
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gipe20

Download by: [University of Iowa Libraries] Date: 19 December 2017, At: 06:38

Inverse Problems in Science and Engineering

ISSN: 1741-5977 (Print) 1741-5985 (Online) Journal homepage: http://www.tandfonline.com/loi/gipe20

A homotopy method for bioluminescence
tomography

R. F. Gong, X. L. Cheng & W. Han

To cite this article: R. F. Gong, X. L. Cheng & W. Han (2018) A homotopy method for
bioluminescence tomography, Inverse Problems in Science and Engineering, 26:3, 398-421, DOI:
10.1080/17415977.2017.1310854

To link to this article:  https://doi.org/10.1080/17415977.2017.1310854

Published online: 06 Apr 2017.

Submit your article to this journal 

Article views: 42

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=gipe20
http://www.tandfonline.com/loi/gipe20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17415977.2017.1310854
https://doi.org/10.1080/17415977.2017.1310854
http://www.tandfonline.com/action/authorSubmission?journalCode=gipe20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gipe20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/17415977.2017.1310854
http://www.tandfonline.com/doi/mlt/10.1080/17415977.2017.1310854
http://crossmark.crossref.org/dialog/?doi=10.1080/17415977.2017.1310854&domain=pdf&date_stamp=2017-04-06
http://crossmark.crossref.org/dialog/?doi=10.1080/17415977.2017.1310854&domain=pdf&date_stamp=2017-04-06


INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018
VOL. 26, NO. 3, 398–421
https://doi.org/10.1080/17415977.2017.1310854

A homotopy method for bioluminescence tomography

R. F. Gonga, X. L. Chengb and W. Hanc

aDepartment of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China;
bDepartment of Mathematics, Zhejiang University, Hangzhou, China; cDepartment of Mathematics,
University of Iowa, Iowa City, IA, USA

ABSTRACT

Bioluminescence tomography (BLT) aims at the determination of
the distribution of a bioluminescent source quantitatively. The
mathematical problem involved is an inverse source problem and is
ill-posed. With the Tikhonov regularization, an optimization problem
is formed for the light source reconstruction and it is usually solved
by gradient-typemethods. However, such iterativemethods are often
locally convergent and thus the solution accuracy depends largely on
initial guesses. In this paper, we reformulate the reduced regularized
optimal problem as a nonlinear equation and apply a homotopy
method, which is a powerful tool for solving nonlinear problemdue to
its globally convergent property, to it. Numerical experiments show
that the application of the homotopy technique is feasible and can
produce satisfactory approximate solutions for a very large range of
initial guesses.
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1. Introduction

Recently, molecular imaging, as a rapidly developing biomedical imaging field, has been
developed to study physiological and pathological processes in vivo at the cellular and
molecular levels, see e.g. [1–5] and references therein. The goal of molecular imaging is to
depict non-invasive cellular andmolecular process in vivo sensitively and specifically, such
as monitoring multiple molecular events, cell trafficking and targeting and maybe instru-
mental for tumorigenesis studies, cancer diagnosis, metastasis detection, drug discovery
and development, gene therapies and orthopedic research [3,6–8]. In general, molecular
imaging ismainly based on three technologies: nuclear imaging [9,10],magnetic resonance
imaging (MRI) [11,12] and optical imaging [13,14]. Based on the three technologies,
there have been a lot of models. For instance, nuclear imaging includes positron emission
tomography (PET) [15–17] and single photon emission computed tomography (SPECT)
[18], while optical imaging mainly involves florescence molecular tomography (FMT)
[14,19] and bioluminescent imaging (BLI) [20–22]. Difference between FMT and BLI is
discussed in [23]. Different technologies can also be used in a combined system [24].

Related to BLI, the Bioluminescence tomography (BLT), as one of the optical imaging
modalities, has attracted much attention over the past several years because of its advan-
tages in sensitivity and specificity. The major issue of BLT is the determination of the
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 399

distribution of a bioluminescent source. With the introduction of BLT, a bioluminescent
source distribution inside a living small animal can be localized and quantified in 3D.
Without BLT, bioluminescence imaging is primarily qualitative. With BLT, quantitative
and localized analysis of a bioluminescent source distribution becomes feasible in a living
subject [25–27]. In BLT, we reconstruct an internal bioluminescent source from the
measured bioluminescent signal on the external surface of a small animal. The problem
of determining the photon density on the small animal surface from the bioluminescent
source distribution within the animal requires accurate representation of photon transport
in biological tissue. Generally, the bioluminescent photon propagation in biological tissue
can be well described by either the radiative transfer equation (RTE) or Monte Carlo
model. However, at present, either model is computationally very challenging to use
for most applications for that transmission of the bioluminescent photons through the
biological tissue is subject to both scattering and absorption. In practice, approximation
by the diffusion equation of RTE is adopted if scattering is dominant over absorption in
the process of propagation of light inside a small animal [28].

In BLT, the wavelength of bioluminescent light is in the range of around or over 600nm,
and in this range, scattering outperforms absorption in small animal tissue. So we can use
a diffusion equation to approximate RTE. Even with this simplification, it still remains to
develop efficient ways of simulating diffuse-based BLT. In this regard, we mention a few
references, [25–27,29–31].

Let � be a domain in R
d (d = 3 for applications) with the boundary �, �0 be a

measurable subset of �, known as the permissible region, and χ�0 be the characteristic
function of �0, i.e. its value is 1 in �0 and is 0 outside �0. Moreover, denote by ∂ν the
outward normal differentiation operator on �. Then, for known diffusion and absorption
coefficients D and μa, the BLT problem reads as follows [25].
Problem 1.1: GivenCauchy data g1 and g2, suitably smooth, find a bioluminescence source
p such that (u, p) satisfies

{−div(D∇u) + μa u = pχ�0 in �,
D∂νu = g1, u = g2 on �.

(1.1)

As noted in [25], Problem 1.1 is ill-posed. In general, there are infinitelymany solutions.
When the form of the source function is pre-specified, there is no solution if the data are
inconsistent. Moreover, the source function does not depend continuously on the data. To
circumvent the ill-posedness, Problem 1.1 is usually studied via a regularized least-squares
optimization approach.

Recently, Cheng et al. [32] proposed a coupled complex boundary method (CCBM)-
based Tikhonov regularization for an inverse source problem. As is shown in [32], the
CCBM makes inverse source problems more robust and more efficient in computations.
Then applying the CCBM-based Tikhonov regularization, Problem 1.1 reduces to an
optimization problem which is usually solved through a Newton-type iterative method. In
optimal community, Newton-type methods are most popular and used frequently because
of their fast convergence and simplicity. The disadvantage of Newton-type methods is the
local convergence. Homotopy method is a powerful tool for solving nonlinear problem
due to its globally convergent property [33]. In this paper, with Karush–Kuhn–Tucker
optimization condition and adjoint equation, we reformulate the regularized optimal
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400 R. F. GONG ET AL.

problem as a nonlinear equation, which is further discretized and smoothed. Then a fixed
point homotopy is applied to the reduced nonlinear system. we expect the combination of
the Tikhonov regularization and homotopy technique can produce a stable and reasonable
reconstruction of approximate source for a noisy measurement and a bad initial guess. As
will be seen later, our new method provides good approximations to the original source
function p for a very large range of initial guesses.

The rest of the paper is organized as follows. In Section 2, a CCBM-based Tikhonov
regularization framework is given for a stable source function. In Section 3, the regularized
optimization problem is transformed into an equivalent nonlinear equation which is
discretized using FEMs. Then in Section 3.3, the reduced discrete nonlinear algebraic
equation is smoothed so that the homotopy method can be applied. Several numerical
examples are presented in Section 4 to demonstrate the feasibility of our method. Some
concluding remarks are given in the last section.

2. Tikhonov regularization based on the CCBM

Wefirst introduce somenotation for function spaces and assumptions on the data. For a set
G (e.g. �, �0 or �), we denote by Hm(G) the standard Sobolev spaces with inner product
(·, ·)m,G and norm ‖ · ‖m,G. In particular, writeH0(G) as L2(G). LetHm(G) be the complex
version ofHm(G)with the inner product ((·, ·))m,G and norm ||| · |||m,G defined as follows:
∀ u, v ∈ Hm(G), ((u, v))m,G = (u, v̄)m,G, |||v|||2m,G = ((v, v))m,G. The source function p
will be sought from an admissible setQad ⊂ L2(�0). We assumeQad is non-empty, closed
and convex. For the problem data, assume � is Lipschitz continuous, g1, g2 ∈ L2(�), and
D,μa ∈ L∞(�), D ≥ D0, μa ≥ μ0 a.e. in � for some positive constantsD0 and μ0, where
L∞(�) is the space of all essentially bounded functions. In the following, we denote by c a
constant which may have different values at different places.

We allow the Neumann and Dirichlet data g1 and g2 to contain random noise with a
known level δ, and write them as gδ

1 and gδ
2 . Let

‖gδ
k − gk‖0,� ≤ δ, k = 1, 2.

Consider a complex boundary value problem (BVP)

{−div(D∇uδ) + μa uδ = pχ�0 in �,
D∂νuδ + i uδ = gδ

1 + i gδ
2 on �, (2.1)

where i = √−1 is the imaginary unit. Then Problem 1.1 is equivalent to the following
inverse problem.
Problem 2.1: Given gδ

1 and gδ
2 , find p ∈ Qad such that

uδ
2 = 0 in �,

where uδ
2 is the imaginary part of the solution uδ = uδ

1 + i uδ
2 of the BVP (2.1).

We refer to [32] for the derivation of the equivalence between Problems 1.1 and 2.1.
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 401

For a given p ∈ L2(�0), by an application of the complex version of Lax–Milgram
Lemma [34, p.376], we know that the Problem (2.1) has a unique weak solution u ∈ H1(�)

and
|||uδ|||1,� ≤ c (‖p‖0,�0 + ‖gδ

1‖0,� + ‖gδ
2‖0,�). (2.2)

We refer to [32] for the proofs of the well-posedness of (2.1) and the priori estimate (2.2).
Next we apply the Tikhonov regularization to Problem 2.1 for a stable approximation

of the source function p. For any p ∈ L2(�0), denote by uδ(p) = uδ
1(p) + i uδ

2(p) ∈ H1(�)

the weak solution of (2.1). Define an objective functional

Jδε (p) = 1
2
‖uδ

2(p)‖20,� + ε

2
‖p‖20,�0

,

and introduce the following Tikhonov regularization framework for Problem 2.1.
Problem 2.2: Find pδ

ε ∈ Qad such that

Jδε (pδ
ε) = inf

p∈Qad
Jδε (p).

Regarding Problem 2.2, we have the following well-posedness result [32, Proposition
3.1].
Proposition 2.3: For any ε > 0, Problem 2.2 has a unique solution pδ

ε ∈ Qad which
depends continuously on all data. Moreover, pδ

ε is characterized by

(Jδε )′(pδ
ε)(q − pδ

ε) = (wδ
2 + ε pδ

ε , q − pδ
ε)0,�0 ≥ 0 ∀ q ∈ Qad , (2.3)

where wδ
2 is the imaginary part of the weak solution wδ := wδ(pδ

ε) ∈ H1(�) of the adjoint
problem: {−div(D∇wδ) + μa wδ = uδ

2 in �,
D∂νwδ + i wδ = 0 on �, (2.4)

and uδ
2 is the imaginary part of the weak solution uδ := uδ(pδ

ε) ∈ H1(�) of the BVP (2.1)
with p replaced by pδ

ε.
Regarding the solution pδ

ε of Problem 2.2, the following convergence result holds.
Proposition 2.4: Denote by p∗ the solution of Problem 1.1 with minimal L2-norm. Then

pδ
ε → p∗ in L2(�0)

as δ → 0, where ε = ε(δ) is chosen satisfying ε → 0 and δ2/ε → 0, as δ → 0.
Proposition 2.4 can be proved similarly to the proof of [35, Theorems 3.1], with a slight

difference due to the absence of a parameter.

3. A homotopy continuity method for pδ
ε

3.1. An equivalent nonlinear equation

To apply the homotopy technique, we transform the regularized optimal problem of
Section 2 into a nonlinear equation which is further discretized with the finite element
method. Note that the following discussion applies to the model with noisy measurements

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

w
a 

L
ib

ra
ri

es
] 

at
 0

6:
38

 1
9 

D
ec

em
be

r 
20

17
 



402 R. F. GONG ET AL.

gδ
1 and gδ

2 ; however, for the conciseness of statements, we omit the symbol δ in most part
of this section.

it is not difficult verify that for any p,	q ∈ L2(�0),

J ′ε(q)	q = (u2(q), u2(	q) − u2(0))0,� + ε(q,	q)0,�0 , (3.1)
J ′′ε (q)(	q)2 = ‖u2(	q) − u2(0)‖20,� + ε‖	q‖20,�0

, (3.2)

where u2(q), u2(	q) and u2(0) are the imaginary parts of the weak solutions of the BVP
(2.1) with p replaced by q,	q and 0, respectively. With the similar arguments to those in
[32, Proposition 3.1], we have

(u2(q), u2(	q) − u2(0))0,� = (w2(q),	q)0,�0 , (3.3)

where w2(q) ∈ H1(�) is the imaginary part of the weak solution of the adjoint problem
(2.4) with uδ

2 being replaced by u2(q). The Taylor expansion of Jε(q + 	q) at q is

Jε(q + 	q) = Jε(q) + J ′ε(q)	q + 1
2
J ′′ε (ξ)(	q)2 (3.4)

for some ξ ∈ L2(�0). Then combining (3.1)–(3.4), we have

lim
	q→0

|Jε(q + 	q) − Jε(q) − (w2(q) + εq,	q)L2(�0)|
‖	q‖L2(�0)

= lim
	q→0

1
2‖u2(	q) − u2(0)‖20,� + ε

2‖	q‖20,�0

‖	q‖L2(�0)
= 0

which shows that the Frechet derivative of Jε at any q ∈ L2(�0) is

J ′ε(q) = χ�0w2(q) + εq.

Define a linear operator f : L2(�0) → L2(�0) by

f (q) = J ′ε(q) ∀ q ∈ L2(�0).

In view of non-negativity of real light source function p, we set

Qad = {q ∈ L2(�0) | q ≥ 0 a.e. in �0}.

Then due to Karush–Kuhn–Tucker optimization condition of Problem 2.2, there is a
function λ ≥ 0 such that

f (pε) − λ = 0, λ pε = 0,

which gives an equivalence of linear complementary problem (LCP) to the regularized
problem (Problem 2.2):

f (pε)pε = 0, f (pε) ≥ 0, pε ≥ 0. (3.5)
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 403

Many papers can be consulted on the importance of LCP and its numerical solution. For
a comprehensive treatment of LCP, we refer to the monograph [36].

A regularized source function pδ
ε could be computed through the resolution of LCP

(3.5). However, to have a globally convergent method for Problem 2.2, we would like
to find an approximate light source function via a nonlinear equation. For this purpose,
denote by � the orthogonal projection from L2(�0) onto Qad , that is,

�(q) = max{0, q} ∀ q ∈ L2(�0), (3.6)

and define F(q) := q − �(q − f (q)). Then, according to Harker and Pang [37], LCP (3.5)
is equivalent to the following nonlinear equation:

F(pδ
ε) = 0. (3.7)

Note that the relations in (3.5) and (3.7) are interpreted pointwisely.

3.2. Discretizationwith the finite elementmethod

We apply the finite element method to discretize (3.7), and later in Subsection 3.4, use
the homotopy method to solve the discretized problem. Let {Th}h be a regular family of
finite element partitions of � with meshsize h such that each element at the boundary �

has at most one non-straight face (for a three-dimensional domain) or side (for a two-
dimensional domain). Define the linear finite element space

Vh = {v ∈ C(�) | v is linear in T ∀T ∈ Th}

for the weak solutions of (2.1) and (2.4) and

Qh = {q ∈ L2(�0) | q is constant in T , ∀T ∈ Th and T ⊂ �0}

for the source function pδ
ε . Set Vh = Vh ⊕ iVh and Qh

ad = Qh ∩ Qad . Then Vh is a finite
element subspace ofH1(�).

For a triangulation Th, let n0 be the number of elements over �0, associated with
elements Tk, 1 ≤ k ≤ n0. Assume χTk are the characteristic functions over Tk, 1 ≤ k ≤ n0.
Then the finite element approximation of pδ

ε has the form

ph =
n0∑
s=1

pkχTk . (3.8)

Set P = (p1, p2, . . . , pn0)t , where the superscript t stands for transposition. Then the finite
element discretization of f , denoted by f, is

f(P) = M P + N ∀ P ∈ R
n0 , (3.9)

where M is an n0 × n0 matrix which depends on �, �0, Th, D, μa and ε, while N is an
n0 × 1 vector which depends on �, Th, gδ

1 and gδ
2 . A detailed derivation of M and N are

given in Appendix 1.
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404 R. F. GONG ET AL.

Correspondingly, the nonlinear Equation (3.7) reduces to solving the following system
of algebraic equations:

F(P) := P − �(P − f(P)) = 0. (3.10)

Note that� is used as anon-negative projection for both continuous anddiscrete functions.
Since (3.10) is equivalent to a convex problem in R

n0 , it is not difficult to see that there
is a unique solution P. Moreover, by [32, Theorem 4.4],

‖ph − pδ
ε‖0,�0 ≤ c (ε−1 h2 + ε−1/2 h1/2 Eh(pδ

ε)
1/2), (3.11)

where Eh(pδ
ε) = inf qh∈Qh

ad
‖qh − pδ

ε‖0,�0 and ph is defined from P through (3.8).

3.3. Smoothness

Note that � is piecewise smooth and F is a semismooth function. To apply the homotopy
method, the operator F needs to be smoothed. In fact, for a real number x,

�(x) = max{x, 0} =
∫ x

−∞
σ(t)dt

with σ(x) being the step function

σ(x) =
{
1 if x > 0,
0 if x ≤ 0.

Define
στ (x) = 1

1 + e−x/τ , τ > 0

and
�τ(x) =

∫ x

−∞
στ (t)dt = x + τ ln (1 + e−x/τ ). (3.12)

For properties of the operator �τ , the following result holds [38, Proposition 2.2].
Proposition 3.1: Let τ > 0 and x ∈ R.

(1) 0 ≤ �τ(x) − �(x) ≤ τ ln 2. Thus,

lim
τ→0+ �τ(x) = �(x).

(2) 0 < �′
τ (x) < 1. Thus, �τ is a contraction mapping.

(3) �
′′
τ (x) > 0. Thus, �τ is strictly convex.

Thanks to (1) of Proposition 3.1, we have the following smooth approximation to
Equation (3.10):

Fτ (P) = 0, (3.13)

where Fτ (P) := P − �τ(P − f(P)).
Remark 1: Note that the projection � has the form: �(x) = 1

2 (x + |x|). Alternatively,
we can use the conventional smoothing operator �τ(x) = 1

2 (x + √
x2 + τ 2). We also
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 405

implement numerical examples of Section 4 for this choice of �τ . Numerical results
indicate that the two choices of �τ produce solutions of comparable accuracy, with (3.12)
leading to a slightly more accurate solution.

Because f is linear, by Proposition 3.1, Equation (3.13) admits a unique solution Pτ

which converges to P∗, the solution of (3.10):

lim
τ→0+ Pτ = P∗. (3.14)

Some properties of the operator Fτ are summarized as follows.
Proposition 3.2:

(1) For any P ∈ R
n0 ,

‖Fτ (P) − F(P)‖l ≤ cl τ ln 2

with l = 1, 2, ∞ and c1 = n0, c2 = √
n0, c∞ = 1.

(2) For any P ∈ R
n0 , define an n0 dimensional matrix D(P) = (dij) with dij = 0 for

j �= i and

dii = e−
pi−(f(P))i

τ

1 + e−
pi−(f(P))i

τ

.

Then

∂Fτ (P)

∂P
= M + D(P)(E − M), (3.15)

∂Fτ (P)

∂τ
= − 1

τ
D(P)(P − f(P)) − ln (1 + e−

P−f(P)
τ ), (3.16)

where E is the n0 dimensional identity matrix.

3.4. Homotopy continuitymethods

Given a simple mapG : R
n0 → R

n0 such that it is easy to solve the equationG(P) = 0, we
construct a linear homotopy Hτ (P, γ ) between the smoothing map Fτ and G as follows:

Hτ (P, γ ) = (1 − γ ) Fτ (P) + γ G(P) = 0.

Then, Hτ (P, 1) = G(P), Hτ (P, γ ) → Fτ (P) as γ → 0+. With the choice G(P) = P − P0,
we have the following fixed point homotopy:

Hτ (P, γ ) = (1 − γ ) Fτ (P) + γ (P − P0) = 0, (3.17)

with P0 ∈ R
n0 an arbitrary non-negative initial vector. Combine (3.15) and (3.17) to give

∂Hτ

∂P
= (1 − γ )

∂Fτ (P)

∂P
+ γE,

∂Hτ

∂γ
= P − P0 − Fτ (P).
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406 R. F. GONG ET AL.

In case Rank( ∂Hτ

∂P ) = n0 for any P ∈ R
n0 , by the implicit theorem, (3.17) determines

implicitly an n0 dimensional vector function Pτ = Pτ (γ ), γ ∈ (0, 1] such that

P′(γ ) = −
[
∂Hτ

∂P

]−1
∂Hτ

∂γ
� fτ (P, γ ). (3.18)

Apparently, P(1) = P0.
Being an affine function, f is smooth. We have the following result [39].

Proposition 3.3: For fixed τ > 0 and almost all P0 ∈ R
n0 , the homotopy Equation (3.17)

determines a bounded smooth curve C ⊂ R
n0 × (0, 1] starting from (P0, 1) and approaches

the hyperplane at γ = 0. Moreover,

lim
γ→0+ P(γ ) = Pτ , (3.19)

where Pτ is the unique solution of (3.13).
Recall that P∗ is the unique solution of the discrete Problem (3.10). Combine (3.14) and

(3.19) to give
lim

τ→0+ lim
γ→0+ P(γ ) = P∗. (3.20)

Due to (3.20), we reduce the problem of finding an approximate light source to the one
of solving an initial value problem for a sufficiently small τ > 0 and γ ∈ (0, 1]:

{
P′(γ ) = fτ (P, γ ),
P(1) = P0. (3.21)

Any convergent iterative method can be used to solve (3.21) numerically. For example, an
explicit fourth order Runge–Kutta method for it reads:

P(0) = P0;
for k = 1, 2, . . . ,m − 1,

y1 = fτ (P(k−1), γk−1),

y2 = fτ (P(k−1) + γ̄

2
y1, γk−1 + γ̄

2
),

y3 = fτ (P(k−1) + γ̄

2
y2, γk−1 + γ̄

2
),

y4 = fτ (P(k−1) + γ̄ y3, γk),

P(k) = P(k−1) + γ̄

6
(y1 + 2y2 + 2y3 + y4),

where γ̄ = −1/m and γk = 1 + kγ̄ , k = 0, 1, . . . ,m, is a partition of the interval [0, 1].
Then P(m−1) is viewed as an approximation to the true source function P∗. To avoid direct
computation of the inverse of matrix ∂Hτ

∂P , we apply the biconjugate gradients method
(BICG) [40] to compute fτ (P, γ ). Then the explicit fourth order Runge–Kutta method is
implemented by the following iterative scheme.
Algorithm 3.4:

(1) Give ε, τ ,m, P0, let P(0)
τ = P0 and set k = 1.
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 407

(2) Compute A1 = ∂Hτ

∂P (P(k−1), γk−1), b1 = − ∂Hτ

∂γ
(P(k−1), γk−1) and solve A1 y1 = b1

with BICG to get y1.
(3) ComputeA2 = ∂Hτ

∂P (P(k−1) + γ̄
2 y1, γk−1 + γ̄

2 ), b2 = − ∂Hτ

∂γ
(P(k−1) + γ̄

2 y1, γk−1 + γ̄
2 )

and solve A2 y2 = b2 with BICG to get y2.
(4) ComputeA3 = ∂Hτ

∂P (P(k−1) + γ̄
2 y2, γk−1 + γ̄

2 ), b3 = − ∂Hτ

∂γ
(P(k−1) + γ̄

2 y2, γk−1 + γ̄
2 )

and solve A3 y3 = b3 with BICG to get y3.
(5) Compute A4 = ∂Hτ

∂P (P(k−1) + γ̄ y3, γk), b4 = − ∂Hτ

∂γ
(P(k−1) + γ̄ y3, γk) and solve

A4 y4 = b4 with BICG to get y4.
(6) Compute P(k) = P(k−1) + γ̄

6 (y1 + 2y2 + 2y3 + y4).
(7) Set k = k + 1 and repeat Steps (2)–(6) until k = m − 1.

As illustrated by the numerical experiments in Section 4, the solution accuracy can
be improved when an updated P0 is used. Specifically, we will use the following iterative
scheme for the homotopy-based reconstruction.
Algorithm 3.5:

(1) Give ε, τ ,m, P0 and n, set j = 0.
(2) For P0 = Pj, apply Algorithm 3.4 to get P(m−1)

j .
(3) Set Pj+1 = P(m−1)

j and j = j + 1, and go to Step (2) until j = n.

4. Numerical examples

In this section, we report some numerical results to confirm that the combination of
Tikhonov regularization method and homotopy method can produce a satisfactory ap-
proximation to the true light source even for very bad initial guess.

With the problem domain �, Neumann data g1, diffusion and absorption coefficients
D and μa, and a prescribed true source function p∗ in �0 ⊂ �, using the standard linear
finite element method defined in Subsection 3.2, we solve the forward BVP

{−div(D∇u) + μa u = p∗χ�0 in �,
D∂νu = g1, on �

(4.1)

to get uh ∈ Vh. Use g2 = uh|� for the boundary measurement. Uniformly distributed
noises with level δ are added to both g1 and g2 to get gδ

1 and gδ
2 :

gδ
k (x) = [1 + δ · (2 rand(x) − 1)] gk(x), x ∈ �, k = 1, 2,

where rand(x) returns a pseudo-random value drawn from a uniform distribution on
[0, 1].

With computed data gδ
1 and gδ

2 and specific parameters ε, the forward BVP (2.1) and
its adjoint (2.4) are solved with the finite element method (see Section 3.2 for details) to
produce M and N with which the operators f in (3.9) and F in (3.10) are defined. As a
result, for τ > 0 and γ ∈ (0, 1], nonlinear operators Fτ of (3.13) and Hτ of (3.17) are
obtained. Then given additional initial guess P0 and iteration numbersm, n, Algorithm 3.5
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Figure 1. A sketch of Delaunay elements.

is implemented to get Pn. Through the formula (3.8), that is,

ph =
n0∑
k=1

Pn,kχTk ,

we obtain an approximation ph to the true source function p∗. To assess the accuracy of
approximate solutions, we define the L2-norm relative error in an approximate solution
ph:

L2Err := ‖ph − p∗‖0,�
‖p∗‖0,� .

We note that the values of the regularization parameter ε for the numerical results
in all tables below are approximately optimal. Because the true source p∗ is known
in our experiments, all approximate optimal regularization parameters are chosen by
sweeping them from 1, 10−1, 10−2, 10−3, . . .. When p∗ is not available, many methods
such as discrepancy principle (DP), L-curve rule, quasi-optimality, monotone error rule,
generalized cross-validation (GCV) can be used for proper selection of ε. We refer to
[41,42] for some further comments on these methods for the choice of the regularization
parameters.
Example 1: Let � ⊂ R

2 be a unit circle centered at the origin. The diffusion and
absorption parameters for the homogenous media � are D = 0.2 and μa = 0.04.
The Neumann data on the boundary � is g1 = (x2 + y2)/5. Set the true light source
p∗ = 1 + x + y in a circle contained in �, with the center (0.55, 0.45) and the radius 0.1.
Delaunay elements are used for the triangulations. See Figure 1 for a sketch of a mesh.
The Dirichlet data gδ

2 is computed on a rather small meshsize h (h = 0.03747 with 44,185
nodes and 87,808 elements in our experiments), polluted by a noise with level δ.
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 409

Table 1. The dependence of the accuracy in solutions on parameters τ ,m, n.

τ L2Err m L2Err n L2Err

1 1.3199 10 2.0796 1 3.8232e−1
1/2 3.3754e−1 50 2.4254e−1 5 1.2582e−1
1/22 3.7481e−2 100 1.8659e−1 10 7.3854e−2
1/23 1.2101e−2 500 1.4593e−1 20 1.2101e−2
1/24 1.2148e−2 1000 1.0509e−1 30 3.0295e−2
1/25 1.2148e−2 1500 7.2477e−2 40 4.8678e−2
1/26 1.2148e−2 2000 4.6469e−2 50 5.8671e−2
1/27 1.2148e−2 2500 2.6079e−2 60 6.4027e−2
1/28 1.2148e−2 3000 1.2101e−2 70 6.6890e−2
1/29 1.2148e−2 3500 1.2139e−2 80 6.8421e−2
1/210 1.2148e−2 4000 2.0801e−2 90 6.9242e−2
1/211 1.2148e−2 4500 2.9193e−2 100 6.9684e−2

Table 2. The corresponding computational time (s).

τ Time m Time n Time

1 22.52 10 1.64 1 2.50
1/21 22.53 50 2.52 5 6.55
1/22 21.86 100 2.25 10 11.09
1/23 21.88 500 5.20 20 21.88
1/24 21.91 1000 8.19 30 30.13
1/25 21.77 1500 11.45 40 39.61
1/26 21.55 2000 14.64 50 50.84
1/27 22.20 2500 18.22 60 59.25
1/28 21.77 3000 21.88 70 68.30
1/29 22.02 3500 23.78 80 78.91
1/210 22.50 4000 26.92 90 87.84
1/211 22.92 4500 31.44 100 97.06

Then using Algorithm 3.5, the approximate source function ph is recovered on a mesh
with h = 0.1154, for different parameters δ, ε, τ , m and n. We first investigate the effect
of the smoothing parameter τ , the partition parameter m and the iteration parameter n.
To this end, we fix δ = 0, ε = 10−5, and set P0 = 10, which is totally different from the
true solution p∗. The relative L2-norm error L2Err in approximate solutions for different
values of the smoothing parameter τ are given in the first two columns (fix m = 3000,
n = 20); those for different values of the partition parameter m are listed in the third and
forth columns (fix τ = 1/23, n = 20); those for different values of the iteration parameter
n are listed in the last two columns (fix τ = 1/23, m = 3000). The first two columns of
Table 1 show that a small τ ( < 1) is readily to give a satisfactory approximate solution;
the accuracy in approximate solutions are uniform with respect to a small enough τ . The
third and forth columns of Table 1 show that when refining the partition of (0, 1] for γ ,
the accuracy in approximate solutions increases at first and then decreases. A big enough
m can provide a good reconstruction. The last two columns show that updating the initial
guess P0 in fixed point homotopy (3.17) can improves largely the accuracy in approximate
solutions. However, too big n is not necessary. In summary, we conclude from Table 1
that a moderately small τ , a moderately big n and a big enough m produce a reasonable
approximation ph to the true source function p∗.
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410 R. F. GONG ET AL.

Table 3. The dependence of solution accuracy on δ.

δ HM LMLS SQPM IPM

0 1.2101e−2 2.4144e−2 1.4272e−2 2.9554e−2
0.1% 4.0857e−2 4.1660e−2 3.9243e−2 2.8732e−2
0.5% 3.1800e−2 3.1965e−2 1.0847e−1 6.7209e−2
1% 5.7984e−2 5.8747e−2 6.5535e−2 2.5203e−2
5% 3.7559e−1 3.7704e−1 1.8012e−1 4.9983e−1

Table 4. The corresponding computational time (s).

δ HM LMLS SQPM IPM

0 21.88 1.72 101.38 157.25
0.1% 22.67 1.55 32.41 79.92
0.5% 22.89 1.59 27.73 82.52
1% 22.67 1.55 55.84 82.56
5% 22.61 1.53 34.98 82.58

The computational time corresponding to each reconstruction is given in Table 2. Using
these data and applying least square fitting, the explicit dependence of the computational
time on the parameters τ ,m and n are approximated in the following:

Time(τ ,m, n) ≈ 0.006438m + 0.9587n − 16.3704.

We next investigate the stability of approximate solutions with respect to the noise level
δ. Specifically, set δ = 0, 0.1%, 0.5%, 1%, 5% and implement Algorithm 3.5 repeatedly,
again forP0 = 10 andover ameshwithh = 0.1154.As indicatedbyTable 1,we set τ = 1/8,
m = 3000 and n = 20. The approximate optimal values of the regularization parameter are
ε = 10−5, 10−4, 10−4, 10−4, 10−3. The relative errors in L2-norm are listed in the second
columnofTable 3. For comparison,we list the results forγ = 0 in the third columnofTable
3. Note that when γ = 0, we are reduced to solve (3.13). In our experiments, least square
method and Levenberg–Marquardtmethod are used to solve (3.13), and the corresponding
ε = 10−4, 10−4, 10−4, 10−4, 10−3.Moreover, we list in the third and forth columns of Table
3 the results obtained by applying directly sequential quadratic programming method and
primal-dual interior point method to the regularized optimal problem, respectively. For
convenience, we use ‘HM’ to refer to homotopymethod developed in this paper, ‘LMLSM’
refer to Levenberg–Marquardt based least square method, ‘SQPM’ refer to sequential
quadratic programmingmethod and ‘IPM’ refer to primal-dual interior pointmethod. The
approximate optimal regularization parameters for SQPM and PDIPM corresponding to
different δ are ε = 10−2, 10−1, 1, 1, 1 and ε = 10−1, 10−1, 1, 10−1, 10−4, respectively.
The corresponding computational time are shown in Table 4. Table 3 shows that all four
methods are stable and can give satisfactory reconstructions. In comparison, homotopy
method explored in this paper has better solution accuracy than other three methods.
About the computational efficiency, Table 4 indicates that Levenberg–Marquardt based
least square method is faster than other three methods, and HM is faster than SQPM and
IPM.

Finally, we assess the convergence behavior of our homotopy method with respect to
initial guess P0. Specifically, for fixed h = 0.1154, δ = 0, τ = 1/8, m = 3000 and n = 20,
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 411

Table 5. Dependence of solution accuracy on P0.

P0 HM LMLSM SQPM IPM

0 2.4046e−2 2.8239e−2 2.6692e−2 2.4112e−2
0.01 2.4046e−2 2.7739e−2 2.6706e−2 2.7935e−2
0.1 2.4041e−2 2.5275e−2 2.7602e−2 2.8760e−2
1 2.3997e−2 2.4197e−2 3.0401e−2 1.7523e−2
10 2.3552e−2 2.4144e−2 1.4272e−2 2.9554e−2
100 2.0817e−2 2.4136e−2 2.7807e−2 3.6534e−2
1000 2.4984e−2 2.3939e−2 8.3977e−2 1.8355e−1
10,000 7.7530e−2 2.4596e−2 4.1916 35.1026

Table 6. The corresponding computational time (s).

P0 HM LMLSM SQPM IPM

0 20.44 1.67 35.59 92.34
0.01 20.52 1.55 69.08 130.17
0.1 20.50 1.67 42.11 84.61
1 20.48 1.67 35.36 51.69
10 21.23 1.72 101.38 157.25
100 20.66 1.95 113.30 157.75
1000 20.61 1.91 164.22 152.56
10,000 20.97 1.70 154.61 161.33

set P0 = 0, 0.01, 0.1, 1, 10, 100, 1000, 10, 000, respectively, and repeat Algorithm 3.5. The
corresponding ε = 10−4 for all P0. The relative error L2Err in reconstructed approximate
solutions and computational time needed are reported in the second columns of Tables
5 and 6. Again, for comparison, the numerical results obtained with LMLSM, SQPM and
IPM are also shown in Tables 5 and 6. In LMLSM, ε = 10−4 for all P0. The optimal
regularization parameters in SQPM and IPM corresponding to P0 = 0, 0.01, 0.1, 1, 10,
100, 1000, 10,000 are ε = 10−2, 10−2, 10−2, 10−1, 10−2, 10−1, 1, 1 and ε = 10−2, 10−1,
10−1, 10−2, 10−1, 10−1, 1, 10−1, respectively. We see from Table 5 that all methods give
satisfactory reconstructions for a large range of P0. Compared to standard LMLSM, SQPM
and IPM, HM produces better solution accuracy for all P0, especially for those P0 of big
magnitudes. In conclusion, homotopy method explored in this paper has better behaviour
than standard sequential quadratic programming-based method and interior point-based
method in both solution accuracy and computational time.

We repeat experiments above for random P0 (positive) of different magnitudes. Similar
conclusions can be drawn. When using the solutions obtained from HM as the initial
guesses of SQPM or IPM, we get the combined HM+SQPM or HM+IPM. The corre-
sponding numerical experiments show that using the combined methods could improve
slightly the solution accuracy when themagnitude of the initial guess P0 is small, and could
improve largely the solution accuracy when the magnitude of the initial guess P0 is big.
However, we omit the presentation of the numerical results here.
Example 2: In this example, a three-dimensional problem is studied. Specifically, let
� = {(x, y, z) ∈ R

3 | x2 + y2 < 1, 0 < z < 2}. In �, set again the diffusion and absorption
parameters are D = 0.2 and μa = 0.04. Place a light source p∗(x, y, z) = 1 + x + y + z
in �∗ = {(x, y, z) ∈ � | (x − 0.5)2 + (y − 0.5)2 + (z − 1)2 ≤ 0.22}. See Figure 2 for a
sketch of a mesh. The Neumann data on the boundary � is g1 = (x2 + y2 + z2)/5. The
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412 R. F. GONG ET AL.

Figure 2. A sketch of mesh of Example 2.

Table 7. Dependence of solution accuracy on parameters τ ,m, n.

τ L2Err m L2Err n L2Err

1 6.6653e−1 10 1.7291 1 1.3948
1/2 8.3434e−2 50 5.0448e−1 5 1.7689e−1
1/22 2.0440e−2 100 1.2985e−1 10 2.0408e−2
1/23 2.0408e−2 150 4.0669e−2 20 5.5481e−2
1/24 2.0408e−2 200 2.0408e−2 30 9.4306e−2
1/25 2.0408e−2 250 2.4129e−2 40 1.2606e−1
1/26 2.0408e−2 300 3.3756e−2 50 1.5171e−1
1/27 2.0408e−2 350 4.4265e−2 60 1.7248e−1
1/28 2.0408e−2 400 5.4701e−2 70 1.8942e−1
1/29 2.0408e−2 450 6.4793e−2 80 2.0337e−1
1/210 2.0408e−2 500 7.4445e−2 90 2.1499e−1
1/211 2.0408e−2 1000 1.4739e−1 100 2.2479e−1

Dirichlet data gδ
2 is computed on a rather fine mesh with h = 0.1130, 55,269 nodes and

314,982 elements, and is polluted by a noise with level δ.
With Algorithm 3.5, the approximate source function ph is recovered on a mesh with

h = 0.2285, 5023 nodes, 26,885 elements for various values of the parameters δ, ε, τ ,
m and n. Like Example 1, we first investigate the effect of the smoothing parameter τ ,
the partition parameterm and the iteration parameter n, on the accuracy of reconstructed
approximate solutions. To this end, we fix δ = 0, ε = 10−5, and set P0 = 10, which is again
very different from the true solution p∗. The results are reported in Table 7. Specifically,
the relative error L2Err for different values of τ are given in the first two columns (fix
m = 200, n = 10); those for different values ofm are listed in the third and forth columns
(fix τ = 1/16, n = 10); those for different values of n are listed in the last two columns (fix
τ = 1/16,m = 200). Similar conclusions to those from Table 1 can be drawn from Table
7: a moderately small τ , a moderately big n and a big enoughm could produce a reasonable
approximation ph to the true source function p∗. The corresponding computational time
needed are given Table 8. As Example 1, using data of Table 8 and applying least square
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 413

Table 8. The corresponding computational time (s).

τ Time (s) m Time (s) n Time (s)

1 989.30 10 439.69 1 473.83
1/21 985.64 50 551.39 5 700.59
1/22 980.78 100 693.19 10 979.04
1/23 981.75 150 836.95 20 1558.28
1/24 979.04 200 979.04 30 2126.97
1/25 983.73 250 1126.06 40 2703.63
1/26 983.17 300 1275.02 50 3269.58
1/27 995.70 350 1417.34 60 3851.36
1/28 984.06 400 1563.75 70 4396.83
1/29 983.00 450 1691.86 80 4946.31
1/210 981.64 500 1833.42 90 5527.66
1/211 983.09 1000 3257.17 100 6140.36

Table 9. The dependence of solution accuracy on δ.

δ HM LMLS SQPM IPM

0 2.0408e−2 1.8158e−1 7.0435e−1 1.3598
0.1% 5.2177e−2 2.2587e−1 7.2448e−1 1.3593
0.5% 1.0210e−1 2.3589e−1 7.2496e−1 1.3512
1% 1.3647e−1 2.8666e−1 7.3166e−1 1.3561
5% 4.9844e−1 5.3604e−1 7.4582e−1 1.4000

Table 10. The corresponding computational time (s).

δ HM LMLS SQPM IPM

0 1757.44 1193.91 7669.42 994.97
0.1% 1038.36 915.66 6473.69 1069.00
0.5% 994.25 779.06 6597.28 1079.03
1% 992.53 843.56 6047.05 1075.64
5% 1001.33 859.33 2670.88 1072.75

fitting, the formula for the dependence of the computational time on the parameters τ ,m
and n for 3D problem here is approximately:

Time(τ ,m, n) ≈ 2.8495m + 56.9560n − 155.2064.

Then uniform noise with different noise level δ are added to measurements and Algo-
rithm 3.5 is repeated, for fixed P0 = 10, h = 0.2285, τ = 1/16, m = 200 and n = 10.
ε = 10−5, 10−5, 10−4, 10−5, 10−3 for δ = 0, 0.1%, 0.5%, 1%, 5%. The relative error L2Err
and the corresponding computational time are reported in Tables 9 and 10. Again, for
comparison, results obtained with methods LMLSM, SQPM and IPM are also listed in the
tables. For δ = 0, 0.1%, 0.5%, 1%, 5%, the approximate optimal values of the regularization
parameter in LMLSM, SQPM and IPM are ε = 10−4, 10−4, 10−3, 10−3, 10−3, ε = 10−2,
10−4, 10−4, 10−5, 10−5 and ε = 10−4, 10−3, 10−1, 10−1, 10−1, respectively. Similar
observations to those about Example 1 could be found, that is, all methods are stable;
homotopy method explored in this paper has better solution accuracy than other three
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414 R. F. GONG ET AL.

Table 11. Dependence of solution accuracy on P0.

P0 HM LMLSM SQPM IPM

0 3.3071e−2 1.3453e−1 4.1603e−1 2.5748e−1
0.01 3.3044e−2 1.3679e−1 3.8805e−1 8.5559e−1
0.1 3.2800e−2 1.3627e−1 3.8261e−1 4.9938e−1
1 3.0422e−2 1.3452e−1 2.5921e−1 2.6129e−1
10 2.0408e−2 1.8158e−1 7.0435e−1 1.3598
100 1.7783e−1 1.5057e−1 5.4696 18.7512
1000 6.1940e−1 1.4220e−1 1956.99 194.3832
10,000 7.4301 1.4220e−1 1537.96 1956.99

Table 12. The corresponding computational time (s).

P0 HM LMLSM SQPM IPM

0 933.63 663.59 1352.56 1049.59
0.01 953.08 643.39 1800.44 1043.00
0.1 944.97 649.16 1692.89 1051.94
1 938.44 500.73 1371.94 974.23
10 939.25 1193.91 7669.42 994.97
100 950.67 730.34 15, 240.64 1023.09
1000 975.19 1012.69 1000.17 1014.13
10,000 951.80 912.34 1992.22 1000.17

methods; Levenberg–Marquardt based least square method for γ = 0 is faster than other
three methods; HM is faster than SQPM and IPM.

Finally, for the three-dimensional problem, we also assess the convergence behaviour
of our homotopymethod with respect to initial guess P0. Specifically, for fixed h = 0.2285,
δ = 0, τ = 1/16, m = 200 and n = 10, set P0 = 0, 0.01, 0.1, 1, 10, 100, 1000, 10,000,
respectively, and repeat Algorithm 3.5. Corresponding to each P0, ε = 10−5, 10−5, 10−5,
10−5, 10−5, 10−3, 10−3, 10−2. The relative error L2Err and time cost are reported in the
second columns of Tables 11 and 12. The numerical results obtained with LMLSM, SQPM
and IPM are also shown in Tables 11 and 12. In LMLSM, ε = 10−4 for all P0 while the
optimal regularization parameters in SQPM and IPM corresponding to P0 = 0, 0.01, 0.1,
1, 10, 100, 1000, 10,000 are ε = 10−3, 10−2, 10−2, 10−4, 10−2, 1, 10−3, 10−4 and ε = 10−2,
10−1, 10−2, 10−4, 10−4, 10−3, 10−3, 10−4, respectively. Again, we see from Table 11 that
all three methods give satisfactory reconstructions for a large range of P0. Compared to
standard LMLSM, SQPM and IPM, HM produces better solution accuracy for not too
big P0. In conclusion, homotopy method explored in this paper has better behaviour in
solution accuracy than other three standard methods, and in computational time than
SQPM and IPM.

Note that for initial guess P0 with big magnitude, the results in HM look also not good.
we may increase the partition parameterm and outer iteration parameter n to improve the
solution accuracy. For instance, for P0 = 10, 000, when increasing m = 200 to m = 500,
and n = 10 to n = 30, the L2-norm relative error decreases from 7.4301 to 7.5078e−1.
However, again, for the conciseness of the paper, we omit these results here.
Example 3: Different from Examples 1 and 2, in our last example, a source with multiple
disconnected supports is considered. Moreover, for verifying the feasibility of our method,
we set the true source being of different magnitudes in different supports. Specifically, let
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Figure 3. A sketch of Delaunay elements.

Table 13. The dependence of the accuracy in solutions on parameters τ ,m, n.

τ L2Err m L2Err n L2Err

1 5.1553e−1 200 1.3709e−1 1 1.1602
1/21 4.9439e−1 400 1.0248e−1 5 1.4851e−1
1/22 1.3214e−1 600 7.7854e−2 10 1.1082e−1
1/23 2.2914e−2 800 5.9211e−2 20 6.6953e−2
1/24 4.3358e−2 1000 4.5091e−2 30 4.0965e−2
1/25 4.8881e−2 1200 3.4761e−2 40 2.6991e−2
1/26 5.1049e−2 1400 2.7857e−2 50 2.2914e−2
1/27 5.1904e−2 1600 2.4088e−2 60 2.4661e−2
1/28 5.2301e−2 1800 2.2914e−2 70 2.8015e−2
1/29 5.2488e−2 2000 2.3484e−2 80 3.1213e−2
1/210 5.2571e−2 2200 2.4963e−2 90 3.3837e−2
1/211 NaN 2400 2.6784e−2 100 3.5883e−2

the true source p∗ = 0.1+ x + y when (x, y) ∈ �1 and p∗ = 10− x + y when (x, y) ∈ �2,
where �1 and �2 are circles located at (0.55, 0.45) and ( − 0.55, 0.45), respectively, both
with radius 0.1. The other assumptions about �, the diffusion and absorption parameters
D andμa, the Neumann data g1 on� are the same as Example 1.We show in Figure 3 for a
sketch of a computational mesh. Again, the Dirichlet data gδ

2 is computed on a rather small
meshsize h (h = 0.02166 with 57,769 nodes and 114,944 elements in our experiments),
polluted by a noise with level δ.

Using Algorithm 3.5, the approximate source function ph is recovered on a mesh with
h = 0.1268, for different parameters δ, ε, τ ,m and n. For fixed δ = 0, ε = 10−5, the effects
of τ , m and n on solution accuracy and time cost are shown in Tables 13 and 14. Like
Example 1, we set P0 = 100, which is again far from the true solution p∗. The relative
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416 R. F. GONG ET AL.

Table 14. The corresponding computational time (s).

τ Time m Time n Time

1 195.80 200 24.63 1 7.72
1/21 192.59 400 46.86 5 22.92
1/22 193.33 600 67.42 10 44.41
1/23 192.66 800 88.84 20 83.63
1/24 193.13 1000 110.61 30 120.80
1/25 192.00 1200 131.39 40 159.73
1/26 216.89 1400 153.47 50 200.97
1/27 190.69 1600 175.03 60 243.52
1/28 191.02 1800 196.47 70 281.14
1/29 193.02 2000 217.55 80 326.77
1/210 190.52 2200 238.31 90 360.31
1/211 - 2400 270.47 100 399.98

Table 15. The dependence of solution accuracy on δ.

δ HM LMLS SQPM IPM

0 2.2914e−2 3.2616e−2 2.1415e−1 4.0153e−1
0.1% 4.0387e−2 6.6006e−2 2.4492e−1 2.6656e−1
0.5% 6.9475e−2 5.1734e−2 2.4077e−1 3.2944e−1
1% 8.0509e−2 1.4799e−1 3.0787e−1 3.7943e−1
5% 1.1496e−1 9.7264e−2 3.3048e−1 5.0110e−1

Table 16. The corresponding computational time (s).

δ HM LMLS SQPM IPM

0 200.97 2.19 69.56 78.08
0.1% 200.50 2.30 47.95 79.09
0.5% 201.52 2.28 92.77 79.52
1% 197.53 2.14 83.67 83.08
5% 194.36 2.41 98.50 73.09

L2-norm error L2Err in approximate solutions for different values of τ are given in the
first two columns (fix m = 1800, n = 50); those for different values of m are listed in the
third and forth columns (fix τ = 1/8, n = 50); those for different values of n are listed in
the last two columns (fix τ = 1/8, m = 1800). In Table 13, ‘NaN’ means matrix ∂Hτ

∂P in
(3.18) is singular and the condition number of it is rather big. The conclusions about the
dependence of the solution accuracy and the computational time on parameters τ ,m and
n in Example 1 hold for the multiple sources considered here. Using data in Table 14 and
applying least square fitting, the explicit formula of the computational time with respect
to τ ,m and n are approximated as follows:

Time(τ ,m, n) ≈ 0.1089m + 3.9814n − 200.4765.

Set P0 = 100 and h = 0.1268, four methods are implemented for δ = 0, 0.1%, 0.5%,
1%, 5% and the results are shown in Tables 15 and 16. In HM, τ = 1/8, m = 1800 and
n = 50, and the approximate optimal regularization parameters corresponding to five
different δ are ε = 10−5, 10−5, 10−4, 10−4, 10−4. In LMLSM, SQPM and PDIPM, The
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Table 17. Dependence of solution accuracy on P0.

P0 HM LMLSM SQPM IPM

0 4.2253e−2 3.4793e−2 2.0635e−1 1.6068e−1
0.01 4.2245e−2 3.4759e−2 2.0683e−1 2.3098e−1
0.1 4.2177e−2 3.4560e−2 2.0566e−1 1.7362e−1
1 4.1504e−2 3.4621e−2 1.8447e−1 1.6107e−1
10 3.5152e−2 3.2616e−2 1.5296e−1 1.0910e−1
100 2.2914e−2 3.2614e−2 2.1415e−1 4.0153e−1
1000 5.7678e−2 3.4853e−2 4.0311e−1 6.9583e−1
10,000 5.7509e−2 3.9699e−2 4.9351e−1 15.7269

Table 18. The corresponding computational time (s).

P0 HM LMLSM SQPM IPM

0 228.23 3.27 57.47 78.33
0.01 221.80 3.28 62.52 74.55
0.1 222.16 3.23 36.88 80.56
1 220.66 2.20 55.72 67.56
10 192.70 2.17 56.34 80.84
100 213.66 2.23 69.56 78.08
1000 214.14 2.36 166.11 75.45
10,000 213.09 2.41 170.56 78.61

approximate optimal regularization parameters corresponding to different δ are ε = 10−6,
10−4, 10−4, 10−4, 10−4, ε = 10−2, 10−5, 10−8, 10−4, 10−7 and ε = 10−8, 10−8, 10−2, 10−5,
10−2, respectively. Again, Table 15 shows that all four methods are stable and can give
satisfactory reconstructions. In comparison, homotopy method explored in this paper has
better solution accuracy than other threemethods formost of δ and Levenberg–Marquardt
based least squaremethod is faster thanother threemethods,whileHMis faster than SQPM
and IPM.

Finally, for the multiple sources problem, we also consider the dependence of the
approximate solutions one initial guess P0. Specifically, for fixed h = 0.1268, δ = 0,
τ = 1/8,m = 1800 and n = 50, set P0 = 0, 0.01, 0.1, 1, 10, 100, 1000, 10,000, respectively,
and repeat Algorithm 3.5. Corresponding to each P0, ε = 10−10, 10−10, 10−10, 10−10,
10−15, 10−5, 10−4, 10−4. The relative error L2Err and time cost are reported in the second
columns of Tables 17 and 18. The numerical results obtained with LMLSM, SQPM and
IPM are also shown in Tables 17 and 18. In LMLSM, ε = 10−6 for all P0 while the optimal
regularizationparameters in SQPMand IPMcorresponding to eightP0 are ε = 10−2, 10−2,
10−4, 10−3, 10−2, 10−2, 10−4, 10−1 and ε = 10−8, 10−9, 10−12, 10−10, 10−8, 10−8, 10−2,
10−2, respectively. Again, we see from Table 17 that all three methods give satisfactory
reconstructions for a large range of P0. Table 17 shows both HM and LMLSM have good
accuracy, and perform better than standard SQPM and IPM for almost all P0. In this
example, the computational time in HM is more than other three methods. This is because
the outer iteration number n = 50 is relatively big.

5. Conclusion

BLT is an under-determined inverse source problem and seriously ill-posed. By applying
the Tikhonov regularization, the BLT problem is reduced to an optimization problem,
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418 R. F. GONG ET AL.

which is further solved with a homotopy method. The main aim of this paper is to
explore a method which can provide a reasonable approximate source for a bad initial
guess. As shown by theoretical analysis and numerical examples, the homotopy-based
method proposed here for the BLT problem is stable and is convergent for a large range
of initial guess. Moreover, our numerical experiments above indicate that, compared
with standard sequential quadratic programming method and primal-dual interior point
method, the CCBM-based homotopy iterative method converges faster and has better
solution accuracy.
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Appendix 1. The forms of matrix M and vector N
Let n be the number of nodes of the triangulation Th and ϕi(x) ∈ Vh be the nodal basis functions
of Vh associated with grid nodes xi , 1 ≤ i ≤ n. Then finite element solutions, denoted by uh,wh, of
(2.1) and (2.4) have the forms as follows:

uh =
n∑

i=1

uiϕi , wh =
n∑

i=1

wiϕi.

Denote by ui1, ui2 the real and imaginary parts of ui, wi1,wi2 the real and imaginary parts of
wi , 1 ≤ i ≤ n, and set U1 = (u11, u21, . . . , un1)t , U2 = (u12, u22, . . . , un2)t , U = (UT

1 ,U
T
2 )t ,

W1 = (w11,w21, . . . ,wn1)
t ,W2 = (w12,w22, . . . ,wn2)

t ,W = (WT
1 ,W

T
2 )t . Moreover, define

A = (aij)n×n, aij = ∫
�

(D∇ϕi · ∇ϕj + μaϕi ϕj) dx,

B = (bij)n×n, bij = ∫
�

ϕi ϕj dx,

C = (cij)n×n, ckl = ∫
�

ϕi ϕj ds,
R = (rik)n×n0 , rik = ∫

Tk
ϕi dx,

B̃ = (b̃ki)n0×n, b̃ki =
{
1/3, xi ∈ Tk ,
0, otherwise,

b1 = (b1,i)n×1, b1,i = ∫
�
gδ
1ϕi ds

b2 = (b2,i)n×1, b2,i = ∫
�
gδ
2ϕi ds.

and set

L =
[A −C
C A

]
, K1 =

[R
0n×n0

]
, K2 =

[B
0n×n

]
, b = [bt1, bt2]t .

Then the dicretization f of f , from R
n0 to R

n0 , has the form

f(P) = B̃W2 + εP (A1)

withW2 satisfying

LU = K1 P + b, (A2)
LW = K2 U2. (A3)
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(A2) and (A3) are the reduced systems of algebraic equations obtained from the finite element
dicretization of (2.1) and (2.4). Substitute them into (A1) to give formally

f(P) = [
B̃(A + CA−1C)−1CA−1B(A + CA−1C)−1CA−1R + εD0

]
P

+ B̃(A + CA−1C)−1CA−1B(A + CA−1C)−1(CA−1b1 − b2)

� M P + N ,

where D0 is a n0 × n0 diagonal matrix with D0,kk = |Tk|, the measure of element Tk , 1 ≤ k ≤ n0.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

w
a 

L
ib

ra
ri

es
] 

at
 0

6:
38

 1
9 

D
ec

em
be

r 
20

17
 


	1. Introduction
	2. Tikhonov regularization based on the CCBM
	3. A homotopy continuity method for pδε
	3.1. An equivalent nonlinear equation
	3.2. Discretization with the finite element method
	3.3. Smoothness
	3.4. Homotopy continuity methods

	4. Numerical examples
	5. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	References
	Appendix 1. The forms of matrix M and vector N



