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Abstract
The non-convex α‖ · ‖�1 − β‖ · ‖�2 (α � β � 0) regularization is a new
approach for sparse recovery. A minimizer of theα‖ · ‖�1 − β‖ · ‖�2 regularized
function can be computed by applying the ST-(α�1 − β�2) algorithm which is
similar to the classical iterative soft thresholding algorithm (ISTA). It is known
that ISTA converges quite slowly, and a faster alternative to ISTA is the pro-
jected gradient (PG) method. However, the conventional PG method is limited
to solve problems with the classical �1 sparsity regularization. In this paper, we
present two accelerated alternatives to the ST-(α�1 − β�2) algorithm by extend-
ing the PG method to the non-convexα‖ · ‖�1 − β‖ · ‖�2 sparsity regularization.
Moreover, we discuss a strategy to determine the radius R of the �1-ball con-
straint by Morozov’s discrepancy principle. Numerical results are reported to
illustrate the efficiency of the proposed approach.

Keywords: projected gradient method, α�1 − β�2sparsity regularization, non-
convex sparsity regularization, Morozov’s discrepancy principle

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we consider to solve an ill-posed operator equation of the form

Ax = y, (1.1)

∗Author to whom any correspondence should be addressed.
∗∗The work of this author was supported by the Fundamental Research Funds for the Central Universities (no.
2572018BC02), Heilongjiang Postdoctoral Research Developmental Fund (no. LBH-Q16008), the National Nature
Science Foundation of China (no. 41304093).

1361-6420/20/125012+30$33.00 © 2020 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6420/abc857
https://orcid.org/0000-0003-1543-8614
mailto:dl@nefu.edu.cn
mailto:weimin-han@uiowa.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/abc857&domain=pdf&date_stamp=2020-12-3


Inverse Problems 36 (2020) 125012 L Ding and W Han

where x is sparse, A : �2 → Y is a linear and bounded operator from the �2 space to a
Banach space Y . Norms in �2 and Y are denoted by ‖ · ‖�2 and ‖ · ‖Y , respectively. Note
that in the theory of classical Tikhonov regularization, Y is assumed to be a Hilbert space.
Nevertheless, in the theory of modern nonlinear regularizations, e.g. sparsity regularization,
total variation regularization, etc, one can discuss regularization properties in the more
general setting of a Banach space ([4]). So for generality, we let Y be a Banach space
here. In practice, the right-hand side y is known only approximately with an error up to
a level δ � 0. Therefore, we assume that we know yδ ∈ Y with ‖yδ − y‖Y � δ for a given
δ � 0. The most commonly adopted technique to solve problem (1.1) is the �p-norm sparsity
regularization with 1 � p < 2, cf the monographs [17, 37] and the special issues [4, 13, 23,
24] for many developments on regularization properties and minimization schemes. Since the
�p-norm regularization with 1 � p < 2 does not always provide the ‘sparsest’ solution, the
non-convex �p-norm sparsity regularization with 0 � p < 1 has been proposed as alternatives.
Iterative hard thresholding algorithms have been developed in [6, 7, 9, 19] for the �0 sparsity
regularization. We refer the reader to [22, 25, 30] for some other types of alternatives to the
�0-norm.

A non-convex regularization term of the form α‖ · ‖�1 − β‖ · ‖�2 (α � β � 0) has attracted
attention in the area of sparse recovery over the last five years, see [15, 26, 29, 44, 45] and
references therein. In [15], we investigated the well-posedness and convergence rate of the
non-convex sparsity regularization problem

minJ δ
α,β(x) =

1
q
‖Ax − yδ‖q

Y +Rα,β(x) (1.2)

where x ∈ �2 space and

Rα,β(x) :=α‖x‖�1 − β‖x‖�2 , α � β � 0, q � 1.

Denoting η = β/α, we can equivalently express the function J δ
α,β(x) in (1.2) as

1
q
‖Ax − yδ‖q

Y + αRη(x),

where

Rη(x) := ‖x‖�1 − η‖x‖�2 , α > 0, 1 � η � 0.

For the particular case q = 2, we provided an ST-(α�1 − β�2) algorithm of the form

zk = S α
λ

((
β

λ‖xk‖�2

+ 1

)
xk − 1

λ
A∗(Axk − yδ)

)
, xk+1 = xk + sk(zk − xk) (1.3)

for problem (1.2), where sk is the step size and λ > 0. Obviously, the ST-(α�1 − β�2) algorithm
is similar to the classical ISTA when the step size sk = 1. An ISTA of the form

xk+1 = Sα

(
xk − A∗(Axk − yδ)

)
(1.4)

was first proposed in [12] to solve the classical �1 sparsity regularization problem

minJ δ
α (x) =

1
2
‖Ax − yδ‖2

Y + α‖x‖�1 . (1.5)
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As an alternative to the �p-norm with 0 � p < 1, the function α‖ · ‖�1 − β‖ · ‖�2 (α �
β � 0) has the desired property that it is a good approximation to a constant multiple of
the �0-norm. The function has a simpler structure than the �0-norm from the perspective of
computation. The ST-(α�1 − β�2) algorithm can easily be implemented, see [15, 20, 45] for
several other algorithms for ‖ · ‖�1 − ‖ · ‖�2 sparsity regularization. However, in general, the
ST-(α�1 − β�2) algorithm, can be arbitrarily slow and it is computationally intensive. So it
is desirable to develop accelerated versions of the ST-(α�1 − β�2) algorithm, especially for
large-scale ill-posed inverse problems.

1.1. Some accelerated algorithms for ISTA

Searching for accelerated algorithms of the ISTA is a popular research topic and some faster
algorithms have been proposed. Several accelerated projected gradient methods can be found
in [5, 14, 16, 43]. A comparison among several accelerated algorithms, including the ‘fast
ISTA’ ([2]), is provided in [27]. Applying a smoothing technique from Nesterov ([31]), a
fast and accurate first-order method is proposed in [3] to solve large-scale compressed sens-
ing problems. In [11], a simple heuristic adaptive restart technique is introduced, which can
dramatically improve the convergence rate of accelerated gradient schemes. In [10], conver-
gence of the iterates of the ‘fast iterative shrinkage/thresholding algorithm’ is established. In
[32], a new iterative regularization procedure for inverse problems based on the use of Breg-
man distances is studied. Numerical results show that the proposed method offers significant
improvement over the standard method. An explicit algorithm based on a primal-dual approach
for the minimization of an �1-penalized least-squares function with a non-separable �1 term is
proposed in [28]. An iteratively reweighted least squares algorithm and the corresponding con-
vergence analysis for the regularization of linear inverse problems with sparsity constraints are
investigated in [18]. For a projected gradient method of nonlinear ill-posed problems, see [38].

Unfortunately, the algorithms cited in the previous paragraph are limited to the classical
�1-norm sparsity regularization. Though there is a great potential for accelerated algorithms
in sparsity regularization with a non-convex penalty term, to the best of our knowledge, little
work can be found in the literature. In [34], the problem of minimizing a general continuously
differentiable function subject to ‖x‖0 � s is treated, where s > 0 is an integer, and ‖x‖0 is the
�0-norm of x, which stands for the number of nonzero components in x. In this paper, we extend
the projected gradient (PG) method to the non-convexα�1 − β�2 sparsity regularization. There
are two reasons why we choose PG method. First, its formulation is simple and it can easily
be implemented. Another reason is that it converges quite fast. So it is adequate for solving
large-scale ill-posed problems.

The PG method was introduced in [14] to accelerate the ISTA. It is shown that the ISTA
converges initially relatively fast, then it overshoots the �1-norm penalty, and it takes many steps
to re-correct back. In other words, the algorithm generates a path {xn|n ∈ N} that is initially
fully contained in an �1-ball BR := {x ∈ �2|‖x‖�1 � R}. Then it gets out of the ball to slowly
inch back to it in the limit. To avoid this long ‘external’ detour, the authors of [14] proposed
an accelerated algorithm by substituting the soft thresholding operation Sα by the projection
PR which is defined in definition 2.5. This leads to a projected gradient method of the form

xk+1 = PR

(
xk − γkA∗(Axk − yδ)

)
. (1.6)

1.2. Contribution and organization

In [15], we introduced the non-convex α�1 − β�2 sparsity regularization method, with the pri-
mary interest in the regularization properties. In addition, we proposed an ST-(α�1 − β�2)
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algorithm for the α�1 − β�2 sparsity regularization. Though its formulation is simple and it
can easily be implemented, ST-(α�1 − β�2) algorithm can be arbitrarily slow and it is compu-
tationally intensive. So, the aim of this paper is utilizing the PG method to solve α�1 − β�2

sparsity regularization problems. Though there is a great potential for the PG method in solv-
ing the non-convex α�1 − β�2 sparsity regularization problems, little result is available in the
literature except the reference [34] where the PG method is utilized to solve �0 regulariza-
tion problems. Since the ST-(α�1 − β�2) algorithm (1.3) is similar to ISTA (1.4), inspired by
[14], we propose two accelerated alternatives to (1.3) by extending the PG method to solve
problem (1.2).

The first accelerated algorithm is based on the generalized conditional gradient method
(GCGM). In [15], based on GCGM, we proposed the ST-(α�1 − β�2) algorithm where the
crucial issue is to determine zk by solving the optimization problem

min
z

〈
A∗(Axk − yδ) − λxk − βxk

‖xk‖�2

, z

〉
+

λ

2
‖z‖2

�2
+ α‖z‖�1 . (1.7)

In this paper, we show that the problem (1.7) can be solved by a PG method of the form

zk = PR

(
xk +

βxk

λ‖xk‖�2

− 1
λ

A∗(Axk − yδ)

)
. (1.8)

With zk at our disposal, we compute xk+1 by xk+1 = xk + sk(zk − xk), where sk is the step size.
Theoretically, the radius R of the �1-ball should be chosen as R = ‖xδα,β‖�1 ([14]), where xδα,β

is a minimizer of problem (1.2). However, in general, one cannot obtain the value of ‖xδα,β‖�1

before starting the iteration (1.8). In this paper, we utilize Morozov’s discrepancy principle to
determine R. This method only requires knowledge of the noise level δ and the observed data yδ .
Moreover, we investigate the well-posedness of problem (1.2) under Morozov’s discrepancy
principle.

The second accelerated algorithm is based on the surrogate function approach. We investi-
gate this algorithm in the finite dimensional space Rn. For the case q = 2 and Y = Rm, problem
(1.2) takes the form

minJ δ
α,β(x) =

1
2
‖Ax − yδ‖2

�2
+ α‖x‖�1 − β‖x‖�2 , (1.9)

where A : Rn → Rm is a linear operator from Rn to Rm. In the following, we remove the �1

constraint in (1.9) by considering a constrained optimization problem with an �1-ball constraint
for a certain radius R. In analogy with the techniques on the projection in [14, 39], a natural
strategy is to consider the constrained optimization problem

min
1
2
‖Ax − yδ‖2

�2
subject to x ∈ B′

R

:= {x ∈ R
n|‖x‖�1 − η‖x‖�2 � R}, 1 � η � 0. (1.10)

However, since B′
R is non-convex, it is challenging to analyze and solve this constrained opti-

mization problem. We can remove the �1 term in (1.9) by considering instead the following
optimization problem

minDδ
β(x) =

1
2
‖Ax − yδ‖2

�2
− β‖x‖�2 subject to

x ∈ BR := {x ∈ R
n|‖x‖�1 � R} (1.11)
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for a suitable R. We propose a projected gradient method of the form

xk+1 = PR

(
xk +

βxk+1

λ‖xk+1‖�2

− 1
λ

A∗(Axk − yδ)

)
(1.12)

for problem (1.11), where λ > 0 is subject to some conditions, cf assumption 4.6 below.
An outline of the rest of this paper is as follows. In the next section we introduce the nota-

tion and review results of the Tikhonov regularization and the projected gradient method. In
section 3, we investigate an accelerated algorithm via the generalized conditional gradient
method. Furthermore, we give a strategy to determine the radius R of the �1-ball constraint.
In section 4, we propose another accelerated algorithm via the surrogate function approach.
Finally, we present results from numerical experiments on compressive sensing and image
deblurring problems in section 5.

2. Preliminaries

Before discussing the accelerated algorithms, we briefly introduce some notation and results
of the Tikhonov regularization and the PG method. Let

xδα,β ∈ arg min
x
{1

2
‖Ax − yδ‖2

Y +Rα,β(x)} (2.1)

be a minimizer of the regularization function J δ
α,β(x) in (1.2) with q = 2 and α � β � 0. We

denote by Lδ
α,β the set of all such minimizers xδα,β , and by xδR,β a solution of problem (1.11).

We use the following definition of Rη-minimum solution ([15]).

Definition 2.1. An element x† ∈ �2 is called an Rη-minimum solution of the linear problem
Ax = y if

Ax† = y and Rη(x†) = min{Rη(x)|x ∈ �2, Ax = y}.

We recall the definition of sparsity ([12]).

Definition 2.2. An element x ∈ �2 is called sparse if supp(x) := {i ∈ N|xi �= 0} is finite,
where xi is the ith component of x. ‖x‖0 := supp(x) is the cardinality of supp(x). If ‖x‖0 = s
for some s ∈ N, then x ∈ �2 is called s-sparse.

Definition 2.3 (Morozov’s discrepancy principle). Given 1 < τ 1 � τ 2, choose α =
α(δ, yδ) > 0 such that

τ1δ � ‖Axδα,β − yδ‖Y � τ2δ (2.2)

holds for some xδα,β .

Next we recall definitions of the soft thresholding and the projection operators ([5, 12]).

Definition 2.4. For a given α > 0, the soft thresholding operator is defined as

Sα(x) =
∑

i

Sα(xi)ei,

where ei = (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . .), xi is the ith component of x and

5
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Sα(t) =

⎧⎪⎪⎨
⎪⎪⎩

t − α if t � α,

0 if |t| < α,

t + α if t � −α.

Definition 2.5. The projection onto the �1-ball is defined by

PR(x̂) := {arg min
x
‖x − x̂‖�2 subject to ‖x‖�1 � R},

which gives the projection of an element x̂ onto the �1-norm ball with radius R > 0.

We review two results from [14] on relations between the soft thresholding operator and the
projection operator. For relations between the parametersα and R, see [14, figure 2]. For some
countable index set Λ, denote �p = �p(Λ), 1 � p < ∞.

Lemma 2.6. For any fixed a ∈ �2(Λ) and for τ > 0, ‖Sα(a)‖1 is a piecewise linear, continu-
ous, decreasing function of τ . Moreover, if a ∈ �1(Λ) then ‖S0(a)‖1 = ‖a‖1 and ‖Sα(a)‖1 = 0
for α � maxi|ai|.

Lemma 2.7. If ‖a‖�1 > R, then the �2 projection of a on the �1 ball with radius R is given by
PR(a) = Sα(a) where α (depending on a and R) is chosen such that ‖Sα(a)‖1 = R. If ‖a‖1 � R
then PR(a) = S0(a) = a.

Finally, recall some properties of PR ([14]).

Lemma 2.8. For any x ∈ �2(Λ), PR(x) is characterized as the unique vector in BR such that

〈w − PR(x), x − PR(x)〉 � 0, for all w ∈ BR.

Moreover the projection PR is non-expansive:

‖PR(x) − PR(x′)‖ � ‖x − x′‖

for all x, y ∈ �2(Λ).

3. The projected gradient method via GCGM

In [15], we proposed an ST-(α�1 − β�2) algorithm for (1.2) based on GCGM. We rewrite (1.2)
with q = 2 as

minJ δ
α,β(x) = F(x) +Φ(x), (3.1)

where

F(x) =
1
2
‖Ax − yδ‖2

Y −Θ(x),

Φ(x) = Θ(x) + α‖x‖�1 − β‖x‖�2 ,

Θ(x) =
λ

2
‖x‖2

�2
+ β‖x‖�2 , λ > 0.

The ST-(α�1 − β�2) algorithm is stated in the form of algorithm 1. The first order optimization

6
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Algorithm 1. ST-(α�1 − β�2) algorithm for problem (1.2) with q = 2.

Set k = 0, x0 ∈ �2 such that Φ(x0) < +∞,
for k = 0, 1, 2, . . . , do

if xk = 0 then
xk+1 = argmin 1

2‖Ax − yδ‖2
Y + α‖x‖�1

else
determine a descent direction zk as a solution of

min
z
〈A∗(Axk − yδ) − λxk − βxk

‖xk‖�2

, z〉+ λ

2
‖z‖2

�2
+ α‖z‖�1

determine a step size sk as a solution of

min
s∈[0,1]

F(xk + s(zk − xk)) +Φ(xk + s(zk − xk))

xk+1 = xk + sk(zk − xk)
end if
k = k + 1

end for

condition of problem (3.1) is stated in lemma 3.1. Convergence of algorithm 1 is given in
theorem 3.2; see [15, theorem 3.5] for its proof.

Lemma 3.1. Let 0 �= x̂ ∈ �2 be the minimizer of J δ
α,β(x) in (3.1). Then

〈F′(x̂), z − x̂〉 � Φ(x̂) − Φ(z) for all z ∈ �2 (3.2)

This condition is equivalent to

〈F′(x̂), x̂〉+Φ(x̂) = min
z∈�2

〈F′(x̂), z〉+Φ(z). (3.3)

Proof. Since 0 �= x̂ ∈ �2 is the minimizer of J δ
α,β(x) in (3.1),

F(x̂) +Φ(x̂) �F(x̂ + t(z − x̂)) +Φ(x̂ + t(z − x̂))

�F(x̂ + t(z − x̂)) + (1 − t)Φ(x̂) + tΦ(z)

for all z ∈ �2 and t ∈ [0, 1]. Hence, we have

Φ(x̂) − Φ(z) � F(x̂ + t(z − x̂)) − F(x̂)
t

. (3.4)

Taking the limt→0+ on (3.4), this implies that (3.2) holds. �
Theorem 3.2. Let {xk} denote the sequence generated by algorithm 1. Then {xk} contains
a convergent subsequence and every convergent subsequence of {xk} converges to a stationary
point of the functional J δ

α,β(x).

A crucial step in algorithm 1 is the determination of zk as a solution of

min Cδ
α,β,λ(z, xk) = 〈A∗(Axk − yδ) − λxk − βxk

‖xk‖�2

, z〉+ λ

2
‖z‖2

�2
+ α‖z‖�1 . (3.5)

We may solve problem (3.5) by ([15])

zk = Sα/λ

((
β

λ‖xk‖�2

+ 1

)
xk − 1

λ
A∗(Axk − yδ)

)
. (3.6)

7



Inverse Problems 36 (2020) 125012 L Ding and W Han

However, the iteration (3.6) is known to converge quite slowly. To accelerate the ST-
(α�1 − β�2) algorithm, we transform problem (3.5) to an �1-ball constraint optimization
problem of the form⎧⎪⎨

⎪⎩
minDδ

β,λ(z, xk) = 〈A∗(Axk − yδ) − λxk − βxk

‖xk‖�2

, z〉+ λ

2
‖z‖2

�2
, β � 0,

subject to �1 ball BR := {z ∈ �2|‖z‖�1 � R}.
(3.7)

Since Cδ
α,β,λ(z, xk), Dδ

β,λ(z, xk) and BR are convex with respect to the variable z, problem (3.7) is
equivalent to problem (3.5) for a certain R ([35, theorem 27.4], [46, theorem 47.E]). In lemma
3.3, we show that equation (3.7) can be solved by a PG method of the form

zk = PR

(
xk +

βxk

λ‖xk‖�2

− 1
λ

A∗(Axk − yδ)

)
. (3.8)

Lemma 3.3. An element ẑ ∈ BR is a minimizer of problem (3.7) if and only if

ẑ = PR

(
xk +

βxk

λ‖xk‖�2

− 1
λ

A∗(Axk − yδ)

)
(3.9)

for any λ > 0, which is equivalent to〈
xk +

βxk

λ‖xk‖�2

− 1
λ

A∗(Axk − yδ) − ẑ, z − ẑ

〉
� 0 ∀ z ∈ BR. (3.10)

Proof. Note that ẑ ∈ BR is a solution of problem (3.7) if and only if for any z ∈ BR, the
function f (t) = Dδ

β,λ((1 − t)̂z + tz, xk) of t ∈ [0, 1] attains its minimum at t = 0. Since f(t) is
quadratic and convex, a necessary and sufficient condition for f(0) = min0�t�1 f(t) is f ′(0+) �
0. Easily,

f ′(0+) = 〈A∗(Axk − yδ) − λ xk − βxk

‖xk‖�2

+ λ ẑ, z − ẑ〉,

and f ′(0+) � 0 is equivalent to the inequality (3.10). �
The PG algorithm for problem (1.2) based on GCGM is stated in the form of algorithm 2.

3.1. Determination of the radius R

From the previous discussion, we know that problem (3.5) is equivalent to problem (3.7) for
a certain R. Before starting iteration (3.8), we need to choose an appropriate value of R which
is crucial for the computation, especially in practical application. In this section, we give a
strategy to determine the radius R of the �1-ball constraint by Morozov’s discrepancy principle.

By lemma 2.7, for a given α in (3.5), R in (3.7) should be chosen such that R = ‖xδα,β‖�1 .
However, one does not know the value of ‖xδα,β‖�1 before starting the PG method (3.8). Of
course, we can find an approximation of xδα,β by the ST-(α�1 − β�2) algorithm (1.3). Never-
theless, this implies that an additional soft thresholding iteration (1.3) is needed in algorithm
2. Then the resulting algorithm is no longer an accelerated one.

So a crucial issue is how to determine if a value of R is appropriate for problem (3.7).
Recall that there exists a regularization parameter α depending on R such that problem (3.5) is
equivalent to problem (3.7). So to determine an appropriate value of R, we may turn to check
if the value of α is appropriate. One criterion is to check whether δ = O(α). If δ = O(α), then

8
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Algorithm 2. PG algorithm for problem (1.2) based on GCGM.

Choose x0 ∈ �2, β = O(δ),Φ(x0) < +∞,
for k = 0, 1, 2, . . . , do

if xk = 0 then
xk+1 = argmin 1

2‖Ax − yδ‖2
Y + α‖x‖�1

else
determine zk by

zk = PR

(
xk + βxk

λ‖xk‖�2
− 1

λA∗(Axk − yδ)

)

determine a step size sk as a solution of
min

s∈[0,1]
F(xk + s(zk − xk)) + Φ(xk + s(zk − xk))

xk+1 = xk + sk(zk − xk)
end if

k = k + 1
end for

xδα,β is a regularized solution ([15, theorem 2.13]). However, by lemmas 2.6 and 2.7, we only
know that α is a piecewise linear, continuous, decreasing function of R (see [14, figure 2]),
and there is no explicit formula relating α and R. We cannot determine the value of α from the
value of R directly. So we cannot ensure whether R is appropriate.

Another criterion is Morozov’s discrepancy principle. For any given R, we should check
whether the regularization parameter α satisfies Morozov’s discrepancy principle (2.2), i.e.

τ1δ � ‖Axδα,β − yδ‖Y � τ2δ, 1 < τ1 � τ2.

For any fixed R, we need to compute xδα,β by algorithm 2 where zk is determined by the PG
method (3.8). Subsequently, we check whether xδα,β satisfies Morozov’s discrepancy principle
(2.2). For this strategy, we only need to know the observed data yδ and the noise level δ. By
lemma 3.7, the discrepancy ‖Axδα,β − yδ‖Y is an increasing function ofα. A commonly adopted
technique is to try α j = α/2 j, j = 1, 2, . . . . We start with j = 1 and the value of j is increased
by 1 each time until the calculated solution xδα,β satisfies ([40])

τ1δ � ‖Axδα,β − yδ‖Y � τ2δ.

Since α is a decreasing function of R, the discrepancy ‖Axδα,β − yδ‖Y is a decreasing function
of R, see lemma 2.6 and figure 1. So an alternative is to begin with a small value of R such
that xδα,β satisfies Morozov’s discrepancy principle (2.2). Subsequently, we increase the value
of R by a fixed amount c ∈ Z+ until xδα,β fails to satisfy Morozov’s discrepancy principle.
Then we choose the maximal value of such R which satisfies Morozov’s discrepancy principle
(2.2). Of course, we can also begin with a large R and gradually reduce the value of R until
Morozov’s discrepancy principle (2.2) is satisfied. Under Morozov’s discrepancy principle, the
PG algorithm for problem (1.2) based on GCGM is stated in the form of algorithm 3. A natural
stopping criterion for the inner iteration in algorithm 3 is the change of the iterative solution. If
it does not change for three subsequent iterations or the maximum number of 2000 iterations
is reached, then a minimizer is considered to have been obtained.

Morozov’s discrepancy principle is a method for determining the regularization parameter
α. If it is chosen appropriately, then problem (1.2) is a regularization method. So, a natural ques-
tion is whether problem (1.2) is a regularization method where the regularization parameterα is

9
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Figure 1. The discrepancy ‖Ax∗ − yδ‖2 vs R.

Algorithm 3. The PG algorithm for problem (1.2) based on GCGM.

Choose x0 ∈ �2, R0 ∈ R+, β = O(δ), Φ(x0) < +∞,
for j = 0, 1, 2, . . . , do

for k = 0, 1, 2, . . . , do
if xk = 0 then

xk+1 = argmin 1
2‖Ax − yδ‖2

Y + α‖x‖�1

else
determine zk by

zk = PR j

(
xk + βxk

λ‖xk‖�2
− 1

λA∗(Axk − yδ)

)

determine a step size sk as a solution of
min

s∈[0,1]
F(xk + s(zk − xk)) + Φ(xk + s(zk − xk))

xk+1 = xk + sk(zk − xk)
end if

check stopping criteria and return xk+1 as a solution or set k = k + 1
end for

if Morozov’s discrepancy principle (2.2) is not satisfied, set Rj+1 = R j − c, c > 1
otherwise stop iteration
end if

j = j + 1
end for

determined by Morozov’s discrepancy principle. It is known that Tikhonv type functions com-
bined with Morozov’s discrepancy principle is a regularization method. However, this result is
usually shown only when the regularized term is convex ([1, 8, 33, 36, 40, 41]). If the regular-
ized term is non-convex, some results can be found in [15, 42] where Morozov’s discrepancy
principle is applied to derive the convergence rate. However, these results are obtained under
additional source conditions on the true solution x†. To the best of our knowledge, no results
are available on whether Morozov’s discrepancy principle combined with problem (1.2) is a
regularization method. In this paper, we prove that if the non-convex regularization term satis-
fies some properties, e.g. coercivity, weakly lower semi-continuity and Radon–Riesz property,
well-posedness of the regularized formulation remains valid.

We now consider the stability of algorithm 3. The stability analysis is restricted to the case of
the finite dimensional space Rn. If {xk} is bounded in �2, then {xk} has a weakly convergence

10
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subsequent xk j ⇀ x∗. However, the challenge is that xk j ⇀ x∗ does not ensure βxk j/‖xk j‖�2 →
βx∗/‖x∗‖�2 .

Theorem 3.4. Let xki
δn
→ x∗δn

, x∗δn
�= 0 being a stationary point of problem (3.1) where yδ is

replaced by yδn and {xki
δn
} being a subsequence of {xk

δn
} generated by algorithm 3. Assume

δn → δ, as n →∞. Then there exists a subsequence of {x∗δn
}, still denoted by {x∗δn

}, such that
x∗δn

→ x∗. If x∗ �= 0, then x∗ is a stationary point of problem (3.1). Furthermore, if x∗ is unique,
then limn→∞‖x∗δn

− x∗‖2 = 0.

Proof. By the definition of x∗δn
and lemma 3.1, we have

〈F′(x∗δn
), z − x∗δn

〉 � Φ(x∗δn
) − Φ(z) for all z ∈ �2, (3.11)

i.e. 〈
A∗(Ax∗δn

− yδn ) − λx∗δn
−

βx∗δn

‖x∗δn
‖�2

, z − x∗δn

〉

� Φ(x∗δn
) − Φ(z) for all z ∈ �2. (3.12)

Since {x∗δn
} is bounded, there exist a convergent subsequence of {x∗δn

}, still denoted by {x∗δn
},

and an element x∗ such that x∗δn
→ x∗. Taking the limit n →∞ in (3.12), we have〈

A∗(Ax∗ − yδ) − λx∗ − βx∗

‖x∗‖�2

, z − x∗
〉

� Φ(x∗) − Φ(z) for all z ∈ �2. (3.13)

By lemma 3.1, this implies that x∗ is a stationary point of problem (3.1). If x∗ is unique, then
every subsequence {x∗δn

} converges to x∗. So we have limn→∞‖x∗δn
− x∗‖2 = 0. �

3.2. Well-posedness of regularization

In this section, we discuss the well-posedness of problem (1.2) under Morozov’s discrepancy
principle. First, we show that there exists at least one regularization parameter α in (1.2) such
that Morozov’s discrepancy principle (2.2) holds. We recall some properties ofRα,β(x), needed
in analyzing the well-posedness of problem (1.2), cf [15, lemmas 2.5, 2.8 and 2.10] for proofs.

Lemma 3.5. If α > β � 0, the function Rα,β(x) in (1.2) has the following properties:

(i) (Coercivity)‖x‖�2 →∞ implies Rα,β (x) →∞.
(ii) (Weaklowersemi − continuity). Let M > 0 be given. Then, for any xn ∈ �2 with

Rα,β(xn) � M, {xn} weakly converging to x in �2 implies lim infnRα,β(xn) � Rα,β(x).
(iii) (Radon–Rieszproperty). Let M > 0 be given. Then, for any xn ∈ �2 with Rα,β(xn) � M,

if xn converges weakly to x in �2 and Rα,β(xn) →Rα,β(x), then xn converges strongly to
x in �2.

Definition 3.6. For fixed δ and η ∈ [0, 1], define

F(xδα,β) =
1
2
‖Axδα,β − yδ‖2

Y ,

Rη(xδα,β) = ‖xδα,β‖�1 − η‖xδα,β‖�2 ,

m(α) = J δ
α,β (xδα,β) = min J δ

α,β(x),

where α ∈ (0,∞) and β = αη.

11
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Let us list some properties of m(α), F(xδα,β) and Rη(xδα,β) in lemmas 3.7 and 3.8. Since
Rη(xδα,β) is weakly lower semi-continuous, the proofs are similar to that in [45, section 2.6].
Note that η ∈ [0, 1] is fixed, and for given α1,α2 ∈ (0,∞), we write β1 = α1η and β2 = α2η.

Lemma 3.7. The function m(α) is continuous and non-increasing, i.e., α1 > α2 implies
m(α1) � m(α2). Moreover, for α1 > α2,

sup
xδ
α1,β1

∈Lδ
α1,β1

F(xδα1,β1
) � inf

xδ
α2,β2

∈Lδ
α2,β2

F(xδα2,β2
),

sup
xδ
α1,β1

∈Lδ
α1,β1

Rη(xδα1,β1
) � inf

xδ
α2,β2

∈Lδ
α2,β2

Rη(xδα2,β2
).

Lemma 3.8. For each ᾱ > 0 there exist x′, x′′ ∈ Lδ
ᾱ,β̄ such that

lim
α→ᾱ−

⎛
⎝ sup

xδ
α,β∈L

δ
α,β

F(xδα,β)

⎞
⎠ = F(x′) = inf

x∈Lδ
ᾱ,β̄

F(x),

lim
α→ᾱ+

(
inf

xδ
α,β∈L

δ
α,β

F(xδα,β)

)
= F(x′′) = sup

x∈Lδ
ᾱ,β̄

F(x).

We now provide an existence result on the regularization parameter α, which can be proved
similar to that in [1, 33] on Morozov’s discrepancy principle for nonlinear ill-posed problems.

Lemma 3.9. Assume 0 <τ2 δ < ‖yδ‖Y. Then there exist α1,α2 ∈ R+ such that

sup
xδ
α1,β1

∈Lδ
α1,β1

F(xδα1,β1
) < τ1δ � τ2δ < inf

xδ
α2,β2

∈Lδ
α2,β2

F(xδα2,β2
).

Proof. First, let αn → 0 and consider a sequence of corresponding minimizers xn := xδαn,βn
∈

Lδn
αn,βn

. By the definition of xδα,β and x†, we have

F(xn)q � m(αn) � Jαn(x†) � δq + αnRη(x†) → δq < τ q
1 δ

q.

This implies that there exists a small enough α1 such that supxδ
α1,β1

∈Lδ
α1,β1

F(xδα1,β1
) < τ1δ.

Next, let αn →∞. Then

Rη(xn) � 1
αn

m(αn) � 1
αn

‖A0 − yδ‖Y → 0. (3.14)

From the definition of Rη(x),

Rη(x) = (1 − η) ‖x‖�1 + η (‖x‖�1 − ‖x‖�2). (3.15)

Then a combination of (3.14) and (3.15) implies that {‖xn‖�2} is bounded. Consequently, {xn}
has a convergent subsequence, again denoted by {xn}, such that xn ⇀ x∗ for some x∗ ∈ �2. By
lemma 3.5(ii), it follows from (3.14) that

0 � Rη(x∗) � lim inf Rη(xn) = lim Rη(xn) = 0.

By (3.15), this implies x∗ = 0. Since xn ⇀ 0 and Rη(xn) →Rη(0), lemma 3.5(iii) implies that
xn → 0. Then

‖Axn − yδ‖Y → ‖A0 − yδ‖Y = ‖yδ‖Y > τ2δ.

12
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So there exists a large enough α2 such that infxδ
α2,β2

∈Lδ
α2,β2

F(xδα2,β2
) > τ2δ. �

Note that we require ‖yδ‖Y >τ2 δ in lemma 3.9, which is a reasonable assumption. Indeed,
in applications, it is almost impossible to recover a solution from observed data of a size in the
same order as the noise.

We state an existence result on the regularized parameter, similar to theorem 3.10 in [1].
The proof makes use of the properties stated in lemmas 3.8 and 3.9.

Theorem 3.10. Assume ‖yδ‖Y >τ2 δ > 0 and there is no α > 0 with minimizers x′, x′′ ∈
Lδ
α,β such that

‖Ax′ − yδ‖Y < τ1δ � τ2δ < ‖Ax′′ − yδ‖Y .

Then there exist α = α(δ, yδ) > 0 and xδα,β ∈ Lδ
α,β such that (2.2) holds.

Next, we give a convergence result for the α�1 − β�2 regularization problem (1.2) under
Morozov’s discrepancy principle.

Theorem 3.11 (Convergence). Let xδn
αn,βn

be a minimizer of J δn
αn,βn

(x) defined by (2.1)
with the data yδn satisfying ‖y − yδn‖ � δn, where δn → 0 if n →+∞ and yδn belongs to the
range of A. Let αn be determined by Morozov’s discrepancy principle,

τ1δn � ‖A(xδn
αn,βn

) − yδn‖Y � τ2δn, 1 < τ1 � τ2.

Moreover, assume that η = lim
n→∞

ηn ∈ [0, 1) exists, where ηn = βn/αn. Then there exists a sub-

sequence of {xδn
αn,βn

}, denoted by {x
δnk
αnk ,βnk

}, that converges to an Rη-minimizing solution x†

in �2. If, in addition, the Rη-minimizing solution x† is unique, then

lim
n→+∞

‖xδn
αn,βn

− x†‖�2 = 0.

Proof. Denote yn := yδn , xn := xδn
αn,βn

, ηn := ηδn . By the definition of xn, we obtain

1
q
‖Axn − yn‖q

Y + αn‖xn‖�1 − βn‖xn‖�2

� 1
q
‖Ax† − yn‖q

Y + αn‖x†‖�1 − βn‖x†‖�2

� 1
q
δq

n + αn‖x†‖�1 − βn‖x†‖�2 . (3.16)

Since τ 1δn � ‖Axn − yn‖Y , it follows from (3.16) that

αn‖xn‖�1 − βn‖xn‖�2 � αn‖x†‖�1 − βn‖x†‖�2 .

Then we have

lim sup
n→+∞

(
‖xn‖�1 − ηn‖xn‖�2

)
� ‖x†‖�1 − η‖x†‖�2 . (3.17)

Since ‖xn‖�2 is bounded, there exist an x∗ ∈ �2 and a subsequence of {xnk} such that xnk ⇀ x∗

in �2. By Morozov’s discrepancy principle, we obtain

‖Axnk − y‖Y � ‖Axnk − ynk‖Y + ‖y − ynk‖Y � (τ2 + 1)δnk .

13
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Therefore, weak lower semicontinuity of the norm gives

‖Ax∗ − y‖ � lim inf
k→∞

‖Axnk − y‖Y = 0. (3.18)

Meanwhile, by (3.17) and lemma 3.5(ii), we have

‖x∗‖�1 − η‖x∗‖�2 � lim inf
k

(‖xnk‖�1 − ηnk‖xnk‖�2 )

� lim sup
k

(‖xnk‖�1 − ηnk‖xnk‖�2 )

� lim sup
n

(‖xn‖�1 − ηn‖xn‖�2) � ‖x†‖�1 − η‖x†‖�2 . (3.19)

By the definition of x†, a combination of (3.18) and (3.19) implies that x∗ is an Rη-minimizing
solution. Hence, lim

k→∞
Rη(xnk ) →Rη(x∗). By lemma 3.5(iii), we have xnk → x∗. If the Rη-

minimizing solution is unique, then x∗ = x†. This implies that, for every subsequence {xnk},
xnk converges to x†, then we have lim

n→+∞
‖xn − x†‖�2 = 0. �

The numerical experiments in [15] show that we can obtain satisfactory results even when
α = β. Indeed, Rα,β(x) behaves more and more like a constant multiple of the �0-norm as
β/α→ 1. However, if α = β, Rα,α(x) fails to satisfy the coercivity and the Radon–Riesz
property, and we cannot ensure the convergence in �2-norm. Without the Radon–Riesz
property, we may expect to have only weak convergence for the regularized solution. If we
assume the operator A is coercive in �2, i.e. ‖x‖�2 →∞ implies ‖Ax‖Y →∞, then the proof of
the weak convergence is similar to that of theorem 3.11.

4. The projected gradient method via the surrogate function approach

In this section, we propose another projected gradient algorithm for problem (1.2) in the finite
dimensional space Rn based on the surrogate function approach. By the discussion in subsec-
tion 1.2, we consider the optimization problem (1.11). The following result provides a first
order optimality condition for the optimization problem (1.11).

Lemma 4.1. Let 0 �= ŵ ∈ Rn be a minimizer of the optimization problem (1.11). Then

PR

(
ŵ +

βŵ

λ‖ŵ‖�2

− 1
λ

A∗(Aŵ − yδ)

)
= ŵ (4.1)

for any λ > 0, equivalently,〈
βŵ

‖ŵ‖�2

− A∗(Aŵ − yδ),w − ŵ

〉
� 0 (4.2)

for all w ∈ BR.

Proof. By the definition of ŵ, for any w ∈ BR, the function

f (t) =
1
2
‖A((1 − t)ŵ + tw) − yδ‖2

�2
− β‖(1 − t)ŵ + tw‖�2 , t ∈ [0, 1]

has its minimum at t = 0. Thus,

f ′(0+) = 〈Aŵ − yδ , A(w − ŵ)〉 − β‖ŵ‖−1
�2
〈ŵ,w − ŵ〉 � 0,

14
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i.e., (4.2) holds. �
Due to the non-convexity of Dδ

β(x), (4.2) is only a necessary condition of the optimization
problem (1.11).

Lemma 4.2. For a given β � 0, define

Φλ(w, x) :=
1
2
‖Aw − yδ‖2

�2
− β‖w‖�2 −

1
2
‖A(w − x)‖2

�2
+

λ

2
‖w − x‖2

�2
, w, x ∈ BR.

(4.3)

Then for any fixed x ∈ BR, there exists a minimizer ŵ of Φλ(w, x) on BR.

Proof. Being continuous, the function Φλ(·, x) has a minimum on the compact set BR. �
Note that a minimizer ŵ of Φλ(w, x) depends on x in Φλ(w, x). For w �= 0, we denote

ai, j(w) =
∂2‖w‖�2

∂wi∂w j
, 1 � i, j � n.

Then,

ai, j(w) =
δi j

‖w‖�2

− wiw j

‖w‖3
�2

, 1 � i, j � n. (4.4)

Sincew �→ ‖w‖�2 is convex, the matrix (ai, j(w))n×n is positive semi-definite. Thus, eig(w) �
0, where eig(w) denotes the eigenvalues of (ai, j(w))n×n. Moreover, max{eig(w)} is an
increasing function of ‖w‖�2 .

Lemma 4.3. Let ŵ be a minimizer of Φλ(w, x). For a fixed β � 0 and a fixed nonzero
x ∈ BR, there exists λ > 0 such that λ > max{eig(ŵ)}.

Proof. As λ→+∞ in (4.3), all minimizers ŵ of Φλ(w, x) converge to x. Then eig(ŵ) →
eig(x). Since 0 �= x ∈ BR is fixed, there exists a large enough λ such that λ � maxn{eig(ŵ)}.

�
Lemma 4.4. For a nonzero minimizer ŵ of Φλ(w, x) and a fixed β � 0, if λ �
β max{eig(ŵ)}, then Φλ(w, x) is locally convex.

Proof. By the definition of Φλ(w, x),

∂2Φλ(w, x)
∂wi∂w j

= λ δi j − β ai, j(w), 1 � i, j � n.

By the assumption λ � β max{eig(ŵ)}, the Hessian matrix ( ∂
2Φλ(w,x)
∂wi∂w j

|w=ŵ) is positive semi-
definite. This proves the lemma. �

In lemma 4.4, we assume λ � β max{eig(ŵ)}. This condition is weaker than λ �
max{eig(ŵ)}. In general, the regularization parameter α  1 in the Tihkonov regularization.
Since β = αη and 0 � η � 1, we also have β  1.

Lemma 4.5. Let 0 �= ŵ ∈ BR and λ � β max{eig(ŵ)}. Then ŵ is a minimizer of Φλ(w, x)
on BR if and only if

ŵ = PR

(
x +

βŵ

λ‖ŵ‖�2

− 1
λ

A∗(Ax − yδ)

)
. (4.5)

15



Inverse Problems 36 (2020) 125012 L Ding and W Han

Proof. By the definition of ŵ, for any w ∈ BR, the function

f (t) =
1
2
‖A((1 − t)ŵ + tw) − yδ‖2

�2
− β‖(1 − t)ŵ + tw‖�2

− 1
2
‖A((1 − t)ŵ + tw − x)‖2

�2
+

λ

2
‖(1 − t)ŵ + tw − x‖2

�2
, t ∈ [0, 1]

has its minimum at t = 0. Thus,

f ′(0+) = 〈Aŵ − yδ , A(w − ŵ)〉 − β‖ŵ‖−1
�2
〈ŵ,w − ŵ〉

− 〈Aŵ − Ax, A(w − ŵ)〉+ λ〈ŵ − x,w − ŵ〉

� 0,

i.e., 〈
1
λ

A∗(Ax − y) + ŵ − x − β

λ

ŵ

‖ŵ‖�2

,w − ŵ

〉
� 0.

By lemma 2.8, this implies (4.5).
On the other hand, let now ŵ ∈ BR be such that (4.5) holds. By lemma 2.8, we have〈

x +
βŵ

λ‖ŵ‖�2

− 1
λ

A∗(Ax − y) − ŵ,w − ŵ

〉
� 0.

Define

J(w) :=Φλ(w, x) =
1
2
‖Aw − y‖2

�2
− β‖w‖�2 −

1
2
‖A(w − x)‖2

�2
+

λ

2
‖w − x‖2

�2
. (4.6)

If w �= 0, we have

J′(w) = A∗(Ax − y) + λ(w − x) − β
w

‖w‖�2

. (4.7)

By (4.7), this implies that

0 � 〈J′(ŵ),w − ŵ〉 = lim
t→0+

J(ŵ + t(w − ŵ)) − J(ŵ)
t

. (4.8)

By assumption and lemma 4.4, Φλ(w, x) is locally convex at ŵ. This implies that

0 � 〈J′(ŵ),w − ŵ〉 = lim
t→0+

J(ŵ + t(w − ŵ)) − J(ŵ)
t

� lim
t→0+

tJ(w) + (1 − t)J(ŵ) − J(ŵ)
t

= J(w) − J(ŵ)

for all w ∈ BR. This proves the lemma. �
Denote by xk+1 the sequence generated by the formula

xk+1 = PR

(
xk +

βxk+1

λ‖xk+1‖�2

− 1
λ

A∗(Axk − yδ)

)
. (4.9)

The projected gradient algorithm based on the surrogate function is stated in the form of
algorithm 4. The stopping criterion for the inner iteration in algorithm 4 is the same as that
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Algorithm 4. PG algorithm for problem (1.11) based on the surrogate function approach.

Choose x0 ∈ R
n, R0 ∈ R

+, β = O(δ) and λ such that λ > β max {eig(x0), eig(x†)}
for j = 0, 1, 2, . . . , do

for k = 0, 1, 2, . . . , do

xk+1 = PR j

(
xk + βxk+1

λ‖xk+1‖�2
− 1

λA∗(Axk − yδ)

)
(by fixed point iteration)

check stopping criteria and return xk+1 as a solution or set k = k + 1
end for

if Morozov’s discrepancy principle (2.2) is not satisfied, set Rj+1 = R j − c, c > 1
otherwise stop iteration

end if
j = j + 1

end for

in algorithm 3. If the iterative solution does not change for three subsequent iterations or the
maximum number of 2000 iterations is reached, then a minimizer is considered to have been
obtained.

To prove the convergence of algorithm 4, we impose some restrictions on the operator A
and λ.

Assumption 4.6. Let r := ‖A∗A‖L(Rn,Rn) < 1. Assume that

(A1) ‖Ax‖2
�2
� λ r

2 ‖x‖2
�2

for all x ∈ �2

(A2) λ � β max{eig(xk)} for all k.

In assumption 4.6, we let r := ‖A∗A‖L(Rn,Rn) < 1. In the classical theory of sparsity reg-
ularization, the value of ‖Am×n‖2 is assumed to be less than 1 ([12]), where m denotes the
number of rows in the operator A. This requirement is still needed in this paper. If r > 1, we
need to re-scale the original ill-posed problem by Am×nxn = ym →

(
1
c Am×n

)
xn =

1
c ym so that

1
c2 ‖A∗A‖L(Rn,Rn) < 1, where c > 1. If r < 1, we let λ > 2; then (A1) holds. As for (A2), it
seems that we need to compute eigenvalues for every (ai j(xk))n×n. However, we can give an
approximation for the eigenvalues of (ai j(xk))n×n. In this paper, we first estimate the value of
eig(x†) and eig(x0), then we can give an approximation for the order of the maximal value
of eig(x†) and eig(x0). Subsequently, we choose λ such that λ is greater than the order of the
maximal eigenvalues of ‖x†‖�2 and ‖x0‖�2 . If the value of ‖x†‖�2 is too small, we can re-scale
the original ill-posed problem by Am×nxn = ym →

(
1
c Am×n

)
(cxn) = ym to increase the value of

‖x†‖�2 , where c > 1. Meanwhile, this strategy can reduce the value of ‖Am×n‖2, see section 5
for details.

Lemma 4.7. Let assumption 4.6 hold with {xk+1} generated by iteration (4.9). Then,

Dδ
β(xk+1) � Dδ

β(xk)

and

lim
k→∞

‖xk+1 − xk‖�2 = 0.

Proof. By lemma 4.5 and the definition of xk+1, we see that xk+1 is a minimizer ofΦλ(w, xk).
Then we have
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Dδ
β(xk+1) � Dδ

β(xk+1) +
2 − r

2r
‖A(xk+1 − xk)‖2

Y

� 1
2
‖Axk+1 − y‖2

Y − β‖xk+1‖�2 +
1
r
‖A(xk+1 − xk)‖2

Y

− 1
2
‖A(xk+1 − xk)‖2

Y

� 1
2
‖Axk+1 − y‖2

Y − β‖xk+1‖�2 −
1
2
‖A(xk+1 − xk)‖2

Y

+
λ

2
‖xk+1 − xk‖2

�2

= Φλ(xk+1, xk) � Φλ(xk, xk) = Dδ
β(xk).

Furthermore,

Φλ(xk+1, xk) − Φλ(xk+1, xk+1) =
λ

2
‖xk+1 − xk‖2

�2
− 1

2
‖A(xk+1 − xk)‖2

Y

� λ(2 − r)
4

‖xk+1 − xk‖2
�2
.

This implies

N∑
k=0

‖xk+1 − xk‖2
�2
� 4

λ(2 − r)

N∑
k=0

(
Φλ(xk+1, xk) − Φλ(xk+1, xk+1)

)

� 4
λ(2 − r)

N∑
k=0

(
Φλ(xk, xk) − Φλ(xk+1, xk+1)

)

=
4

λ(2 − r)

(
Φλ(x0, x0) − Φλ(xN+1, xN+1)

)
� 4

λ(2 − r)
(Φλ(x0, x0) + βR).

Since
∑N

k=0 ‖xk+1 − xk‖2
�2

is uniformly bounded with respect to N, the series
∑∞

k=0 ‖xk+1

− xk‖2
�2

converges. This proves the lemma. �

Remark 4.8. To prove the convergence, we need to analyze the relation between xk and 0.
If 0 = x0 = x1, then we stop the iteration and 0 is the iterative solution. Otherwise, by lemma
4.7, Dδ

β(xk) decreases, which implies that xk �= 0 for k � 1. So in the following we let xk �= 0
whenever k � 1.

Lemma 4.9. Denote Ψ(ŵ) :=PR

(
x + βŵ

λ‖ŵ‖�2
− 1

λ
A∗(Ax − yδ)

)
. Then the fixed point itera-

tion ŵl+1 = Ψ(ŵl) has a subsequence which converges to an element ŵ. If ŵ �= 0, then ŵ is a
fixed point of Ψ(ŵ).

Proof. By lemma 2.8, PR(x) is non-expansive,

‖Ψ(ŵ1) −Ψ(ŵ2)‖�2 �
∥∥∥∥ βŵ1

λ‖ŵ1‖�2

− βŵ2

λ‖ŵ2‖�2

∥∥∥∥
�2

,
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which implies Ψ(ŵ) is continuous at any nonzero element w. Since {ŵl} is bounded, it has a
subsequence {ŵlk} which converges to an element ŵ ∈ BR. Since ŵlk+1 = Ψ(ŵlk ),

lim
k
ŵlk+1 = lim

k
Ψ(ŵlk ). (4.10)

If ŵ �= 0, it follows from (4.10) that ŵ = Ψ(ŵ). �

Even though PR(x) is non-expansive, the map Ψ(ŵ) is not necessarily non-expansive. So
we only have the existence of a fixed point. We cannot ensure uniqueness of the fixed point.
Indeed, due to the non-convexity of Φλ(w, x) in (4.3), the minimizer of Φλ(w, x) may be non-
unique. Nevertheless, the convergence still holds and the limit depends on the choice of the
initial vector x0.

Theorem 4.10. Let {xk} be the sequence generated by algorithm 4. Then {xk} has a
subsequence which converges to a nonzero stationary point x∗ of (1.11), i.e. x∗ satisfies〈

βx∗

‖x∗‖�2

− A∗(Ax∗ − yδ),w − x∗
〉

� 0 ∀w ∈ BR,

where R satisfies Morozov’s discrepancy principle (2.2).

Proof. First, we prove the convergence of inner iteration

xk+1 = PR j

(
xk +

βxk+1

λ‖xk+1‖�2

− 1
λ

A∗(Axk − yδ)

)
.

For any fixed Rj > 0, since {xk} ⊂ BR j is bounded, {xk} has a subsequence {xki} converging
to an element x∗ in BR j , i.e. xki → x∗ in BR j . Since A is linear and bounded, A(xki) → A(x∗). By
lemma 2.8 and the definition of xk+1, we see that, for all w ∈ BR j ,〈

xk +
βxk+1

λ‖xk+1‖�2

− 1
λ

A∗(Axk − yδ) − xk+1,w − xk+1

〉
� 0.

This implies that〈
xki +

βxki+1

λ‖xki+1‖�2

− 1
λ

A∗(Axki − yδ) − xki+1,w − xki+1

〉
� 0. (4.11)

Taking the limit i →∞ in (4.11), we have

lim
i→∞

〈
xki +

βxki+1

λ‖xki+1‖�2

− 1
λ

A∗(Axki − yδ) − xki+1,w − xki+1

〉
� 0. (4.12)

Since ‖xki − xki+1‖�2 → 0 as i →∞ and {w − xki+1} is uniformly bounded, we have

lim
i→∞

|〈xki − xki+1,w − xki+1〉| = 0. (4.13)

A combination of (4.12) and (4.13) shows that

lim
i→∞

〈
βxki+1

λ‖xki+1‖�2

− 1
λ

A∗(Axki − yδ),w − xki+1

〉
� 0. (4.14)
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Since xki → x∗, it follows from (4.14) that〈
βx∗

‖x∗‖�2

− A∗(Ax∗ − yδ),w − x∗
〉

� 0.

By lemma 4.1, x∗ is a stationary point of Dδ
β(x) on BR j . Moreover, for the outer iteration, if Rj

satisfies Morozov’s discrepancy principle (2.2), we rewrite Rj as R. So x∗ is a stationary point
of Dδ

β(x) on BR, where R satisfies Morozov’s discrepancy principle. This proves the theorem.
�

Finally, we show the stability of algorithm 4.

Theorem 4.11. Let xki
δn
→ x∗δn

, x∗δn
being a stationary point of problem (1.11) where yδ is

replaced by yδn and {xki
δn
} being a subsequence of {xk

δn
} generated by algorithm 4. Assume

δn → δ as n →∞. Then there exists a subsequence of {x∗δn
}, still denoted by {x∗δn

}, such
that x∗δn

→ x∗. If x∗ �= 0, then it is a stationary point of problem (1.11). If x∗ is unique, then
limn→∞‖x∗δn

− x∗‖2 = 0.

Proof. By the assumption, x∗δn
is a stationary point of problem (1.11) where yδ is replaced

by yδn . Thus, 〈
βx∗δn

‖x∗δn
‖�2

− A∗(Ax∗δn
− yδn ),w − x∗δn

〉
� 0 ∀w ∈ BR. (4.15)

Since {x∗δn
} is bounded, there exist a convergent subsequence of {x∗δn

}, still denoted by {x∗δn
},

and an element x∗ such that x∗δn
→ x∗. Taking the limit n →∞ in (4.15), we have

〈
βx∗

‖x∗‖�2

− A∗(Ax∗ − yδ),w − x∗
〉

� 0 ∀w ∈ BR. (4.16)

By lemma 2.8, this implies that x∗ is a stationary point of problem (1.11). If x∗ is unique, then
every subsequence {x∗δn

} converges to x∗. So we have limn→∞‖x∗δn
− x∗‖2 = 0. �

Remark 4.12. In this section, we restrict the analysis of the projected algorithm based on
the surrogate function approach in the finite dimensional space Rn. Actually, all results except
lemma 4.9 and theorem 4.10 can be extended to the case of �2 space. In theorem 4.10, if {xk} is
defined in �2, then {xk} has a weak convergence subsequence {xk j} ⇀ x∗. However, the chal-
lenge of the proof is that xk j ⇀ x∗ cannot ensure xk j+1/‖xk j+1‖�2 ⇀ x∗/‖x∗‖�2 . For example,
let xn = x̄ + en, where en = (0, . . . , 0, 1︸ ︷︷ ︸

n

, 0, . . .). Since en ⇀ 0 in �2, xn ⇀ x in �2. However,

‖xn‖�2 � ‖x‖�2 . Hence, xn/‖xn‖�2 does not converge to x∗/‖x∗‖�2 . If we impose an additional
condition on {xn}, e.g. ‖xn‖�2 → ‖x‖�2 , then we have xn/‖xn‖�2 ⇀ ηx∗/‖x∗‖�2 . However, this
condition is too restrictive, since a combination of ‖xn‖�2 →‖x‖�2 and xn ⇀ x∗ in �2 implies
that xn → x∗. Moreover, the iterative algorithm in this paper has an implicit formulation, and
we need to compute the iterative solution. However, in �2 space, we do not know whether the
operator Φ(ŵ) is weak-strong continuous. So we cannot ensure that the fixed point iteration is
convergent.
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Figure 2. The relative error of reconstruction x∗ by the two PG algorithms with
different R.

Table 1. Rerror of reconstruction x∗ with different values of η.

η 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1.0

ST-(α�1 − β�2) 0.0250 0.0246 0.0147 0.0098 0.0086 0.0081 0.0073 0.0067 0.0064
PG-GCGM 0.0180 0.0126 0.0102 0.0089 0.0081 0.0074 0.0067 0.0061 0.0059
PG-SF 0.0356 0.0285 0.0197 0.0145 0.0121 0.0111 0.0096 0.0091 0.0089

5. Numerical examples

In this section, we present results from two numerical examples to demonstrate the efficiency of
the proposed algorithms. Comparisons between ST-(α�1 − β�2) and the two projected gradient
algorithms are provided. For convenience, we write PG-GCGM algorithm to refer to the first
projected gradient algorithm which is based on GCGM, and PG-SF algorithm for the second
projected gradient algorithm which is based on the surrogate function approach. The relative
error (Rerror) is utilized to measure the performance of the reconstruction x∗:

Rerror :=
‖x∗ − x†‖�2

‖x†‖�2

,

where x† is a true solution.
We utilize the algorithm in [5, section 4.2] to compute the projection defined in definition

2.5. The MATLAB code oneProjector.m regarding the �1-ball projection can be obtained at
http://www.cs.ubc.ca/labs/scl/spgl1. The first example deals with a well-conditioned compres-
sive sensing problem. The second example deals with an ill-conditioned image deblurring
problem. All numerical experiments were tested in MATLAB R2010 on an i7-6500U 2.50 GHz
workstation with 8 Gb RAM.

5.1. Example 1: compressive sensing

In the first example, we test compressive sensing with the commonly used random Gaussian
matrix. The compressive sensing problem is defined as Am×nxn = ym, where Am×n is a well
conditioned random Gaussian matrix by calling A = randn(m, n) in MATLAB. Exact data y†

is generated by y† = Ax†. The exact solution x† is an s-sparse signal supported on a random
index set. White Gaussian noise is added to the exact data y† by calling yδ = awgn(Ax†, σ) in
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Figure 3. True signal and its noisy observation together with reconstructions x∗ for
η = 1.

Figure 4. (a) Convergence rate of PG-GCGM algorithm and PG-SF algorithm; (b)
convergence rate of ST-(α�1 − β�2) algorithm.

MATLAB, where σ (measured in dB) measures the ratio between the true (noise free) data
y† or Ax† and Gaussian noise. A larger value of σ corresponds to a smaller value of the noise
level δ, where the noise level δ is defined by δ = ‖yδ − y†‖2. x∗ denotes the reconstruction
computed by the proposed algorithms. For compressive sensing, if the value of ‖(A∗A)n×n‖2

is greater than 1, we rescale the matrix Am×n by Am×n → c ∗ Am×n, where c < 1. Then the
original compressive sensing problem Am×nxn = ym can be rewritten as (c ∗ Am×n)xn = c ∗ ym.
Note that the condition number does not change under the matrix rescaling. To compare the
performance of ST-(α�1 − β�2) algorithm, PG-GCGM algorithm and PG-SF algorithm, we
choose the same initial setting, i.e., λ, β and the initial vector x0. Moreover, for each fixed
point iteration in PG-SF algorithm, we choose x0 = ones(n, 1) as the initial vector.

We choose n = 200, m = 0.4n, s = 0.2m, then ‖x†‖0 = 16. A noise δ is added to exact
data y† by calling yδ = awgn(Ax†, σ), where σ = 50dB, δ is around 0.02. We let λ = 1, η = 1
and the initial vector x0 is generated by calling x0 = 0.01ones(n, 1). We choose the regu-
larization parameter α by α = O(δ) = 0.02. Indeed, if α = O(δ), we can prove xδα,β → x†.
This implies that (1.9) is a regularization method, cf [15, theorem 2.13] for details. As for
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Figure 5. (a) Rerror for xk , 1 � k � 1500; (b) max{eig(xk)} for 1 � k � 1500.

Table 2. Time of computation for the reconstruction x∗ with different values of Rerror.

Rerror ST-(α�1 − β�2) time (m) PG-GCGM time (s) PG-SF time (s)

0.8 9.7463 0.0214 0.0208
0.6 12.7113 0.1926 0.8573
0.4 14.9283 0.6995 3.2097
0.2 24.8903 1.6924 7.5099
0.1 39.2569 2.8578 11.1562
0.05 60.5784 4.9201 22.2830
0.02 102.8623 8.2870 41.2480

the parameter β, it is determined as β = αη = 0.02. The choice of R0 depends on the priori
information of a true solution, i.e., the value of ‖x†‖1. If R0 is close to the value of ‖x†‖1, one
can obtain desired inversion results with less outer iteration numbers. On the contrary, if R0 is
far away from the value of ‖x†‖1, one needs more outer iteration numbers. In this part, we let
R0 = 10. We utilize discrepancy principle (2.2) to determine the radius R of the �1-ball con-
straint such that R = sup {R > 0|δ � ‖Ax∗ − yδ‖2}. It is shown that when a good estimate
for the noise level δ is known, this method yields a good radius R. According to the priori
information of x†, we choose an initial value of R0 and compute x∗. If ‖Ax∗ − yδ‖2 > δ, we
try R j = R0 + j, j = 1, 2, . . . until ‖Ax∗ − yδ‖2 � δ is satisfied. With j increasing, we can find
R = sup {R > 0|δ � ‖Ax∗ − yδ‖2}. On the contrary, for any initial R, if ‖Ax∗ − yδ‖2 < δ, we
try R j = R0 − j, j = 1, 2, . . . until ‖Ax∗ − yδ‖2 � δ is satisfied. Figure 1 shows Morozov’s
discrepancy principle for determining the radius R. We see that the discrepancy ‖Ax∗ − yδ‖2

is a decreasing function of the radius R. According the strategy stated above, R should be cho-
sen such that R = sup {R > 0|δ � ‖Ax∗ − yδ‖2}. It is obvious that R should be chosen as 16.
Indeed, by ST-(α�1 − β�2) algorithm, we can obtain ‖x∗‖1 = 16.0153. Thus the experimental
results confirm that the strategy proposed in this paper is feasible and they match the theoretical
results stated in subsection 3.1, i.e. R should be chosen by R = ‖x∗‖1.

To test the stability of the PG Algorithms with respect to R, we choose several values of R
in figure 2. It is shown that the two PG algorithms have good performance with the appropriate
radius R. We see that the two PG algorithms are stable with respect to R. Furthermore, the
results of reconstruction get better if R is close to 16.
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Figure 6. The value of the discrepancy ‖Ax∗ − yδ‖2 with different R.

Figure 7. The relative error of reconstruction x∗ by the two PG algorithms with
different R.

For 0 < η � 1, Rη(x) is non-convex. To analyze the influence of η, we choose different
values for the parameter η. From each row in table 1, we see that, Rerror of reconstruction gets
better with η increasing which implies the non-convex regularization (case η > 0) has better
performance compared to the classical �1 regularization (case η = 0). Figure 3 shows graphs
of the reconstruction x∗ by the PG-GCGM and PG-SF algorithm when η = 1.

We test the convergence rate of the two PG algorithms and the ST-(α�1 − β�2) algorithm.
We are primarily interested in the time of computation corresponding to Rerror. The results are
shown in figure 4. To reach a level of 7 × 10−3 for the relative error, PG-GCGM algorithm takes
0.62 s, PG-SF algorithm 1.08 s, and ST-(α�1 − β�2) algorithm 18.40 s. The ST-(α�1 − β�2)
algorithm procedure is significantly slower than the two PG algorithms.

Theoretically, we require assumption 4.6(A2), i.e. λ � β max{eig(xk)} for the convergence
of the PG-SF algorithm. Next, we test whether λ satisfies this assumption. Figure 5(a) shows
Rerror corresponding to the different reconstruction xk, 1 � k � 1500, whereas figure 5 (b)
shows the maximal eigenvalues max{eig(xk)}. It is obvious that all max{eig(xk)} are less than
3.5. In this section, we let λ = 1 and β = αη, where α = 0.02 and η = 1. Thus, λ � 3.5β and
assumption 4.6(A2) is satisfied. Theoretically, we can let λ be any value greater than 3.5β.

24



Inverse Problems 36 (2020) 125012 L Ding and W Han

Table 3. Rerror of reconstruction x∗ with different values of η.

η 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1.0

ST-(α�1 − β�2) 0.0265 0.0253 0.0231 0.0205 0.0163 0.0144 0.0125 0.0138 0.0198
PG-GCGM 0.0278 0.0263 0.0242 0.0225 0.0198 0.0162 0.0130 0.0152 0.0205
PG-SF 0.0296 0.0271 0.0237 0.0231 0.0204 0.0156 0.0126 0.0147 0.0203

Figure 8. True image and its blurred and noisy observation together with reconstructions
x∗ for η = 0.7.

Nevertheless, a larger value of λ corresponds to a smaller iteration step, leading to a slower
convergence rate.

Finally, we let n = 1800, m = 0.4n and s = 0.2m, σ = 50dB. The coefficients λ and η
remain the same as in the first test. The noise level δ is around 0.09; hence we let α = β = 0.1.
We test the convergence rate of the two PG algorithms and ST-(α�1 − β�2) algorithm in terms
of the computational time with several different values of Rerror. We observe from table 2 that
the ST-(α�1 − β�2) algorithm takes more than 100 min to reach a 2% relative error, whereas
the two PG algorithms only need around 8 and 41 s to reach the same level of relative error.
The PG algorithms converge much faster than the ST-(α�1 − β�2) algorithm.
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Figure 9. (a) Convergence rate of PG-GCGM algorithm and PG-SF algorithm; (b)
convergence rate of ST-(α�1 − β�2) algorithm.

Figure 10. (a) Rerror for xk, 1 � k � 1000; (b) max{eig(xk)} for 1 � k � 1000.

5.2. Example 2: image deblurring

In the second example, we consider an ill-conditioned image deblurring problem which is
related to the process of removing blurring artifacts from images such as blur caused by defocus
aberration or motion blur. The blur is typically modeled by a Fredholm integral equation of the
first kind

∫ b

a
K(s, t) f (t) dt = g(s),

where K(s, t) is the kernel function, g(s) is the observed image and f(t) is the true image. We
utilize MATLAB regularization tools ([21]) by calling [A, b, x†] = blur(n, band, τ), where the
Gaussian point-spread function is used as the kernel function

K(s, t) =
1

πτ 2
exp

(
− s2 + t2

2τ 2

)
.
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Figure 11. True image and its blurred and noisy observation together with reconstruc-
tions x∗ for η = 0.7.

The symmetric n2 × n2 Toeplitz matrix A is given by A = (2πτ 2)−1T ⊗ T, where T is an n × n
symmetric banded Toeplitz matrix whose first row is obtained by calling

z = [exp(−([0 : band − 1].̂ 2)/(2τ 2̂)); zeros(1, N − band)].

The parameter τ controls the shape of the Gaussian point spread function and thus the amount
of smoothing (the larger the value of τ , the wider the function, and the more ill-posed the
problem).

We choose n = 64, band = 3, τ = 0.7. A noise δ is added to exact data y† by calling
yδ = awgn(Ax†, σ), where σ = 50dB and δ is around 0.2. We let λ = 5, η = 0.7, α = O(δ)
= 0.2, β = αη = 0.14 and generate the initial vector x0 by calling x0 = 0.01ones(n, 1). The
value of ‖A‖2 is around 1 and the condition number is around 30. The initial value x0 is
generated by calling x0 = 0.01ones(n× n, 1). We let R0 = 2000. Figure 6 shows Morozov’s
discrepancy principle for determining the radius R. We see that the value of the discrep-
ancy ‖Ax∗ − yδ‖2 decreases with increasing radius R. According to the strategy stated previ-
ously, R should be chosen such that R = sup {R > 0|δ < ‖Ax∗ − yδ‖2}. We choose an initial
value of R0 and compute x∗. If ‖Ax∗ − yδ‖2 > δ, we try R j = R0 + j, j = 1, 2, . . . until
‖Ax∗ − yδ‖2 � δ is satisfied. From figure 6, we see that if R � 2018, then ‖Ax∗ − yδ‖2 < δ,
and if R � 2017, then ‖Ax∗ − yδ‖2 > δ. So the numerical results suggest that R should be cho-
sen as 2107. Figure 7 shows the performance of the PG algorithms with respect to R. It is
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Figure 12. True image and its blurred and noisy observation together with reconstruc-
tions x∗ for η = 0.7.

shown that the two PG algorithms have good performance with appropriate radius R. Observe
that for a fixed parameter η, Rerror of reconstruction x∗ gets better if R is closer to 2107.

To analyze the influence of η, we choose different values for the parameter η. From each
row in table 3, we see that the results of reconstruction get better with η increasing, implying
that the non-convex regularization (for η > 0) has better performance than the classical �1

regularization (for η = 0). However, if η increases to near 1, the accuracy of recovery decreases
and η = 0.7 is optimal. Figure 8 shows graphs of the reconstruction x∗ by the PG-GCGM and
PG-SF algorithm when η = 0.7.

We test the convergence rate of the two PG algorithms and the ST-(α�1 − β�2) algorithm,
focusing on the computation time corresponding to Rerror. The results are shown in figure 9.
To get within a distance of the true minimizer corresponding to a 1.2 × 10−2 relative error,
the PG-GCGM algorithm takes 10.12 s, PG-SF algorithm 36.26 s, and the ST-(α�1 − β�2)
algorithm 58.54 min. The ST-(α�1 − β�2) algorithm procedure is significantly slower than the
two PG algorithms.

Theoretically, we need assumption 4.6(A2), λ � β max{eig(xk)}, for convergence of the
PG-SF algorithm. In figure 10, we test whether λ satisfies this assumption. Figure 10 (a) shows
Rerror corresponding to the different reconstruction xk and figure 10 (b) shows the maximal
eigenvalue max{eig(xk)}. It is seen that the maximal eigenvalue of all xk is less than 0.45. We
let λ = 1 and β = αη = 0.14, where α = 0.2 and η = 0.7. Thus, λ � 3.5β, and assumption
4.6(A2) is satisfied.
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Finally, we show the inversion results for the deblurred imaging problem with two synthetic
images, ‘Barbara’ and ‘cameraman’. The size of both images is 512 × 512. We let τ = 1.2 and
σ = 50dB. The coefficients λ and η remain the same as in the previous test. The noise level δ is
around 0.8; hence we let α = 0.8 and β = αη = 0.56. Figures 11 and 12 show the true images
and inversion results from the proposed algorithms. It is shown that we can obtain good results
even for the synthetic images which have different features.
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