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Abstract

Bioluminescence tomography (BLT) is a new method in biomedical imaging, with a promis-
ing potential in monitoring non-invasively physiological and pathological processes in vivo
at the cellular and molecular levels. The goal of BLT is to quantitatively reconstruct a
three dimensional bioluminescent source distribution within a small animal from two dimen-
sional optical signals on the surface of the animal body. Mathematically, BLT is an under-
determined inverse source problem and is severely ill-posed, making its numerical treatments
very challenging. In this paper, we provide a new Tikhonov regularization framework for
the BLT problem. Compared with the existing reconstruction methods about BLT, our new
method uses an energy functional defined over the whole problem domain for measuring the
data fitting, associated with two related but different boundary value problems. Based on
the new formulation, a fast solver is introduced by transforming the proposed optimization
model into a system of partial differential equations. Moreover, a finite element method is
used to obtain a regularized discrete solution. Finally, numerical results show that the fast
solver for BLT is feasible and effective.
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1. Introduction

With the accomplishment of human genome sequence and the coming of post-genome
era, it is urgent to explore the mechanism of occurrence and development of various dis-
eases (especially malignant diseases) at the cellular, molecular and gene levels, so that we
can detect diseases before the appearance of clinical symptoms and enhance therapeutic
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effect through their early alarm and treatment. Molecular imaging is a rapidly developing
biomedical imaging technique for this purpose; see e.g. [7, 28, 32, 36, 38] and references
therein. Molecular imaging is broadly based on three technologies: nuclear imaging [4, 13],
magnetic resonance imaging (MRI) [16, 42], and optical imaging [34, 35]. As an optical
molecular imaging, bioluminescence tomography (BLT) is a recently developed promising
modality and attracts more and more attention [9, 14, 15, 20, 39]. The goal of BLT is to
quantitatively reconstruct a three dimensional bioluminescent source distribution within a
small animal from two dimensional optical signals on the surface of the animal body. Cur-
rently, BLT is mainly used to cellular, molecular and gene expression imaging in studies of
small animals, especially mice, but the success of this research will facilitate disease studies,
drug development and therapeutic intervention [10, 32, 34].

Mathematically, BLT is an under-determined inverse source problem and is severely ill-
posed, making its numerical treatments very challenging. Light propagation in biological
tissue is governed by the radiative transfer equation (RTE) [27]. However, the RTE is highly
dimensional and presents a serious challenge for its accurate numerical simulations given the
current level of development in computer software and hardware. Experimental evidence
shows that the range of light emission peaks is 460–630 nm for characterized luciferase
enzymes ([43]), which is very small compared to the size of a typical object in this context.
For this spectral range, scattering dominates for the photons in the tissue, and usually a
diffusion approximation of the RTE is employed ([2, 33]).

Let Ω ⊂ R
d be the biological medium with the boundary Γ = ∂Ω. Although the

dimension d = 3 for applications, the method we develop here is valid for any dimension.
Without going into detail, the BLT problem based on the diffusion approximation is the
determination of a light source function p in the differential equation

−div(D∇u) + µa u = pχΩ0
in Ω (1.1)

with the following boundary condition

u+ 2AD
∂u

∂n
= g− on Γ (1.2)

from measurement data g on the boundary Γ:

g = −D
∂u

∂n
on Γ. (1.3)

Here, D = [3(µa+µ′)]−1, µa and µ′ are given absorption and reduced scattering coefficients;
∂/∂n stands for the outward normal derivative; the function g− is an incoming flux on the
boundary Γ, and A(x) = (1 + R(x))/(1 − R(x)); R(x) ≈ −1.4399γ(x)−2 + 0.7099γ(x)−1 +
0.6681 + 0.0636γ(x) with γ(x) the refractive index of the medium at x ∈ Γ. Moreover, Ω0

is a measurable subset of Ω, called the permissible region, χΩ0
is the characteristic function

of Ω0, i.e., its value is 1 in Ω0 and is 0 outside Ω0.
Based on the diffusion approximation equation (1.1), many theoretical analysis and nu-

merical methods about BLT have been explored, see e.g. [6, 9, 17, 19, 22, 26, 31, 40, 41]
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and references therein. To improve the accuracy of the reconstructed light source function,
multispectral systems are developed ([8, 11, 18, 25]). We refer to [23, 24] for the BLT prob-
lem with enhancement of knowledge of the optical properties. In these works, Tikhonov
regularization methods are used, with which various a priori information of a light source
can be incorporated conveniently, and the BLT problems are transferred into optimization
ones.

Conventionally, an L2-norm functional is used on a part of or the whole boundary Γ
to measure the data fitting, and then gradient-type iterative algorithms are adopted to
find the minimizers, see [6, 8, 9, 11, 17, 18, 19, 20, 22, 23, 24, 25, 26, 31, 41] and so
on. Alternatively, in this work, a Kohn-Vogelius type energy functional is used for our
source function reconstruction. In general, Kohn-Vogelius functionals are expected to lead
to more robust optimization procedures [1]. In the literature, these functionals have been
used for a long time in the electrical impedance tomography [12]. However, to the best
of our knowledge, they have not been used in the BLT problem. In this study, we give a
new reconstruction framework based on a Kohn-Vogelius type energy functional. Moreover,
instead of using usual gradient-type iterative algorithms for the optimal solution, with a
priori information about the light source location, a fast solver is given to compute the
density of inner light source function. By using our method, the proposed optimization
model is transformed into a system of partial differential equations. As a result, issues
occurring in iterative methods such as the choice of initial guess, convergence of iteration and
stop criterion are avoided, and then the computation efficiency of light source reconstruction
is enhanced.

We end this section with a description of the structure for the rest of this work. In
section 2, an optimization framework based on an energy functional is established for BLT.
Section 3 introduces a fast solver for the proposed optimization problem via adjoint theory
in such a way that the BLT problem is transferred into a system of partial differential
equations. In section 4, discretization of the system of equations by the finite element
method is discussed. Several numerical examples are presented in section 5 to demonstrate
the feasibility and efficiency of the proposed method.

2. An optimization framework based on an energy functional

We first introduce notations for function spaces and sets. Assume the boundary Γ is
Lipchitz continuous. For a set G (e.g., Ω, Ω0 or Γ), we denote by Wm,s(G) the standard
Sobolev spaces with norm ‖ · ‖m,s,G, W 0,s(G) = Ls(G). Particularly, Hm(G) represents
Wm,2(G) with corresponding inner product (·, ·)m,G and norm ‖ · ‖m,G. Let V = H1(Ω) and
Q = L2(Ω0). Moreover, we assume D ∈ L∞(Ω) such that D ≥ D0 for some positive constant
D0, µa ∈ L∞(Ω), µa ≥ 0 and µa is positive in a subset of Ω with a positive measure. Also
we assume g−, g ∈ L2(Γ).

From the Neumann boundary condition (1.2) and the Robin boundary condition (1.3),
we derive a Dirichlet boundary condition

u = g1 := g− + 2Ag on Γ. (2.1)
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Note that only two of the three boundary conditions (1.2), (1.3) and (2.1) are independent.
Usually, to determine the source function p, we may associate one of the above three bound-
ary conditions (1.2), (1.3) and (2.1) with the differential equation (1.1) to form a boundary
value problem (BVP) while choosing one of the remaining boundary conditions for data
matching in forming the inverse problem for p. For instance, in [22], (1.1) and (1.3) are used
for the boundary value problem while (2.1) for the measurement matching. Then, because
of the ill-posedness of the pointwise formulation of BLT, the following regularized problem
is studied.

Problem 2.1. Find pε ∈ Qad such that

Jε,Γ(pε) = inf
q∈Qad

Jε,Γ(q),

where
Jε,Γ(q) = ||u(q)− g1||

2
0,Γ + ε‖q‖20,Ω0

, ε ≥ 0 (2.2)

with u(q) ∈ V being the weak solution of BVP (1.1) and (1.3).

Here Qad, known as a admissible set for source function p, is a closed convex subset of
space Q; a common example of Qad is the set of non-negatively valued functions from Q.
Problem 2.1 admits a stable and unique solution ([22]).

In this paper, based on a Kohn-Vogelius type energy functional, we explore a new opti-
mization framework for the BLT reconstruction. For any q ∈ Q, denote by uN = uN(q) ∈ V
the weak solution of the Neumann and Robin BVP:

{

−div(D∇uN) + µa uN = qχΩ0
in Ω,

D ∂uN

∂n
= −g on Γ,

(2.3)

and by uR = uR(q) ∈ V the weak solution of the Robin BVP:

{

−div(D∇uR) + µa uR = qχΩ0
in Ω,

uR + 2AD ∂uR

∂n
= g− on Γ.

(2.4)

The functions uN and uR satisfy
∫

Ω

(D∇uN · ∇v + µa uN v) dx =

∫

Ω0

q v dx−

∫

Γ

g v ds ∀ v ∈ V, (2.5)

and
∫

Ω

(D∇uR ·∇v+µa uR v) dx+

∫

Γ

1

2A
uR v ds =

∫

Ω0

q v dx+

∫

Γ

1

2A
g− v ds ∀ v ∈ V, (2.6)

respectively. We define the following Kohn-Vogelius type energy functional

Jε(q) =
1

2
|||uN(q)− uR(q)|||

2
1,Ω +

ε

2
‖q‖20,Ω0

, ε ≥ 0 (2.7)
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with

|||v|||21,Ω =

∫

Ω

(D|∇v|2 + µav
2) dx.

It is not difficult to verify that the objective functional Jε(·) is continuous, coercive and
strictly convex for ε > 0. Then we study BLT reconstruction through the following opti-
mization approach.

Problem 2.2. Find pε ∈ Qad such that

Jε(pε) = inf
q∈Qad

Jε(q).

Remark 2.3. In [37], a different objective functional:

Jε,Ω(q) = ||uN(q)− uR(q)||
2
0,Ω + ε‖q‖20,Ω0

, ε ≥ 0, (2.8)

and it is concluded ([37, Section 4]) that the reconstruction model using (2.8) performs
somewhat better than the one using (2.2) in terms of accuracy for a large noise level. In
this work, we focus on the resolution of Problem 2.2. We note that using norm ||| · |||1,Ω in
(2.7) rather than || · ||0,Ω in (2.8) makes the deduction of adjoint equation (3.5) simpler.

By using arguments similar to those in [22, 37], we can show a well-posedness result
about Problem 2.2 as follows.

Proposition 2.4. For any ε > 0, Problem 2.2 has a unique solution pε ∈ Qad which depends
continuously on D,µa, g

−, g and ε > 0.

3. A fast solver for the optimization problem

In the literature, iterative procedures are adopted to find a minimizer of an optimization
problem like Problem 2.2. As far as the BLT problem is concerned, these iterative methods
include modified Newton method together with an active set strategy [9], preconditioned
conjugate gradient method [5], the generalized graph cuts reconstruction method [30], and
so on. Issues involved in these iterative methods are related to choosing a proper initial
guess, verifying convergence of the iteration, giving a stop criterion, etc. In particular, at
each iterative step, we need to solve the BVP (2.6), and thus they are often time-consuming.

The aim of this section is to introduce, under some conditions, a fast solver without
iteration for a stable BLT reconstruction. Denote by pε the unique solution of Problem 2.2,
and by u∗

N ∈ V and u∗

R ∈ V the solutions of variational problems (2.5) and (2.6) (with q
replaced by pε). Moreover, let ũN ∈ V and ũR ∈ V be the weak solutions of Neumann and
Robin BVP problems

{

−div(D∇ũN) + µa ũN = qχΩ0
in Ω,

D ∂ũN

∂n
= 0 on Γ,

(3.1)
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and
{

−div(D∇ũR) + µa ũR = qχΩ0
in Ω,

ũR + 2AD ∂ũR

∂n
= 0 on Γ,

(3.2)

respectively. Then for any q ∈ Q, t ∈ R, the solutions uN(pε+ t q) of (2.5) and uR(pε+ t q) of
(2.6) (with q replaced by pε+t q) satisfy uN(pε+t q) = u∗

N+t ũN and uR(pε+t q) = u∗

R+t ũR,
and we have

Jε(pε + t q)− Jε(pε)

=
1

2

∫

Ω

{

D|∇ [uN(pε + t q)− uR(pε + t q)] |2 + µa [uN(pε + t q)− uR(pε + t q)]2
}

dx

−
1

2

∫

Ω

{

D|∇ [uN(pε)− uR(pε)] |
2 + µa [uN(pε)− uR(pε)]

2} dx

+
ε

2

∫

Ω0

(pε + t q)2dx−
ε

2

∫

Ω0

p2εdx

= t

{
∫

Ω

[D∇(u∗

N − u∗

R) · ∇(ũN − ũR) + µa (u
∗

N − u∗

R) (ũN − ũR)]dx+ ε

∫

Ω0

pεq dx

}

+
1

2
t2
{
∫

Ω

[D|∇(ũN − ũR)|
2 + µa(ũN − ũR)

2]dx+ ε

∫

Ω0

q2dx

}

.

Therefore, the Gateaux derivative of Jε at pε in the direction q ∈ Q is

J ′

ε(pε) q = lim
t→0

Jε(pε + t q)− Jε(pε)

t

=

∫

Ω

[D∇(u∗

N − u∗

R) · ∇(ũN − ũR) + µa (u
∗

N − u∗

R) (ũN − ũR)]dx+ ε

∫

Ω0

pεqdx.

(3.3)

By using integration by parts together with the definitions (3.1)–(3.2) of ũN , ũR, we find
from (3.3) that

J ′

ε(pε) q = ε

∫

Ω0

pεqdx−

∫

Γ

1

2A
ũR(u

∗

N − u∗

R)ds. (3.4)

Let w ∈ V be the unique weak solution of adjoint problem

{

−div(D∇w) + µaw = 0 in Ω,

w + 2AD ∂w
∂n

= u∗

N − u∗

R on Γ.
(3.5)

We multiply the equation (3.5) by ũR, integrate over Ω and integrate by parts twice, and
use the definition (3.2) of ũR to get

∫

Ω0

wqdx+

∫

Γ

1

2A
ũR(u

∗

N − u∗

R)ds = 0. (3.6)
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Then, combine (3.4) and (3.6) to get

J ′

ε(pε) q =

∫

Ω0

(w + εpε)qdx.

Because Qad is a convex and closed subset of space Q, the following first order necessary
and sufficient condition ([3, 29]) of the solution pε ∈ Qad of Problem 2.2 holds:

J ′

ε(pε) (q − pε) ≥ 0 ∀ q ∈ Qad

or, equivalently,
∫

Ω0

(w + εpε) (q − pε)dx ≥ 0 ∀ q ∈ Qad,

which shows that pε is the projection of −w/ε onto Qad with respect to the inner product
(·, ·)0,Ω0

([3, Section 5.3]).
In practice, Qad consists of non-negatively valued functions in Q, and in this case,

pε = max{−
1

ε
w, 0} in Ω0.

If −w
ε
≥ 0, then

pε = −
1

ε
w in Ω0.

Thus, we consider the following system of boundary value problems:



















































−div(D∇u∗

N) + µa u
∗

N + 1
ε
wχΩ0

= 0 in Ω,

−div(D∇u∗

R) + µa u
∗

R ++1
ε
wχΩ0

= 0 in Ω,

−div(D∇w) + µaw = 0 in Ω,

pε = −1
ε
w in Ω0,

D ∂uN

∂n

∗

= −g on Γ,

u∗

R + 2AD ∂uR

∂n

∗

= g− on Γ,

w + 2AD ∂w
∂n

= u∗

N − u∗

R on Γ.

(3.7)

Now we are in a position to introduce a new formulation for the practical BLT recon-
struction.

Problem 3.1. Find (u∗

N , u
∗

R, w) ∈ V × V × V such that











a1(u
∗

N , v) + b1(w, v) = f1(v) ∀ v ∈ V,

a2(u
∗

R, v) + b1(w, v) = f2(v) ∀ v ∈ V,

−b2(u
∗

N , v) + b2(u
∗

R, v) + a2(w, v) = f3(v) ∀ v ∈ V,

(3.8)
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where

a1(u, v) =

∫

Ω

(D∇u · ∇v + µau v)dx, a2(u, v) = a1(u, v) +

∫

Γ

1

2A
uvds,

b1(u, v) =
1

ε

∫

Ω0

u vdx, b2(u, v) =

∫

Γ

1

2A
uvds,

f1(v) = −

∫

Γ

g vds, f2(v) =

∫

Γ

1

2A
g− vds, f3(v) = 0.

Set pε = −1
ε
wχΩ0

.

Remark 3.2. It is well-known that Problem 3.1 is not equivalent to the original regularized
reconstruction model Problem 2.2. However, as we shall see in numerical simulations in
Section 5, under the assumption that Qad consists of non-negatively valued functions from
Q, the solution of Problem 2.2 can be computed through Problem 3.1. Compared to Problem
2.2, the framework Problem 3.1 reconstructs light source functions through solving a system
of partial differential equations without the need of iteration, and thus can be solved directly,
which makes reconstruction more efficient.

In the next section, we focus on the finite element discretization of the system (3.8).

4. Numerical approximations

In this section, we consider numerical approximations of the system (3.8). For simplicity,
assume both Ω ⊂ R

d and Ω0 ⊂ Ω are polyhedral sets. We note that it is possible to extend
the discussion to the case where Ω and Ω0 are arbitrary bounded open domains. Then
the standard conforming FEMs are applied to discretize the system (3.8). Let {Th}h be a
regular family of triangulations over domain Ω with meshsize h > 0. For each triangulation
Th, define the linear finite element space

V h := {v ∈ C(Ω), v|T ∈ P1(T ) ∀T ∈ Th}.

Here Pk(T ) denotes the space of all polynomials of degree ≤ k on T . Moreover, let {T0,H}H
be a regular family of triangulations of Ω0 with meshsize H, and for any triangulation T0,H ,
define the finite element space for light source

QH := {q ∈ Q | q|T ∈ P0(T ) ∀T ∈ T0,H}.

Then an approximation of Problem 3.1 is as follows.

Problem 4.1. Find (u∗,h
N , u∗,h

R , wh) ∈ V h × V h × V h such that











a1(u
∗,h
N , vh) + b1(w

h, vh) = f1(v
h) ∀ vh ∈ V h,

a2(u
∗,h
R , vh) + b1(w

h, vh) = f2(v
h) ∀ vh ∈ V h,

−b2(u
∗,h
N , vh) + b2(u

∗,h
R , vh) + a2(w

h, vh) = f3(v
h) ∀ vh ∈ V h,
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and set ph,Hε = −1
ε
ΠHwhχΩ0

, where ΠH : Q → QH is an orthogonal projection operator
defined by

(ΠHq, qH)0,Ω0
= (q, qH)0,Ω0

∀ q ∈ Q, qH ∈ QH .

For a triangulation Th, let ϕi ∈ V h, i = 1, 2, · · · , n, be the nodal basis functions
of V h associated with the nodes xi, where n is the nodal number. Then the solutions
(u∗,h

N , u∗,h
R , wh) ∈ V h × V h × V h can be written as

(u∗,h
N , u∗,h

R , wh) =
n

∑

i=1

(u∗

N,i, u
∗

R,i, wi)ϕi,

where u∗

N,i = u∗,h
N (xi), u

∗

R,i = u∗,h
R (xi), wi = wh

i (xi).
Then, Problem 4.1 is reduced a linear system of the form

K Y = F, (4.1)

where Y = (u∗

N,1, u
∗

N,2, · · · , u
∗

N,n, u
∗

R,1, u
∗

R,2, · · · , u
∗

R,n, w1, w2, · · · , wn)
T and (·)T is the trans-

position of (·). The approximation of light source function p is computed by

ph,Hε |T= −
1

ε

1

|T |

∑

xl∈T

∫

T

wlϕldx ∀T ∈ T0,H . (4.2)

We note that if Th and T0,H are consistent (i.e., T0,H is a restriction of Th on Ω0), then
H = h and (4.2) reduces to

ph,hε |T= −
1

3ε

∑

xl∈T

wl ∀T ∈ T0,h.

5. Numerical simulation

Our main aim in this study is to provide a practical fast solver mentioned above for the
BLT reconstruction. In this section, we report some numerical results to show its feasibility
and efficiency. In the following simulations, assume A = 1, and g− ≡ 0 which means the
reconstruction is implemented in a dark environment. We use a consistent triangle triangu-
lations for Ω and Ω0 with H = h, and use linear conforming finite element spaces V h for
state approximation while piecewise constant function space Qh for source approximation.
In addition, for a practical reconstruction, the problem (2.6) is solved by the given finite ele-
ment method on a rather fine triangulation to construct the measurement g on the boundary
Γ. In all simulations, the measurement data g is polluted by 5% Gaussian random noise.
The resulting linear algebra system (4.1) is solved by the biconjugate gradient method.

It is known that the regularization parameter ε has an important effect on the accuracy of
the reconstructed light source function. In the literature, there are many methods developed
for choosing parameters properly, such as the discrepancy principle (DP), L-curve rule and
so on. We refer [21] for some comments on the choice of these regularization parameters.
In this section, all optimal regularization parameters are chosen approximately by sweeping
them from 1 to 1×10−1, 1×10−2, 1×10−3, · · · . Moreover, in the subsequent figures, symbol
lg(·) stands for the logarithm based on 10.
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5.1. Example 1

In our first example, we consider a problem with a single homogeneous light source. Let
the problem domain be a circle centered at origin with radius 10mm:

Ω = {(x, y) ∈ R
2 | x2 + y2 ≤ 100mm2},

and a circle light source p = 1
π
be embedded into Ω, centered at (3.975,−1.423)T with

radius 1mm. Assume the absorption and reduced scattering coefficients of the homogeneous
medium are µa = 0.020mm−1 and µ′ = 1.0mm−1 respectively. Then the measurement data
g is computed on a mesh with N = 184865 nodes and NE = 368640 elements. Here
and below, N and NE stand for the number of nodes and the number of elements of a
triangulation. Figure 1 provides a sketch of a triangulation of Ω of Example 1.

The light source function p is reconstructed for different triangulations and different
regularization parameters. The numerical results are reported in Figures 2 and 3. For three
different triangulations, the dependence of errors in p computed through ‖ph,hε − p‖0,Ω0

on
regularization parameter ε is shown on the left-hand side of Figure 2 while the dependence
of residuals ‖u∗,h

N − u∗,h
R ‖0,Ω is plotted on the right-hand side of Figure 2. We observe that

for all triangulations, the errors in light source function p first decrease and then increase
as ε decreases. The optimal regularization parameter ε is about 1 × 10−2 for triangulation
with N = 198, NE = 360, 5 × 10−4 for triangulation with N = 755, NE = 1440, and
6×10−4 for triangulation with N = 2949, NE = 5760. Also, we can see from the right-hand
side that for a fixed triangulation, the residual ‖u∗,h

N − u∗,h
R ‖0,Ω decreases as ε gets smaller.

Moreover, Figure 3 shows the approximate source function ph,hε reconstructed on the meshes
with N = 755, NE = 1440 and N = 2949, NE = 5760 respectively.

5.2. Example 2

In this experiment, we simulate a problem with a spatially varying light source. We place
a light source of power 1.0 pW in two separate circles:

p =







1
2π ln 2 [1+(x−3.975)2+(y−1.423)2]

in {(x, y) | (x− 3.975)2 + (y − 1.423)2) ≤ 1},

1
2π ln 2 [1+(x−3.975)2+(y+1.423)2]

in {(x, y) | (x− 3.975)2 + (y + 1.423)2) ≤ 1}.

A boundary measurement g is computed by the finite element method on a mesh with 417792
elements and 209441 nodes. Figure 4 sketches a triangulation in this case.

Again the light source function p is reconstructed for different triangulations and different
regularization parameters, and numerical results are reported in Figures 5 and 6. The
left-hand side and the right-hand side of Figure 5 are the dependence of errors in p on
regularization parameter ε and the dependence of residuals ‖u∗,h

N −u∗,h
R ‖0,Ω on ε respectively.

Again, for a fixed triangulation, the errors in p first decrease and then increase as ε decreases,
while the residual ‖u∗,h

N − u∗,h
R ‖0,Ω decreases as ε gets smaller. The optimal regularization

parameter ε is about 2 × 10−3 for triangulation with N = 222, NE = 408 and 4 × 10−2

for both triangulations with N = 851, NE = 1632 and N = 3333, NE = 6528. Moreover,
Figure 6 shows the approximate source function ph,hε reconstructed on the meshes with
N = 851, NE = 1632 and N = 3333, NE = 6528 respectively.
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5.3. Example 3

Here we consider a 3D problem with a single homogeneous light source. Let the problem
domain be a sphere centered at origin with radius 10mm:

Ω = {(x, y, z) ∈ R
2 | x2 + y2 + z2 ≤ 100mm2},

and a sphere light source p = 1 of power 4π
3

pW be embedded into Ω, centered at (5, 5, 5)T

with radius 1 mm. The absorption and reduced scattering coefficients of the homogeneous
medium are the same as those in Examples 1 and 2. The measurement data g is computed
from solving (2.6) on a mesh with 213711 elements and 37492 nodes. Figure 7 sketches a
triangulation of the 3D domain.

The light source function p is reconstructed again for different triangulations and regu-
larization parameters. The numerical results are reported Figures 8–12. Figure 8 gives the
dependence of relative errors in p and the dependence of relative errors in residual on regu-
larization parameter ε. Relative error in light source function p is computed through ‖ph,hε −
p‖0,Ω0

/‖p‖0,Ω0
while relative error in residual is computed through ‖u∗,h

N −u∗,h
R ‖0,Ω/‖u

∗,h
N ‖0,Ω.

The reason of using relative errors rather than error themselves is because the norms of
‖p‖0,Ω0

and ‖u∗,h
N ‖0,Ω are relatively big in this example. Again, similar conclusions to those

in Examples 1 and 2 can be drawn from Figure 8. In addition, the optimal regularization
parameter ε is about 3 × 10−3 for triangulation with N = 371, NE = 1700, 7 × 10−4 for
triangulations with N = 788, NE = 3841, 1 × 10−3 for triangulations with N = 1862,
NE = 9648, and 3 × 10−4 for triangulations with N = 3436, NE = 18330. Moreover,
Figures 9–12 gives the approximate source function ph,hε reconstructed on four meshes with
N = 371, N = 788, N = 1862 and N = 3436, respectively. Each of these figures contain
nine subgraphs. The x-coordinate and y-coordinate of each subgraph are index of elements
in Ω0 and values of light source function on the corresponding elements. For instance, there
are 76 elements in Ω0 for triangulation with N = 371, NE = 1700 while 208 elements in Ω0

for triangulation with N = 788, NE = 3841. In each subgraph, black straight line refers
to true light source function p = 1 while the curve refers to the reconstructed ph,hε for the
current mesh and regularization parameter ε, which is given on the top of the subgraph.

5.4. Example 4

In our last example, we consider a problem with inhomogeneous optical parameters. Set
the problem domain Ω:

Ω = {(x, y, z) ∈ R
2 | x2 + y2 ≤ 100mm2, 0 ≤ z ≤ 20mm},

and denote by Ω1 a subdomain of Ω:

Ω1 = {(x, y, z) ∈ R
2 | x2 + y2 ≤ 9mm2, 0 ≤ z ≤ 20mm}.

Assume the absorption and reduced scattering coefficients are as follows:

µ′ =

{

1.5mm−1 in Ω1,
0.90mm−1 in Ω/Ω1,

µa =

{

0.040mm−1 in Ω1,
0.050mm−1 in Ω/Ω1.
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Two separate homogeneous light sources are assigned into Ω: p = 1 in Ω∗,1 and p = 5 in
Ω∗,2, where both Ω∗,1 and Ω∗,2 are spheres with radius 2 mm, centered at (−5.5,−5.5, 15.5)T

and (5.5, 5.5, 15.5)T , respectively. The measurement data g is computed from solving (2.6)
on a mesh with 312077 elements and 54931 nodes. Figure 13 sketches a triangulation of Ω.

The light source function p is reconstructed again for different triangulations and regu-
larization parameters. The numerical results are reported Figures 14–18. Figure 14 shows
the dependence of relative errors in p and the dependence of relative errors in residual on
regularization parameter ε. The optimal regularization parameter ε is about 6 × 10−2 for
triangulation with N = 784, NE = 3711, 4 × 10−2 for triangulations with N = 1383,
NE = 6881, 3 × 10−2 for triangulations with N = 2928, NE = 15005, and 2 × 10−2 for
triangulations with N = 5325, NE = 28165. Moreover, Figures 15–18 gives the approximate
source function ph,hε reconstructed on four meshes with N = 784, N = 1383, N = 2928 and
N = 5325, respectively. Different from Example 3, there are two sources in this example.
Correspondingly, each subgraph of Figures 15–18 contains two straight lines and two curves,
representing true multiple source function p and reconstructed ph,hε .

6. Conclusion

Bioluminescence Tomography is a new modality in optical imaging and aims to recon-
struct a bioluminescent source distribution in an organism from surface measurements in-
duced by internal bioluminescent sources. Because of the ill-posedness of the BLT, regu-
larization is often adopted for a stable approximate solution. Instead of using the L2-norm
on the boundary for data fidelity, in this paper, we use a Kohn-Vogelius type energy func-
tional. The regularized problem is usually solved by an expensive iterative procedure where
at each iteration step, one needs to solve the variational problem (2.5). In contrast, here we
propose a fast solver which transfers the regularized problem to a system of partial differ-
ential equations. As a result, a series of problems in iterative methods such as the choice of
initial guess, convergence of iteration and stop criterion are avoided. Numerical examples
presented in Section 5 show that the proposed method in this paper produces a satisfactory
performance, and is feasible and effective.
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