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ABSTRACT
We recently proposed in [Cheng, XL et al. A novel coupled complex
boundary method for inverse source problems Inverse Problem 2014 30
055002] a coupled complex boundary method (CCBM) for inverse source
problems. In this paper, we apply the CCBM to inverse conductivity
problems (ICPs) with one measurement. In the ICP, the diffusion coefficient
q is to be determined from both Dirichlet and Neumann boundary data.
With the CCBM, q is sought such that the imaginary part of the solution of
a forward Robin boundary value problem vanishes in the problem domain.
Thisbrings in advantageson robustness andcomputation in reconstruction.
Based on the complex forward problem, the Tikhonov regularization is
used for a stable reconstruction. Some theoretical analysis is given on the
optimizationmodels. Several numerical examples are provided to show the
feasibility and usefulness of the CCBM for the ICP. It is illustrated that as long
as all the subdomains share someportion of the boundary, our CCBM-based
Tikhonov regularization method can reconstruct the diffusion parameters
stably and effectively.

ARTICLE HISTORY
Received 18 June 2015
Accepted 9 March 2016

COMMUNICATED BY
J. Zou

KEYWORDS
Coupled complex boundary
method; inverse conductivity
problems; Tikhonov
regularization; layer
potential methods

AMS SUBJECT
CLASSIFICATIONS
65N21; 65F22; 47G40

1. Introduction

Parameter identification in elliptic boundary value problems arises in many applications such as
groundwatermanagement, crack identifications,modeling of carwind-shields, image processing, and
so on [1–5]. Extensive literature exists for theoretical and numerical investigation of the parameter
identification problem. Let � ⊂ R

d be an open bounded set with a boundary � := ∂�. Then a
commonly studied parameter identification problem is to determine the diffusion parameter q in the
inverse conductivity problem (ICP),[6,7] also known as electrical impedance tomography [8,9] in
medical imaging:
Problem 1.1: Given f in�, g2, and g1 on �, find q in� satisfying equation

−∇ · (q∇u) = f in�, (1)

the Dirichlet boundary condition
u = g2 on �, (2)

and the Neumann boundary condition

q
∂u
∂ν

= g1 on �. (3)

CONTACT Rongfang Gong grf_math@nuaa.edu.cn
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2 R. GONG ET AL.

It is well known that reconstruction of a spatially dependent parameter in partial differential equa-
tions is nonlinear and ill-posed.[10,11] In general, there are infinitely many solutions. Nevertheless,
there are many results about the unique identifiability of solutions given the complete knowledge of
the Dirichlet to Neumann mapping Qq : g2 → g1, see [12–16] etc. and references therein. In [12], it
is proved that a smooth q ∈ C∞(�) can be uniquely determined given the complete knowledge of
themappingQq for d ≥ 3. For d = 2, this uniqueness is shown to hold when q ∈ W2,p(�)with p > 1
[14] or when q ∈ L∞(�) [16]. Moreover, certain a priori information allows conditional stability,
see e.g. [17–19].

Instead of discussing the problem of determining q from the mapping Qq, in this work, we
consider the problem of computing q from a single pair of g1 and g2. With a single-boundary
current measurement, the identifiability and uniqueness are not guaranteed for a general spatially
dependent q. One frequently used technique is to assume some a priori information about the
unknown parameter q, including its form, value on the boundary and so on. For instance, the unique
identifiability is extensively discussed for piecewise constant parameters of the form [20,21].

q = 1 + kχD,

where χD is the characteristic function of an unknown subdomain D ⊂ � and k is an unknown
constant. We refer to [22–27] for more results on the unique identifiability for Problem 1.1 with a
single measurement.

In this paper, we consider numerically computing the diffusion coefficient q ∈ B := L∞(�)
in Problem 1.1 with the Tikhonov regularization. Using the Tikhonov technique, one associates
either the Dirichlet boundary condition or the Neumann boundary condition with the differential
Equation (1) to form a forward BVP, and uses the remaining boundary condition for data fitting.
However, applying the Tikhonov framework directly here may cause some numerical problems. For
example, if we take (1) and (3) to form the forward BVP, we will need an additional condition, such
as

∫
�
u dx = 0, to guarantee the solution uniqueness. If we take (1) and (2) to form the forward

BVP, there is a complication due to the need of computing certain norm of q ∂u
∂ν

− g1 in the Tikhonov
objective function with the regular conforming finite element methods, because for the numerical
solution uh, uh|� is a piecewise polynomial and q ∂u

h

∂ν
has jumps at boundary nodes. In [28], a coupled

complex boundary method (CCBM) was proposed to solve an inverse source problem, where both
Dirichlet and Neumann boundary conditions are used simultaneously in the forward BVP and thus
the problems mentioned above are avoided. In this paper, the CCBM is applied to solve Problem 1.1.
The idea of the CCMB is to couple the Neumann data and the Dirichlet data in a Robin boundary
condition in such a way that the Neumann data and the Dirichlet data are the real part and imaginary
part of the Robin boundary condition, respectively. As a result, the data needed to fit are transferred
from the boundary � to the domain�.

The paper is organized as follows. TheCCBM for Problem 1.1 is proposed and studied in Section 2.
An output least-square frameworkwith the Tikhonov regularization is introduced in Section 3, where
some theoretical results are provided about the new regularization framework. Several numerical
examples are presented in Section 4 to demonstrate the usefulness of the proposed method.

2. A reformulation through a CCBM

We first introduce notations for function spaces and sets. Assume the boundary � is Lipschitz
continuous. Let V := H1(�) be the standard real Sobolev space with the inner product (·, ·)1,� and
the norm ‖ · ‖1,�. Denote by V� := H1/2(�) the trace space of V . LetQ := L2(�) andQ� := L2(�).
Denoted by V, V� , Q, and Q� the complex versions of V , V� , Q, and Q� , respectively. Define the
inner product ((·, ·))1,� and the norm ||| · |||1,� in V as follows: ∀ u, v ∈ V, ((u, v))1,� = (u, v̄)1,�,
|||v|||21,� = ((v, v))1,�. Set A = {q ∈ B | qmin ≤ q ≤ qmax} with qmin, qmax ∈ L∞(�) and
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APPLICABLE ANALYSIS 3

qmax > qmin > 0, and A0 the interior of A. Moreover, assume g1, g2 ∈ H−1/2(�), the dual of V� , and
denote by c a constant with possibly a different value at a different place.

Consider the complex boundary value problem
{−∇ · (q∇u) = f in�,
q ∂u
∂ν

+ i u = g := g1 + i g2 on �,
(4)

where i = √−1 is the imaginary unit. We will assume f ∈ Q. For a solution of (4), u = u1 + i u2, the
real-valued functions u1, u2 satisfy {−∇ · (q∇u1) = f in�,

q ∂u1
∂ν

− u2 = g1 on �,
(5)

and {−∇ · (q∇u2) = 0 in�,

q ∂u2
∂ν

+ u1 = g2 on �.
(6)

If u2 ≡ 0 in �, then u2 ≡ 0, ∂u2
∂n ≡ 0 on �. From (5) and (6), (u1, q) satisfy the original problem

(1)–(3). Conversely, if (u, q) satisfy (1)–(3), then obviously, they satisfy (4).
The above consideration implies that Problem 1.1 is equivalent to the following problem.

Problem 2.1: Find q ∈ A such that
u2 = 0 in�,

where u2 is the imaging part of the solution u = u1 + i u2 of the BVP{−∇ · (q∇u) = f in�

q ∂u
∂ν

+ i u = g on �.
(7)

Before discussing Problem 2.1, we consider the well-posedness of the BVP (7) for a given q ∈ A.
For any u, v ∈ V, define

a(q; u, v) =
∫
�

q∇u · ∇ v̄dx + i
∫
�

u v̄ds, m(v) =
∫
�

f v̄dx +
∫
�

g v̄ds.

Then the weak form of the BVP (7) is:

Find u ∈ V such that a(q; u, v) = m(v) ∀ v ∈ V. (8)

It is not difficult to verify that for any q ∈ A and u, v ∈ V, we have

Re a(q; v, v) ≥ α||v|||21,�, (9)
|a(q; u, v)| ≤ β |||u|||1,�|||v|||1,�, (10)

|m(v)| ≤ c γ |||v|||1,�. (11)

where γ = ‖f ‖0,� + ‖g1‖−1/2,� + ‖g2‖−1/2,� , α, and β are constants which are independent of q, u
and v but may depend on �, qmin and qmax. Then for given q ∈ A, f ∈ Q, g1, g2 ∈ H−1/2(�), by
the complex version of Lax–Milgram Lemma,[29, p.368–369] Problem (8) admits a unique solution
u ∈ V which depends continuously on all data. Moreover,

|||u|||1,� ≤ c γ
α
. (12)
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4 R. GONG ET AL.

Since for each q ∈ A, there is a unique solution u ∈ V, we define a mapping F from A to V:
∀ q ∈ A, F(q) = u, the solution of the problem (8). Regarding the mapping F, it is easy to verify that

|||F(q1)− F(q2)|||1,� ≤ c γ
α2

‖q1 − q2‖∞,� ∀ q1, q2 ∈ A. (13)

Furthermore, we have the following differentiation of the operator F.
Proposition 2.2: For each q ∈ A0, F is differentiable at q, and δu = F ′(q) δq is the unique solution
to the variational equation

a(q; δu, v) = −(δq∇u,∇ v̄)0,� ∀ v ∈ V (14)

with u = F(q). Moreover,
‖F ′(q)‖B→V ≤ c γ

α2
.

Proof: For any q ∈ A0 and δq ∈ B with q + δq ∈ A, F(q + δq) ∈ V is well defined. Set δw =
F(q + δq)− F(q). Then by the definition of F, we have

a(q + δq; δw, v) = −(δq∇u,∇ v̄)0,� ∀ v ∈ V. (15)

By applying the complex version of Lax–Milgram Lemma again, we know that the variational
problem (14) has a unique solution δu ∈ V.

Combine (14) and (15) to get

a(q; δw − δu, v) = −(δq∇δw,∇ v̄)0,� ∀ v ∈ V.

Take v = δw − δu, and use ellipticity (9) of a(q; ·, ·), Cauchy–Schwarz inequality to get

|||δw − δu|||1,� ≤ 1
α

‖δq‖∞,�|||δw|||1,�

Applying (13), we obtain
|||δw − δu|||1,� ≤ c γ

α3
‖δq‖2∞,�,

which gives

|||F(q + δq)− F(q)− δu|||1,�
‖δq‖∞,�

= |||δw − δu|||1,�
‖δq‖∞,�

≤ c γ
α3

‖δq‖∞,� = O(‖δq‖∞,�). (16)

Thus, F is differentiable at q and F ′(q)δq = δu.
Set v = δu in (14), and use (9) as well as Cauchy–Schwarz inequality again to obtain

α|||δu|||21,� ≤ ‖δq‖∞,�|||u|||0,�|||δu|||0,�.

Apply (12) to give
|||δu|||1,� ≤ c γ

α2
‖δq‖∞,�, (17)

which shows that F ′(q) is uniformly bounded. �
For q ∈ Ab := A\A0, denote by B̃ := B̃(q) the largest subset ofB such that∀ δq ∈ B̃ and sufficiently

small t > 0, q + t δq ∈ A. Then the map F is also differentiable at each q ∈ Ab, and ‖F ′(q)‖B̃→V is
bounded.
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APPLICABLE ANALYSIS 5

We proceed to compute the second derivative of F. Let δ2w = F ′(q + δq1)δq2 − F ′(q)δq2. By
definition (14), we have

a(q + δq1; F ′(q + δq1)δq2, v) = −(δq2 ∇F(q + δq1),∇ v̄)0,� ∀ v ∈ V

and

a(q + δq1; F ′(q)δq2, v) = a(q; F ′(q)δq2, v)+ (δq1 ∇(F ′(q)δq2),∇ v̄)0,�
= −(δq2 ∇F(q),∇ v̄)0,� + (δq1 ∇(F ′(q)δq2),∇ v̄)0,�.

Then

a(q + δq1; δ2w, v) = −(δq2 ∇(F(q + δq1)− F(q)− F ′(q)δq1),∇ v̄)0,�
− (δq1 ∇(F ′(q)δq2),∇ v̄)0,�
− (δq2 ∇(F ′(q)δq1),∇ v̄)0,�, (18)

from which we have the following result.
Proposition 2.3: For each q ∈ A0, F is twice-differentiable at q, and δ2u = F ′′(q) (δq1, δq2) is the
unique solution to the variational equation

a(q; δ2u, v) = −(δq1 ∇(F ′(q)δq2),∇ v̄)0,�
− (δq2 ∇(F ′(q)δq1),∇ v̄)0,� ∀ v ∈ V, (19)

with u = F(q). Moreover,

‖F ′′(q)‖B×B→V ≤ c γ
α3
. (20)

Proof: The variational problem (19) is well posed and thus δ2u is well defined. We combine (18)
and (19) to get

a(q; δ2w − δ2u, v) = −(δq1 ∇δ2w,∇ v̄)0,�
− (δq2 ∇(F(q + δq1)− F(q)− F ′(q)δq1),∇ v̄)0,�.

Choosing v = δ2w − δ2u and using Cauchy–Schwarz inequality, we have

α|||δ2w − δ2u|||1,� ≤ ‖δq1‖∞,�|||δ2w|||1,�
+ ‖δq2‖∞,�|||F(q + δq1)− F(q)− F ′(q)δq1|||1,�.

Similarly, choose v = δ2w in (18) and use Cauchy–Schwarz inequality again to give

α|||δ2w|||1,� ≤ ‖δq2‖∞,�|||F(q + δq1)− F(q)− F ′(q)δq1|||1,�
+ ‖δq1‖∞,�|||F ′(q)δq2|||1,� + ‖δq2‖∞,�|||F ′(q)δq1|||1,�.

Combining the two relations above and using estimates (16)–(17), we obtain

α|||δ2w − δ2u|||1,� ≤ c γ
α3
(3 + 1

α
‖δq1‖∞,�)‖δq1‖2∞,�‖δq2‖∞,�

≤ c γ
α3

‖δq1‖2∞,�‖δq2‖∞,�
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6 R. GONG ET AL.

for ‖δq1‖∞,� small enough. Therefore,

|||δ2w − δ2u|||1,� ≤ c γ
α4

‖δq1‖2∞,�‖δq2‖∞,�,

which shows that F is twice-differentiable at q and δ2u = F ′′(q) (δq1, δq2).
Choosing v = δ2u in (19) and using (9), Cauchy–Schwarz inequality as well as (17), we arrive at

|||δ2u|||1,� ≤ c γ
α3

‖δq1‖∞,�‖δq2‖∞,�,

which gives (20).

3. Tikhonov regularization

Based on the complex model, Problem 2.1, we give a Tikhonov regularization framework for the ICP.
Assume available values of the data g1 and g2 contain noise:

gδi = gi + noise, i = 1, 2.

The natural space for gδi and gi is Q� . We assume

‖gδi − gi‖0,� ≤ δ, i = 1, 2,

with noise level δ. Then the forward complex variational problem (8) is modified to

Find uδ ∈ V such that a(q; uδ , v) = mδ(v) ∀ v ∈ V (21)

with
mδ(v) =

∫
�

f v̄dx +
∫
�

gδ v̄ds and gδ := gδ1 + i gδ2 .

The formmδ( · ) is continuous and for each q ∈ A, the problem (21) has a unique solution uδ . Similar
to the mapping F, we define Fδ : A → V through Fδ(q) = uδ for q ∈ A. Then Fδ has properties
similar to those of the map F. Moreover, it is easy to verify that for each q ∈ A,

|||Fδ(q)− F(q)|||1,� ≤ c δ. (22)

In the following,we compute a stable approximation to q† which is an exact solution of Problem1.1
or 2.1. For any q ∈ A, denoted by uδ = Fδ(q) ∈ V = uδ1(q) + i uδ2(q) the unique solution of the
variational problem (21). We define a Tikhonov regularization objective functional

Jδε (q) = 1
2
‖uδ2(q)‖20,� + ε

2
‖q‖20,�, ε > 0,

and introduce the following optimization problem:
Problem 3.1: Find qδε ∈ Qad , an admissible subset of A, such that

Jδε (q
δ
ε) = inf

q∈Qad
Jδε (q).

In the following, we assume Qad is a finite dimensional closed convex subset of A. For example,
Qad can be the subset of A of piecewise constant functions or piecewise polynomials of some degree,
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APPLICABLE ANALYSIS 7

corresponding to certain partition of �. Note that in practice, the coefficient function q is often
reconstructed as a piecewise constant.

We first address the solution existence of Problem 3.1.
Proposition 3.2: Problem 3.1 has a solution.
Proof: Let m be the infimum value in Problem 3.1 and {qn}n≥1 ⊂ Qad be a mininizing sequence.
Denote un = Fδ(qn). From the estimate (12), {un}n≥1 is bounded uniformly in V. Then there is a
subsequence of the sequence {n}, still denoted by {n}, and some elements q∞ ∈ Qad , u∞ ∈ V such
that as n → ∞,

qn → q∞ in B, un⇀u∞ in V
un → u∞ inQ, un → u∞ inQ�.

With arguments similar to those in the proofs of [30, Theorem 3.2] or those in the proofs of [31,
Lemma 2.1], we conclude that

Jδε (q∞) ≤ m,

which shows that q∞ ∈ Qad is a solution of Problem 3.1. The proof is completed. �
It is well known that the solution uniqueness of Problem 3.1 is not guaranteed since the regularized

functional is in general non-convex.
Next we present a continuous dependence result.

Proposition 3.3: For a convergent sequence of the boundary data, the solution sequence of
Problem 3.1 contains a subsequence converging to a solution of Problem 3.1with the true measurement.
Proof: Let {gn}n≥1 ⊂ Q� with gn → g∞ as n → ∞. For each n, denote by qn a solution of
Problem 3.1, with gδ replaced by gn. Set un = Fn(qn), where the map Fn : A → V is defined as Fδ ,
with gδ replaced by gn. Then with arguments similar to those in the proof of Proposition 3.2 and
those in the proof [30, Theorem 3.3], we conclude that there is a subsequence of {qn}n≥1, still denoted
by {qn}n≥1, converging to q∞ ∈ Qad , and

J∞ε (q∞) ≤ J∞ε (q̃) ∀ q̃ ∈ A,

where J∞ε (q) is defined similar to Jδε (q), with gδ replaced by g∞. Therefore, q∞ ∈ A is a solution of
Problem 3.1 corresponding to data g∞, and the proof is completed. �

Next we discuss a relation between Problem 2.1 and its regularization, Problem 3.1. Recall that F
is the forward operator corresponding to the exact data g . We introduce the following assumption
on the attainability of the measurement data.

(A1) There is q† ∈ A such that u†2 = 0 in�, where u†2 ∈ V is the imaginary part of u† = F(q†) ∈ V.
Proposition 3.4: For a sequence of noise levels {δn}n≥1 which converges to 0 in R as n → ∞, let
εn = ε(δn) be chosen with εn → 0 as n → ∞, and qδnεn ∈ Qad be a solution of Problem 3.1 with gδ and
ε replaced by gδn and εn, respectively. Then under the assumption (A1), the solution sequence {qδnεn}n≥1
has a subsequence converging to a solution of Problem 2.1 for the exact data g.
Proof: We use the abbreviations qn = qδnεn and gn = gδn . Let Fn : A → V be the forward mapping
defined as Fδ for data gn, and set un = Fn(qn). Then {un}n≥1 is bounded uniformly. Arguments
similar to those used in the proof of Proposition 3.2 show that there is a subsequence {n′} of {n},
functions q∞ ∈ Qad , u∞ = F(q∞) such that

qn′ → q∞ in B, un′
⇀u∞ in V,

un′ → u∞ inQ, un′ → u∞ inQ�.
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8 R. GONG ET AL.

For the imaginary part u∞
2 of u∞, we have

1
2
‖u∞

2 ‖20,� ≤ lim inf
n′→∞

Jδn′εn′ (q
n′
) ≤ lim inf

n′→∞
Jδn′εn′ (q

†) = lim inf
n′→∞

εn′

2
‖q†‖0,� = 0,

implying u∞
2 = 0 in�. Thus, q∞ is a solution of Problem 2.1 for the exact data g . �

The convergence speed of qδε to q† can be arbitrarily slow, as is shown in [32]. If q is searched in
a smoother set with inner product, {q ∈ V | qmin ≤ q ≤ qmax} for instance, a convergence rate

√
δ

can be expected under so-called source conditions about q† − q̄, where q̄ ∈ A is an a priori guess of
q†. We refer to [21,33,34] and references therein about convergence rate issues of inverse diffusion
parameters.

4. Numerical results

In this section, some numerical results are reported to show the feasibility and effectivity of the
proposed CCBM-based Tikhonov regularization method for the ICP.

With a problemdomain�, a source function f , a Neumann data g1, and a prescribed true diffusion
parameter q†, using the standard linear finite element method, we solve the forward BVP

−∇ · (q†∇u) = f in�, q†
∂u
∂ν

= g1 on �,
∫
�

u dx = 0 (23)

to get the measurement g2 = u|� . Specifically, applying the linear finite element method to weak
form ∫

�

q†∇u · ∇vdx =
∫
�

f vdx +
∫
�

g1 v ds ∀ v ∈ V ,

we obtain a reduced algebraic system
K u = b (24)

We need to impose the condition
∫
�
u dx = 0 for a unique solution u. Note that the finite element

discretization of
∫
�
u dx = 0 is

eM u = 0,

where M is the symmetrical mass matrix from the discretization of
∫
�
φ ϕ dx,φ,ϕ ∈ V and e is a

row vector with all components being one.
With the QR-decomposition of K , (24) reduces to

R u = QTb, (25)

whereQ is an orthogonal matrix,QT is the transpose ofQ, and R is an upper triangular matrix. Then
all elements in the last row of R are zeros. We replace the last row of R by the row vector eM and
replace the last element of QTb by zero to get a well-conditioned system

R̃ u = b̃. (26)

Solve (26) to obtain the forward solution u; then the Dirichlet data g2 is extracted. Uniformly
distributed noises with level δ are added to both g1 and g2 to get gδ1 and gδ2 :

gδk (x) = [1 + δ · (2 rand(x)− 1)] gk(x), x ∈ �, k = 1, 2,

where rand(x) returns a pseudo-random value drawn from a uniform distribution on [0, 1].
Given �, f , gδ1 , g

δ
2 , and Qad , we solve Problem 3.1 to obtain approximations of q†. Due to

Proposition 2.3, Jδε is twice differentiable, a sequential quadratic programming (SQP) method (see
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APPLICABLE ANALYSIS 9

Table 1. Results for δ = 0 in Example 1.

ε (q1, q2) L2Err ‖uδε,2‖0,� Iternum

1 (0.1404, 0.2256) 8.4679e−1 7.3179e−1 5
10−1 (0.4607, 0.7816) 4.7243e−1 3.4600e−1 6
10−2 (0.7611, 1.3130) 1.1984e−1 7.0491e−2 10
10−3 (0.6664, 1.4968) 3.0969e−2 9.0364e−3 6
10−4 (0.6722, 1.5171) 3.0783e−2 1.0111e−3 6
10−5 (0.6728, 1.5192) 3.1084e−2 1.8717e−4 6
10−6 (0.6729, 1.5194) 3.1117e−2 1.0480e−4 6
10−7 (0.6729, 1.5195) 3.1121e−2 9.6583e−5 6
10−8 (0.6729, 1.5195) 3.1121e−2 9.5762e−5 6
10−9 (0.6729, 1.5195) 3.1121e−2 9.5680e−5 6
10−10 (0.6729, 1.5195) 3.1121e−2 9.5672e−5 6

Table 2. Results for δ = 5% in Example 1.

ε (q1, q2) L2Err ‖uδε,2‖0,� Iternum

1 (0.1399, 0.2246) 8.4749e−1 7.3035e−1 5
10−1 (0.4598, 0.7798) 4.7361e−1 3.4602e−1 6
10−2 (0.7607, 1.3123) 1.2026e−1 7.0685e−2 10
10−3 (0.6669, 1.4967) 3.0785e−2 9.2093e−3 6
10−4 (0.6728, 1.5172) 3.0610e−2 1.8960e−3 6
10−5 (0.6734, 1.5193) 3.0918e−2 1.6119e−3 6
10−6 (0.6735, 1.5195) 3.0952e−2 1.6042e−3 6
10−7 (0.6735, 1.5196) 3.0955e−2 1.6037e−3 6
10−8 (0.6735, 1.5196) 3.0956e−2 1.6037e−3 6
10−9 (0.6735, 1.5196) 3.0956e−2 1.6037e−3 6
10−10 (0.6735, 1.5196) 3.0956e−2 1.6037e−3 6

[35] and references therein for instance) is used to solve the discrete version of the optimization
problem. At the continuous level, applying the SQP method to Problem 3.1 reads:

Step 1 Give an initial guess q0 ∈ A, a tolerance error ε > 0, and set k = 0.
Step 2 Solve a quadratic programming subproblem

dk = arg min
(d+qk)∈A

Jδε (q
k)+ Jδ

′
ε (q

k) d + Jδ
′′
ε (q

k) d2. (27)

Step 3 Solve a linear search problem

αk = arg min
(dk+α qk)∈A

ϕ(α) := Jδε (d
k + α qk). (28)

Step 4 Set qk+1 = qk +αk dk. If ‖qk+1 −qk‖0,� ≤ ε, stop; otherwise, set k = k+1 and go to Step 2.
In the following experiments, we set ε = 10−6.

Example 1: In this example, let � = {(x, y) ∈ R
2 | x2 + y2 < 1}, f = 1 in � and g1 = −0.5 on �.

Assume q† needed to be recovered is piecewise constant in�, i.e.

q† =
{
0.75 in�1 := {(x, y) ∈ � | x2 + y2 < 0.25},
1.5 on�2 := �/�1.
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10 R. GONG ET AL.

Table 3. Results for δ = 10% in Example 1.

ε (q1, q2) L2Err ‖uδε,2‖0,� Iternum

1 (0.1393, 0.2236) 8.4815e−1 7.2893e−1 5
10−1 (0.4589, 0.7781) 4.7478e−1 3.4604e−1 6
10−2 (0.7604, 1.3117) 1.2067e−1 7.0910e−2 10
10−3 (0.6674, 1.4968) 3.0608e−2 9.6468e−3 6
10−4 (0.6733, 1.5174) 3.0456e−2 3.3566e−3 6
10−5 (0.6739, 1.5195) 3.0773e−2 3.2034e−3 6
10−6 (0.6740, 1.5197) 3.0808e−2 3.1995e−3 6
10−7 (0.6740, 1.5197) 3.0811e−2 3.1992e−3 6
10−8 (0.6740, 1.5197) 3.0812e−2 3.1992e−3 6
10−9 (0.6740, 1.5197) 3.0812e−2 3.1992e−3 6
10−10 (0.6740, 1.5197) 3.0812e−2 3.1992e−3 6

We rewrite q† = 0.75χ�1 + 1.5χ�2 , where for a set K , χK is the characteristic function of K , i.e. its
value is 1 in K and 0 outside. Sixty-eight nodes on � are used to sample the data g2, obtained from
the numerical solution of (23) and is polluted by random noise.

For the inverse problem, assume the admissible set

Qad = {q = q1 χ�1 + q2 χ�2 | 0.1 q† ≤ q ≤ 10 q†}.

We then choose the initial guess q0 = 0.1 and apply the SQP method to solve Problem 3.1. The
results for different noise level δ and regularization parameter ε are given in Tables 1–3. Specifically,
Table 1 contains results for δ = 0, Table 2 for δ = 5%, and Table 3 for δ = 10%. To better assess the
accuracy of approximate solutions, we define the L2-norm relative error in an approximate solution
qδε :

L2Err := ‖qδε − q†‖0,�
‖q†‖0,� ,

and list its value in the third column of each table. Recall that in Problem 2.1, q is searched so that
the imaginary part of the solution of the BVP (7) vanishes in�. So we show in the fourth column of
each table the L2-norm of the imaginary parts uδε,2 of the solution uδε of (21), with q replaced by qδε .
In addition, the teration numbers denoted by ‘Iternum’ needed in SQPmethods are listed in the fifth
columns.

We can see fromTables 1–3 that piecewise constant diffusion parameters can be recovered well. In
comparison, the reconstruction of q is less accurate in�1 than in�2.We attribute this to the fact that
�1 does not interesect the boundary �, and therefore, neither the Dirichlet data nor the Neumann
data apply directly on the boundary of �1 (cf. the numerical results in the next two examples).
Tables 1–3 show that the reconstruction is stable and the regularized solutions are not sensitive to
the smallness of the regularization parameters, i.e. satisfactory solutions can be obtained for rather
small regularization parameters.

Example 2: In this example, let� = (− 1, 1)2, f (x, y) = x + y + 2, g1(x, y) = x + y − 1. Assume
the true q† = j in �j, 1 ≤ j ≤ 4, with �1 = [−1, 0)2, �2 = [0, 1] × [−1, 0), �3 = [−1, 0) × [0, 1]
and �4 = [0, 1]2. Then q† = χ�1 + 2χ�2 + 3χ�3 + 4χ�4 . Eighty nodes on � are used to sample
the data gδ2 . Assume the admissible set

Qad =
⎧⎨
⎩q =

4∑
j=1

qj χ�j | 0.1 q† ≤ q ≤ 10 q†

⎫⎬
⎭ .
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APPLICABLE ANALYSIS 11

Table 4. Results for δ = 0 in Example 2.

ε (q1, q2, q3, q4) L2Err ‖uδε,2‖0,� Iternum

1 (0.8777, 0.6152, 0.6033, 0.5091) 8.1369e−1 1.1429 10
10−1 (1.0558, 1.0611, 1.1103, 1.1494) 6.4760e−1 5.0219e−1 11
10−2 (1.0457, 1.4670, 1.6742, 2.1988) 4.1984e−1 1.9295e−1 14
10−3 (1.0214, 1.7635, 2.3791, 3.2099) 1.8852e−1 5.5051e−2 18
10−4 (1.0083, 1.9395, 2.8027, 3.8319) 4.8613e−2 1.0687e−2 20
10−5 (1.0074, 1.9594, 2.9152, 3.9834) 1.7476e−2 3.6707e−3 20
10−6 (1.0073, 1.9612, 2.9296, 4.0030) 1.4748e−2 3.2667e−3 20
10−7 (1.0073, 1.9614, 2.9310, 4.0050) 1.4517e−2 3.2402e−3 20
10−8 (1.0073, 1.9615, 2.9312, 4.0052) 1.4494e−2 3.2377e−3 20
10−9 (1.0073, 1.9615, 2.9312, 4.0052) 1.4492e−2 3.2374e−3 20
10−10 (1.0073, 1.9615, 2.9312, 4.0052) 1.4491e−2 3.2374e−3 20

Table 5. Results for δ = 5% in Example 2.

ε (q1, q2, q3, q4) L2Err ‖uδε,2‖0,� Iternum

1 (0.8773, 0.6147, 0.6045, 0.5092) 8.1360e-1 1.1433 9
10−1 (1.0548, 1.0583, 1.1138, 1.1499) 6.4731e−1 5.0287e−1 11
10−2 (1.0448, 1.4597, 1.6814, 2.2024) 4.1889e−1 1.9351e−1 14
10−3 (1.0207, 1.7531, 2.3881, 3.2220) 1.8629e−1 5.5291e−2 19
10−4 (1.0103, 1.9133, 2.8213, 3.8621) 4.4188e−2 1.0664e−2 20
10−5 (1.0090, 1.9397, 2.9251, 4.0242) 1.8183e−2 4.2824e−3 21
10−6 (1.0090, 1.9417, 2.9391, 4.0438) 1.7423e−2 4.1105e−3 21
10−7 (1.0089, 1.9419, 2.9405, 4.0458) 1.7403e−2 4.1054e−3 21
10−8 (1.0089, 1.9419, 2.9407, 4.0460) 1.7402e−2 4.1051e−3 21
10−9 (1.0089, 1.9419, 2.9407, 4.0460) 1.7402e−2 4.1050e−3 21
10−10 (1.0089, 1.9419, 2.9407, 4.0460) 1.7402e−2 4.1050e−3 21

Table 6. Results for δ = 10% in Example 2.

ε (q1, q2, q3, q4) L2Err ‖uδε,2‖0,� Iternum

1 (0.8770, 0.6141, 0.6057, 0.5092) 8.1352e−1 1.1437 10
10−1 (1.0538, 1.0555, 1.1174, 1.1505) 6.4702e−1 5.0356e−1 11
10−2 (1.0438, 1.4503, 1.6900, 2.2042) 4.1814e−1 1.9432e−1 15
10−3 (1.0211, 1.7361, 2.3962, 3.2368) 1.8413e−1 5.5642e−2 20
10−4 (1.0106, 1.9000, 2.8198, 3.8896) 4.2725e−2 1.1091e−2 21
10−5 (1.0080, 1.9323, 2.9131, 4.0290) 2.0844e−2 5.3996e−3 22
10−6 (1.0078, 1.9348, 2.9260, 4.0473) 2.0026e−2 5.0301e−3 22
10−7 (1.0078, 1.9350, 2.9273, 4.0493) 2.0002e−2 5.0009e−3 22
10−8 (1.0078, 1.9351, 2.9274, 4.0495) 2.0001e−2 4.9982e−3 22
10−9 (1.0078, 1.9351, 2.9274, 4.0495) 2.0000e−2 4.9978e−3 22
10−10 (1.0078, 1.9351, 2.9274, 4.0495) 2.0000e−2 4.9979e−3 22

Again we choose initial guess q0 = 0.1 and apply the SQP method to solve Problem 3.1. The
results for δ = 0, 5%, 10% and different ε are reported in Tables 4–6. The corresponding ‘L2Err’,
‖uδε,2‖0,� and ‘Iternum’ are shown in the 3rd–5th columns, respectively.

We can see fromTables 4–6 that the approximations are very well, and the reconstruction is stable.
Again, the regularized solution is not sensitive to the small regularization parameter.

Example 3: In the third example, we consider a 3D problem. Let� = {(x, y, z) ∈ R
3 | −1 < x, y <

1, 0 < z < 1}, f (x, y, z) = x + y + z, g1(x, y, z) = x + y + y − 5/8. Again, assume the true q† = j in
�j, 1 ≤ j ≤ 4, where
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12 R. GONG ET AL.

Table 7. Results for δ = 0 in Example 3.

ε (q1, q2, q3, q4) L2Err ‖uδε,2‖0,� Iternum

1 (0.4194, 0.5002, 0.5028, 0.4267) 8.4834e−1 1.4798 7
10−1 (0.9848, 1.2857, 1.3441, 1.4299) 5.7323e−1 6.2070e−1 9
10−2 (1.0444, 1.9055, 2.1679, 2.5055) 3.1287e−1 1.9974e−1 13
10−3 (0.9944, 2.0939, 2.8858, 3.3247) 1.2621e−1 4.7854e−2 18
10−4 (0.9778, 2.0719, 3.2265, 3.6564) 7.6374e−2 1.5564e−2 20
10−5 (0.9755, 2.0694, 3.2802, 3.7064) 7.5315e−2 1.5050e−2 20
10−6 (0.9753, 2.0691, 3.2860, 3.7117) 7.5345e−2 1.5119e−2 20
10−7 (0.9752, 2.0691, 3.2867, 3.7123) 7.5350e−2 1.5127e−2 20
10−8 (0.9752, 2.0691, 3.2867, 3.7123) 7.5350e−2 1.5128e−2 20
10−9 (0.9752, 2.0691, 3.2867, 3.7123) 7.5350e−2 1.5128e−2 20
10−10 (0.9752, 2.0691, 3.2867, 3.7123) 7.5350e−2 1.5128e−2 20

Table 8. Results for δ = 5% in Example 3.

ε (q1, q2, q3, q4) L2Err ‖uδε,2‖0,� Iternum

1 (0.4178, 0.4981, 0.5033, 0.4255) 8.4863e−1 1.4786 7
10−1 (0.9873, 1.2843, 1.3430, 1.4282) 5.7365e−1 6.1896e−1 9
10−2 (1.0494, 1.9049, 2.1646, 2.4959) 3.1474e−1 1.9758e−1 13
10−3 (0.9972, 2.0986, 2.8904, 3.2983) 1.3091e−1 4.4905e−2 18
10−4 (0.9816, 2.0721, 3.2170, 3.5947) 8.5024e−2 1.3592e−2 21
10−5 (0.9801, 2.0634, 3.2698, 3.6387) 8.3217e−2 1.2736e−2 21
10−6 (0.9800, 2.0630, 3.2740, 3.6420) 8.3185e−2 1.2759e−2 21
10−7 (0.9799, 2.0630, 3.2744, 3.6424) 8.3182e−2 1.2762e−2 21
10−8 (0.9799, 2.0630, 3.2744, 3.6424) 8.3182e−2 1.2762e−2 21
10−9 (0.9799, 2.0630, 3.2745, 3.6424) 8.3182e−2 1.2763e−2 21
10−10 (0.9799, 2.0630, 3.2744, 3.6424) 8.3182e−2 1.2762e−2 21

Table 9. Results for δ = 10% in Example 3.

ε (q1, q2, q3, q4) L2Err ‖uδε,2‖0,� Iternum

1 (0.4528, 0.5152, 0.6000, 0.8000) 7.8537e−1 1.3388 6
10−1 (0.9898, 1.2832, 1.3422, 1.4265) 5.7402e−1 6.1713e−1 8
10−2 (1.0578, 1.9473, 2.1533, 2.5388) 3.0866e−1 1.8576e−1 7
10−3 (1.0033, 2.0906, 2.8545, 3.2854) 1.3417e−1 4.4603e−2 18
10−4 (0.9879, 2.0682, 3.1678, 3.5653) 8.6007e−2 1.3114e−2 20
10−5 (0.9858, 2.0620, 3.2216, 3.6091) 8.2857e−2 1.1838e−2 20
10−6 (0.9855, 2.0611, 3.2276, 3.6139) 8.2629e−2 1.1839e−2 20
10−7 (0.9855, 2.0611, 3.2282, 3.6144) 8.2608e−2 1.1841e−2 20
10−8 (0.9855, 2.0611, 3.2282, 3.6144) 8.2606e−2 1.1841e−2 20
10−9 (0.9855, 2.0611, 3.2282, 3.6144) 8.2605e−2 1.1841e−2 20
10−10 (0.9855, 2.0611, 3.2282, 3.6144) 8.2605e−2 1.1841e−2 20

�1 := {(x, y, z) ∈ � | −1 ≤ x, y < 0, 0 ≤ z <≤ 1},
�2 := {(x, y, z) ∈ � | 0 ≤ x, z ≤ 1,−1 ≤ y < 0},
�3 := {(x, y, z) ∈ � | −1 ≤ x < 0, 0 ≤ y, z ≤ 1},

and �4 := [0, 1]3. Then q† = χ�1 + 2χ�2 + 3χ�3 + 4χ�4 . Six hundred and fifty nodes on � are
used to sample the data gδ2 . Assume the admissible set has the same form as the one in Example 2.

Again we choose initial guess q0 = 0.1 and apply the SQP method described above to solve
Problem 3.1. The results for δ = 0, 5%, 10% and different ε are reported in Tables 7–9. The
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Figure 1. Iterations of D for k = 10, δ = 0 and ε = 10−6.
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Figure 2. Iterations of D for k = 0.8, δ = 0 and ε = 10−6.

Table 10. Results for k = 10 and δ = 0% in Example 4.

ε rh L2Err ‖uδε,2‖0,� Iternum

10−2 0 8.0822e−1 4.4693e−4 1
10−3 0 8.0822e−1 4.4693e−4 2
10−4 0.0001 8.0822e−1 4.4693e−4 2
10−5 0.1932 2.0912e−1 3.2243e−6 5
10−6 0.2016 1.2883e−1 3.3393e−8 4
10−7 0.2025 1.2880e−1 6.1881e−12 3
10−8 0.2025 1.2880e−1 7.7768e−12 3
10−9 0.2025 1.2880e−1 7.5570e−12 3
10−10 0.2025 1.2880e−1 7.5257e−12 3
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14 R. GONG ET AL.

Table 11. Results for k = 10 and δ = 5% in Example 4.

ε rh L2Err ‖uδε,2‖0,� Iternum

10−2 0 8.0822e−1 4.4744e−4 1
10−3 0 8.0822e−1 4.4744e−4 2
10−4 0.0001 8.0822e−1 4.4744e−4 2
10−5 0.1938 2.0027e−1 2.9877e−6 5
10−6 0.2016 1.0163e−1 1.7351e−7 4
10−7 0.2026 1.3200e−1 1.3866e−7 3
10−8 0.2026 1.3166e−1 1.3855e−7 3
10−9 0.2026 1.3164e−1 1.3854e−7 3
10−10 0.2026 1.3164e−1 1.3854e−7 3

Table 12. Results for k = 10 and δ = 10% in Example 4.

ε rh L2Err ‖uδε,2‖0,� Iternum

10−2 0 8.0822e−1 4.4824e−4 1
10−3 0 8.0822e−2 4.4824e−4 2
10−4 0.0001 8.0822e−2 4.4824e−4 2
10−5 0.1937 2.0048e−2 3.4131e−6 5
10−6 0.2015 1.0062e−2 5.9041e−8 4
10−7 0.2028 1.3547e−2 5.5513e−12 3
10−8 0.2028 1.3488e−2 5.5469e−12 3
10−9 0.2028 1.3485e−2 5.5467e−12 3
10−10 0.2028 1.3487e−2 5.5468e−12 3

Table 13. Results for k = 0.8 and δ = 0% in Example 4.

ε rh L2Err ‖uδε,2‖0,� Iternum

10−2 0.7213 1.3961e−1 1.3407e−3 3
10−3 0.3067 4.6842e−2 1.9124e−5 4
10−4 0.2122 1.4289e−2 7.5294e−7 5
10−5 0.2029 6.8465e−3 3.5216e−7 5
10−6 0.2019 5.5564e−3 3.1985e−7 5
10−7 0.2018 5.4189e−3 3.1689e−7 5
10−8 0.2018 5.3946e−3 3.1637e−7 5
10−9 0.2018 5.4199e−3 3.1691e−7 5
10−10 0.2018 5.4041e−3 3.1658e−7 5

Table 14. Results for k = 0.8 and δ = 5% in Example 4.

ε rh L2Err ‖uδε,2‖0,� Iternum

10−2 0.7200 1.3934e−1 1.3305e−3 2
10−3 0.3066 4.6826e−2 1.9503e−5 4
10−4 0.2121 1.4238e−2 1.1541e−6 5
10−5 0.2028 6.8176e−3 7.5694e−7 5
10−6 0.1894 1.2948e−2 4.5423e−7 6
10−7 0.2097 1.2669e−2 1.0322e−6 5
10−8 0.1892 1.3066e−2 4.5191e−7 6
10−9 0.2016 5.1639e−3 7.1728e−7 5
10−10 0.2018 5.4292e−3 7.2276e−7 5
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Table 15. Results for k = 0.8 and δ = 10% in Example 4.

ε rh L2Err ‖uδε,2‖0,� Iternum

10−2 0.7224 1.3984e−1 1.506e−3 3
10−3 0.3059 4.6635e−2 2.0442e−5 4
10−4 0.2114 1.3817e−2 2.3360e−6 5
10−5 0.2030 6.9604e−3 1.9779e−6 5
10−6 0.2014 4.7602e−3 1.9267e−6 5
10−7 0.1990 4.0329e−3 1.8570e−6 5
10−8 0.2007 3.3257e−3 1.9050e−6 5
10−9 0.2012 4.3293e−3 1.9192e−6 5
10−10 0.2014 4.8325e−3 1.9280e−6 5

corresponding “L2Err”, ‖uδε,2‖0,� and “Iternum" are shown in the third-fifth columns of Tables
7–9, respectively. Similar to Example 2, the approximations are very well, the reconstruction is stable,
and the regularized solution is not sensitive to the small ε.
Example 4: In the last example, we consider an example where the distribution domain of the
searched conductivity is unknown. In the literature, most of the numerical experiments are imple-
mented for the case where the coefficient q has the form

q = 1 + (k − 1) χD in� (29)

with a known k and an unknown D. As a result, the ICP reduces to that of recovering a subset D in
� from the given Cauchy data gδ1 and gδ2 on �. In the case of a single boundary measurement, the
uniqueness is not guaranteed for a general D. Under some condition, the question of the uniqueness
is answeredwhenD is a disk,[27] a polygon,[24] a ball,[27,36] and a convex cylinder.[23]We consider
a model problem similar to the one in [37]. Specifically, let k = 10, f = 0,� be the same as Example
1, and the true D∗ be a disk centered at x∗ = (0, 0) with radus r∗. Note that since D is unknown
and will move during the iteration, standard finite element methods do not work. We apply the layer
potential technique (see [20,27] for instance) to the complex reconstruction framework considered
in this paper. For this purpose, we modify the condition

∫
�
u dx = 0 to

∫
�
u dx = 0, and let

�(x) := 1
2π ln |x| the fundamental solution of� in R

2.
The Cauchy data g1 and g2 are computed from

g1(x) = x1 + ∫
∂D∗ ∇x�(x − y) · νx ϕD∗(y)dsy , x ∈ �,

g2(x) = x1 + ∫
∂D∗ �(x − y) ϕD∗(y)dsy , x ∈ �,

where x = (x1, x2) and
ϕD∗(x) = 2 (k − 1)

k + 1
x1
r∗
.

Two hundred nodes on� are used for the sampled data g1 and g2. Again uniformly distributed noises
with a level δ are added to g1 and g2 to generate gδ1 and gδ2 . Denote Q̃ad for the set of all disk D
contained in�. Then Problem 3.1 amounts to solving

Dδε = arg min
D∈Q̃ad

1
2
‖u2(D)‖20,� + ε

2
|k2 − 1| |D|, (30)

where |D| is the measure of D, and u2(D) ∈ V is the imaginary part of the solution u ∈ V of the
problem (21) with q being characterized by (29). Without going into details, we only mention that
the solution of the forward problem (7), with g replaced by gδ := gδ1 + i gδ2 , can be expressed by a
sum of two single-layer potentials on� and D:
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16 R. GONG ET AL.

u(x) =
∫
�

�(x − y) ϕ(y)dσ(y)+
∫
∂D
�(x − y) ψ(y)dσ(y), x ∈ �.

The complex functions ϕ on � andψ on ∂D are determined from the boundary condition of (7) and
the continuous condition ∂ue

∂ν
|∂D = k ∂u

i

∂ν
|∂D, where ue = u|�/D̄, ui = u|D.

Then choosing the initial guess D0 := {x ∈ R
2 | |x| ≤ 0.6}, we apply the SQP method to the

optimization problem (30). The results corresponding to k = 10 > 1 and δ = 0, 5%, 10% are listed
in Tables 10–12. The experiment is repeated for k = 0.8 < 1 and the results are reported in Tables
13–15. We plot in Figure 1 the evolution of the approximate D for k = 10, δ = 0 and ε = 10−6,
where D1, D2, D3, and D4 are the approximations of D∗ at iterations 1–4. The approximations of D∗
are plotted in Figure 2 for k = 0.8, δ = 0, and ε = 10−6, with D1, D2, D3, D4, and D5 corresponding
to iterations 1–5 respectively. The same kind of conclusions on the performance of the proposed
method as in the previous examples can be drawn from Tables 10–15 and Figures 1 and 2.

5. Concluding remarks

We conclude from Examples 1–3 that as long as all the subdomains share some portion of the bound-
ary, with the CCBM-based Tikhonov regularization method presented in this work, the piecewise
constant diffusion parameters can be constructed stably and effectively. As is shown in Example 4, our
method also works well in the case where the distributions of the positions of the piecewise constant
diffusion parameters are not known exactly. All numerical experiments indicate that the iteration
converges evenwhen the initial guess is not close to the solution.Moreover, the results are satisfactory
for rather small regularization parameters. In comparison, in standard regularizationmethods for the
inverse parameter problems, choosing a proper regularization parameter is crucial. Our newmethod
allows the use of very small regularization parameters based solely on the consideration of the solution
accuracy, rather than on a balance between the solution accuracy and the solution stability.
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