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Abstract. In this paper, Morozov’s discrepancy principle is considered for

the non-convex αℓ1 − βℓ2 sparsity regularization (α > β > 0). It is shown
that if τ > 1 satisfies some conditions, there exists a regularization parameter

α such that δ ≤ ∥A(xδ
α,β) − yδ∥Y ≤ τδ holds. Furthermore, it is shown that

α converges to 0 as δ → 0. In addition, well-posedness and convergence rate

results are presented for the regularized solution under Morozov’s discrepancy

principle. Numerical simulation results are reported to illustrate the efficiency
of the proposed approach.

1. Introduction. In this paper, we consider solving an ill-posed operator equation
of the form

A(x) = y, (1)

where x ∈ ℓ2 is sparse, A : ℓ2 → Y is an operator from the ℓ2 space to a Banach
space Y , not necessarily linear. Norms in ℓ2 and Y are denoted by ∥ · ∥ℓ2 and
∥ · ∥Y , respectively. In practice, the right-hand side y is known only approximately
with an error up to a level δ ≥ 0. Therefore, we assume that we know yδ ∈ Y
with ∥yδ − y∥Y ≤ δ for a given δ ≥ 0. The most commonly adopted technique to
solve problem (1) is the ℓp-norm sparsity regularization with 1 ≤ p < 2, cf. the
monographs [20, 41] and the special issues [5, 14, 29, 30] for many developments on
regularization properties and minimization schemes. For 0 ≤ p < 1, the ℓp-norm
sparsity regularization has been studied in [7, 8, 10, 21, 45] and other references. We
refer the reader to [27, 33, 38] for alternatives to the ℓ0-norm sparsity regularization.

A non-convex regularization term of the form α∥ · ∥ℓ1 − β∥ · ∥ℓ2 (α > β > 0)
has attracted attention in the area of sparse recovery over the last five years, see
[15, 16, 34, 35, 47, 49] and references therein. In [15, 16], we investigate the well-
posedness and convergence rate of the non-convex sparsity regularization problem

min

{
J δ
α,β(x) =

1

2
∥A(x)− yδ∥2Y +Rα,β(x)

}
, (2)
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where x ∈ ℓ2 and

Rα,β(x) := α∥x∥ℓ1 − β∥x∥ℓ2 , α > β > 0.

Denoting η = β/α, we can equivalently express the objective function J δ
α,β(x) in

(2) as
1

2
∥A(x)− yδ∥2Y + αRη(x), (3)

where

Rη(x) := ∥x∥ℓ1 − η∥x∥ℓ2 , α > 0, 1 > η > 0.

The ℓ1 − ℓ2 regularizer was first addressed in [19] for nonnegative least squares
problems. Then it was extended to αℓ1−βℓ2 regularization ([15]). In [15], we present
the analysis of well-posedness and a numerical algorithm. The αℓ1−βℓ2 regularizer
behaves more and more like the ℓ0-norm as β/α → 1. Meanwhile, Rα,β(x) behaves
like to a constant multiple of the ℓ1-norm as β/α → 0. For the case β/α = 1,
Rα,β(x) is a good approximation of a constant multiple of ∥x∥ℓ0 . In addition, some
analogous penalties have been proposed, e.g. ℓ21 − ℓ22, ℓ1/ℓ2 etc. Nevertheless, there
lacks the theoretical analysis on the well-posedness of the regularization. These will
be done in forthcoming papers.

In practice, it is crucial to choose an appropriate regularization parameter α for
problem (2) where the parameter η is fixed. Generally speaking, there are two kinds
of rules to determine α, one is of a priori kind and the other is of a posterior kind.
For an a priori rule, α is chosen by α = O(δ), e.g. α = c δ with a fixed constant
c > 0. However, it is challenging to determine an optimal value of c. Among
a posteriori rules, Morozov’s discrepancy principle (MDP) is the most commonly
adopted technique to determine the regularization parameter α = α(δ, yδ) > 0 such
that

δ ≤ ∥A(xδ
α,β)− yδ∥Y ≤ τδ (4)

holds, where τ > 1 and xδ
α,β is a minimizer of J δ

α,β(x) in (2). If the minimizer of

J δ
α,β(x) is unique, it can be shown that there exists a regularization parameter α

such that (4) holds ([1, 2, 43]). However, due to the non-convexity of J δ
α,β(x), there

may exist multiple minimizers of J δ
α,β(x). One can not ensure the existence of α

such that (4) holds ([40, 43]). In this paper, we show that if τ is large enough, then
the existence of α satisfying (4) can be guaranteed. Furthermore, we discuss the
well-posedness and convergence rate of the αℓ1 − βℓ2 regularization under MDP.
In addition, we extend the technique discussed above to a general convex penalty
term.

1.1. Related works. The first theoretical analysis on MDP for Tikhonov regular-
ization dates back to 1966 ([39]). Several numerical algorithms have been proposed
to compute the regularization parameter α for the classical quadratic Tikhonov
regularization ([22, 36, 37]). Subsequently, MDP is extended to general convex reg-
ularizations. In [9], MDP is applied to the Tikhonov regularization with convex
penalty terms more general than the classical quadratic one. In [31], two itera-
tive parameter choice methods by MDP are proposed for non-smooth Tikhonov
regularization with general convex penalty terms.

We note that the results cited in the previous paragraph are limited to linear ill-
posed problems. Due to the existence of multiple minimizers, the techniques for lin-
ear ill-posed problems can not be extended to nonlinear ill-posed operator equations
directly. Indeed, a drawback of MDP lies in the fact that a regularization parameter
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with (4) might not exist for nonlinear operator equations. Special regularization
techniques are needed to analyze the existence of the regularization parameter α
which is determined by MDP. In [40], for the classical quadratic Tikhonov regu-
larization, it is shown that minor restrictions to the nonlinear operator F and the
solution x† of the equation F (x) = y can guarantee the existence of a regularization
parameter α such that δ ≤ ∥F (xδ

α)−yδ∥ ≤ τδ (τ > 1), and a convergence rate result
is proved. In [2], for a general convex penalty term, the existence of α is shown
under certain conditions. It is illustrated that for this parameter choice rule, α → 0
and δq/α → 0 (q ≥ 1) as the noise level δ goes to 0. In addition, convergence rate
analysis is given with respect to the generalized Bregman distance. In [3], conver-
gence rates are investigated using variational inequalities, where the regularization
parameter is determined by MDP. A relation between uniqueness of minimizers in
Tikhonov-type regularization and Morozov-like discrepancy principles is shown in
[1].

When the penalty term is non-convex, fewer results are available. Convergence
rate results can be found in [46] for the ∥ · ∥ℓ0 + ∥ · ∥2ℓ2 penalty term and in [15] for
the ∥ · ∥ℓ1 − η∥ · ∥ℓ2 penalty term. In these references, one needs additional source
condition and the assumption that there exists α such that MDP holds. To the
best of our knowledge, no result is available in the literature on the validity of MDP
when the penalty term is non-convex.

1.2. Contribution and organization. In [15], we introduced the non-convex
αℓ1 − βℓ2 sparsity regularization method, with the primary interest in the regu-
larization properties. However, there lacks a systematical and theoretical analysis
for MDP, especially on the existence of the regularization parameter α. The aim of
this paper is to extend MDP to the non-convex αℓ1 − βℓ2 sparsity regularization.

Throughout this paper, we assume the operator A has the following property:
there exists γ > 0 such that for arbitrary x1, x2 ∈ ℓ2,

∥A(x2)−A(x1)−A′(x1)(x2 − x1)∥Y ≤ γ∥A(x2)−A(x1)∥Y .
We prove there exits at least one α such that

δ ≤ ∥A(xδ
α,β)− yδ∥Y ≤

(
max

{
τ2δ2, (3 + 2γ)δ2 + δ(2 + 2γ)∥yδ −A(0)∥Y

}) 1
2 . (5)

Under (5), we investigate the well-posedness and convergence rate of the regularized
solution of problem (2). We show that with the parameter choice rule (5), α → 0
as the noise level δ goes to 0. When A is linear and bounded, we prove there exits
at least one α such that

δ ≤ ∥Axδ
α,β − yδ∥Y ≤

(
max

{
τ2δ2, 3δ2 + 2δ∥yδ∥Y

}) 1
2 .

For traditional MDP with linear ill-posed problems, the existence of α can be
guaranteed. Nevertheless, for nonlinear ill-posed problems, the discrepancy is not
continuous with respect to α. So it is challenge to choose an appropriate τ to
ensure the existence of α. The upper bound c(δ) in (5) seems loose. Nevertheless,
the modified MDP (5) can ensure the existence α. Once the existence of α is
guaranteed, we can determine an α by Algorithm 1 such that the modified MDP
(5) holds. So the upper bound c(δ) is natural for the development of the algorithm.
We present a numerical experiment to show the upper bound c(δ) is actually needed,
cf. Fig. 7.

Note that we can apply the same technique to nonlinear ill-posed operator equa-
tions with a general convex penalty term Φ(x). From [2], for a general convex
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penalty term, the existence of α can be guaranteed under a rigid condition, i.e.,

there is no α > 0 with minimizers xδ,1
α,β , x

δ,2
α,β such that

∥A(xδ,1
α,β)− yδ∥Y < δ < τδ < ∥A(xδ,2

α,β)− yδ∥Y .

This condition is difficult to verify. Indeed, if the general convex penalty term fulfills
some conditions, there exits at least one α such that (5) holds. These will be done
in forthcoming papers.

An outline of the rest of this paper is as follows. In the next section we introduce
the notation and review results of the αℓ1−βℓ2 sparsity regularization. In Section 3,
we investigate the existence of α determined by MDP. In addition, we give analogous
results for linear ill-posed problems. In Section 4, we present the well-posedness and
convergence rate of the regularized solution under MDP. Furthermore, we show that
MDP can guarantee α(δ, yδ) → 0 as δ → 0. Finally, numerical experiments about
linear and nonlinear ill-posed problems are presented in Section 5.

2. Preliminaries. Before discussing MDP, we briefly introduce some notation and
results of the αℓ1 − βℓ2 sparsity regularization.

Denote by

xδ
α,β ∈ argmin

x∈ℓ2

{
1

2
∥A(x)− yδ∥2Y + αRη(x)

}
(6)

a minimizer of the regularization function J δ
α,β(x) in (2). Let Lδ

α,β be the set of all

such minimizers xδ
α,β . An element x† ∈ ℓ2 is called an Rη-minimum solution of the

equation (1) if

A(x†) = y and Rη(x
†) = min

x∈ℓ2
{Rη(x) | A(x) = y}.

For any x = (x1, x2, · · · ) ∈ ℓ2, we define the index set

I(x) = {i ∈ N | xi ̸= 0}.

Throughout this paper, we will assume the operator A and the data yδ have the
following properties.

Condition 2.1. (i) A : ℓ2 → Y is Fréchet differentiable.
(ii) A : ℓ2 → Y is weakly sequentially closed, i.e. xn ⇀ x in ℓ2 and A(xn) ⇀ y in

Y implies that A(x) = y.
(iii) There exists a constant γ > 0 such that

∥A(x2)−A(x1)−A′(x1)(x2 − x1)∥Y ≤ γ∥A(x2)−A(x1)∥Y ∀x1, x2 ∈ ℓ2. (7)

(iv) There exist δ > 0 and τ > 1 such that

∥y − yδ∥Y ≤ δ < τδ ≤ ∥A(0)− yδ∥Y . (8)

The condition (7) was used in [18, pp. 278–279], [32, pp. 6], [42, pp. 69–70]. It
follows from (7) that

∥A′(x1)(x2 − x1)∥Y ≤ (1 + γ)∥A(x2)−A(x1)∥Y
which has been adopted by several researchers.

In (8), we require ∥A(0)− yδ∥Y ≥ τδ, which is a reasonable assumption. Indeed,
if δ ≤ ∥A(0) − yδ∥Y < τδ, then 0 can be viewed as a good approximation to
the regularized solution xδ

α,β . Moreover, in applications, it is almost impossible to
recover a solution from observed data of a size in the same order as the noise.
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Next, we recall some properties of Rη (0 < η < 1) which are crucial tools in
analyzing the existence of the regularization parameter α and the well-posedness of
the regularization, cf. [15] for their proofs.

Lemma 2.2. Let 0 < η < 1. The function Rη(x) in (3) has the following properties:
(i) (Coercivity) ∥x∥ℓ2 → ∞ implies Rη(x) → ∞.
(ii) (Weak lower semi-continuity) xn ⇀ x in ℓ2 implies lim infn Rη(xn) ≥ Rη(x).
(iii) (Radon-Riesz property) xn ⇀ x in ℓ2 and Rη(xn) → Rη(x) implies xn → x

in ℓ2.

Definition 2.3. (Morozov’s discrepancy principle) For fixed 0 < η < 1, given
τ > 1, choose α = α(δ, yδ) > 0 such that

δ ≤ ∥A(xδ
α,β)− yδ∥Y ≤ τδ (9)

holds for an element xδ
α,β ∈ Lδ

α,β .

The following first order necessary condition for problem (2) is standard ([16,
Lemma 3. 1]).

Lemma 2.4. Let

J (x) := G(x) + Φ(x), x ∈ ℓ2 (10)

where G is Fréchet differentiable and Φ is convex. If x̂ is a minimizer of J (x), then

⟨G
′
(x̂), z − x̂⟩ ≥ Φ(x̂)− Φ(z) for all z ∈ ℓ2. (11)

Corollary 1. Let 0 ̸= xδ
α,β ∈ ℓ2 be a minimizer of J δ

α,β(x) in (2). Then〈
A′(xδ

α,β)
∗
(
A(xδ

α,β)− yδ
)
−

βxδ
α,β

∥xδ
α,β∥ℓ2

, z − xδ
α,β

〉
≥ α∥xδ

α,β∥ℓ1 − α∥z∥ℓ1 for all z ∈ ℓ2.

(12)

Proof. Define

G(x) :=
1

2
∥A(x)− yδ∥2Y − β∥x∥ℓ2 and Φ(x) := α∥x∥ℓ1 .

Then

G′(x) = A′(x)∗
(
A(x)− yδ

)
− βx

∥x∥ℓ2
.

By Lemma 2.4, we have

⟨G′(xδ
α,β), z − xδ

α,β⟩ ≥ Φ(xδ
α,β)− Φ(z) for all z ∈ ℓ2. (13)

This proves the corollary.

3. Existence of regularization parameter. In this section, we discuss the exis-
tence of the regularization parameter α which is determined by MDP. In the rest of
this paper, we let 0 < η < 1 be fixed, and view α as the regularization parameter.
Then, β = αη. For fixed 0 < η < 1 and noise level δ > 0, define functions

F (xδ
α,β) :=

1

2
∥A(xδ

α,β)− yδ∥2Y , (14)

m(α) := J δ
α,β(x

δ
α,β) = minJ δ

α,β(x) (15)

for α ∈ (0,∞).
Next, we recall some properties of Rη(x

δ
α,β), F (xδ

α,β) and m(α), cf. [44] for their
proofs.
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Lemma 3.1. Rη(x
δ
α,β) is non-increasing, and F (xδ

α,β) and m(α) are non-decreasing

with respect to α ∈ (0,∞).

Lemma 3.2. Under Condition 2.1, there exist α1, α2 ∈ R+ such that

∥A(xδ
α1,β1

)− yδ∥Y < δ < τδ < ∥A(xδ
α2,β2

)− yδ∥Y ,
where β1 = α1η, β2 = α2η.

Proof. Let αn → 0 as n → ∞ and denote xn := xδ
αn,βn

∈ Lδ
αn,βn

. Let x† be an

Rη-minimum solution of the equation (1). Then,

1

2
∥A(xn)− yδ∥2Y ≤ m(αn) ≤ J δ

αn,βn
(x†) ≤ 1

2
δ2 + αnRη(x

†) → 1

2
δ2.

This implies that there exists a small enough α1 such that ∥A(xδ
α1,β1

)− yδ∥Y < δ.
Now let αn → ∞ as n → ∞. Then

0 ≤ Rη(xn) ≤
1

αn
J δ
αn,βn

(xn) ≤
1

αn

(
1

2
∥A(0)− yδ∥2Y

)
→ 0 = Rη(0).

By Lemma 2.2 (iii), this implies that xn → 0. Since A is weakly sequentially closed,
A(xn) ⇀ A(0) in Y . Hence,

lim inf
n→∞

∥A(xn)− yδ∥Y ≥ ∥A(0)− yδ∥Y > τδ.

So there exists a sufficiently large α2 such that ∥A(xδ
α2,β2

)− yδ∥Y > τδ.

Thanks to Condition 2.1 and Lemma 2.2, the following result is standard, cf. [18]
for its proof.

Lemma 3.3. Let αn → α > 0 as n → ∞. Denote by xn := xδ
αn,βn

a minimizer of

J δ
αn,βn

(x). Then {xn} contains a convergent subsequence {xnk
} such that xnk

→
xδ
α,β in ℓ2, where xδ

α,β is a minimizer of J δ
α,β(x).

Proposition 3.4. The function m(α) is continuous.

Proof. Suppose α → α0 ̸= 0. Let α0/2 < α < 3α0/2, β = αη and β0 = α0η. We
have

lim
α→α0

[
J δ
α,β(x

δ
α,β)− J δ

α0,β0
(xδ

α,β)
]
≤ lim

α→α0

[
J δ
α,β(x

δ
α,β)− J δ

α0,β0
(xδ

α0,β0
)
]

≤ lim
α→α0

[
J δ
α,β(x

δ
α0,β0

)− J δ
α0,β0

(xδ
α0,β0

)
]
,

i.e.

lim
α→α0

(α−α0)Rη(x
δ
α,β) ≤ lim

α→α0

[
J δ

α,β(x
δ
α,β)− J δ

α0,β0
(xδ

α0,β0
)
]
≤ lim

α→α0

(α−α0)Rη(x
δ
α0,β0

).

(16)

Since xδ
α,β is a minimizer of J δ

α,β(x),

F (xδ
α,β) + αRη(x

δ
α,β) ≤ F (0) + αRη(0) =

1

2
∥A(0)− yδ∥2Y .

Hence, Rη(x
δ
α,β) ≤ ∥A(0)− yδ∥2Y /α0, which implies Rη(x

δ
α,β) is bounded. Thus,

lim
α→α0

(α− α0)Rη(x
δ
α,β) = lim

α→α0

(α− α0)Rη(x
δ
α0,β0

) = 0. (17)

A combination of (16) and (17) implies that

lim
α→α0

[
J δ
α,β(x

δ
α,β)− J δ

α0,β0
(xδ

α0,β0
)
]
= 0.

This proves the lemma.
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Even though m(α) is continuous, the functions F (xδ
α,β) and Rη(x

δ
α,β) are not

necessarily continuous with respect to α. If (9) does not hold for any parameter α,
then ∥A(xδ

α,β) − yδ∥Y has a jump at a certain parameter. Actually, we have the

following lemma, the proof is similar to that of Theorem 2.3 in [44].

Lemma 3.5. For each α > 0, there exist xδ,1
α,β , x

δ,2
α,β ∈ Lδ

α,β such that

F (xδ,1
α,β) = inf

x∈Lδ
α,β

F (x), F (xδ,2
α,β) = sup

x∈Lδ
α,β

F (x).

A minimizer of J δ
α,β may be non-unique. In general, F (xδ

α,β) is set-valued and

discontinuous. Hence, the inequality (9) may not hold. More precisely, there exists
a regularization parameter α such that

∥A(xδ,1
α,β)− yδ∥Y < δ < τδ < ∥A(xδ,2

α,β)− yδ∥Y . (18)

To prove the existence of a regularization parameter α satisfying (9), it is sufficient

to ensure that there are no minimizers xδ,1
α,β , x

δ,2
α,β of J δ

α,β(x) for (18) to be valid.

Next we show if there is no parameter α such that (18) holds, then there exists α
satisfying (9). The proof is similar to that of Theorem 3.10 in [2].

Lemma 3.6. Assume Condition 2.1. If there is no α > 0 with minimizers xδ,1
α,β , x

δ,2
α,β

∈ Lδ
α,β such that (18) is valid, then there exist α = α(δ, yδ) > 0 and xδ

α,β ∈ Lδ
α,β

such that (9) holds.

Proof. Assume that no α fulfilling (9) exists. Define two sets

M := {α : ∃xδ
α,β ∈ Lδ

α,β with ∥A(xδ
α,β)− yδ∥Y < δ},

M̃ := {α : ∃xδ
α,β ∈ Lδ

α,β with ∥A(xδ
α,β)− yδ∥Y > τδ}.

Since there is no α > 0 with minimizers xδ,1
α,β , x

δ,2
α,β ∈ Lδ

α,β such that

∥A(xδ,1
α,β)− yδ∥Y < δ < τδ < ∥A(xδ,2

α,β)− yδ∥Y ,

M ∩ M̃ = ∅ and M ∪ M̃ = R+. Denote ᾱ := supM . It follows from Lemma 3.2 and
the monotonicity of F (xδ

α,β) with respect to α that 0 < ᾱ < ∞. Next, we consider
two cases:

Case 1. ᾱ ∈ M . Then we choose a sequence αn → ᾱ+. Denote xn := xδ
αn,βn

∈
Lδ
α,β . By Lemma 3.3, we can find a subsequence {xnk

} of {xn} and a minimizer

xδ
ᾱ,β̄

of J δ
ᾱ,β̄

(x) such that xnk
→ xδ

ᾱ,β̄
. Now αnk

> ᾱ, and because no parameter α

satisfying (18),
∥A(xnk

)− yδ∥Y > τδ (19)

for all αnk
. By Condition 2.1 (i), A is continuous. Then

∥A(xnk
)− yδ∥Y → ∥A(xδ

ᾱ,β̄)− yδ∥Y < δ, (20)

which contradicts to (19).

Case 2. ᾱ /∈ M . Here we choose a sequence αn → ᾱ− and we can find a subse-
quence {xnk

} of {xn} with xnk
→ xδ

ᾱ,β̄
. Then

∥A(xnk
)− yδ∥Y < δ. (21)

Meanwhile,
∥A(xnk

)− yδ∥Y → ∥A(xδ
ᾱ,β̄)− yδ∥Y > τδ, (22)

for k → ∞, which is a contradiction to (21).
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Note that the inequality (9) holds under the assumption there is no α satisfying

(18). This condition is difficult to verify. Next we prove that if xδ,1
α,β , x

δ,2
α,β satisfy

(18), then we can provide an estimate for ∥A(xδ,2
α,β)− yδ∥2Y .

Lemma 3.7. Assume xδ,1
α,β, x

δ,2
α,β satisfy (18). Then

τ2δ2 < ∥A(xδ,2
α,β)− yδ∥2Y ≤ (3 + 2γ)δ2 + δ(2 + 2γ)∥yδ −A(0)∥Y .

Proof. Denote x1 := xδ,1
α,β , x2 := xδ,2

α,β . If x1 = 0, by (18), ∥A(0) − yδ∥Y < δ,

contradicting to the assumption ∥A(0) − yδ∥ > δ. Hence, x1 ̸= 0. From Corollary
1, we have〈

A′(x1)
∗ (A(x1)− yδ

)
− βx1

∥x1∥ℓ2
, z − x1

〉
≥ α∥x1∥ℓ1 − α∥z∥ℓ1 for all z ∈ ℓ2. (23)

Take z = 0 in (23),〈
A′(x1)

∗ (A(x1)− yδ
)
− βx1

∥x1∥ℓ2
, 0− x1

〉
≥ α∥x1∥ℓ1 − α∥0∥ℓ1 .

Then,

α∥x1∥ℓ1 ≤
〈
A′(x1)

∗(A(x1)− yδ)− βx1

∥x1∥ℓ2
,−x1

〉
≤ ∥A(x1)− yδ∥Y ∥A′(x1)x1∥Y + β∥x1∥ℓ2 .

It follows from Condition 2.1 (iii) that

α∥x1∥ℓ1 − β∥x1∥ℓ2 ≤ ∥A(x1)− yδ∥Y ∥A′(x1)x1∥Y
≤ ∥A(x1)− yδ∥Y (1 + γ)∥A(0)−A(x1)∥Y . (24)

In addition,

1

2
∥A(x2)− yδ∥2Y ≤ 1

2
∥A(x2)− yδ∥2Y + α∥x2∥1 − β∥x2∥2

=
1

2
∥A(x1)− yδ∥2Y + α∥x1∥1 − β∥x1∥2. (25)

A combination of (24) and (25) implies that

1

2
∥A(x2)− yδ∥2Y ≤ 1

2
δ2 + δ(1 + γ)∥A(x1)− yδ + yδ −A(0)∥Y

≤ 2γ + 3

2
δ2 + δ(1 + γ)∥A(0)− yδ∥Y .

This proves the lemma.

From Lemmas 3.6 and 3.7, we deduce the following result.

Theorem 3.8. Assume Condition 2.1. Then there exist a regularization parameter
α such that

δ ≤ ∥A(xδ
α,β)− yδ∥Y ≤ c(δ), (26)

where c(δ) :=
(
max

{
τ2δ2, (3 + 2γ)δ2 + δ(2 + 2γ)∥yδ −A(0)∥Y

})1/2
.
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We note that the upper bound c(δ) from Theorem 3.8 is only O(δ1/2). Never-
theless, in Theorem 3.10, we prove α → 0 as δ → 0. So if the noise level is small
enough, we can obtain a good approximation of the value of α. Furthermore, in
Section 4, we show xδ

α,β → x† as δ → 0. It implies that we can obtain a satisfactory
inversion results if the noise level is small enough.

For a numerical realization of MDP (26), we can make use of an iterative algo-
rithm described in [40], cf. Algorithm 1. Even though α is determined from the
upper bound: ∥A(xδ

α,β) − yδ∥Y = c(δ), we can still obtain the convergence of the
regularized solution. Numerical simulation results reported in Section 5 show that
we can obtain better inversion results if α is determined by Algorithm 1.

Though the upper bound c(δ) seems loose, the existence of α can be guaranteed.
In some applications of inverse problems, one has to assume the existence of α such
that δ ≤ ∥yδ−A(xδ

α,β)∥Y ≤ c δ. Here, the upper bound is O(δ), but it is challenging
to choose an appropriate c. As a result, one can not find α with an algorithm similar
to Algorithm 1.

Algorithm 1 Iterative algorithm for α under MDP (5)

Choose τ > 0, η = 1, 0 < q < 1, α0 > 0 with ∥A(xδ
α0,β0

)− yδ∥Y > c(δ)
set j = 0
while ∥A(xδ

αj ,βj
)− yδ∥Y > c(δ)

j = j + 1
αj = qαj−1

compute xδ
αj ,βj

end
αmax
j = αj−1, α

min
j = αj

while δ ≤ ∥A(xδ
αj ,βj

)− yδ∥Y ≤ c(δ) not true
j = j + 1
αj =

(
αmin
j−1 + αmax

j−1

)
/2

compute xδ
αj ,βj

if ∥A(xδ
αj ,βj

)− yδ∥Y > c(δ) then αmax
j = αj

if ∥A(xδ
αj ,βj

)− yδ∥Y < δ then αmin
j = αj

end

In the following, we will show that for MDP, α ≡ α(δ, yδ) → 0 as the noise level
δ → 0.

Lemma 3.9. Let α > 0 be fixed. If A(x∗) = y and

x∗ ∈ argmin
x∈ℓ2

{
1

2
∥A(x)− y∥2Y + αRη(x)

}
,

then x∗ = 0.

Proof. By the assumption, we have

αRη(x
∗) =

1

2
∥A(x∗)− y∥2Y + αRη(x

∗)

≤ 1

2
∥A((1− t)x∗)− y∥2Y + αRη((1− t)x∗), (27)
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for any t ∈ (0, 1). Since Rη((1− t)x∗) = (1− t)Rη(x
∗), we can rewrite (27) as

0 ≤ αRη(x
∗) ≤ 1

2

∥A((1− t)x∗)− y∥2Y
t

.

Since

A((1− t)x∗)− y = A(x∗)+A′(x∗)(−tx∗)+ o(∥− tx∗∥ℓ2)− y = A′(x∗)(−tx∗)+ o(t),

we have

0 ≤ αRη(x
∗) ≤ t

2
∥A′(x∗)x∗ + o(1)∥2Y .

Take the limit as t → 0+ to obtain Rη(x
∗) = 0. Since

(1− η)∥x∗∥ℓ1 + η(∥x∗∥ℓ1 − ∥x∗∥ℓ2) = Rη(x
∗) = 0,

we must have x∗ = 0.

Theorem 3.10. Let δn → 0 and yδn → y as n → ∞. Then αn → 0 where
αn := α(δn, y

δn) is the regularization parameter obtained from MDP (9) with δ
replaced by δn.

Proof. Suppose αn does not converge to 0, i.e. ∃ α0 > 0, ∀ N ∈ N+, ∃ n0 > N
such that |αn0

− 0| ≥ α0. This implies that there exists a subsequence of {αn}, still
denoted by {αn} such that αn ≥ α0. Denote

xα0
n ∈ argmin

x∈ℓ2

{
1

2
∥A(x)− yδn∥2Y + α0Rη(x)

}
and

xn := xδn
αn,βn

∈ argmin
x∈ℓ2

{
1

2
∥A(x)− yδn∥2Y + αnRη(x)

}
.

By Lemma 3.1, ∥A(xδ
α,β)− yδ∥2Y is non-decreasing with respect to α. Hence,

1

2
∥A(xα0

n )− yδn∥2Y ≤ 1

2
∥A(xn)− yδn∥2Y

≤ 1

2
max{τ2δ2n, (3 + 2γ)δ2n + δn(2 + 2γ)∥yδn −A(0)∥Y } → 0.

(28)

By the definition of xα0
n , there exist x∗ ∈ ℓ2 and a subsequence {xα0

nk
} such that

xα0
nk

⇀ x∗ in ℓ2. Since A is weakly sequently closed and yδn → y, A(xα0
nk
)− yδnk ⇀

A(x∗)− y, it follows from the weak lower semi-continuity of the norm that

0 ≤ 1

2
∥A(x∗)− y∥2Y ≤ lim inf

k→∞

1

2
∥A(xα0

nk
)− yδnk ∥2Y

≤ 1

2
max{τ2δ2nk

, (3 + 2γ)δ2nk
+ δnk (2 + 2γ)∥yδnk −A(0)∥Y } → 0.

(29)

Hence, Ax∗ = y. In addition,

1

2
∥A(x∗)− y∥2Y + α0Rη(x

∗) ≤ lim inf
k→∞

{
1

2
∥A(xα0

nk
)− yδnk ∥2Y + α0Rη(x

α0
nk
)

}
≤ lim inf

k→∞

{
1

2
∥A(x)− yδnk ∥2Y + α0Rη(x)

}
=

1

2
∥A(x)− y∥2Y + α0Rη(x) (30)
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for any x ∈ ℓ2. Thus, x
∗ is a minimizer of 1

2∥A(x)−y∥2Y +α0Rη(x). By Lemma 3.9,

this implies that x∗ = 0. Then y = A(0). Hence, ∥A(0) − yδ∥Y = ∥y − yδ∥Y ≤ δ,
contradicting to ∥A(0)−yδ∥ > δ in Condition 2.1 (iv). This proves the theorem.

The αℓ1 − βℓ2 sparsity regularization has been applied to solve linear ill-posed
problems, e.g. compressive sensing. Even ifA is linear, J δ

α,β is in general non-convex.
We require the linear operator A to be bounded. Then A satisfies Condition 2.1
(ii). Hence, all lemmas and propositions in Section 2 and 3 hold. Note that if A
is linear, Condition 2.1 (iii) holds for any γ ≥ 0. When γ = 0, we can state the
following result.

Theorem 3.11. If A in (1) is linear and bounded, then there exists a parameter α
such that

δ2 ≤ ∥Axδ
α,β − yδ∥2Y ≤ max

{
τ2δ2, 3δ2 + 2δ∥yδ∥Y

}
. (31)

Note that the analysis of well-posedness and convergence rate under (31) is sim-
ilar to that for non-linear ill-posed problems.

4. Regularization properties. In this section we consider the well-posedness of
the regularization method. We prove that the regularized solution xδ

α,β defined by

(6) converges to an Rη-minimum solution of the problem A(x) = y. In addition, we
discuss the convergence rate of xδ

α,β . The proofs are along the lines of standard qua-

dratic Tikhonov regularization ([18]) and sparsity regularization ([24, 28, 41, 46]).
However, the convergence rate is different from that in [15] since the regularization
parameter α is now determined by (26).

Theorem 4.1. (Convergence) Let xδn
αn,βn

be a minimizer of J δn
αn,βn

(x) defined by

(2) with the data yδn satisfying ∥y − yδn∥ ≤ δn, where δn → 0 if n → ∞ and yδn

belongs to the range of A. Let αn be chosen by the discrepancy principle (26). Then

there exists a subsequence of {xδn
αn,βn

}, still denoted by {xδn
αn,βn

}, that converges to

an Rη-minimizing solution x† in ℓ2. In addition, if the Rη-minimizing solution x†

is unique, then
lim
n→∞

∥xδn
αn,βn

− x†∥ℓ2 = 0.

Proof. Denote yn := yδn , xn := xδn
αn,βn

, η := βn/αn. By the definition of xn, we
obtain

1

2
∥A(xn)− yn∥2Y + αn∥xn∥ℓ1 − βn∥xn∥ℓ2

≤ 1

2
∥A(x†)− yn∥2Y + αn∥x†∥ℓ1 − βn∥x†∥ℓ2

≤ 1

2
δ2n + αn∥x†∥ℓ1 − βn∥x†∥ℓ2 . (32)

By (26), this implies that Rη(xn) ≤ Rη(x
†). Hence, the sequence {R(xn)} is

bounded. Denote

c(δn) :=
(
max

{
τ2δ2n, (3 + 2γ)δ2n + δn(2 + 2γ)∥yδn −A(0)∥Y

}) 1
2 .

We have c(δn) → 0 as δn → 0. In addition,

∥A(xn)− y∥Y ≤ ∥A(xn)− yn∥Y + ∥y − yn∥Y ≤ c(δn) + δn. (33)

Then
lim

n→∞
A(xn) = y. (34)
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On the other hand, it follows from (32) that

lim sup
n→∞

(∥xn∥ℓ1 − η∥xn∥ℓ2) ≤ ∥x†∥ℓ1 − η∥x†∥ℓ2 . (35)

Since ∥xn∥ℓ1−η∥xn∥ℓ2 is bounded, there exist an element x∗ ∈ ℓ2 and a subsequence
of {xn}, still denoted by {xn}, such that xn ⇀ x∗ in ℓ2. Together with (34), it
follows that

∥A(x∗)− y∥Y ≤ lim inf
n→∞

∥A(xn)− y∥Y = 0.

Hence, Ax∗ = y. Meanwhile, by Lemma 2.2 (ii), we have

∥x∗∥ℓ1 − η∥x∗∥ℓ2 ≤ lim inf
n

(∥xn∥ℓ1 − η∥xn∥ℓ2)

≤ ∥x†∥ℓ1 − η∥x†∥ℓ2 . (36)

By the definition of x†, x∗ is an Rη-minimizing solution. If the Rη-minimizing
solution is unique, then x∗ = x†. A combination of (35) and (36) implies ∥xn∥ℓ1 −
η∥xn∥ℓ2 → ∥x†∥ℓ1 − η∥x†∥ℓ2 . Thus, Rη(xn) → Rη(x

†). Then lim
n→∞

∥xn − x†∥ℓ2 = 0

by Lemma 2.2 (iii).

Assumption 4.2. Let x† ̸= 0 be an Rη-minimizing solution of the problem A(x) =
y that is sparse. There exists an ωi ∈ Y such that

ei = A′(x†)∗ωi ∀ i ∈ I(x†). (37)

In addition, assume there exists a fixed M > 0 such that ∥x∥ℓ∞ ≤ M . Define
M := {x ∈ ℓ2 : ∥x∥∞ ≤ M}.

Assumption 4.2 and its modified form were introduced in [11, 23]. This assump-
tion can be viewed as a source condition and it implies that the operator A fulfills
some kind of “finite basis injectivity condition” which is commonly used in sparsity
regularization.

Next, we present an inequality under the source condition. The linear conver-
gence rate O(δ) (or O(δ1/2)) can be derived from this inequality.

Lemma 4.3. Assume Condition 2.1 and Assumption 4.2. Then there exist con-
stants c1 > c2, depending on M , such that

(α− β)∥x− x†∥ℓ1 ≤ Rα,β(x)−Rα,β(x
†) + (c1α− c2β)∥A(x)−A(x†)∥Y (38)

for any x ∈ M.

Proof. By the definition of I(x†), we have

(α− β)∥x− x†∥ℓ1 = (α− β)

 ∑
i∈I(x†)

|xi − x†
i |+

∑
i/∈I(x†)

|xi|

 .

Then,

(α− β)∥x− x†∥ℓ1 − (Rα,β(x)−Rα,β(x
†))

= −α
∑

i∈I(x†)

(
|xi| − |x†

i |
)

+ (α− β)
∑

i∈I(x†)

|xi − x†
i |+ β(T1 − T2), (39)
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where

T1 =

(∑
i

|xi|2
)1/2

−

 ∑
i/∈I(x†)

|xi|2
1/2

−

 ∑
i∈I(x†)

|x†
i |
2

1/2

,

T2 =
∑

i/∈I(x†)

|xi| −

 ∑
i/∈I(x†)

|xi|2
1/2

.

Observe that T2 ≥ 0. Since(∑
i

|xi|2
)1/2

≤

 ∑
i∈I(x†)

|xi|2
1/2

+

 ∑
i/∈I(x†)

|xi|2
1/2

,

we see that

T1 ≤ T3 :=

 ∑
i∈I(x†)

|xi|2
1/2

−

 ∑
i∈I(x†)

|x†
i |
2

1/2

. (40)

Thus, from (39),

(α− β)∥x− x†∥ℓ1 ≤ Rα,β(x)−Rα,β(x
†) + α

∑
i∈I(x†)

|xi − x†
i |

+ (α− β)
∑

i∈I(x†)

|xi − x†
i |+ βT3. (41)

By the assumption, we have

|xi|+ |x†
i | ≤ M + ∥x†∥ℓ2 ,

0 < ∥x†∥ℓ2 ≤

 ∑
i∈I(x†)

|xi|2
1/2

+

 ∑
i∈I(x†)

|x†
i |
2

1/2

.

Consequently,

T3 =

∑
i∈I(x†)

(|xi| − |x†
i |)(|xi|+ |x†

i |)( ∑
i∈I(x†)

|xi|2
)1/2

+

( ∑
i∈I(x†)

|x†
i |2
)1/2

≤ M + ∥x†∥ℓ2
∥x†∥ℓ2

∑
i∈I(x†)

|xi − x†
i |. (42)

A combination of (41) and (42) shows that

(α− β)∥x− x†∥ℓ1 ≤ Rα,β(x)−Rα,β(x
†) +

(
2α+

M

∥x†∥ℓ2
β

) ∑
i∈I(x†)

|xi − x†
i |.

(43)
In addition, by Assumption 4.2,

|xi − x†
i | = |⟨ei, x− x†⟩| = |⟨ωi, A

′(x†)(x− x†)⟩| ≤ max
i∈I(x†)

∥ωi∥Y ∥A′(x†)(x− x†)∥Y .

Hence, ∑
i∈I(x†)

|xi − x†
i | ≤ |I(x†)| max

i∈I(x†)
∥ωi∥Y ∥A′(x†)(x− x†)∥Y .



170 LIANG DING AND WEIMIN HAN

Then, by Condition 2.1 (iii), we have∑
i∈I(x†)

|xi − x†
i | ≤ |I(x†)| max

i∈I(x†)
∥ωi∥Y (1 + γ)∥A(x)−A(x†)∥Y . (44)

A combination of (43) and (44) implies that

(α− β)∥x− x†∥ℓ1
≤ Rα,β(x)−Rα,β(x

†)

+

(
2α+

M1

∥x†∥ℓ2
β

)
|I(x†)| max

i∈I(x†)
∥ωi∥Y (1 + γ)∥A(x)−A(x†)∥Y , (45)

i.e.

(α− β)∥x− x†∥ℓ1 ≤ Rα,β(x)−Rα,β(x
†) + (c1α− c2β)∥A(x)−A(x†)∥Y ,

where

c1 = 2|I(x†)| max
i∈I(x†)

∥ωi∥Y (1 + γ), c2 = − M

∥x†∥ℓ2
|I(x†)| max

i∈I(x†)
∥ωi∥Y (1 + γ).

Obviously, c1 > c2 and c1α− c2β > 0. The proof is completed.

Theorem 4.4. (Convergence rate) Keep the assumptions of Lemma 4.3 and let
xδ
α,β be defined by (6). Assume that there exist parameters α and β (β = ηα)

satisfying

δ ≤ ∥A(xδ
α,β)− yδ∥Y ≤ c(δ),

where c(δ) :=
(
max

{
τ2δ2, (3 + 2γ)δ2 + δ(2 + 2γ)∥yδ −A(0)∥Y

})1/2
. Then

∥xδ
α,β − x†∥ℓ2 ≤ (c1 − c2η)(c(δ) + δ)

1− η
.

Proof. By the definitions of xδ
α,β , α and β, we see that

1

2
δ2+Rα,β(x

δ
α,β) ≤

1

2
∥A(xδ

α,β)−yδ∥2Y +Rα,β(x
δ
α,β) ≤

1

2
∥A(x†)−yδ∥2Y +Rα,β(x

†).

(46)
Hence Rα,β(x

δ
α,β) ≤ Rα,β(x

†). It follows from Lemma 4.3 that

0 ≥ Rα,β(x
δ
α,β)−Rα,β(x

†)

≥ (α− β)∥xδ
α,β − x†∥ℓ1 − (c1α− c2β)∥A(xδ

α,β)−A(x†)∥Y
≥ (α− β)∥xδ

α,β − x†∥ℓ1 − (c1α− c2β)(c(δ) + δ). (47)

Then

∥xδ
α,β − x†∥ℓ2 ≤ ∥xδ

α,β − x†∥ℓ1 ≤ (c1α− c2β)(c(δ) + δ)

α− β
.

The theorem is proven with β = ηα.

5. Numerical experiments. In this section, we present results from three nu-
merical experiments to demonstrate the efficiency of MDP for the αℓ1 − βℓ2 regu-
larization. In these experiments, the ST-(αℓ1 − βℓ2) algorithm is used to compute
the iterative solution, cf. [15, 17] for details of the algorithm. The relative error
(Rerror) is utilized to measure the performance of the reconstruction x∗:

Rerror :=
∥x∗ − x†∥ℓ2

∥x†∥ℓ2
,
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where x† is a true solution. Exact data y† is generated by y† = A(x†). White Gauss-
ian noise is added to the exact data y† by calling yδ = awgn(Ax†, σ) in MATLAB,
where σ is the added noise, measured in dB, which measures the ratio between the
true (noise free) data y† or A(x†) and Gaussian noise. The noise level δ is defined
by δ := ∥A(x†)− yδ∥2. The first example deals with a linear ill-conditioned image
deblurring problem. In the second example, we consider a nonlinear ill-posed Ham-
merstein equation. The third example deals with a nonlinear compressive sensing
problem. All numerical experiments were tested in MATLAB R2010a on an i7-
1165G7 2.80GHz workstation with 32Gb RAM.

5.1. Ill-conditioned image deblurring problem. In the first example, we test
the ill-conditioned image deblurring problem which is the process of removing blur-
ring artifacts from images, such as blur caused by defocus aberration or motion
blur. The blur is typically modeled by a Fredholm integral equation of the first
kind ∫ b

a

K(s, t) f(t) dt = g(s),

where K(s, t) is the kernel function, g(s) is the observed image and f(t) is the true
image. Note that image deblurring problem is a linear ill-conditioned problem, γ = 0
and A(0) = 0 in (5). We utilize the blur problem from MATLAB Regularization
Tools ([26]) by calling [A, y†, x†] = blur(n, band, µ). We choose n = 64, band = 3,
µ = 0.7, τ = 2. We rescale the matrix A by A → 0.05A. Note that the condition
number does not change under the matrix rescaling. The value of ∥y†∥2 is 3.15 and
the condition number is around 31.4537.

To show the efficiency of MDP (5), various noise levels δ are added to the exact
data y†. Note that, for various noise levels, if δ < 2∥yδ∥2/(τ2 − 3), then τ2δ2 <

3δ2+2δ∥yδ∥2. Meanwhile, if τ ≤
√
3, it is obvious that τ2δ2 < 3δ2+2δ∥yδ∥2. With

τ = 2 and δ < ∥yδ∥, it is obvious that τ2δ2 < 3δ2 + 2δ∥yδ∥2.

Figure 1. (a) α vs. δ where α : ∥A(xδ
α,β) − yδ∥Y = c(δ); (b)

Rerror vs. δ.

To test sharpness of the upper bound in (5), we choose α with ∥A(xδ
α,β)−yδ∥Y =

c(δ). Note that, from the perspective of computation, ∥A(xδ
α,β) − yδ∥Y = c(δ) is

unsolvable. It is infeasible to obtain the true value of α such that ∥A(xδ
α,β)−yδ∥Y =
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c(δ). In computational practice, this value of α can be found approximately by a
sorting from a given set of values α1, α2, · · · , αn. For example, with a good initial
guess α0, we let αn = α0 + 0.001 ∗ n (or αn = α0 − 0.001 ∗ n) to find a satisfactory
approximate value of α by ∥A(xδ

α,β) − yδ∥Y = c(δ). In Fig. 1 (a), it is shown that

α → 0 as the noise level δ → 0. Moreover, in Fig. 1 (b), we see that Rerror decreases
with respect to σ. So it illustrates the convergence of the regularized solution with
respect to the noise level δ. Even though the upper bound in (5) seems loose, if the
noise levels are small enough, we can still recover satisfactory results.

Next, we test the convergence of the regularized solutions where α is determined
by Algorithm 1. Since the upper bound in (5) is loose, we choose a smaller value
of q. In this example, we let q = 0.1. In Fig. 2, it is shown that α → 0 and Rerror
converges to 0 as δ → 0.

Figure 2. (a) α vs. δ where α is determined by Algorithm 1; (b)
Rerror vs. δ.

Graphs of the reconstruction x∗ corresponding to σ = 70 (δ = 0.0102 and c(δ) =
0.18) are provided in Fig. 3. In Fig. 3 (c), the reconstruction x∗ is computed with
α : ∥A(xδ

αj ,βj
)− yδ∥Y = c(δ); Rerror is 5.38%. In Fig. 3 (d), the reconstruction x∗

is computed with α determined by Algorithm 1; Rerror is 2.89%. It is shown that
we can obtain better results if α determined by Algorithm 1.

5.2. Nonlinear Hammerstein equation. In the second example, we test a non-
linear Hammerstein equation A(x) = y with

A(x)(t) =

∫ t

0

x(s)2 ds.

The Fréchet derivative of A is of the form ([25])

(A′(x)h)(t) =

∫ t

0

2x(s)h(s)ds.

The nonlinearity assumption (7) with γ = 1/2 on the forward operator A is verified
in [25]. The exact solution x† is s-sparse, i.e. ∥x†∥0 = s. We let n = 100 and

s = 50. The exact data y† is obtained by y† = A(x†)(t) =
∫ t

0
x†(s)2ds. The value
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Figure 3. (a) True image; (b) Observed image; (c) Recovered
image with α : ∥A(xδ

αj ,βj
) − yδ∥Y = c(δ); (d) Recovered image

with α is determined by Algorithm 1.

Figure 4. (a) α vs. δ where α : ∥A(xδ
α,β) − yδ∥Y = c(δ); (b)

Rerror vs. δ.

of ∥A(0) − y†∥2 is 1.3760. With τ = 2 and δ < ∥A(0) − yδ∥, it is obvious that
τ2δ2 < (3 + γ)δ2 + (2 + γ)δ∥yδ∥2.

In Fig. 4, we test sharpness of the upper bound in (5). In Fig. 4 (a), it is seen that
α → 0 as the noise level δ → 0, where α is determined with ∥A(xδ

α,β)−yδ∥Y = c(δ).

In Fig. 4 (b), we see that Rerror decreases with respect to σ. The numerical results
illustrate the convergence of the regularized solution with respect to the noise level
δ.
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Next, we test the convergence of the regularized solutions where α is determined
by Algorithm 1. In Fig. 5, it is seen that α → 0 as the noise level δ → 0 and Rerror
converges to 0 as δ → 0.

Fig. 6 provides graphs of the reconstruction x∗ corresponding to σ = 60 (δ =
0.0114 and c(δ) = 0.2177). In Fig. 6 (c), the reconstruction x∗ is computed with
α : ∥A(xδ

α,β) − yδ∥Y = c(δ); Rerror is 8.28%. In Fig. 6 (d), the reconstruction x∗

is computed with α determined by Algorithm 1; Rerror is 4.65%. We obtain better
results when α is determined by Algorithm 1.

Figure 5. (a) α vs. δ where α is determined by Algorithm 1; (b)
Rerror vs. δ.

5.3. Nonlinear compressive sensing. As the third example, we test the effi-
ciency of MDP in (5) with a nonlinear compressive sensing (CS) problem ([4, 6, 13,
48]) of the form

y = A(x) := â(Φb̂(x)), (48)

where Φ is a CS matrix, â and b̂ are nonlinear operators, respectively. For simplicity,

we write â(x) = x + a(x) and b̂(x) = x + b(x), where a and b are nonlinear maps.
In particular, let a(x) = xc and b(x) = xd, where c, d ∈ N+. An explicit formula of
the Fréchet derivative of A is derived in [6]:

A′(x) = [I + a′x(Φb̂(x))][Φ(I + b′x(x))]

and A′(x) is Lipschitz continuous. It is not known whether the forward opera-
tor A fulfils the nonlinearity assumption (7) ([6]). Here, we consider a potential
application of MDP (5) in nonlinear compressive sensing.

In finite-dimensional spaces, the nonlinear CS problem is of the form

â(Φm×nb̂(xn)) = ym, where Φm×n is a Gaussian random measurement matrix.
The exact solution x† is s-sparse. We let n = 200, m = 0.4n, s = 0.2m, γ = 1/2,

c = 2 and d = 3. The exact data y† is obtained by y† = â(Φb̂(x†)).
Next we show if τ is chosen small, the existence of α can not be guaranteed

under the condition (4). We let σ = 30, then δ = 0.2903 and c(δ) = 1.1675. In
Fig. 7, it is shown if τ < 2, then τδ < 0.5823. Consequently, there is no α such
that the traditional MDP (4) holds. Even with a large value, e.g. τ = 3, it is
challenging to find α such that (4) holds. Indeed, for traditional MDP with linear
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Figure 6. (a) True signal; (b) Observed data; (c) Recovered signal
with α : ∥A(xδ

αj ,βj
)− yδ∥Y = c(δ); Rerror= 0.0828; (d) Recovered

signal with α is determined by Algorithm 1; Rerror= 0.0465.

ill-posed problems, one commonly tries αj =
α
2j , j = 1, 2, · · · . With j increasing, we

calculate xδ
α,β until (4) is valid. Nevertheless, for nonlinear ill-posed problems, the

discrepancy is not continuous with respect to α. If αj = 0.2, then αj+1 = 0.1, we
can not find an α such that δ ≤ ∥A(xδ

α,β)− yδ∥Y ≤ 3δ holds (cf. Fig. 7). Certainly,
we can try αj = α

3j or αj = α
4j , etc. Nevertheless, it needs more computational

time. In addition, one still does not have the theoretical assurance on the existence
of α. So it is challenging to choose an appropriate τ to ensure the existence of α.
Although the upper bound c(δ) in (5) seems loose, it guarantees the existence of α.
We can determine an α by Algorithm 1 such that the modified MDP (5) holds. So
the upper bound c(δ) appears to be natural.

In Fig. 8 (a), it is shown that α → 0 as the noise level δ → 0, where α is
determined with ∥A(xδ

α,β) − yδ∥Y = c(δ). In Fig. 8 (b), we see the decreasing
tendency of Rerror with respect to σ. In Fig. 9, it is shown that α → 0 as the noise
level δ → 0 and Rerror converge to 0 as δ → 0, where α is determined by Algorithm
1.

Fig. 10 provides graphs of the reconstruction x∗ corresponding to σ = 60 (δ =
0.0095 and c(δ) = 0.3498). In Fig. 10 (c), the reconstruction x∗ is computed with
α from ∥A(xδ

α,β)− yδ∥Y = c(δ); Rerror is 7.34%. In Fig. 10 (d), the reconstruction

x∗ is computed with α determined by Algorithm 1; Rerror is 1.37%.

6. Conclusion. For the non-convex αℓ1 − βℓ2 sparsity regularization, we prove
there exist a regularization parameter α such that

δ ≤ ∥A(xδ
α,β)− yδ∥Y ≤ c(δ),

where c(δ) =
(
max

{
τ2δ2, (3 + 2γ)δ2 + δ(2 + 2γ)∥yδ −A(0)∥Y

})1/2
. Furthermore,

we show that α ≡ α(δ, yδ) → 0 as the noise level δ → 0. It is shown that the αℓ1−βℓ2
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Figure 7. δ, the upper bound c(δ) and ∥A(xδ
α,β)− yδ∥ vs. α.

Figure 8. (a) α vs. δ where α : ∥A(xδ
α,β) − yδ∥Y = c(δ); (b)

Rerror vs. δ.

sparsity regularization is well-posed when α is determined by MDP. Under certain
conditions, we prove ∥xδ

α,β − x†∥ℓ2 ≤ O(c(δ) + δ). For linear ill-posed problems, we
prove there exists a regularization parameter α such that

δ2 ≤ ∥Axδ
α,β − yδ∥2Y ≤ max

{
τ2δ2, 3δ2 + 2δ∥yδ∥Y

}
holds. Numerical experiments indicate that the relative error decreases with respect
to δ. Even though the upper bound in (5) seems loose, the existence of α can be
guaranteed. In addition, if the noise levels are small enough, we can still recover
satisfactory results.
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Figure 9. (a) α vs. δ where α is determined by Algorithm 1; (b)
Rerror vs. δ.

Figure 10. (a) True signal; (b) Observed data; (c) Recovered
signal with α : ∥A(xδ

α,β) − yδ∥Y = c(δ) Rerror= 0.0734; (d) Re-
covered signal with α is determined by Algorithm 1 Rerror=
0.0137.
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