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Abstract
This paper presents a novel regularization with a non-convex, non-smooth 
term of the form α‖ · ‖�1 − β‖ · ‖�2 with parameters α > β � 0 to solve ill-
posed linear problems with sparse solutions. We investigate the existence, 
stability and convergence of the regularized solution. It is shown that this 
type of regularization is well-posed and yields sparse solutions. Under an 
appropriate source condition, we get the convergence rate O(δ) in the �2-norm 
for a priori and a posteriori parameter choice rules, respectively. A numerical 
algorithm is proposed and analyzed based on an iterative threshold strategy 
with the generalized conditional gradient method. We prove the convergence 
even though the regularization term is non-smooth and non-convex. The 
algorithm can easily be implemented because of its simple structure. Some 
numerical experiments are performed to test the efficiency of the proposed 
approach. The experiments show that regularization with α‖ · ‖�1 − β‖ · ‖�2 
performs better in comparison with the classical �1 sparsity regularization and 
can be used as an alternative to the �p (0 � p < 1) regularizer.
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1. Introduction

This paper is concerned with solving an ill-posed operator equation of the form

Ax = y, (1.1)

where A : �2 → Y  is linear and bounded, x is sparse and Y is a Hilbert space with norm ‖ · ‖Y . 
Throughout this paper, 〈·, ·〉 denotes the inner product in the �2 space. In applications, the 
data y  is not given exactly and only its approximation yδ is known with ‖yδ − y‖Y � δ  for a 
small δ > 0. The most widely adopted method to solve the ill-posed operator equation (1.1) is 
through sparsity regularization

min
x

1
q
‖Ax − yδ‖q

Y + α‖x‖ p
w,p, (1.2)

where 1 � p < 2, 1 � q � 2, α > 0, 1q‖Ax − yδ‖q
Y is the fidelity term characterizing the misfit 

of the data yδ, ‖x‖ p
w,p =

∑
i

wi|〈ϕi, x〉| p, {wi  >  0} are the weights, and {ϕi} is an orthonor-

mal basis. In [1], Daubechies et al used a wavelet as an orthonormal basis and let w = µw0, 
where µ > 0 is a constant and w0 is the sequence with all entries equal to 1. Over the past 
two decades, sparsity has become popular and great efforts have been devoted to investigat-
ing well-posedness issues and developing algorithms for solving the sparsity regularization 
problems—see [1–3] and the references therein.

Since the �p-norm regularization with 1 � p < 2 does not always provide the sparsest solu-
tion, the non-convex �p-norm sparsity regularization with 0 � p < 1 has been proposed as 
an alternative to (1.2) ([4, 5]). However, the non-convex regularized problem is generally 
more challenging to analyze and to solve due to the non-convexity and non-differentiability, 
especially if p   =  0. In spite of the growing interest in non-convex sparsity regularization, 
limited work can be found on regularization properties, especially on convergence rates. 
Special regularization techniques are needed to analyze the �p-norm sparsity regularization 
with 0 � p < 1. In [4], a non-convex separable constrained sparsity regularization is investi-
gated. Under an additional boundedness assumption on the chosen weights, a sparsity regu-
larization with weighted regularization terms is analyzed and the well-posedness is proven 
in [5]. In [6], a generalized notion of Bregman distances is introduced that allows the deriva-
tion of conv ergence rate results for the Tikhonov regularization with non-convex regulari-
zation terms. In [7], �0-norm regularization problems are investigated in finite-dimensional 
spaces. In [8], sparsity optimization is studied in infinite-dimensional sequence spaces �p with 
p ∈ [0, 1]. Recently, some new forms of regularization were proposed as alternatives to the 
non-convex �p-norm. In [9], a Lipschitz continuous regularization term is proposed as the dif-
ference between �1- and �2-norms and the minimization of regularized functionals is studied 
in finite-dimensional spaces for solving compressed sensing problems. A new regularization 
term called sorted �1 is proposed in [10]. For the non-convex sparsity regularization of nonlin-
ear ill-posed problems, see [11–14] and references therein.

Although the �p-norm regularization with 0 � p < 1 provides a more sparse solution, the 
�1 regularizer is preferred because it can easily be implemented. Hence a critical issue for 
non-convex sparsity regularization is the development of numerical algorithms. In [15], a 
reweighted iterative algorithm is proposed for the �1/2  regularizer. An iterative algorithm 
based on the difference of convex functions algorithm is proposed in [9]. For ill-conditioned 
matrices, numerical examples show that the �1−2 regularizer performs better than �1 and �1/2 . 
A general framework for non-smooth and non-convex regularizations based on a generalized 
gradient projection method is analyzed in [16]. Discussions of splitting algorithms for solving 
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the non-convex sparsity regularization can be found in [17] and references therein. In [18], 
ADMM (alternating direction method of multipliers) is applied to a non-convex and non-
smooth optimization problem and global convergence is obtained.

The aim of this paper is to study the following regularization method to solve the ill-posed 
linear equation (1.1):

minJ δ
α,β(x) =

1
q
‖Ax − yδ‖q

Y +Rα,β(x) (1.3)

in �2 space with the standard �2-norm ‖ · ‖�2, where 1 � q � 2 and

Rα,β(x) := α‖x‖�1 − β‖x‖�2 , α > β � 0. (1.4)

Denoting η = β/α, we can equivalently express the functional in (1.4) as

Rα,β(x) = αRη(x),

where Rη(x) := ‖x‖�1 − η‖x‖�2, α > 0, 1 > η � 0. The choice R1(x) = ‖x‖�1 − ‖x‖�2 was 
first addressed in [19] for the nonnegative least squares problem. Then it was extended to com-
pressive sensing problems in finite dimensional spaces ([9]). In figure 1, we illustrate contours 
of the �1-norm, �1/2-norm and Rα,β(x) for several different ratios of parameter α and β.

We see that Rα,β(x) behaves more and more like the �0-norm as β/α → 1. Meanwhile, 
Rα,β(x) converges to a constant multiple of the �1-norm as β/α → 0. For the case β/α = 1, 
Rα,β(x) is a good approximation of a constant multiple of ‖x‖�0. However, the contour of 
Rα,β(x) does not intersect with the coordinate axes, i.e. it is not closed. The main motiv-
ation for investigating minimization using regularization (1.4) is that α‖x‖�1 − β‖x‖�2 can be 
viewed as an approximation of ‖x‖�0. It has a simpler structure as compared to the regulariza-
tion with the �0- and �p-norms for p   <  1. Commonly used norms, such as �1-, �2-norm, and 
their derivatives can easily be evaluated and a numerical solution of problem (1.3) can be 
implemented by an iterative threshold algorithm. Furthermore, the numerical algorithm can 
easily be extended to solve nonlinear ill-posed equations—see section 3 for details. Moreover, 
α‖x‖�1 − β‖x‖�2 can be expressed as α(‖x‖�1 − ‖x‖�2) + (α− β)‖x‖�2. From the perspective 
of elastic-net regularization ([20, 21]), the additional term (α− β)‖x‖�2 leads to more stable 
algorithms and allows improved error bounds.

In this paper, we investigate the regularizing properties and numerical algorithm of problem 
(1.3). Proofs of the existence, stability and convergence are along the lines of the classical regular-
ization. However, some extra work is needed due to the presence of the non-convex regularization 
term Rα,β(x). An inequality is derived under an additional source condition. The convergence 
rate O(δ) in the �2-norm is proved by applying the inequality. As for a numerical method, we 
present an iterative soft thresholding (ST) algorithm for problem (1.3) which is based on the gen-
eralized conditional gradient method ([22, 23]) and the iterative shrinkage method ([1, 24]). In 
analogy to a technique presented in [23], we can rewrite the functional J δ

α,β in (1.3) as

J δ
α,β(x) = F(x) + Φ(x),

where F(x) = 1
q‖Ax − yδ‖q

Y −Θ(x), Φ(x) = Θ(x) + α‖x‖�1 − β‖x‖�2 and Θ(x) = λ
2 ‖x‖2

�2
+ β‖x‖�2. 

We show that F(x) and Φ(x) have the smoothness and convexity required for the application 
of the generalized conditional gradient method.

An outline of the rest of this paper is as follows. The next section provides the well-pos-
edness and convergence rate results of the α‖ · ‖�1 − β‖ · ‖�2 regularization in �2 space. In 
section 3, inspired by the generalized conditional gradient method, we propose a new iterative 
ST algorithm. Finally, numerical experiments are presented in section 4.
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2. Regularizing properties

2.1. Preliminaries

We denote by

xδα,β = argmin
x
{1

q
‖Ax − yδ‖q

Y +Rα,β(x)} (2.1)

a minimizer of the regularization functional J δ
α,β(x) in (1.3) for every α > β � 0. We use the 

following definition of the Rη-minimum solution ([25]).

Definition 2.1. An element x† ∈ �2 is called an Rη-minimum solution of the linear prob-
lem Ax  =  y  if

Ax† = y and Rη(x†) = min
x
{Rη(x) | Ax = y}.

We recall the definition of sparsity ([1]).

Definition 2.2. x ∈ �2 is called sparse if supp(x) := {i ∈ N | xi �= 0} is finite, where xi is 
the ith component of x. ‖x‖0 := supp(x) is the cardinality of supp(x). If ‖x‖0 = s for some 
s ∈ N, then x ∈ �2 is called s-sparse.

Definition 2.3. Define

I(x†) = {i ∈ N | x†i �= 0},

where x†i  is the ith component of x† and x† is an Rη-minimum solution of the linear problem 
Ax  =  y .

Figure 1. Contour plots of �1, �1/2  and Rα,β(x) with different ratios between α and β.
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Remark 2.4. If x† is sparse, i.e. I(x†) is finite, then there exists a number m  >  0 such that 

min i∈I(x†)|x
†
i | = m.

Lemma 2.5 (Coercivity). Assume α > β � 0. The functional Rα,β : �2 → [0,+∞] is co-
ercive, i.e. ‖x‖�2 → +∞ implies Rα,β(x) → +∞.

Proof. Note that ‖x‖�1 � ‖x‖�2. So

Rα,β(x) = α(‖x‖�1 − ‖x‖�2) + (α− β)‖x‖�2 � (α− β)‖x‖�2 ,

from which it is obvious that ‖x‖�2 → +∞ implies Rα,β(x) → +∞. ■ 

Remark 2.6. Write

Rα,β(x) = (α− β)‖x‖�1 + β(‖x‖�1 − ‖x‖�2) � (α− β)‖x‖�1 .

If ‖x‖�1 → +∞, then Rα,β(x) → +∞. So Rα,β(x) is also coercive with respect to the �1-norm.

Note that Rα,β(x) is not coercive when α = β. For example, let x = (0, · · · , 0, xi︸ ︷︷ ︸
i

, 0, · · · ), 

then ‖x‖�2 → +∞ as |xi| → +∞. However, Rα,β(x) ≡ 0 for any xi.
Next we recall an extension of Fatou’s lemma ([26, pp 321–2]).

Lemma 2.7 (Extension of Fatou’s lemma). Let f 1, f 2, …  be a sequence of real-valued 
measurable functions defined on a measure space (S,Σ,µ). If there exists an integrable func-
tion g on S such that fn � −g for all n, then

∫

S
lim inf

n
fndµ � lim inf

n

∫

S
fndµ.

Lemma 2.7 can be proven by applying Fatou’s lemma to the non-negative sequence 
{f n  +  g}. In lemma 2.7, S is a (nonempty) set, Σ is an σ-algebra on the set S, and µ is a meas-
ure on (S,Σ). A σ-algebra (also σ-field) on a set S is a collection Σ of subsets of S that includes 
S itself, is closed under complement, and is closed under countable unions. Elements of the 
σ-algebra are called measurable sets. An ordered triad (S,Σ,µ) is called a measurable space.

Lemma 2.8 (Weak lower semi-continuity). Let M  >  0 be given. Then, for any xn ∈ �2 
with Rα,β(xn) � M, {xn} weakly converging to x in �2 implies lim infn Rα,β(xn) � Rα,β(x).

Proof. By the definition of Rα,β in (1.4), we obtain

Rα,β(xn)−Rα,β(x) = α(‖xn‖�1 − ‖x‖�1)− β(‖xn‖�2 − ‖x‖�2)

=
∑

i

α(|xi
n| − |xi|)− β

∑
i
(|xi

n|+ |xi|)(|xi
n| − |xi|)

‖xn‖�2 + ‖x‖�2

=
∑

i

[
α− β(|xi

n|+ |xi|)
‖xn‖�2 + ‖x‖�2

]
(|xi

n| − |xi|),

 (2.2)

where xi and xi
n are the ith components of x and xn, respectively. If xn �= 0 or x �= 0, define 

ci
n := α− β(|xi

n|+|xi|)
‖xn‖�2+‖x‖�2

; then 0 < α− β � ci
n � α. If xn  =  0 and x  =  0, then let ci

n = 0. From 

(2.2),
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lim inf
n

(Rα,β(xn)−Rα,β(x)) = lim inf
n

[∑
i

ci
n(|xi

n| − |xi|)

]
. (2.3)

By the definition of ci
n, we have

ci
n(|xi

n| − |xi|) � −ci
n|xi| � −α|xi|. (2.4)

Meanwhile, Rα,β(xn) � M implies that {‖xn‖�1} is bounded. Then it follows from 
‖x‖�1 � lim infn ‖xn‖�1 that ‖x‖�1 is finite. Hence,

∑
i

α|xi| �= ∞. (2.5)

With (2.4) and (2.5) at our disposal, we apply lemma 2.7 to find

lim inf
n

[∑
i

ci
n(|xi

n| − |xi|)

]
�

∑
i

lim inf
n

(
ci

n|xi
n| − ci

n|xi|
)

. (2.6)

From the weak convergence of xn to x, we have |xi
n| → |xi| for all i ∈ N. Since 0 < ci

n � α, it 
is obvious that ci

n|xi
n| − ci

n|xi| → 0. Then we have

lim inf
n

(ci
n|xi

n| − ci
n|xi|) = 0. (2.7)

Hence,
∑

i

lim inf
n

(
ci

n|xi
n| − ci

n|xi|
)
= 0.

 (2.8)
A combination of (2.3), (2.6) and (2.8) implies that lim infn(Rα,β(xn)−Rα,β(x)) � 0, which 
proves the lemma. ■ 

Remark 2.9. Note that lemma 2.8 still holds when α = β, i.e. ‖ · ‖�1 − ‖ · ‖�2  is weakly 
lower semi-continuous. For the case α = β, 0 � ci

n � α, the above proof is still valid.

Lemma 2.10 (Radon–Riesz property). Let M  >  0 be given. Then, for any xn ∈ �2 with 
Rα,β(xn) � M, if xn converges weakly to x in �2 and Rα,β(xn) → Rα,β(x), then xn converges 
strongly to x in �2.

Proof. By the assumption Rα,β(xn) → Rα,β(x), we have

α‖xn‖�1 − β‖xn‖�2 → α‖x‖�1 − β‖x‖�2 ,

i.e.

α(‖xn‖�1 − ‖xn‖�2) + (α− β)‖xn‖�2 → α(‖x‖�1 − ‖x‖�2) + (α− β)‖x‖�2 .
 

(2.9)

Next, we prove ‖xn‖�2 → ‖x‖�2 and argue by contradiction. Suppose ‖xn‖�2 � ‖x‖�2. Since 
xn ⇀ x in �2, we have ‖x‖�2 � lim infn ‖xn‖�2. Thus, there exists a constant c  >  0 such that 
c = lim supn ‖xn‖�2 > ‖x‖�2. Consequently, there exists a subsequence {xm} of {xn} such that

limm‖xm‖�2 = c > ‖x‖�2 .

Hence,

limm(α− β)‖xm‖�2 = c(α− β) > (α− β)‖x‖�2 . (2.10)

L Ding and W Han Inverse Problems 35 (2019) 125009
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By (2.9), we have

α(‖xm‖�1 − ‖xm‖�2) + (α− β)‖xm‖�2 → α(‖x‖�1 − ‖x‖�2) + (α− β)‖x‖�2 .
 (2.11)

A combination of (2.10) and (2.11) implies that

limmα(‖xm‖�1 − ‖xm‖�2) < α(‖x‖�1 − ‖x‖�2).

Hence,

lim inf
n

α(‖xn‖�1 − ‖xn‖�2) � lim inf
m

α(‖xm‖�1 − ‖xm‖�2) < α(‖x‖�1 − ‖x‖�2).
 (2.12)

This contradicts the fact that ‖ · ‖�1 − ‖ · ‖�2  is weakly lower semi-continuous— see remark 
2.9. This argument shows that ‖xn‖�2 → ‖x‖�2. Since xn ⇀ x in �2 by assumption, we con-
clude that xn → x in �2. ■ 

2.2. Well-posedness of regularization

In this section, we consider the well-posedness of the regularization method. We prove the 
existence of the regularized solution xδα,β defined by (2.1), which continuously depends on 
the data yδ and converges to an Rη-minimum solution of the linear problem Ax  =  y . The 
proof is along the lines of the standard quadratic Tikhonov regularization ([25]) and sparsity 
regularization ([13, 21, 27, 28]). However, some extra work is needed due to the use of the 
non-convex regularization term Rα,β(x).

Theorem 2.11 (Existence). For all α > β � 0 and yδ ∈ Y , problem (1.3) has a solution.

Proof. Since J δ
α,β(x) is nonnegative, there exists a minimizing sequence {xn} such that

lim
n→+∞

J δ
α,β(xn) = lim

n→+∞

[
1
q
‖Axn − yδ‖q

Y +Rα,β(xn)

]
= c := inf J δ

α,β(x) � 0.

We see that Rα,β(xn) = α(‖xn‖�1 − ‖xn‖�2) + (α− β)‖xn‖�2 is bounded with respect to n. 
Then {‖xn‖�1} and {‖xn‖�2} are bounded by lemma 2.5 and remark 2.6. Thus {xn} has a sub-
sequence {xnk} which is weakly convergent to an element x̄ in �2 space, i.e. xnk ⇀ x̄  in �2. By 
lemma 2.8,

Rα,β(x̄) � lim inf
k→+∞

Rα,β(xnk). (2.13)

On the other hand, since A is bounded and linear, A(xnk)− yδ ⇀ A(x̄)− yδ in Y, and it follows 
from the weak lower semi-continuity of the norm that

1
q
‖Ax̄ − yδ‖q

Y � lim inf
k→+∞

1
q
‖Axnk − yδ‖q

Y . (2.14)

A combination of (2.13) and (2.14) shows that

1
q
‖Ax̄ − yδ‖q

Y +Rα,β(x̄) � lim inf
k→+∞

1
q
‖Axnk − yδ‖q

Y + lim inf
k→+∞

Rα,β(xnk)

� lim inf
k→+∞

[
1
q
‖Axnk − yδ‖q

Y +Rα,β(xnk)

]
.

Hence, x̄ minimizes J δ
α,β(x). ■ 
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Theorem 2.12 (Stability). Let α > β � 0 and {y n} and {xn} be sequences with 

lim n→+∞‖yn − yδ‖ = 0, xn being a minimizer of J δn
αn,βn

(x), where αn > βn � 0 and αn → α, 

βn → β as n → +∞. Then {xn} contains a convergent subsequence {xnk} and the limit xδα,β of 
every convergent subsequence is a minimizer of J δ

α,β(x). If the minimizer of J δ
α,β(x) is unique, 

then lim
k→+∞

‖xnk − xδα,β‖�2 = 0.

Proof. By definition of xn, we have

1
q
‖Axn − yn‖q

Y + αn‖xn‖�1 − βn‖xn‖�2 �
1
q
‖Ax − yn‖q

Y + αn‖x‖�1 − βn‖x‖�2

 (2.15)

for all x ∈ �1. Then {‖xn‖�2} and {‖xn‖�1} are bounded. Hence, there exists a subsequence 
{xnk} of {xn} and xδα,β such that

xnk ⇀ xδα,β in �2, Axnk ⇀ Axδα,β in Y .

By the weak lower semi-continuity of the norm, we obtain

1
q
‖Axδα,β − yδ‖q

Y � lim inf
k→+∞

1
q
‖Axnk − ynk‖

q
Y . (2.16)

By lemma 2.8, we have

Rα,β(xδα,β) � lim inf
k→+∞

Rα,β(xnk) = lim inf
k→+∞

(αn‖xnk‖�1 − βn‖xnk‖�2) . (2.17)

A combination of (2.15), (2.16) and (2.17) implies that

1
q
‖Axδα,β − yδ‖q

Y +Rα,β(xδα,β) � lim inf
k→+∞

[
1
q
‖Axnk − ynk‖

q
Y + αn‖xnk‖�1 − βn‖xnk‖�2

]

� lim inf
k→+∞

[
1
q
‖Ax − ynk‖

q
Y + αn‖x‖�1 − βn‖x‖�2

]

=
1
q
‖Ax − yδ‖q

Y +Rα,β(x)

for all x ∈ �2. This implies that xδα,β is a minimizer of J δ
α,β(x).

On the other hand, we note that

lim sup
k→+∞

[
1
q
‖Axnk − ynk‖

q
Y +Rα,β(xnk)

]
= lim sup

k→+∞

[
1
q
‖Axnk − ynk‖

q
Y + αn‖xnk‖�1 − βn‖xnk‖�2

]

� lim sup
k→+∞

[
1
q
‖Axδα,β − ynk‖

q
Y + αn‖xδα,β‖�1 − βn‖xδα,β‖�2

]

=
1
q
‖Axδα,β − yδ‖q

Y +Rα,β(xδα,β).

Hence,

1
q
‖Axnk − ynk‖

q
Y +Rα,β(xnk) →

1
q
‖Axδα,β − yδ‖q

Y +Rα,β(xδα,β).
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Since both ‖ · ‖Y  and Rα,β are weakly lower semi-continuous, this implies that 

Rα,β(xnk) → Rα,β(xδα,β). If the minimizer of J δ
α,β(x) is unique, then lim k→+∞‖xnk − xδα,β‖�2 = 0 

through an application of lemma 2.10. ■ 

Theorem 2.13 (Convergence). Let xδn
αn,βn

 be a minimizer of J δn
αn,βn

(x) defined by (2.1) 
with the data yδn satisfying ‖y − yδn‖ � δn, where δn → 0 if n → +∞ and yδn belongs to the 
range of A. Assume αn := α(δn), βn := β(δn), αn > βn � 0, are such that

lim
n→∞

αn = 0, lim
n→∞

βn = 0 and lim
n→∞

δq
n

αn
= 0.

Moreover, assume that η = lim n→∞ηn ∈ [0, 1) exists, where ηn = βn/αn. Then there exists a 

subsequence of {xδn
αn,βn

}, still denoted by {xδn
αn,βn

}, such that xδn
αn,βn

 converges to an Rη-mini-

mizing solution x† in �2. If, in addition, the Rη-minimizing solution x† is unique, then

lim
n→+∞

‖xδn
αn,βn

− x†‖�2 = 0.

Proof. Denote yn := yδn, xn := xδn
αn,βn

, ηn := ηδn. By the definition of xn, we obtain

1
q
‖Axn − yn‖q

Y + αn‖xn‖�1 − βn‖xn‖�2 �
1
q
‖Ax† − yn‖q

Y + αn‖x†‖�1 − βn‖x†‖�2

�
1
q
δq

n + αn‖x†‖�1 − βn‖x†‖�2 .

 

(2.18)

By assumption, we have 1qδ
q
n + αn‖x†‖�1 − βn‖x†‖�2 → 0 as n → +∞. Hence,

‖Axn − yn‖Y → 0 (n → +∞). (2.19)

Moreover, we have

‖Axn − y‖Y � ‖Axn − yn‖Y + ‖y − yn‖Y � ‖Axn − yn‖Y + δn. (2.20)

A combination of (2.19) and (2.20) implies that

lim
n→+∞

Axn = y. (2.21)

On the other hand, it follows from (2.18) that

lim sup
n→+∞

(‖xn‖�1 − ηn‖xn‖�2) � ‖x†‖�1 − η‖x†‖�2 . (2.22)

Since ‖xn‖�1 − ηn‖xn‖�2 is bounded, there exists an x∗ ∈ �2 and a subsequence of {xn}, still 
denoted by {xn}, such that xn ⇀ x∗ in �2. Together with (2.21), it follows that

y = lim
n→+∞

Axn = A(x∗).

Meanwhile, by lemma 2.8, we have

‖x∗‖�1 − η‖x∗‖�2 � lim inf
n

(‖xn‖�1 − ηn‖xn‖�2)

� ‖x†‖�1 − η‖x†‖�2 .
 (2.23)

By the definition of x†, then x* is an Rη-minimizing solution. If the 
Rη-minimizing solution is unique, then x∗ = x†. A combination of (2.22) and (2.23) 
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implies ‖xn‖�1 − ηn‖xn‖�2 → ‖x†‖�1 − η‖x†‖�2. Thus, Rα,β(xn) → Rα,β(x†). Then 

lim n→+∞‖xn − x†‖�2 = 0 by lemma 2.10. ■ 

Proposition 2.14 (Sparsity). Every minimizer x of J δ
α,β(x) is sparse.

Proof. The proof is along the lines of the proof of proposition 4.5 in [5]. For simplic-
ity, we only discuss the case q  =  2. Define the sequence x̄ := x − xiei for i ∈ N, where 
ei = (0, · · · , 0, 1︸ ︷︷ ︸

i

, 0, · · · ), and xi is the ith component of x. By the definition of x, it follows that

1
2
‖Ax − yδ‖2

Y +Rα,β(x) �
1
2
‖A(x − xiei)− yδ‖2

Y +Rα,β(x − xiei). (2.24)

If x  =  0, then x is sparse. If x �= 0, by (2.24), we see that

α|xi| − β
|xi|2

‖x‖�2 + ‖x̄‖�2

= Rα,β(x)−Rα,β(x̄) �
1
2

x2
i ‖Aei‖2

Y − xi〈Aei, Ax − yδ〉

�
1
2

x2
i ‖A‖2 − xi〈ei, A∗(Ax − yδ)〉

 (2.25)

for every i ∈ N. Meanwhile, for any constant 0 < c � 1 − β
α,

αc
|xi|

1 + |xi|
� α|xi| − β|xi| � α|xi| − β

|xi|2

‖x‖�2 + ‖x̄‖�2

. (2.26)

Denote

Ki :=
(1 + ‖x‖�2)(

1
2 xi‖A‖2 − 〈ei, A∗(Ax − yδ)〉)

cα
.

Then a combination of (2.25) and (2.26) implies that

Kixi � |xi|, i ∈ N.

Since x ∈ �2, xi → 0 as i → ∞. Also, ‖A‖ is finite since A is linear and bounded. More-
over, 〈ei, A∗(Ax − yδ)〉 = (A∗(Ax − yδ))i, where (A∗(Ax − yδ))i is the ith component of 
A∗(Ax − yδ). Since A∗(Ax − yδ) ∈ �2 , (A∗(Ax − yδ))i → 0 as i → ∞. Then we have Ki → 0 
as i → ∞, which implies that Λ := {i ∈ N | |Ki| � 1} is finite. Obviously, xi  =  0 whenever 
i /∈ Λ. This proves that x is sparse. ■ 

Remark 2.15. The regularization parameter α(δ) depends on the noise level δ; in par-
ticular, α(δ) → 0 as δ → 0. In applications, the observed data yδ contains noise and so the 
noise level δ > 0. For each fixed δ, there is a regularization parameter α > 0. Then Ki → 0 
as i → ∞.

If δ = 0, then the regularization parameter α = 0. The definition of Ki is unreasonable. For 
this case, β = ηα implies that β = 0. Then (1.3) becomes

minJα,β(x) =
1
q
‖Ax − y‖q

Y .

Since this paper is concerned with solving an ill-posed operator equation of the form Ax  =  y  
with a sparse solution, the minimizer x of (1.3) is sparse. So the minimizer x of (1.3) is sparse 
whenever α � 0.
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Note that if the ill-posed operator equation Ax  =  y  does not have a sparse solution, then for 
the case α = 0, the minimizer of (1.3) is non-sparse. A natural question is whether one should 
use sparsity regularization when a linear ill-posed equation does not have a sparse solution. 
We refer the reader to [29] which provides a discussion regarding solutions that are not com-
pletely sparse but have a fast decaying nonzero part.

2.3. Convergence rate of the regularized solution

In this section, we present the convergence rate results of a priori and a posteriori parameter 
choice rules. An inequality is derived under a source condition, and we obtain the convergence 
rate O(δ) in the �2-norm based on the inequality. The source condition is stated next.

Assumption 2.16. Let x† �= 0 be a sparse Rη-minimizing solution of the problem Ax  =  y . 
Assume that

ei ∈ R(A∗) ∀ i ∈ I(x†),

where ei = (0, · · · , 0, 1︸ ︷︷ ︸
i

, 0, · · · ) and I(x†) is defined in definition 2.3. In other words, for each 

i ∈ I(x†) there exists an element ωi ∈ D(A∗) such that ei = A∗ωi.

Assumption 2.16 and its modified form were introduced in [4, 11]. This assumption can 
be viewed as a source condition and it implies that the operator A fulfills some kind of ‘finite 
basis injectivity condition’ which is commonly used in sparsity regularization.

Next, we present an inequality under the source condition. The linear convergence rate 
O(δ) can be derived from this inequality.

Lemma 2.17. Let assumption 2.16 hold and Rα,β(x) � M for a given M  >  0. Then there 
exist constants c1 > c2 with c1  >  0 such that

(α− β)‖x − x†‖�1 � Rα,β(x)−Rα,β(x†) + (c1α− c2β)‖Ax − Ax†‖Y . (2.27)

Proof. From the definition of index set I(x†), we have

(α− β)‖x − x†‖�1 = (α− β)


 ∑

i∈I(x†)

|xi − x†i |+
∑

i/∈I(x†)

|xi|


 .

Then,

(α− β)‖x − x†‖�1 − (Rα,β(x)−Rα,β(x†))

=− α
∑

i∈I(x†)

(
|xi| − |x†i |

)
+ (α− β)

∑
i∈I(x†)

|xi − x†i |+ β(T1 − T2), (2.28)

where

T1 =

(∑
i

|xi|2
) 1

2

−


 ∑

i/∈I(x†)

|xi|2



1
2

−


 ∑

i∈I(x†)

|x†i |
2




1
2

,

T2 =
∑

i/∈I(x†)

|xi| −


 ∑

i/∈I(x†)

|xi|2



1
2

.
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Observe that T2 � 0. Since

(∑
i

|xi|2
) 1

2

�


 ∑

i∈I(x†)

|xi|2



1
2

+


 ∑

i/∈I(x†)

|xi|2



1
2

,

we see that

T1 � T3 :=


 ∑

i∈I(x†)

|xi|2



1
2

−


 ∑

i∈I(x†)

|x†i |
2




1
2

. (2.29)

Thus, from (2.28),

(α− β)‖x − x†‖�1 � Rα,β(x)−Rα,β(x†) + α
∑

i∈I(x†)

|xi − x†i |

+ (α− β)
∑

i∈I(x†)

|xi − x†i |+ βT3.
 (2.30)

Let m1 be a constant upper bound of the terms of the form |xi|+ |x†i | and let m2 =

(
∑

i∈I(x†)
|x†i |2

)
1
2. 

Then 0 < m2 �

(
∑

i∈I(x†)
|xi|2

)
1
2 +

(
∑

i∈I(x†)
|x†i |2

)
1
2, and

T3 =

∑
i∈I(x†)

(|xi| − |x†i |)(|xi|+ |x†i |)

(
∑

i∈I(x†)
|xi|2

) 1
2

+

(
∑

i∈I(x†)
|x†i |2

) 1
2
�

m1

m2

∑
i∈I(x†)

|xi − x†i |. (2.31)

A combination of (2.30) and (2.31) shows that

(α− β)‖x − x†‖�1 � Rα,β(x)−Rα,β(x†) +
[

2α−
(

1 − m1

m2

)
β

] ∑
i∈I(x†)

|xi − x†i |. (2.32)

Furthermore, by assumption 2.16,

|xi − x†i | = |〈ei, x − x†〉| = |〈ωi, Ax − Ax†〉| � max
i∈I(x†)

‖ωi‖Y‖Ax − Ax†‖Y

for all i ∈ I(x†). Hence,
∑

i∈I(x†)

|xi − x†i | � |I(x†)| max
i∈I(x†)

‖ωi‖Y‖Ax − Ax†‖Y ,
 (2.33)

where |I(x†)| denotes the size of the index set I(x†). A combination of (2.32) and (2.33) im-
plies that

(α− β)‖x − x†‖�1 � Rα,β(x)−Rα,β(x†)

+

[
2α−

(
1 − m1

m2

)
β

]
|I(x†)| max

i∈I(x†)
‖ωi‖Y‖Ax − Ax†‖Y ,
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i.e.

(α− β)‖x − x†‖�1 � Rα,β(x)−Rα,β(x†) + (c1α− c2β)‖Ax − Ax†‖Y ,

where c1 = 2|I(x†)|max i∈I(x†)‖ωi‖Y, c2 =
(

1 − m1
m2

)
|I(x†)|max i∈I(x†)‖ωi‖Y  and  

c1α− c2β > 0. ■ 

We comment that the condition Rα,β(x) � M in lemma 2.17 is reasonable in the study of 
problem (2.1).

Theorem 2.18 (Convergence rate O(δ)). Keep assumption 2.16, let xδα,β be defined by 
(2.1), and let the constants c1 > c2 be as in lemma 2.17.

 Case 1.  If q  =  1 and 1 − (c1α− c2β) > 0, then

‖xδα,β − x†‖�1 �
1 + (c1α− c2β)

(α− β)
δ, ‖Axδα,β − yδ‖Y �

1 + (c1α− c2β)

1 − (c1α− c2β)
δ.

 (2.34a)
 Case 2.  If q  >  1, then

‖xδα,β − x†‖�1 �
1

α− β

[
δq

q
+ (c1α− c2β)δ +

(q − 1)2
1

q−1 (c1α− c2β)
q

q−1

q

]
,

‖Axδα,β − yδ‖q
Y � q

[
δq

q
+ (c1α− c2β)δ +

(q − 1)2
1

q−1 (c1α− c2β)
q

q−1

q

]
.

 (2.34b)

Proof. Due to the minimization property of xδα,β, it is clear that

1
q
‖Axδα,β − yδ‖q

Y +Rα,β(xδα,β) �
δq

q
+Rα,β(x†).

Then Rα,β(xδα,β) is bounded. From lemma 2.17 we see that

δq

q
� Rα,β(xδα,β)−Rα,β(x†) +

1
q
‖Axδα,β − yδ‖q

Y

� (α− β)‖xδα,β − x†‖�1 − (c1α− c2β)‖Axδα,β − Ax†‖Y +
1
q
‖Axδα,β − yδ‖q

Y

� (α− β)‖xδα,β − x†‖�1 − (c1α− c2β)‖Axδα,β − yδ‖Y − (c1α− c2β)δ +
1
q
‖Axδα,β − yδ‖q

Y .

 (2.35)

So if q  =  1 and 1 − (c1α− c2β) > 0, then (2.34a) holds. For the case q  >  1, we apply Young’s 

inequality ab � aq

q + bq∗

q∗ . We have

(c1α− c2β)‖Axδα,β − yδ‖Y = 2
1
q (c1α− c2β)2− 1

q ‖Axδα,β − yδ‖Y

�
1

2q
‖Axδα,β − yδ‖q

Y +
(q − 1)2

1
q−1 (c1α− c2β)

q
q−1

q
.

 (2.36)
A combination of (2.35) and (2.36) implies (2.34b). ■ 

Remark 2.19 (A priori estimation). Assume β = ηα for a constant η > 0.  
If α ∼ δq−1(q > 1), then ‖xδα,β − x†‖�1 � cδ for some constant c  >  0. It also follows that 
‖xδα,β − x†‖�2 � cδ.
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Next we provide a convergence rate result by the discrepancy principle.

Theorem 2.20 (Discrepancy principle). Keep the assumptions of lemma 2.17 and let 
xδα,β be defined by (2.1), where the parameters α and β (β = ηα) are defined via the discrep-
ancy principle

δ � ‖Axδα,β − yδ‖Y � τδ (τ � 1).

Then

‖xδα,β − x†‖�2 �
(c1 − c2η)(τ + 1)δ

1 − η
.

Proof. By the definition of xδα,β, α and β, we see that

1
q
δq +Rα,β(xδα,β) �

1
q
‖Axδα,β − yδ‖q

Y +Rα,β(xδα,β) �
1
q
‖Ax† − yδ‖q

Y +Rα,β(x†). (2.37)

Hence Rα,β(xδα,β) � Rα,β(x†). It follows from lemma 2.17 that

0 � Rα,β(xδα,β)−Rα,β(x†) � (α− β)‖xδα,β − x†‖�1 − (c1α− c2β)‖Axδα,β − Ax†‖Y

� (α− β)‖xδα,β − x†‖�1 − (c1α− c2β)(τ + 1)δ.
 (2.38)

Then

‖xδα,β − x†‖�2 � ‖xδα,β − x†‖�1 �
(c1α− c2β)(τ + 1)δ

α− β
.

The theorem is proven with β = ηα. ■ 

3. Computational approach

In this section, we introduce an algorithm to solve problem (1.3) and study its convergence 
property. We will adapt the generalized conditional gradient method ([22, 23]) and show that 
this algorithm can be applied to minimize the functional with the non-convex and non-smooth 
regularization term α‖x‖�1 − β‖x‖�2, α > β � 0.

3.1. Generalized conditional gradient method

For the sake of completeness, we start with a short description of the generalized conditional 
gradient method. The starting point for this part is [23], where a generalized conditional gradi-
ent method is proposed for solving minimization problems of the form

min
x∈X

F(x) + Φ(x)

where X is a Hilbert space. Assume that the functional Φ(x) : X → R ∪ {+∞} is proper, con-
vex, lower semi-continuous and coercive:

Condition 3.1. 

 1.  Φ(x) < +∞ for some x ∈ X .
 2.  Φ(sx + (1 − s)y) � sΦ(x) + (1 − s)Φ(y) for all x, y ∈ X and s ∈ [0, 1].
 3.  Φ(x) � lim inf

k→+∞
Φ(xk) whenever lim

k→+∞
xk = x in X.

 4.  Φ(x)/‖x‖ → +∞ whenever ‖x‖ → +∞.
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The generalized conditional gradient method from [23] is stated in the form of algorithm 1.

Algorithm 1. Generalized conditional gradient method.

1: Set k  =  0, x0 ∈ X  such that Φ(x0) < +∞.

2: Determine a descent direction zk as a solution of

                              min
z∈X

〈F′(xk), z〉+Φ(z).

3: Determine a step size sk as a solution of

                    min
s∈[0,1]

F(xk + s(zk − xk)) + Φ(xk + s(zk − xk)).

4: xk+1 = xk + sk(zk − xk), and k  =  k  +  1, return to step 2.

We recall a convergence result on algorithm 1 proved in [23].

Theorem 3.2. Let Φ satisfy condition 3.1 and assume Et = {x ∈ X : Φ(u) � t} is compact 
for every t ∈ R. Furthermore, let F be a continuously Fréchet differentiable functional, which is 
bounded on bounded sets with F +Φ weakly coercive, i.e. ‖x‖ → +∞ ⇒ F(x) + Φ(x) → +∞, 
and assume x0 ∈ X  with Φ(x0) < +∞. Let {xn} be the sequence generated by the generalized 
conditional gradient method. Then {xn} contains a convergent subsequence, and every conv-
ergent subsequence of {xn} converges to a stationary point of the functional F +Φ.

3.2. Generalized conditional gradient method for a non-convex sparsity regularization

For the sake of convenience, we only consider the case q  =  2 in (1.3). Since 
Rα,β(x) := α‖x‖�1 − β‖x‖�2, α > β � 0 is non-convex, the generalized conditional gradient 
method cannot be applied to problem (1.3) directly. We rewrite J δ

α,β(x) in (1.3) as

J δ
α,β(x) = F(x) + Φ(x), (3.1)

where F(x) = 1
2‖Ax − yδ‖2

Y −Θ(x), Φ(x) = Θ(x) + α‖x‖�1 − β‖x‖�2, Θ(x) = λ
2 ‖x‖2

�2
+ β‖x‖�2  

and λ > 0. There are two reasons why we propose Θ(x) = λ
2 ‖x‖2

�2
+ β‖x‖�2 . First, 

Φ(x) = λ
2 ‖x‖2

�2
+ α‖x‖�1 has certain desirable properties, for example, it is proper, convex, 

lower semi-continuous and coercive. Another reason is that the iterative ST algorithm can be 
applied to the minimization of (3.1) directly.

Now we examine the minimization problem in the second step of algorithm 1. The Fréchet 
derivative of F(x) is given by

F′(x) = A∗(Ax − yδ)− λx − βx
‖x‖�2

.

The minimization problem for determining a descent direction zk is given by

min
z
〈A∗(Axk − yδ)− λxk − βxk

‖xk‖�2

, z〉+ λ

2
‖z‖2

�2
+ α‖z‖�1 .

 (3.2)
The minimizer of (3.2) can be calculated explicitly componentwise. The component zi has to 
satisfy
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zi +
α

λ
sign(zi) =

(
xk +

βxk

λ‖xk‖�2

− λ−1A∗(A(xk)− yδ)
)

i
. (3.3)

The solution of (3.3) can be expressed by the ST function Sα/λ and Sα/λ, where Sα/λ(x) is 
defined by

Sα/λ(x) =
∑

i

Sα
λ
(xi)ei (3.4)

and Sα/λ(t), t ∈ R is defined by

Sα/λ(t) =




t − α
λ if t � α

λ ,
0 if |t| < α

λ ,
t + α

λ if t � −α
λ .

 (3.5)

Lemma 3.3. If xk �= 0, then the minimizer of problem (3.2) is given by

zk = Sα/λ
((

β

λ‖xk‖�2

+ 1
)

xk − 1
λ

A∗(Axk − yδ)
)

. (3.6)

Proof. The proof is similar to that of lemma 2.3 in [22]. Problem (3.2) is equivalent to the 
problem

min
z

∑
i

λ

2

∣∣∣∣zi −
(

xk +
βxk

λ‖xk‖�2

− λ−1A∗(A(xk)− yδ)
)

i

∣∣∣∣
2

+ α|zi|. (3.7)

From a result in [30, chapter 10], for every proper convex g : R → R and every λ > 0,

(I +
1
λ
∂(α‖ · ‖�1))

−1(x) = argmin
ω

{
λ

2
|ω − x|2 + g(ω)

}
.

Then the minimizer zk is given by

zk =
∑

i

[
(I +

1
λ
∂(α‖ · ‖�1))

−1
(

xk +
β

λ‖xk‖�2

− λ−1A∗(A(xk)− yδ)
)

i

]
· ei.

 (3.8)

Using the definition (3.4) and (3.5), we can rewrite (3.8) in the form of (3.6). ■ 

If β = 0, (3.6) reduces to the standard ST iteration. We note that the functional ‖x‖�2 is 
differentiable at x �= 0 with gradient x/‖x‖�2, and is not differentiable at x  =  0 where the sub-
differential contains the element 0. We see that F(x) fails to satisfy the smoothness condition 
required in the generalized conditional gradient method. Thus we formulate a strategy where 
the iteration is divided into two steps. We summarize the strategy (ST-(α�1 − β�2) algorithm) 
in algorithm 2.
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Algorithm 2. ST-(α�1 − β�2) algorithm for problem (1.3).

Set k  =  0, x0 ∈ X  such that Φ(x0) < +∞,
for k  =  0, 1, 2, ⋯, do

If xk  =  0 then

xk+1 = argmin 1
2‖F(x)− yδ‖2

Y + α‖x‖�1

else
Determine a descent direction zk by

                 zk = Sα/λ
((

β
λ‖xk‖�2

+ 1
)

xk − 1
λA∗(Axk − yδ)

)

Determine a step size sk as a solution of

                 min
s∈[0,1]

F(xk + s(zk − xk)) + Φ(xk + s(zk − xk))

xk+1 = xk + sk(zk − xk)

end if

k  =  k  +  1

end for

We now turn to the convergence properties of the two-step generalized conditional gradient 
algorithms. The first order necessary condition of problem (3.1) is (see [23, lemma 1])

x ∈ �2 : 〈F′(x), y − x〉 � Φ(x)− Φ(y) ∀ y ∈ �2. (3.9)

Lemma 3.4. Suppose xk does not fulfill the first order optimality conditions (3.9). Then 
algorithm 2 determines an xk+1 such that

J δ
α,β(x

k+1) = F(xk+1) + Φ(xk+1) � F(xk) + Φ(xk) = J δ
α,β(x

k).

Proof. If xk  =  0, from algorithm 2 we see that

J δ
α,β(x

k+1) = F(xk+1) + Φ(xk+1)

=
1
2
‖Axk+1 − yδ‖2

Y + α‖xk+1‖�1 − β‖xk+1‖�2

�
1
2
‖A0 − yδ‖2

Y + α‖0‖�1 − β‖xk+1‖�2

�
1
2
‖A0 − yδ‖2

Y + α‖0‖�1 − β‖0‖�2

= J δ
α,β(x

k).

If xk �= 0, then F(x) is Fréchet differentiable and Φ(x) = α‖x‖�1 +
λ
2 ‖x‖2

�2
 is proper, convex, 

lower semi-continuous and coercive. The rest of the proof is similar to that of lemma 2 in [23].
 ■ 

In order to prove the convergence, we need to analyze the relation between xk and 0. If 
0 = x0 = x1, then we stop the iteration and 0 is the iterative solution. Otherwise, we can see 
from lemma 3.4 that

J δ
α,β(x

1)− J δ
α,β(x

0) � −β‖x1‖�2 < 0.

Since J δ
α,β(x

k) decreases, xk �= 0 for k � 1. So in the following we let xk �= 0 whenever k � 1.
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Theorem 3.5. Let {xk} denote the sequence generated by algorithm 2. Then {xk} contains 
a convergent subsequence and every convergent subsequence of {xk} converges to a station-
ary point of the functional J δ

α,β(x).

Proof. We apply theorem 3.2 to prove this result. The function Φ(x) = α‖x‖�1 +
λ
2 ‖x‖2

�2
 

is weakly lower semi-continuous, and the set Et = {x ∈ �2 | Φ(x) � t} is compact for every 
t ∈ R. Since Φ(0) = α‖0‖�1 +

λ
2 ‖0‖2

�2
= 0 < +∞, Φ(x) is proper. The convexity and coer-

civity of Φ(x) follow from the convexity and coercivity of �1- and �2-norm. We see that F is 
Fréchet differentiable and

F′(x)h = 〈A∗(Ax − yδ), h〉 −Θ′(x)h.

Then,

‖F′(x)− F′(y)‖ � ‖Ax − Ay‖‖A‖+ ‖Θ′(x)−Θ′(y)‖ ∀x �= 0, y �= 0 ∈ �2.

The continuity of F′ follows from the continuity of A and Θ′. It is clear that

|F(x)| � 1
2
‖Ax‖2 + 〈Ax, yδ〉+ 1

2
‖yδ‖2 + |Θ(x)|.

Since A and Θ are bounded, F(x) is bounded. By lemma 2.5, F +Φ is weakly coercive. Then 
the assumption on F and Φ in theorem 3.2 is valid and we can apply theorem 3.2. ■ 

We comment that if β = 0, (1.3) reduces to the classical �1 sparsity regularization, which 
implies that the proposed algorithm is a generalization of the classical sparsity regularization. 
Furthermore, we can extend the above discussion for the solution of a nonlinear ill-posed 
equation. Meanwhile, if we choose a suitable Θ(x), the proposed algorithm can be utilized to 
solve the elastic-net sparsity regularization. This will be implemented in forthcoming papers.

4. Numerical experiments

In this section, we present the results from two numerical experiments to demonstrate the 
efficiency of the proposed method. We analyze the influence of the parameter η on the recon-
struction of x* and compare the iterative solutions with that of the classical �1 regularization. 
The classical �1 sparsity regularization is as follows

min
x

1
2
‖Ax − yδ‖2

Y + α‖x‖�1 .

If η = 0, i.e. β = 0, (1.3) reduces to the classical �1 sparsity regularization, then (3.6) reduces 
to the classical soft threshold iteration

zk = Sα/λ
(

xk − 1
λ

A∗(Axk − yδ)
)

.

The first example deals with a well-conditioned compressive sensing problem. The second 
example deals with an ill-conditioned image deblurring problem.

4.1. Well-conditioned compressive sensing with random Gaussian matrix

In the first example, we test the commonly used random Gaussian matrix. The compres-
sive sensing problem is defined as Am×nxn = ym, where Am×n is a well-conditioned random 
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Gaussian matrix by calling A = randn(m, n) in MATLAB. The exact data y† is generated by 
y† = Ax†. The exact solution x† is an s-sparse signal supported on a random index set. White 
Gaussian noise is added to the exact data y† by calling yδ = awgn(Ax†, δ) in MATLAB, where 
δ is the noise level, measured in dB, which measures the ratio between the true (noise free) 
data y† or Ax† and Gaussian noise. x* denotes the reconstruction computed by the proposed 
algorithm. We use a signal-to-noise ratio (SNR) to evaluate the performance of reconstruction 
x*, where SNR is defined by

SNR := −10 log10
‖x∗ − x†‖2

�2

‖x†‖2
�2

.

We choose n  =  200, m  =  0.4n, s  =  0.2m. The value of ‖Am×n‖2 is around 22 and the condition 
number of Am×n is around 4. We rescale the matrix Am×n by Am×n → 0.05Am×n. The 2-norm 
of the rescaled matrix is around 0.8. Note that the condition number does not change under 
the matrix rescaling. We let λ = 0.2, step size sk  =  1 and the maximum number of iterations 
maxiter = 1000. The initial value x0 is generated by calling x0 = ones(n, 1).

In section 2.3, we use an a priori rule or discrepancy principle to choose the regularization 
parameter α. The a priori rule requires α = O(δ). However, for the numerical implementa-
tion, it is difficult to find a good estimate for the optimal value of α. In this section, we utilize 
the discrepancy principle to determine the regularization parameter α such that the residual 
norm for the regularized solution satisfies ‖Ax∗ − y‖Y = δ. When a good estimate for the 
noise level δ is known, this method yields a good regularization parameter.

The regularization parameter α is determined by calling α = discrep(U, d, V , y, δ, x0) in 
MATLAB regularization tools ([31]). Here, x0 is an initial estimate of the solution, δ is the 
noise level, y  is the observed data, whereas U, d and V  are the results of the singular value 
decomposition of A by calling [U, d, V]  =  csvd(A) in MATLAB regularization tools. Note 
that we choose the regularization parameter with the help of Hansen’s MATLAB tools. If 
a regularization parameter α determined by Hansen’s MATLAB tools does not satisfy the 
discrepancy principle, we try αj =

α
2 j, j = 1, 2, · · ·. As j  increases, we calculate xδα,β until the 

regularization parameter satisfies the discrepancy principle. In the numerical experiments of 
this paper, we determine the regularization parameter using Hansen MATLAB tools through 
the above procedure—see [32, 33]. The parameter α determined by the discrepancy principle 
is only an estimate of the optimal regularization parameter. To test the sensitivity of algorithm 
2 with respect to α, we choose several different regularization parameters in tables 1 and 5.

Table 1. SNR of reconstruction x* for different values of η and α: example 1.

η α = 4.0 × 10−2 α = 4.4 × 10−2 α = 4.8 × 10−2 α = 5.2 × 10−2 α = 5.6 × 10−2 α = 6.0 × 10−2

0.0 21.3059 20.6180 19.9593 19.3292 18.7275 18.1511
0.1 22.9104 22.2370 21.5823 20.9350 20.2948 19.6866
0.2 24.3090 23.6644 23.0212 22.3882 21.7378 21.1106
0.3 25.7979 25.1602 24.4664 23.7725 23.1027 22.4468
0.4 27.3444 26.6692 25.9810 25.2722 24.5976 23.9564
0.5 28.9246 28.3115 27.6261 26.9644 26.3282 25.7171
0.6 30.5250 30.0179 29.4418 28.8749 28.3165 27.7694
0.7 31.8789 31.6224 31.2449 30.8514 30.4465 30.0342
0.8 32.5463 32.6080 32.4561 32.2891 32.1079 31.9132
0.9 32.2278 32.3678 32.2995 32.2128 32.1232 32.0307
1.0 4.5223 31.0753 30.8970 30.6874 30.4755 0.9429
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Figure 2. (a) True signal. (b) Observed data. (c)–(j) The recovered signal with different 
η at a fixed regularization parameter α = 5.0 × 10−2.
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Note that the discrepancy principle requires a good estimate of the noise level δ. In the 
numerical experiments, the added noise is an artificial Gaussian noise, so we do have a good 
estimate for noise level δ. However, in practical applications, the noise level δ is not available 
exactly and only the observed data yδ is known. One cannot obtain a good estimate for the 
noise level δ. In this situation, a reasonable regularization parameter choice rule is based on 
a heuristic method, for example, L-curve, generalized cross-validation and quasi-optimality 
criterion. For details and related Matlab codes, see [31] and references therein.

In the first test, a noise δ is added to exact data y† by calling yδ = awgn(Ax†, δ), with the 
noise level δ = 40 dB. In order to analyze the influence of η, we choose different values for 
the parameters η and α. Table 1 shows that the proposed algorithm performs well with the 
appropriate regularization parameters. From each column in table 1, we see that, for a fixed 
regularization parameter α, the results of the reconstruction improve as η increases, which 
implies that the non-convex regularization (for η > 0) performs better than classical �1 regu-
larization (for η = 0). However, with a large η close to 1, the accuracy of recovery decreases 
and η = 0.8 is optimal. Meanwhile, too large or small α will lead to divergence when η = 1. 
It shows that the case η = 1 is not stable corresponding to regularization parameter α. When 
α = 5.6 × 10−2 or 6.0 × 10−2, the optimal η is 0.9. However, the accuracy is worse than the 
optimal case α = 4.8 × 10−2. Figure 2 shows the graphs of the reconstruction x* when regu-
larization parameter α = 5 × 10−2.

Note that in algorithm 2, sk is determined by an optimization problem. However, we let 
sk  =  1 in the numerical experiments. There are two reasons why we chose the step size sk to be 
a fixed constant. First, the algorithm is easy to implement for a fixed step size sk. Moreover, it 
is proved in [22] that under some additional assumptions, the generalized conditional gradient 
method is convergent with a fixed step size sk  =  1. In table 2, we set α = 5 × 10−2, η = 0.8 
and check the convergence of algorithm 2 with different fixed step sizes. Table 2 shows that 
there exists a threshold s  >  0, and algorithm 2 does not converge for any fixed step size sk  >  s. 
Algorithm 2 converges when sk  <  s and it provides the same inversion results. In algorithm 
2, we require step size sk ∈ [0, 1]. However, table 2 shows that sk can be chosen larger than 1, 
which implies that one can propose an accelerating version for algorithm 2.

Next we examine the effect of the parameter λ. Theoretically, (1.3) is the same as (3.1) 
for any λ, implying that the inversion results do not change with respect to λ. However, from 

the perspective of computation, a small value of λ admits a larger βxk

λ‖xk‖�2
 in (3.6). Indeed, 

‖ βxk

λ‖xk‖�2
‖�2 =

β
λ → ∞ as λ → 0, which leads to divergence. On the other hand, a larger value 

of λ admits a smaller value of the threshold αλ. The value of the threshold is a crucial factor for 
the iterative ST algorithm. A small threshold value leads to divergence. In [34], Daubechies et al 
provided a choice of the threshold. However, for the present paper, we do not have a formula to 
determine the optimal λ. So, we provide table 3, which provides a clue as to how to choose a 
reasonable λ. In table 3, we set α = 5 × 10−2, η = 0.8, sk  =  1 and provide the reconstruction 
results of algorithm 2 with different λ. It is shown that 0.15 � λ � 0.40 is a a good choice.

In the second test, we test the stability of the proposed algorithm. Various noise levels δ are 
added to the exact data y†. We choose the optimal regularization parameters by the discrep-
ancy principle. The numerical results are shown in table 4. One can clearly see that the SNR of 
reconstruction x* decreases as the noise level increases. In the noise-free case, we can obtain a 

Table 2. SNR of reconstruction x* with different fixed step sizes.

sk 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

SNR 32.1784 32.1784 32.1784 32.1784 32.1784 32.1784 NaN NaN NaN NaN
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better performance as η increases and η = 1 is optimal. The results coincide with the theory of 
the proposed non-convex regularization. Theoretically, in the noiseless case, the fidelity term 
1
2‖Ax − y‖2 is 0. The regularization term R(x) = α(‖x‖�1 − ‖x‖�2) + (α− β)‖x‖�2 will be 
minimum if α = β (η = 1). When the noise levels are lower, η should be chosen as 0.9 or 0.8. 
When the noise level is 30 dB, the optimal η is 0.7. As the noise level increases, we see that 
the value of the optimal η decreases. When the noise level δ is 20 dB, the proposed algorithm 
does not converge except η = 0.2 and 0.4. Meanwhile, table 4 shows that the method with 
η = 1 has poor stability corresponding to the noise level. The algorithm does not converge for 
the case η = 1 when the noise level is 30 dB and 20 dB.

Next we discuss how to choose η or β. From figure 1, it can be seen that the effect of η 
is similar to that of the exponent p  in �p-norm (0  <  p   <  1). Theoretically, Rα,β(x) behaves 
more and more like the �0-norm as β/α → 1 and we obtain the best recovery results for the 
noise-free case. In the case of the presence of noise, the situation is more complicated. In 
[35], a more flexible way of sparse regularization is introduced by varying exponents and it is 
observed that for �p (0 < p < 1) regularization, it is challenging to identify the optimal expo-
nent p . The question of how to choose a suitable exponent p  is worth further investigation.

From tables 4 and 6, it can be seen that the optimal η decreases as the noise level increases. 
If the noise level is low, a larger value of η towards 1 is a reasonable choice. Otherwise, a 
smaller value of η towards 0 is more appropriate.

The two tests show that the proposed non-convex sparsity regularization performs better 
compared with the �1 regularization. Though �1 − �2, i.e. the case η = 1 is a good approx-
imation of �0, it is not optimal in the presence of noise—see similar statements in [36, 
chapter I]. For example, the choice of �1.1 regularization gives better results than that of �1 
regularization.

4.2. Ill-conditioned image deblurring problem

In the second example, we test the ill-conditioned image deblurring problem which is the 
process of removing blurring artifacts from images, such as blur caused by defocus aberration 
or motion blur. The blur is typically modeled by a Fredholm integral equation of the first kind

∫ b

a
K(s, t) f (t)dt = g(s),

Table 3. SNR of reconstruction x* with different λ.

λ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

SNR NaN 4.54e-12 31.0688 31.0688 31.0688 31.0687 31.0666 31.0500 29.9480
λ 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
SNR 28.4993 26.2270 22.1077 16.6312 12.0806 6.7939 4.8894 3.2618 1.8777

Table 4. SNR of reconstruction x* with various noise levels.

δ η = 0 η = 0.2 η = 0.4 η = 0.7 η = 0.8 η = 0.9 η = 1.0

Noise free,α = 0.007 38.1346 40.6385 43.1617 45.1865 46.6969 50.2843 52.7298
50 dB, α = 0.022 24.9646 28.3309 31.7742 38.5733 41.1439 42.1468 40.4161
40 dB, α = 0.046 19.8962 23.6644 26.6692 31.6224 32.6080 32.3678 31.0753
30 dB, α = 0.088 12.5288 15.3119 17.8542 19.9705 19.7516 18.9072 0.4470
20 dB, α = 1.760 NaN 7.6190 3.1342 0.8195 0.8618 0.5943 0.4131
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where K(s, t) is the kernel function, g(s) is the observed image and f (t) is the true 
image. We utilize the blur problem from MATLAB regularization tools ([31]) by calling 
[A, b, x†] = blur(n, band,σ), where the Gaussian point-spread function is used as the kernel 
function

K(s, t) =
1

πσ2 exp
(
− s2 + t2

2σ2

)
.

The matrix A is a symmetric n2 × n2 Toeplitz matrix and is given by A = (2πσ2)−1T ⊗ T , 
where T is an n × n symmetric banded Toeplitz matrix whose first row is given by calling

z = [exp(−([0 : band − 1].2)/(2σ2)); zeros(1, N − band)].

We note that the parameter σ controls the shape of the Gaussian point spread function and thus 
the amount of smoothing (the larger the value of σ, the wider the function, and the less ill-
posed the problem). We choose n  =  16, band  =3, σ = 0.7. The value of ‖A‖2 is around 1 and 
the condition number is around 30. We use a similar setting as in section 4.1. We let λ = 0.2, 
step size sk  =  1 and the maximum number of iterations maxiter = 500. The initial value x0 is 
generated by calling x0 = ones(n, 1).

Table 5 shows the performance of reconstruction with the different regularization param-
eters and η. As expected, similar results are obtained in the test. The results of reconstruction 
improve as η increases, but the choice η = 1 is not optimal. However, compared with the 
results from section 4.1, the performance for the case η = 1 is more stable corre sponding 
to the regularization parameter α. One can also obtain good results even with larger or 
smaller α. Figure 3 shows graphs of the reconstruction x* when the regularization parameter 
α = 4.0 × 10−2.

The stability of reconstruction corresponding to various noise levels δ is illustrated in 
table 6. We see that the accuracy decreases as the noise level increases. Its stability is bet-
ter than that in section  4.1. One can obtain stable reconstruction even with a noise level 
δ = 20 dB. If the noise level is lower, the optimal choice of η is close to 1. As the noise level 
increases, we see that the value of the optimal η decreases. When the noise levels are higher, 
for example, 20 dB or 10 dB, the non-convex regularization does not display an advantage 
over the classical �1 regularization.  

Table 5. SNR of reconstruction x* with different values of η and α.

η α = 3.4 × 10−2 α = 3.6 × 10−2 α = 3.8 × 10−2 α = 4.0 × 10−2 α = 4.2 × 10−2 α = 4.4 × 10−2

0.0 32.0565 32.0823 32.1029 32.1227 32.1245 32.1215
0.1 32.3823 32.4225 32.4611 32.4977 32.5139 32.5282
0.2 32.6610 32.7180 32.7739 32.8199 32.8488 32.8757
0.3 32.9108 32.9823 33.0528 33.1069 33.1411 33.1708
0.4 33.1162 33.1898 33.2615 33.3100 33.3494 33.3843
0.5 33.2733 33.3534 33.4295 33.4760 33.5161 33.5442
0.6 33.4032 33.4858 33.5457 33.5826 33.6153 33.6397
0.7 33.4999 33.5609 33.6123 33.6433 33.6649 33.6642
0.8 33.5649 33.6174 33.6390 33.6340 33.6197 33.5987
0.9 33.5624 33.5945 33.5973 33.5703 33.5314 33.4840
1.0 33.5067 33.5154 33.4969 33.4584 33.3987 33.3262
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Figure 3. True image and its blurred and noisy observation together with reconstructions x* for 
α = 4.0 × 10−2 with different η. (a) True image. (b) Blurred image (δ = 40 dB). (c) η = 0.0, SNR  =32.0232. 
(d) η = 0.1, SNR  =32.3958. (e) η = 0.2, SNR  =32.7183. (f) η = 0.4, SNR  =33.2029. (g) η = 0.6, 
SNR  =33.4887. (h) η = 0.8, SNR  =33.6092. (i) η = 0.9, SNR  =33.5664. (j) η = 1.0, SNR  =33.4856.
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5. Conclusion

We proposed and analyzed a new non-convex α�1 − β�2 (α > β � 0) regularization method 
for sparse recovery. The convergence rate O(δ) was derived under a source condition for both 
a priori and a posteriori parameter choice rules. An ST-(α�1 − β�2) algorithm was presented 
based on the generalized conditional gradient method. The critical parameter η decreases as 
the noise level increases. Numerical experiments indicate that with a lower noise level, the 
proposed algorithm performs better compared with that of the �1 regularization whether the 
operator A is well- or ill-conditioned. If noise levels are higher, for example, 10 dB, the pro-
posed non-convex method is not more advantageous; however, in this case, it is questionable 
whether any method for the reconstruction problem can yield a practically useful solution due 
to the high level of noise.
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