we present some numerical results to illustrate the feasibility and effectiveness of
the parameter-dependent CCBM-based Tikhonov regularization for solving the Cauchy problem
and the inverse Robin coefficient problem. Denote by (φ∗, t∗, γ ∗) the true Neumann and Dirichlet
data as well as the true Robin coefficient on �u, and by (φδ,hε , tδ,hε , γ δ,hε ) its approximation computed
from (45)–(47). Note that (45) reduces to a linear system Ax = b, which can be solved by the bicon-
jugate gradientmethod. To better investigate the uniform boundedness of the solutions of the Cauchy
problem, we define the L2-norm relative errors for the solutions φδ,hε and tδ,hε :

Eφ = ‖φδ,hε − φ∗‖0,�u
‖φ∗‖0,�u

, Et = ‖tδ,hε − t∗‖0,�u
‖t∗‖0,�u

.

In the following examples, let � ⊂ R
2 be a ring with inner radius r1 = 0.6 and external radius r2 =

1. The exact Cauchy data (�,T) on the external circle �a is computed from a true state u∗ given
in advance: � = σ∂νu∗|�a ,T = u∗|�a . The true Cauchy solution (φ∗, t∗) on the inner circle �u is
(σ∂νu∗|�u , u∗|�u). For a true γ ∗, the Robin data g on �u is computed through g = φ∗ + γ ∗t∗. Then
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Table 1. Eφ vs. ε and δ (Example 6.1).

ε δ = 1% δ = 5% δ = 10% δ = 20%

10−1 9.9983e−1 9.9886e−1 9.9766e−1 9.9287e−1
10−2 9.8479e−1 9.3087e−1 8.9213e−1 7.9003e−1
10−3 7.0079e−1 3.4163e−1 2.2541e−1 1.5121e−1
10−4 6.8557e−2 6.9651e−2 8.8492e−2 1.1695e−1
10−5 3.2806e−2 6.6010e−2 8.8818e−2 1.1614e−1
10−6 3.1947e−2 6.5865e−2 8.8926e−2 1.1607e−1
10−7 3.1880e−2 6.5853e−2 8.8936e−2 1.1606e−1
10−8 3.1874e−2 6.5852e−2 8.8938e−2 1.1606e−1
10−9 3.1873e−2 6.5851e−2 8.8938e−2 1.1606e−1
10−10 3.1873e−2 6.5852e−2 8.8938e−2 1.1606e−1
10−11 3.1873e−2 6.5851e−2 8.8938e−2 1.1606e−1
10−12 3.1873e−2 6.5851e−2 8.8939e−2 1.1606e−1
10−13 3.1873e−2 6.5852e−2 8.8939e−2 1.1606e−1
10−14 3.1873e−2 6.5851e−2 8.8938e−2 1.1606e−1
10−15 3.1873e−2 6.5852e−2 8.8938e−2 1.1606e−1
10−16 3.1873e−2 6.5851e−2 8.8938e−2 1.1606e−1
10−17 3.1873e−2 6.5852e−2 8.8939e−2 1.1606e−1
10−18 3.1873e−2 6.5851e−2 8.8938e−2 1.1606e−1
10−19 3.1873e−2 6.5851e−2 8.8938e−2 1.1606e−1
10−20 3.1873e−2 6.5851e−2 8.8938e−2 1.1606e−1

for a noise level, a uniformly distributed random noise is added to (�,T, g) to get (�δ ,Tδ , gδ):

�δ(x) = [1 + δ · (2 rand(x)− 1)]�(x), x ∈ �a,
Tδ(x) = [1 + δ · (2 rand(x)− 1)]T(x), x ∈ �a,
gδ(x) = [1 + δ · (2 rand(x)− 1)] g(x), x ∈ �u,

where rand(x) returns a pseudo-random value drawn from a uniform distribution on [0, 1]. All
experiments are implemented on a finite element mesh with 384 nodes, 648 elements and mesh-
size h= 0.1289. Moreover, as indicated by Theorem 3.6, in the following examples, we choose α =
O(√ε) = Cα

√
ε, whereCα > 0 is a constant for one reconstruction. In addition, for simplicity of the

statements, let σ ≡ 1 in� in all experiments.

Example 6.1: We first consider an analytical example where |t∗| > c0 > 0 for some constant
c0 ([15,43]). Let u∗(x1, x2) = ex1 cos(x2). Then f (x1, x2) = 0, T(x1, x2) = ex1 cos(x2), �(x1, x2) =
ex1(x1 cos(x2)− x2 sin(x2)),φ∗(x1, x2) = 5

3 e
x1(x2 sin(x2)− x1 cos(x2)) and t∗(x1, x2) = ex1 cos(x2).

The system (45) is solved and then the formulas (46) are applied to compute approximate solu-
tions (φδ,hε , tδ,hε ) of (φ∗, t∗) from the boundary data (�δ ,Tδ). The errors in (φδ,hε , tδ,hε ) are listed in
Tables 1 and 2. We observe that the results are quite satisfactory. In particular, Tables 1 and 2 show
that solutions are uniformly bounded with respect to small values of the regularization parameter
ε which matches the declaration of Theorem 3.6. Therefore, in the case α is small, a reasonably
good approximate solution can be reconstructed for a relative small value of ε. In this example,
Cα = 420, 160, 110, 60 for δ = 1%, 5%, 10% and 20%, respectively. Numerical experiments indicate
that the higher the noise level, the smaller the suggested value of Cα . However, we observe that
although the value of Cα affects the solution accuracy, (φδ,hε , tδ,hε ) is less sensitive to Cα . A quite large
range of values of Cα can produce satisfactory approximations to (φ∗, t∗). Moreover, the numerical
results also confirm the limiting behavior of the regularized solutions with respect to the noise level
δ: the smaller δ is, the better the approximate solution (φδ,hε , tδ,hε ) is, which demonstrates the stability
of the proposed Tikhonov regularization reconstruction framework.

For the reconstruction of the Robin coefficient, with (φδ,hε , tδ,hε ), the formula (47) is used to obtain
γ δ,hε . Three different real coefficients γ ∗ are tested: γ ∗ ≡ 1, γ ∗ = 5

3x1 and γ ∗ = sgn(x2)ex1 . Since
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Table 2. Et vs. ε and δ (Example 6.1).

ε δ = 1% δ = 5% δ = 10% δ = 20%

10−1 9.9926e−1 9.9498e−1 9.8967e−1 9.6914e−1
10−2 9.3259e−1 7.0578e−1 5.8221e−1 4.5965e−1
10−3 1.8416e−1 1.0135e−1 1.0274e−1 1.7641e−1
10−4 1.6579e−2 3.0213e−2 5.2008e−2 1.4637e−1
10−5 6.4708e−3 2.5280e−2 4.7862e−2 1.4340e−1
10−6 5.9135e−3 2.4828e−2 4.7463e−2 1.4310e−1
10−7 5.8617e−3 2.4784e−2 4.7423e−2 1.4307e−1
10−8 5.8572e−3 2.4779e−2 4.7415e−2 1.4307e−1
10−9 5.8576e−3 2.4779e−2 4.7418e−2 1.4307e−1
10−10 5.8543e−3 2.4779e−2 4.7417e−2 1.4307e−1
10−11 5.8544e−3 2.4779e−2 4.7419e−2 1.4307e−1
10−12 5.8557e−3 2.4780e−2 4.7419e−2 1.4307e−1
10−13 5.8565e−3 2.4779e−2 4.7418e−2 1.4307e−1
10−14 5.8565e−3 2.4778e−2 4.7417e−2 1.4307e−1
10−15 5.8564e−3 2.4779e−2 4.7419e−2 1.4307e−1
10−16 5.8558e−3 2.4778e−2 4.7418e−2 1.4307e−1
10−17 5.8559e−3 2.4779e−2 4.7418e−2 1.4307e−1
10−18 5.8557e−3 2.4779e−2 4.7419e−2 1.4307e−1
10−19 5.8564e−3 2.4779e−2 4.7417e−2 1.4307e−1
10−20 5.8551e−3 2.4780e−2 4.7416e−2 1.4307e−1

Figure 1. Reconstructed Robin coefficients for different δ when γ ∗ ≡ 1 (Example 6.1).

φδ,hε and tδ,hε are uniformly bounded when ε is small, we fix ε = 10−20. The approximation γ δ,hε to γ ∗
for different noise level δ is shown in Figures 1–3, where θ is the angular variable of the point (x1, x2)
on �u, ranging from 0 to 2π . The black and solid line represents γ ∗ while the blue and dashed one
represents γ δ,hε . We conclude from them that when t∗ stays away from 0, the reconstruction through



APPLICABLE ANALYSIS 17

Figure 2. Reconstructed Robin coefficients for different δ when γ ∗ = 5
3 x1 (Example 6.1).

Figure 3. Reconstructed Robin coefficients for different δ,when γ ∗ = sgn(x2)ex1 (Example 6.1).
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Table 3. Eφ vs. ε and δ (Example 6.2).

ε δ = 1% δ = 5% δ = 10% δ = 20%

10−1 9.9957e−1 9.9794e−1 9.9480e−1 9.8806e−1
10−2 9.6411e−1 8.8497e−1 8.0436e−1 6.8553e−1
10−3 4.8436e−1 1.9295e−1 1.0485e−1 8.6116e−2
10−4 4.2611e−2 5.7040e−2 7.2771e−2 8.7114e−2
10−5 3.2753e−2 5.3309e−2 7.1537e−2 8.6760e−2
10−6 3.2377e−2 5.2920e−2 7.1397e−2 8.6714e−2
10−7 3.2346e−2 5.2881e−2 7.1383e−2 8.6709e−2
10−8 3.2343e−2 5.2877e−2 7.1382e−2 8.6709e−2
10−9 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−10 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−11 3.2342e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−12 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−13 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−14 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−15 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−16 3.2342e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−17 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−18 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−19 3.2343e−2 5.2876e−2 7.1381e−2 8.6709e−2
10−20 3.2342e−2 5.2876e−2 7.1381e−2 8.6709e−2

Table 4. Et vs. ε and δ (Example 6.2).

ε δ = 1% δ = 5% δ = 10% δ = 20%

10−1 9.9793e−1 9.9002e−1 9.7529e−1 9.4547e−1
10−2 8.3114e−1 5.2623e−1 3.5515e−1 2.9346e−1
10−3 5.4581e−2 2.6169e−2 5.9081e−2 1.3040e−1
10−4 1.4638e−2 3.4408e−2 6.7455e−2 1.3381e−1
10−5 1.1988e−2 3.3874e−2 6.7303e−2 1.3391e−1
10−6 1.1676e−2 3.3779e−2 6.7274e−2 1.3392e−1
10−7 1.1644e−2 3.3769e−2 6.7270e−2 1.3392e−1
10−8 1.1640e−2 3.3768e−2 6.7269e−2 1.3392e−1
10−9 1.1640e−2 3.3768e−2 6.7269e−2 1.3392e−1
10−10 1.1640e−2 3.3768e−2 6.7269e−2 1.3392e−1
10−11 1.1641e−2 3.3768e−2 6.7270e−2 1.3392e−1
10−12 1.1639e−2 3.3768e−2 6.7269e−2 1.3392e−1
10−13 1.1641e−2 3.3768e−2 6.7270e−2 1.3392e−1
10−14 1.1640e−2 3.3768e−2 6.7269e−2 1.3392e−1
10−15 1.1640e−2 3.3768e−2 6.7270e−2 1.3392e−1
10−16 1.1641e−2 3.3768e−2 6.7269e−2 1.3392e−1
10−17 1.1640e−2 3.3768e−2 6.7270e−2 1.3392e−1
10−18 1.1641e−2 3.3768e−2 6.7269e−2 1.3392e−1
10−19 1.1640e−2 3.3768e−2 6.7269e−2 1.3392e−1
10−20 1.1639e−2 3.3768e−2 6.7270e−2 1.3392e−1

Newton law (47) for the Robin coefficient is stable and satisfactory. In the three experiments, βδ ≡ 0
since |t∗| > 0.5.

Example 6.2: In the second example, we consider a problem where t∗ vanishes at some bound-
ary points. Specifically, let u∗(x1, x2) = sin(x1 + x2). Then f (x1, x2) = −2 sin(x1 + x2), T(x1, x2) =
sin(x1 + x2), �(x1, x2) = (x1 + x2) cos(x1 + x2), �∗(x1, x2) = − 5

3 (x1 + x2) cos(x + x2) and
t∗(x1, x2) = sin(x1 + x2). Note that t∗(±(

√
2/2),∓(√2/2)) = 0

Again, (45) and (46) are used to compute approximate solutions (φδ,hε , tδ,hε ). The errors in φδ,hε and
tδ,hε are given in Tables 3 and 4, which show again the convergence, the stability and the uniformness
of the solutions of Problem 2.4. In this example, choose Cα = 290, 130, 80, 50 for δ = 1%, 5%, 10%
and 20% respectively.We can also see that the bigger the noise level is, the smaller the suggested value
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Figure 4. Reconstructed Robin coefficients for different δ when γ ∗ ≡ 1 (Example 6.2).

Figure 5. Reconstructed Robin coefficients for different δ when γ ∗ = 5
3 x1 (Example 6.2).
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Figure 6. Reconstructed Robin coefficients for different δ when γ ∗ = sgn(x2)ex1 (Example 6.2).

of Cα is. Note again the accuracy in (φδ,hε , tδ,hε ) depends weakly on the value of Cα and a large range
of values of Cα can produce satisfactory approximations to (φ∗, t∗).

Like Example 6.1, with (φδ,hε , tδ,hε ), approximations γ δ,hε to three different γ ∗ (1, 53x, sign(x2)e
x1 )

are computed through the formula (47). Again, set ε = 10−20. Moreover, for βδ in (37), choose
η = 0.01. The approximate γ δ,hε to three different γ ∗ for δ = 1%, 5%, 10% and 20% are plotted in
Figures 4–6, from which we conclude that the reconstruction is stable and reasonable. Nevertheless,
these figures also show that the accuracy in γ δ,hε gets worse near the zero points of t∗, which is in
accordance with the theoretical observation in Remark 4.1.

7. Conclusions

In this paper, a parameter-dependent CCBM-based Tikhonov regularization framework is presented
for solving the reduced Cauchy problem coming from an inverse Robin problem. Compared with
the existing work, the contributions of this paper are two aspects. On one hand, the nonlinear Robin
inverse problem is transferred to a linear Cauchy one. As a result, when applying the Tikhonov regu-
larization, the problem is further reduced to a strictly convex optimal onewhich can be solved through
the optimality equations, and thus no iteration is needed. On the other hand, with the introduction of
a positive parameter α, we don’t need to choose the regularization parameter ε. As shown by theoret-
ical analysis and numerical experiments, when set α = O(√ε) = Cα

√
ε for some constant Cα , the

solutions are constant with respect to small ε. The solution accuracy is far less sensitive to Cα than ε.
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