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Biomedical imaging has developed into the level of molecular imaging.
Bioluminescence tomography (BLT), as an optical imaging modality, is a rapidly
developing new and promising field. So far, much of the theoretical analysis
of BLT is based on a diffusion approximation equation for media with constant
refractive index. In this article, we study the BLT problem for media with
spatially varying refractive index. We introduce a general framework with
Tikhonov regularization for this purpose, present its well-posedness and establish
the error bounds for its numerical solution by the finite element method.
Numerical results are reported on simulations of the BLT problem for media with
spatially varying refractive index.

Keywords: bioluminescence tomography; spatially varying refractive index;
inverse problem; well-posedness; numerical solution; error estimate

AMS Subject Classifications: 92C55; 34K29; 49K40; 34K28; 65N15

1. Introduction

With the development of science and technology, these years have witnessed the rapid
progress in biomedical imaging. Bioluminescent imaging (BLI), as one of the optical
imaging modalities, has its own advantages over traditional imaging methods such as
computed tomography (CT), positron emission tomography (PET) [1,2], magnetic
resonance imaging (MRI) [3,4] as well as their combinations. For instance, compared to
PET and MRI, BLI is low in cost. It is particularly attractive for in vivo applications
because no external excitation source is needed, and thus background noise is low while
sensitivity is high. For in vivo studies in a big biological object such as human body, BLI is
limited to superficial sites owing to the absorption and scattering properties of tissue to
light and in this case, PET and MRI are preferred modalities [5].

Bioluminescence tomography (BLT) is a promising BLI because of the possibility of
revealing molecular and cellular activity in real time [6,7]. Over the past several years,
numerous articles have been devoted to the theoretical analysis and numerical simulations
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of BLT, (see e.g. [8–16] and references therein). The main objective of BLT is to determine

the photon density distribution within small-animals or on the surface of some organs

from the light measurement on the boundary. With BLT, a bioluminescent source

distribution inside a living small animal can be located and quantified in 3D. Because the

transport of light in any entity is subject to both absorption and scattering, the accurate

representation of the photon transport in a biological tissue is required. The first step of

BLT is to determine the optical properties of tissue and this is the issue of a diffuse optical

tomography (DOT) problem. In general, the bioluminescent photon propagation in a

tissue can be described accurately by either the radiative transfer equation (RTE) or the

Monte Carlo model (MCM) [17]. However, at the moment, neither is computationally

feasible. Usually a diffusion approximation of the RTE is employed when the wavelength

of light is in the range of around or bigger than 600 nm [18].
In the literature, the BLT is mostly studied based on a diffusion approximation

equation to the RTE with constant refractive index of media. In this work, we consider the

BLT problem for media with spatially varying refractive index. Consideration of media

with spatially inhomogeneous refractive index can be found in [19–25] and [26,27], the

DOT problem for such media is studied.
Let ��R

d be a non-empty, open and bounded set with a Lipschitz boundary �X @�
and Sd�1 the unit sphere in R

d. In applications, d¼ 3. With the diffusion approximation,

our BLT problem in spatially varying refractive index media consisting of determining a

source function S so that the solution of the following boundary-value problem (BVP):

�div D r �
2rn

n

� �
u

� �
þ �au ¼ S��0

in �, ð1Þ

uþ 2D @� �
2

n
@�n

� �
u ¼ 0 on � ð2Þ

satisfies the measurement condition

g ¼ �D@�u on �0 � �: ð3Þ

Here, �0 and �0 are measurable subsets of � and �, respectively, both with a positive

measure. The symbol ��0
stands for the characteristic function of �0 which takes on the

value 1 in �0 and 0 in �n�0. The coefficient D ¼ ½3ð�a þ �
0
sÞ�
�1, �a and �0s are the

absorption and reduced scattering coefficients, and n is the refractive index. We denote @��
for the outward normal derivative on �. The measured light flux g on �0 is an element in

space L2(�0). In applications, it is unrealistic to have measurement on the entire boundary.

In this article, we focus on the situation where �0 is a proper subset of �.
As in [12], we can show that the pointwise formulation (1)–(3) of the BLT

problem is ill-posed. In this article, the BLT problem is studied through a Tikhonov

regularization.
We will need some function spaces. For a set G as �, �0 or � etc., we denote by

Wm,s(G) the standard Sobolev spaces of degree s and order m with norm k � km,s,G, and

rewrite them as Ls(G) when m¼ 0. Particularly, Hm(G) represents Wm,2(G) with

corresponding inner product (�, �)m,G, norm k � km,G and seminorm j � jm,G. Moreover,

denote L2(�0) by Q. We further denote by c a constant which may have different value in

different place.
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The structure of this article is as follows. In the next section, we study the BLT problem

with a Tikhonov regularization. We address the well-posedness of the regularized BLT

problem and explore the limiting behaviours as regularization parameter tends to zero and

infinity. In Section 3, we use the finite element method to approximate the regularized

BLT problem and obtain some error estimates. We present some numerical examples in

the last section.

2. A formulation for BLT with spatially varying refractive index media

By a standard process, we obtain the following weak formulation of the BVP (1)–(2):

u 2 H1ð�Þ : a1ðu, vÞ ¼ ðS, vÞ0,�0
8 v 2 H1ð�Þ, ð4Þ

where the bilinear form

a1ðu, vÞ ¼

Z
�

�
D

�
r �

2

n
rn

�
u � rvþ �au v

�
dxþ

1

2

Z
�

uv d� u, v 2 H1ð�Þ: ð5Þ

Let �1¼�\�0. Since the measurement (3) is available on a proper subset of � only, we have

j�1j4 0. Define an inner product [�, �] and the corresponding norm jjj � jjj over H1(�) as

follows:

½u, v� ¼ ðru,rvÞ0,� þ ðu, vÞ0,�, jjjvjjj ¼ ½v, v�1=2 8u, v 2 H1ð�Þ:

It is well-known that the norm jjj � jjj defined above is equivalent to the norm k � k1,�.
We will make the following assumption throughout this article:

Assumption (A) Let 05 b1�D� c1, �a4 0, k�ak0,1� c2, n2W
1,1(�), k 2nrnk0,1 � c3,

kvk0,�� c4jjjvjjj, and min{b1, 1/2}4 c1c3c4.

Under Assumption (A), it is shown in [26] that for each S2Q, the problem (4) admits a

unique and stable solution u2H1(�).
We comment that it is possible to weaken Assumption (A). In applications, the index

function n is nearly piecewise constant, i.e. it is piecewise constant in most parts of �

except in a small neighbourhood of the interfaces of the sub-regions. In other words, there

is a small number "4 0 such that for a subset �" of � with j�"j � ", rn¼ 0 in �1¼
4

� n �".

Consider the case of one dimension, d¼ 1. By a Sobolev embedding theorem ([28]), there is

a constant c1 such that

kvk0,1,� �eckvk1,� 8v 2 H1ð�Þ: ð6Þ

Assumption (B) For b1, c1, c3, c4 and ec given as in Assumption (A) and (6),

� ¼ minfb1,
1
2g � c1c3ðc4 þ 1Þec"1=2 4 0.

PROPOSITION 2.1 In the case d¼ 1, under Assumption (B), for each S2Q, the problem (4)

admits a unique solution u2H1(�) such that

kuk1,� � c kSk0,�0
ð7Þ

for some constant c4 0, which is independent of S but may depend on the parameters

�, D, n and �a.
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Proof We apply the Lax–Milgram lemma [28]; the only major task is to prove the

coercivity of the bilinear form a1(�, �). By using the Hölder inequality, (6) and Schwarz’

inequality, we haveZ
�

2Du

n
rn � rv dx

���� ���� ¼ Z
�"

2Du

n
rn � rv dx

���� ���� � c1c3

Z
�"

juj jrvj dx

� c1c3kuk0,1,�"
krvk0,1,�"

� c1c3ec kuk1,�krvk0,�"
j�"j

1=2

� c1c3ðc4 þ 1Þec "1=2 jjjujjjjjjvjjj 8 u, v 2 H1ð�Þ: ð8Þ

Hence, from Schwarz’ inequality together with (8), and by noticing �a� 0 in �, we have

a1ðu, uÞ � min b1,
1

2

� �
juj21,� þ kuk

2
0,�

	 

�

Z
�"

2D

n
rn u � ru dx

���� ����
� min b1,

1

2

� �
jjjujjj2 � c1c3ðc4 þ 1Þec "1=2jjjujjj2

¼ � jjjujjj2 � c � kuk21,�: ð9Þ

Therefore, we attain the coercivity of the bilinear form a1(�, �). g

We note that Assumption (B) is weaker than Assumption (A) for small ". More delicate

arguments are needed to weaken the conditions on data for the coercivity in two/three

dimension spaces.
Since the BLT problem in the pointwise form is ill-posed, we will study the BLT

problem through a Tikhonov regularization [29–31]. We shall only consider the case where

the refractive index is constant near the domain boundary. Consequently, the boundary

condition (2) reduces to

uþ 2D@�u ¼ 0 on �: ð10Þ

Combine (3) and the boundary condition (10) to get

u ¼ 2 g on �0: ð11Þ

From (3), we obtain another mixed boundary condition

D@�u ¼ �g on �0, uþ 2D@�u ¼ 0 on �1: ð12Þ

We form two boundary value problems: Equation (1) with boundary condition (10)

and Equation (1) with boundary condition (12). We then try to minimize the differences

between the solutions of these problems with 2 g on the boundary �0. In addition to a1(�, �)

defined in (5), let

a2ðu, vÞ ¼

Z
�

D r �
2

n
rn

� �
u � rvþ �au v

� �
dxþ

1

2

Z
�1

u vd� 8 u, v 2 H1ð�Þ:

For any T2Q, denote by u1¼ u1(T), u2¼ u2(T)2H
1(�) the corresponding weak

solutions:

a1ðu1, vÞ ¼ ðT, vÞ0,�0
8 v 2 H1ð�Þ, ð13Þ

a2ðu2, vÞ ¼ �ð g, vÞ0,�0
þ ðT, vÞ0,�0

8 v 2 H1ð�Þ: ð14Þ
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Under Assumption (A), both problems are uniquely solvable. Moreover, we have the

bound

ku2ðT Þk1,� � c ðk gk0,�0
þ kTk0,�0

Þ: ð15Þ

For r2 [0, 1] and �� 0, we introduce the following cost functional:

Jr,�ðT Þ ¼
r

2
ku1ðT Þ � 2 gk20,�0

þ
1� r

2
ku2ðT Þ � 2 gk20,�0

þ
�

2
kTk20,�0

8T 2 Q: ð16Þ

Then we define a general regularized BLT problem as follows.

Problem 2.2 Find Sr,�2Qad such that

Jr,�ðSr,�Þ ¼ inf
T2Qad

Jr,�ðT Þ, ð17Þ

where Qad is a convex closed subset of the space Q.

We comment that here we have introduced a family of regularized BLT problems,

depending on a parameter r2 [0, 1]. The conventional choice for solving the BLT problem

is r¼ 1. However, the numerical results in the final section suggest that a proper choice of

the parameter r leads to an improvement in the reconstruction accuracy compared to

the conventional choice, with only a slight increase in the computational effort since the

stiffness matrix and the load vector in the finite element solution of the problem (13) can

be used in constructing the finite element system for the problem (14).
By extending the arguments used in [10,12], we can show the following main properties

of Problem 2.2.

PROPOSITION 2.3 For any �4 0 and r2 [0, 1], Problem 2.2 has a unique solution Sr,�2Qad

which can be characterized by a variational inequality

�ðSr,�,T� Sr,�Þ0,�0
þ r ðu1ðSr,�Þ � 2 g, u1ðT� Sr,�ÞÞ0,�0

þ ð1� rÞ ðu2ðSr,�Þ � 2 g, u2ðT Þ � u2ðSr,�ÞÞ0,�0
� 0 8T 2 Qad: ð18Þ

When Qad is a subspace of Q, the inequality reduces to a variational equality for

any T2Qad

�ðSr,�,T Þ0,�0
þ r ðu1ðSr,�Þ � 2 g, u1ðT ÞÞ0,�0

þ ð1� rÞ ðu2ðSr,�Þ � 2 g, u2ðT Þ � u2ð0ÞÞ0,�0
¼ 0:

The solution Sr,� depends continuously on the measurement g2L2(�0), the regularized

parameter �4 0, coefficients D2L1(�), n2W1,1(�) and �a2L
1(�).

Assume that 02Qad. Then kSr,�k0,�0
! 0 as a!1.

Assume taht Sr�Qad, the solution set of Problem 2.2 for �¼ 0, is nonempty. Then,

Sr,�!Sr,* as �! 0þ, where Sr,*2Sr satisfies

kSr,�k0,�0
¼ inf

S2Sr
kSk0,�0

:

We also have the following result.

PROPOSITION 2.4 Let �4 0. Denote by S0,� and S1,� the unique solutions of

Problem 2.2 for r¼ 0 and r¼ 1, respectively. Then Sr,�!S0,� in Q as r! 0þ, Sr,�!S1,�

in Q as r! 1�.
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Proof We only prove the second assertion, i.e. Sr,�!S1,� in Q as r! 1�. The first
assertion can be proved similarly. For each parameter �,

Jr,�ðSr,�Þ � Jr,�ðS1,�Þ:

So the sequence {Sr, �}r is bounded, and there is a subsequence denoted again by {Sr,�}r
and an element S*,�2Q, such that

Sr,� * S�,�, in Q as r! 1�:

Apparently, S*,�2Qad. Denote u1,r¼ u1(Sr,�), u2,r¼ u2(Sr,�). Then

a1ðu1,r, vÞ ¼ ðSr,�, vÞ0,�0
8v 2 H1ð�Þ, ð19Þ

a2ðu2,r, vÞ ¼ �ð g, vÞ0,�0
þ ðSr,�, vÞ0,�0

8v 2 H1ð�Þ: ð20Þ

From relations (7) and (15) as well as the boundedness of sequence {Sr,�}r, we gain the
boundedness of sequences {ku1, rk1,�}r2 and {ku2, rk1,�}r2. Consequently, resorting to a
further subsequence if necessary, there are u1,*, u2,*2H

1(�) such that

u1,r * u1,�, u2,r * u2,� in H1ð�Þ, as r! 1�:

Particularly, u1,r* u1,* in L2(�) and u2,r* u2,* in L2(�1), as r! 1�. Then pass through
r! 1� in (19) and (20) to get

a1ðu1,�, vÞ ¼ ðS�,�, vÞ0,�0
8v 2 H1ð�Þ,

a2ðu2,�, vÞ ¼ �ð g, vÞ0,�0
þ ðS�,�, vÞ0,�0

8v 2 H1ð�Þ:

Hence, u1,*¼ u1(S*,�) and u2,*¼ u2(S*,�), that is,

u1ðSr,�Þ* u1ðS�,�Þ, u2ðSr,�Þ* u2ðS�,�Þ in H1ð�Þ, as r! 1�:

Letting r! 1� in (18), we have

ðu1ðS�,�Þ � 2 g, u1ðT� S�,�ÞÞ0,�0
þ �ðS�,�,T� S�,�Þ0,�0

� 0 8T 2 Qad, ð21Þ

which gives S*,�¼S1,� from the uniqueness of the solution of Problem 2.2 for r¼ 1.
Therefore, the entire sequence {Sr,�}r converges weakly to S1,� as r! 1�, from the
independence of the choice of subsequences in the arguments above. Strong convergence is
shown as follows. Take T¼S1,� in (18) and T¼Sr,� in (21), and add the two resulting
inequalities to obtain

r ku1ðSr,� � S1,�Þk
2
0,�0
þ �kSr,� � S1,�k

2
0,�0

� ð1� rÞ ðu2ðSr,�Þ � 2 g, u2ðSr,�Þ � u2ðS1,�ÞÞ0,�0
! 0, as r! 1�:

We conclude the strong convergence of {Sr,�}r to S1,� as r! 1�. g

3. Numerical approximation of BLT

In this section, we consider numerical approximation of Problem 2.2. The standard FEMs
are applied to discretize the BLT problem. Let {T h}h be a regular family of triangulations
over domain � with meshsize h4 0. For each triangulation T h¼ {K}, define the linear
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finite element space Vh¼
4
fv 2 Cð�Þ, vjK 2 P1 8K 2 T hg. Here Pk denotes the space of all

polynomials of degree� k. Assume that {T 0,H}H is a regular family of triangulations of �0

with meshsize H. Define the space QH
¼ {T2Q |TjK2P0(K) 8K2T 0,H} and set

QH
ad ¼ QH \Qad. Let �H: Q!QH be an orthogonal projection operator defined by

ð�HT,THÞ0,�0
¼ ðT,THÞ0,�0

8T 2 Q, TH 2 QH: ð22Þ

Define uh1 ¼ uh1ðT Þ, u
h
2 ¼ uh2ðT Þ 2 Vh by

a1ðu
h
1, v

hÞ ¼ ðT, vhÞ0,�0
8vh 2 Vh,

a2ðu
h
2, v

hÞ ¼ �ð g, vhÞ0,�0
þ ðT, vhÞ0,�0

8vh 2 Vh:

Then we introduce a discrete cost functional

Jhr,�ðT Þ ¼
r

2
kuh1ðT Þ � 2 gk20,�0

þ
1� r

2
kuh2ðT Þ � 2 gk20,�0

þ
�

2
kTk20,�0

: ð23Þ

Problem 3.1: Find Sh,H
r,� 2 QH

ad such that

Jh
r,�ðS

h,H
r,� Þ ¼ inf

TH2QH
ad

J h
r,�ðT

HÞ:

Results similar to Propositions 2.3 and 2.4 hold for Problem 3.1.

The solution Sh,H
r,� of Problem 3.1 is characterized by the inequality

�ðSh,H
r,� ,TH � Sh,H

r,� Þ0,�0
þ r ðuh1ðS

h,H
r,� Þ � 2 g, uh1ðT

H � Sh,H
r,� ÞÞ0,�0

þ ð1� rÞ ðuh2ðS
h,H
r,� Þ � 2 g, uh2ðT

HÞ � uh2ðS
h,H
r,� ÞÞ0,�0

� 0 8TH2QH
ad: ð24Þ

We now provide a sample error bound for the approximate solution of Problem 2.2.

For this purpose, assume �2C1,1, D2C 0,1, n2C1,1 and g2L2(�0). Then for the solutions

of the BVP (13) and (14), we have the regularity u1(T)2H
2(�) and u2(T)2H

3/2(�) [32].

The following error bounds are useful [12]: there exists a constant c4 0 independent of �,
h and H such that for any T2Q,

kuh1ðT Þ � u1ðT Þk0,� þ hkuh1ðT Þ � u1ðT Þk1,� � c h2kTk0,�0
,

kuh2ðT Þ � u2ðT Þk0,� þ hkuh2ðT Þ � u2ðT Þk1,� � c h3=2ðk gk0,�0
þ kTk0,�0

Þ:

From these error bounds, together with the trace inequality kvk20,� � ckvk0,�kvk1,� for

any v2H1(�), we obtain

kuh1ðT Þ � u1ðT Þk0,�0
� c h3=2kTk0,�0

8T 2 Q ð25Þ

kuh2ðT Þ � u2ðT Þk0,�0
� c hðk gk0,�0

þ kTk0,�0
Þ 8T 2 Q: ð26Þ

Therefore, similar to the proof of Lemma 4.7 in [12], we have

kuh1ð�
HTÞ � u1ðT Þk0,�0

� cHkT��HTk0,�0
þ c h3=2kTk0,�0

8T 2 Q ð27Þ

kuh2ð�
HTÞ � u2ðT Þk0,�0

� cHk�HT� Tk0,�0
þ c hðk gk0,�0

þ kTk0,�0
Þ 8T 2 Q: ð28Þ
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Denote

Eh,H
r,� ¼ � kSr,� � Sh,H

r,� k
2
0,�0
þ rku1ðSr,�Þ � uh1ðS

h,H
r,� Þk

2
0,�0

þ ð1� rÞku2ðSr,�Þ � uh2ðS
h,H
r,� Þk

2
0,�0

,

EHðSr,�Þ ¼ kSr,� ��HSr,�k0,�0
¼ inf

TH2QH
ad

kSr,� � THk0,�0
:

Then we have the following error bound.

THEOREM 3.2 There exists a constant c4 0 independent of �, r, h and H such that

Eh,H
r,� � c rku1ðSr,�Þ � 2 gk0,�0

ðHEHðSr,�Þ þ h3=2kSr,�k0,�0
Þ

þ c r ðHEHðSr,�Þ þ h3=2kSr,�k0,�0
Þ
2

þ c ð1� rÞku2ðSr,�Þ � 2 gk0,�0
ðHEHðSr,�Þ þ hkSr,�k0,�0

Þ

þ c ð1� rÞ ðHEHðSr,�Þ þ hkSr,�k0,�0
Þ
2: ð29Þ

Proof Substitute T ¼ Sh,H
r,� in (18), TH

¼�HSr,� in (24), and add the two resulting

inequalities to obtain

Eh,H
� � �ðSh,H

r,� ,�HSr,� � Sr,�Þ0,�0

þ r ðu1ðSr,�Þ � 2 g, uh
1 ð�

HSr,�Þ � u1ðSr,�ÞÞ0,�0

þ r ðu1ðSr,�Þ � uh1ðS
h,H
r,� Þ, u1ðSr,�Þ � uh1ð�

HSr,�ÞÞ0,�0

þ ð1� rÞ ðu2ðSr,�Þ � 2 g, uh
2 ð�

HSr,�Þ � u2ðSr,�ÞÞ0,�0

þ ð1� rÞ ðu2ðSr,�Þ � uh
2 ðS

h,H
r,� Þ, u2ðSr,�Þ � uh2ð�

HSr,�ÞÞ0,�0

� �ðSh,H
r,� ,�HSr,� � Sr,�Þ0,�0

þ rku1ðSr,�Þ � 2 gk0,�0
kuh

1 ð�
HSr,�Þ � u1ðSr,�Þk0,�0

þ
r

2
ku1ðSr,�Þ � uh1ðS

h,H
r,� Þk

2
0,�0
þ

r

2
ku1ðSr,�Þ � uh1ð�

HSr,�Þk
2
0,�0

þ ð1� rÞku2ðSr,�Þ � 2 gk0,�0
kuh

2 ð�
HSr,�Þ � u2ðSr,�Þk0,�0

þ
1� r

2
ku2ðSr,�Þ � uh2ðS

h,H
r,� Þk

2
0,�0
þ
1� r

2
ku2ðSr,�Þ � uh2ð�

HSr,�Þk
2
0,�0
:

Applying (22), (27) and (28), we obtain (29). g

Under additional assumptions, we can deduce more concrete error bounds from
Theorem 3.2. For instance, if Qad is a bounded set in the space Q, then there is a constant

c4 0 independent of �, h and H such that

Eh,H
� � cHEHðSr,�Þ þ c r h3=2 þ c ð1� rÞ h:

We note that as we have seen in Section 3 that with proper choice of � related to h and

H, we can show the convergence of Sh,H
r,� to Sr,* as h,H,�! 0þ, assuming that Sr

is nonempty, where Sr,* has minimal L2-norm among the solution set of Problem 2.2

with �¼ 0.

4. Numerical experiments

In this section, we will show some simulation results. We limit ourselves to the two-
dimensional case.
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4.1. Implementation detail

Let ’i(x)2V
h be the nodal basis functions of the finite element space V h associated

with the grid nodes xi, i¼ 1, 2, . . . ,N (N is the number of nodes of the triangulation T h).

Then, uh1 ¼
PN

i¼1 u
ð1Þ
i ’i, uh2 ¼

PN
i¼1 u

ð2Þ
i ’i, with u

ð1Þ
i ¼ uh

1 ðxiÞ and u
ð2Þ
i ¼ uh

2 ðxiÞ,

respectively. Denote triangulation T 0,H¼ {K0,l}, l¼ 1, 2, . . . ,N0 (N0 is the number of

elements of triangulation T 0,H), that is, �0 ¼
SN0

l¼1 K0,l, then an approximate light

source SH
2QH has form SH |K0,l

¼ s0,l with s0,l� 0, l¼ 1, 2, . . . ,N0. Assume that T 0,H and

T h are consistent, that is, T 0,H can be viewed as a restriction of the triangulation T h

on �0. We further let the end points of �0 be grid points of the triangulation T h. For the

ease of our statement, denote I¼ {1, 2, . . . ,N}, I0¼ {1, 2, . . . ,N0}, Ib¼ {i2 I | xi2�},

I 0b ¼ fi 2 I j xi 2 �0g ¼ fb1, b2, . . . , bN 0
b
g with b1 5 b25� � �5 bN0

b
and N0

b the number of

the grid nodes on the boundary �0, and I1b ¼ fi 2 I j xi 2 �1g with N1
b the number of the

grid nodes on the boundary �1. Moreover, define

A ¼ ðaijÞN	N, aij ¼
R

� Dr’j � r’idx, i, j 2 I,

B ¼ ðbijÞN	N, bij ¼ �
R

� D
2 ’j
n rn � r’i dx, i, j 2 I,

C ¼ ðcijÞN	N, cij ¼
R

�
�a ’j ’i dx, i, j 2 I,

E ¼ ðeijÞN	N, eij ¼
1
2

R
�
’j ’i d�, i, j 2 Ib,

0, otherwise,

(

E 0 ¼ ðe 0ij ÞN	N0
b
, e 0ij ¼

1
2

R
�0
’j ’i d�, i, j 2 I 0b ,

0, j 2 I 0b , i 2 InI 0b ,

(

E1 ¼ ðe1ijÞN	N, e1ij ¼
1
2

R
�1
’j ’i d�, i, j 2 I1b,

0, otherwise,

(

R ¼ ðrijÞN	N0
, rij ¼

R
K0,j
’i dx, i 2 Ij, j 2 I0,

0, i 2 InIj, j 2 I0,

(
where Ij ¼ fi 2 I j bKi \ K0,j 6¼ ;g and bKi is the support of the basis function ’i.
We further denote by U (1) and U (2) the vectors ðu

ð1Þ
1 , u

ð1Þ
2 , . . . , u

ð1Þ
N Þ

t and

ðu
ð2Þ
1 , u

ð2Þ
2 , . . . , u

ð2Þ
N Þ

t, respectively, and again by S the vector (s1, s2, . . . , sN0
)t, where

a superscript t stands for transposition. For numerical simulation, bij is computed

as follows.

bij ¼ �

Z
�

D
2rn

n
’jr’i dx ¼ �

X
K2T h

Z
K

D
2rn

n
’jr’i dx

¼ �
X
K2T h

rn

n

� �
GK

Z
K

2D’jr’i dx:

Here (�(x))GK
denotes the value of function � at the gravitational centre of the triangle

K. To obtain the representation of matrix form, we let

L1 ¼ Aþ Bþ Cþ E, F 1 ¼ RS,
L2 ¼ Aþ Bþ Cþ E1, F2 ¼ E 0gþ F 1,
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where we use the same symbol g for the function g(x) and the vector g ¼ ð g1, g2, . . . , gN0
b
Þ
t

with gi ¼ gðxbiÞ, i ¼ 1, 2, . . . ,N 0
b . Then we have the systems

Lk U ðkÞ ¼ Fk, k ¼ 1, 2: ð30Þ

We can solve the linear system (30) with any fast methods including direct and iterative

methods. In our experiments, we use direct method when the system size is relatively small

and use bi-conjugate gradient method (BiCG) [33] when the system size is large.

Consequently, the functional Jh
r,�ðS

hÞ reduces to

Jh
r,�ðS

hÞ ¼
�

2

XN0

l¼1

s2l jK0,lj þ
r

2

Z
�0

X
i2I0

b

u
ð1Þ
i ’i � 2 g

0@ 1A2

d�

þ
1� r

2

Z
�0

X
i2I0

b

u
ð2Þ
i ’i � 2 g

0@ 1A2

d�,

where jK0,lj is the area of the element K0,l.
Define Vh

�0
¼ fvj�0

j v 2 Vhg � L2ð�0Þ, which is spanned by f’i j�0
gi2I 0

b
. Express the

solutions U (k) (k¼ 1, 2) of the linear systems (30) as U (1)
¼M1S and U (2)

¼ �þM2S with

Mk ¼ ðmk
ij ÞN	N0

and � a vector of N components. Let

�0 ¼ ð�0i ÞN0
b
	1, �0i ¼ �ðbiÞ, i ¼ 1, 2, . . . ,N 0

b ,

E 00 ¼ ðe 00ij ÞN 0
b
	N 0

b
, e 00ij ¼ E0ðbi, j Þ, i, j ¼ 1, 2, . . . ,N 0

b ,

Mk0 ¼ ðmk0
ij ÞN0

b
	N0

, mk0
ij ¼Mkðbi, j Þ, i ¼ 1, 2, . . . ,N 0

b , j 2 I0, k ¼ 1, 2:

We further have

f ðS Þ 
 Jh
r,�ðS

hÞ

¼
�

2

XN0

l¼1

s2l jK0,lj þ
r

2

Z
�0

X
i2I0

b

u
ð1Þ
i ’i � 2 g

0@ 1A2

d�

þ
1� r

2

Z
�0

X
i2I0

b

u
ð2Þ
i ’i � 2 g

0@ 1A2

d�

¼
�

2

XN0

l¼1

s2l jK0,lj þ
r

2

Z
�0

"XN0
b

i¼1

 XN0

j¼1

m1
bij
sj � 2 gi

!
’bi

#2

d�

þ
1� r

2

Z
�0

"XN0
b

i¼1

 XN0

j¼1

m2
bij
sj þ �bi � 2 gi

!
’bi

#2

d�

¼
�

2
StdiagðjK0,1j, jK0,2j, . . . , jK0,N0

jÞSþ
r

2
ðM10S� 2 gÞtE00ðM10S� 2 gÞ

þ
1� r

2
ðM20Sþ �0 � 2 gÞtE00ðM20Sþ �0 � 2 gÞ:
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Figure 1. Triangulation of � for a single light source problem.

Figure 2. (Available in colour online). Exact single light source.
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Then Problem 3.1 reduces to the following quadratic programming problem:

min
S2RN0 ,S�0

f ðS Þ: ð31Þ

4.2. Numerical results

In our simulations, the problem domain ��R
2 is a circle centred at the origin with

radius 20mm, the reduced scattering coefficient �0s ¼ 1:0, the absorption coefficient
�a¼ 0.020, and the refractive index

nðx, yÞ ¼ 1þ 0:5	 10�0:01 minf10:52,maxfx2þy2,9:52gg:
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0
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0.1

0.15
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Figure 3. (Available in colour online). Reconstructed single light source with NT¼ 968, N¼ 502 for
r¼ 0, r¼ 0.5, r¼ 0.9 and r¼ 1.

Table 1. Error kSh, h
r,� � SkQ for different parameter r.

r NT¼ 968, N¼ 502 NT¼ 3872, N¼ 1971 NT¼ 15,488, N¼ 7813

0 1.32667e� 3 1.21078e� 3 1.14923e� 3
0.1 1.32654e� 3 1.21022e� 3 6.84920e� 4
0.3 1.32644e� 3 1.20880e� 3 1.12576e� 3
0.5 1.32634e� 3 1.20844e� 3 1.07552e� 3
0.7 1.32619e� 3 1.20680e� 3 1.15209e� 3
0.9 1.32607e� 3 1.20620e� 3 1.15432e� 3
0.99 1.32600e� 3 1.20596e� 3 1.15331e� 3
0.999 1.32600e� 3 1.20511e� 3 1.15330e� 3
1 1.32600e� 3 1.20553e� 3 1.15330e� 3
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Figure 5. (Available in colour online). Reconstructed single light source with NT¼ 15488, N¼ 7813
for r¼ 0, r¼ 0.5, r¼ 0.9 and r¼ 1.

Figure 4. (Available in colour online). Reconstructed single light source with NT¼ 3872, N¼ 1971
for r¼ 0, r¼ 0.5, r¼ 0.9 and r¼ 1.
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Figure 7. (Available in colour online). Exact multiple light source.
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Figure 6. Triangulation of � for a multiple light source problem.
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With a given permissible region �0, we use Qad¼ {S2Q jS� 0 a.e. in �0} for the
admissible set of the light source function. We assume that the observations are available
on part of the boundary �0¼ {(x, y)j x2þ y2¼ 202; x� 0}, the measurement g on �0 is
polluted by noise with level 10%, and the Tikhonov regularization parameter �¼ 1	 10�5.
We use Delaunay elements for the triangulations. For a triangulation, denote by NT and
N the numbers of elements and nodes.

We first consider a single light source reconstruction problem. A light source of density
S(x, y)¼ (1� (xþ 10)2� y2)/	 is placed on a circle centred at (�10, 0) with radius 1mm.
Let the permissible region �0¼ {(x, y) j (xþ 10)2þ y25 22}. We show the triangulation
and the exact light source function S in Figures 1 and 2. Figures 3–5 show approximate
light source Sh,h

� for partition with NT¼968, N¼502, NT¼3872, N¼1971 and NT¼15488,
N¼7813, respectively. Each figure contains four pictures corresponding to r¼ 0, r¼ 0.5,
r¼ 0.9 and r¼ 1. We conclude from these figures that the smaller the meshsize is, the better
the light source reconstruction.

To see the influence of the parameter r on the accuracy of the numerical solution, we
report in Table 1 the numerical solution errors for several choices of the parameter. It can
be seen from Table 1 that for a fixed triangulation, error in approximate light source gets
smaller slightly when the parameter becomes bigger until near r¼ 1. We also observe that
it is possible to adjust the value of the parameter r so as to achieve better accuracy of the
approximate light source function than the conventional formulation (r¼ 1, corresponding
to a single forward boundary value problem). How to determine an optimal value for the

Figure 8. (Available in colour online). Reconstructed multiple light source with 1225 elements and
637 nodes, r¼ 1.
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parameter r is a topic worth further investigation. The numerical results also suggest that
generally the conventional choice r¼ 1 is quite satisfactory.

We then consider a reconstruction problem with two distinguish light sources. Place
two circular light sources with radius 2mm at (15, 3) and (15,�3), with densities
4� (x� 15)2� (y� 3)2 and 4� (x� 15)2� (yþ 3)2, respectively. We choose the permissible
region �0¼ {(x, y) j (x� 15)2/9þ y2/1005 1}. The triangulation and the exact light source
function are plotted in Figures 6 and 7. Reconstructed light source functions are shown in
Figures 8 and 9 with partition of 1225 triangle elements and 637 nodes, and partition of
4900 triangle elements and 2498 nodes respectively.

We observe that in all our numerical simulations, the light source functions are well
reconstructed.
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