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ABSTRACT

Considered in this paper is a Cauchy problem governed by an elliptic
partial differential equation. In the Cauchy problem, one wants to
recover the unknown Neumann and Dirichlet data on a part of the
boundary from the measured Neumann and Dirichlet data, usually
contaminated with noise, on the remaining part of the boundary. The
Cauchy problem is an inverse problem with severe ill-posedness. In
this paper, a coupled complex boundary method (CCBM), originally
proposed in [Cheng XL, Gong RF, Han W, et al. A novel coupled
complex boundary method for solving inverse source problems.
Inverse Prob. 2014;30:055002], is applied to solve the Cauchy problem
stably.With the CCBM, all the data, including the known and unknown
ones on the boundary are used in a complex Robin boundary on
the whole boundary. As a result, the Cauchy problem is transferred
into a complex Robin boundary problem of finding the unknown
data such that the imaginary part of the solution equals zero in
the domain. Then the Tikhonov regularization is applied to the
resulting new formulation. Some theoretical analysis is performed
on the CCBM-based Tikhonov regularization framework. Moreover,
through the adjoint technique, a simple solver is proposed to compute
the regularized solution. The finite-element method is used for the
discretization. Numerical results are given to show the feasibility and
effectiveness of the proposed method.
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1. Introduction

In this paper, we consider the Cauchy problem of recovering the unknown Neumann and
Dirichlet data on a part of the boundary from the knowledge of the Cauchy data on the rest
of the boundary. This kind of identification problem, also known as data completion [1]
has attracted a large amount of attention from mathematicians, physicists and engineers
because of its wide applications in physics and engineering such as thermostatics [2] linear
elasticity [3] plasma physics [4] mechanical engineering [5] electrocardiography [6] and
corrosion non-destructive evaluation,[7] etc.

Let � ⊂ R
d (d = 2, 3: space dimension) be an open bounded set with Lipschitz

boundary � := ∂�, which is split into two measurable subsets: � = �m
⋃

�u with
�m

⋂
�u = ∅. In applications, �m and �u are known as the accessible and inaccessible

parts of the boundary for the object of interest, respectively. Denote by n the unit outward

CONTACT R. F. Gong grf_math@nuaa.edu.cn
© 2016 Taylor & Francis
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2 X. L. CHENG ET AL.

normal to�. We consider the following Cauchy problem governed by the steady-state heat
equation.
Problem 1.1: Given κ , f in �, and Cauchy data (�,T) on �m, find (φ, t) on �u such that
the following relations hold:

⎧⎨
⎩

−div(κ ∇u) = f in �,
κ ∂u

∂n = �, u = T on �m,
κ ∂u

∂n = φ, u = t on �u.

(1)

The Cauchy problem governed by Helmholtz-type equations are studied in [8–15]. We
refer to [16–18] and references therein for analysis of the Cauchy problem governed by
other equations and for systemic discussions about the Cauchy problems.

It is well known that Problem 1.1 is ill-posed [19]. Hadamard [20] presented an example
to illustrate the ill-posedness of the Cauchy problem for the Laplace equation (κ = 1). A
rigorous proof of the ill-posedness was given in [21] for a general domain. Moreover, after
reformulating the Cauchy problem as a variational equation, Ben Belgacem showed in
[19] that the Cauchy problem is exponentially ill-posed for both smooth and non-smooth
domains. Lavrent’ev demonstrated in [22] that the solution of the Cauchy problem for
the Laplace equation is stable given a supplementary condition. Payne [23] generalized
the work of [22] and deduced a pointwise bound for the problem in n-dimensions. Some
Carleman estimates of the Cauchy problem for the Laplace equation were established in
[24,25]. We also refer to [26] for an overview on the stability of the Cauchy problem for
general elliptic equations under rather weak assumptions on the problem domain.

Due to the severe ill-posedness of the Cauchy problem, a regularization strategy is
needed to obtain a stable approximate solution, especially when the measured data (φ,T)

are polluted inevitably by the random noise. In the literature, the Tikhonov regulariza-
tion [2,27–29] and quasi-reversibility method [25,30–32] are two of the most frequently
used approaches for this purpose. Other methods include iterative regularization [33–37]
Lavrentiev regularization [38–40] truncation regularizationmethod [41–43] discretization
method [44,45]moment problemmethod [46–49] andperturbation regularizationmethod
[43,50,51]. The Cauchy problem for a 3D elliptic equation solved on real data obtained
from the physical experiments can be found in [52,53]. Among thesemethods, a commonly
used technique is to convert Problem 1.1 to the following minimization problem with a
Kohn–Vogelius-type functional JKV [1,54]:

(φ, t) = argmin
η,s

JKV (η, s) (2)

with

JKV (η, s) =
∫

�

κ |∇u1 − ∇u2|2dx,

where u1, u2 ∈ V := H1(�) are the weak solutions of the following mixed boundary value
problems (BVPs): ⎧⎨

⎩
−div(κ ∇u1) = f in �,
u1 = T on �m,
κ ∂u1

∂n = η on �u,
(3)
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 3

and ⎧⎨
⎩

−div(κ ∇u2) = f in �,
κ ∂u2

∂n = � on �m,
u2 = s on �u,

(4)

respectively. Unlike conventional objective functionals (see [44,55,56] for example), the
Kohn–Vogelius functional transfers the data needed to fit �m into the ones in �, and
is generally expected to lead to more robust optimization procedures [57]. A Tikhonov
regularization framework is obtained if a regularization term is added to JKV of the problem
(2).

Recently, Cheng et al. [58] proposed a coupled complex boundary method (CCBM)
for an inverse source problem, where a complex Robin boundary condition is used to
treat simultaneously both Dirichlet and Neumann conditions. As is shown in [58], the
CCBM makes inverse source problems more robust and more efficient in computations.
In this paper, a CCBM-based Tikhonov regularization framework is proposed for solving
Problem 1.1. With our method, similar to problem (2), the data needed to fit is transferred
from �m to �, and the missing data (φ, t) on �u and the state u in � can be reconstructed
simultaneously. All boundary conditions, including known and unknown ones, are used
as parts of a Robin boundary condition on the whole boundary �. Thus no Dirichlet BVP
needs to be solved and this makes the numerical solution of the forward problem easier.
Moreover, in the methods where (3)–(4) are used, the Dirichlet data T and t need to have
the regularity T ∈ H1/2(�m) or t ∈ H1/2(�u) for u1, u2 ∈ V . In applications, T is polluted
by random noise and it is not appropriate to assume T ∈ H1/2(�m). In our method,
we only need T ∈ Q�m := L2(�m) and t ∈ Q�u := L2(�u). This avoids the use of the
fractional-order Sobolev functions. With the help of adjoint equation, the solution of the
regularized reconstruction framework can be computed through a system of BVPs; thus,
no iteration is needed and the computation is effective.

We introduce some notation. For a set G (e.g. �, �, �m or �u), we denote byWm,s(G)

the standard Sobolev space with the norm ‖ · ‖m,s,G. LetW0,s(G) := Ls(G). In particular,
Hm(G) represents Wm,2(G) with the corresponding inner product (·, ·)m,G and norm
‖·‖m,G. LetHm(G) be the complex version ofHm(G)with the inner product ((·, ·))m,G and
norm ||| · |||m,G defined as follows: ∀ u, v ∈ Hm(G), ((u, v))m,G = (u, v̄)m,G, |||v|||2m,G =
((v, v))m,G. In addition to the symbols V , Q�m , Q�u , denote V = H1(�), Q = L2(�),
Q = L2(�), Q� = L2(�), and Q� = L2(�). In the following, c denotes a constant which
may have a different value at a different place.

The structure of the paper is as follows. Applying CCBM, we present in Section 2
a reformulation of Problem 1.1. In Section 3, we apply the Tikhonov regularization to
the resulting formulation. The well-posedness result of the new regularization framework
and a limiting behaviour of the regularized solution when both the noise level and the
regularization parameters go to zero are also stated in Section 3. With an adjoint equation,
a simple solver of the regularizedoptimizationproblemand its finite-element discretization
are given in Section4. Several numerical examples are presented in Section5 todemonstrate
the feasibility and efficiency of the proposedmethod. Finally, concluding remarks are given
in Section 6.
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4 X. L. CHENG ET AL.

2. A reformulation of the Cauchy problem

Let f ∈ Q and � be Lipschitz continuous so that the unit outward normal vector on the
boundary is defined a.e. Assume κ ∈ L∞(�), κ ≥ κ0 a.e. in � for some positive constant
κ0.

Consider a complex BVP:⎧⎨
⎩

−div(κ ∇u) = f in �,
κ ∂u

∂n + i u = � + i T on �m,
κ ∂u

∂n + i u = φ + i t on �u,
(5)

where i = √−1 is the imaginary unit. Obviously, if (u,φ, t) satisfy (1), then (5) holds.
Conversely, let (u,φ, t) satisfy (5), with u = u1 + i u2, u1, u2 being the real and imaginary
parts of u. Then the real-valued functions u1, u2 satisfy⎧⎨

⎩
−div(κ ∇u1) = f in �,
κ ∂u1

∂n − u2 = � on �m,
κ ∂u1

∂n − u2 = φ on �u,
(6)

and ⎧⎨
⎩

−div(κ ∇u2) = 0 in �,
κ ∂u2

∂n + u1 = T on �m,
κ ∂u2

∂n + u1 = t on �u,
(7)

respectively. If u2 = 0 in �, then u2 = 0 and ∂u2
∂n = 0 on �. Consequently, from BVPs

(6)–(7), we know that (u1,φ, t) satisfy (1).
Based on the above discussion, we can reformulate Problem 1.1 as follows.

Problem 2.1: Given κ , f in �, (�,T) on �m, find (φ, t) on �u such that

u2 = 0 in �,

where u2 is the imaginary part of the solution u = u1 + i u2 of the BVP (5).
Remark 1: Note that T ∈ H1/2(�m) is required for the equivalence of Problems 1.1 and
2.1. In the case where these regularity assumptions are not satisfied, the reformulation
above provides a way of an approximate resolution of Problem 1.1. With the new refor-
mulation, the data needed to fit are transferred from the boundary �m to the interior �.
Moreover, compared with the existing work, all the data on the boundary here are used in
a unified way of a Robin boundary condition.

Define

a(u, v) =
∫

�

κ ∇u · ∇ v̄ dx + i
∫

�

u v̄ds ∀ u, v ∈ V, (8)

F(φ, t; v) =
∫

�

f v̄ dx +
∫

�m

(� + i T) v̄ ds +
∫

�u

(φ + i t) v̄ ds ∀ v ∈ V. (9)

Then the weak form of the BVP (5) is

u ∈ V, a(u, v) = F(φ, t; v) ∀ v ∈ V. (10)
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 5

In this work, Tikhonov regularization will be applied to Problem 2.1 to recover the
missing Neumann and Dirichlet data (φ, t) on the inaccessible boundary �u. We first
show a well-posedness result about the forward BVP (5) in the following.
Proposition 2.2: Given f ∈ Q, (�,T) ∈ Q�m × Q�m, (φ, t) ∈ Q�u × Q�u , the problem
(10) admits a unique solution u ∈ V which depends continuously on all data. Moreover,

|||u|||1,� ≤ c (‖f ‖0,� + ‖�‖0,�m + ‖T‖0,�m + ‖φ‖0,�u + ‖t‖0,�u). (11)

Proof: For any u, v ∈ V, by applying the Cauchy–Schwarz inequality and the trace
inequality, we have the continuity of a(·, ·) and F(φ, t; ·):

|a(u, v)| ≤ c |||u|||1,�|||v|||1,�, (12)
|F(φ, t; v)| ≤ c (‖f ‖0,� + ‖�‖0,�m + ‖T‖0,�m + ‖φ‖0,�u + ‖t‖0,�u)|||v|||1,�. (13)

Moreover, it is not difficult to conclude that

|a(v, v)| ≥ c0 |||v|||21,� ∀ v ∈ V. (14)

Therefore, applying the complex version of Lax–Milgram Lemma [59, p.368–369], we
conclude that the problem (10) admits a unique solution u ∈ V.

The bound (18) follows directly from (10), (13) and (14). �

3. Tikhonov regularization and theoretical analysis

In this section, based on the reformulation, Problem 2.1, we propose a Tikhonov regular-
ization framework for the Cauchy problem with the noisy Cauchy data. Let the Cauchy
data (�,T) contain random noise with a known level δ, denoted as (�δ ,Tδ). Then the
forward BVP (5) is modified to⎧⎪⎨

⎪⎩
−div(κ ∇uδ) = f in �,
κ ∂uδ

∂n + i u = �δ + i Tδ on �m,
κ ∂uδ

∂n + i u = φ + i t on �u,
(15)

with
‖�δ − �‖0,�m ≤ δ, ‖Tδ − T‖0,�m ≤ δ.

Similarly, define

Fδ(φ, t; v) =
∫

�

f v̄ dx +
∫

�m

(�δ + i Tδ) v̄ ds +
∫

�u

(φ + i t) v̄ ds ∀ v ∈ V. (16)

The weak form of the BVP (15) is

uδ ∈ V, a(uδ , v) = Fδ(φ, t; v) ∀ v ∈ V. (17)

Like Proposition 2.2, we have the well-posedness results on the problem (17).
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6 X. L. CHENG ET AL.

Proposition 3.1: Given f ∈ Q, (�δ ,Tδ) ∈ Q�m × Q�m, (φ, t) ∈ Q�u × Q�u , the problem
(17) admits a unique solution uδ ∈ V which depends continuously on all data. Moreover,
we have

|||uδ|||1,� ≤ c (‖f ‖0,� + ‖�δ‖0,�m + ‖Tδ‖0,�m + ‖φ‖0,�u + ‖t‖0,�u). (18)

Denote by u, uδ ∈ V the solutions of the problems (10) and (17). Then it is easy to get

|||uδ − u|||1,� ≤ c δ. (19)

For any (φ, t) ∈ Q�u × Q�u , write uδ(φ, t) = uδ
1(φ, t) + i uδ

2(φ, t) ∈ V for the solution
of (17). Define an objective functional

Jδε (φ, t) = 1
2
‖uδ

2(φ, t)‖20,� + ε

2
‖φ‖20,�u

+ ε

2
‖t‖20,�u

, (20)

and introduce the following Tikhonov regularization framework for Problem 2.1.
Problem 3.2: Find (φδ

ε , tδε ) ∈ Q�u × Q�u such that

Jδε (φδ
ε , t

δ
ε ) = inf

(η,s)∈Q�u×Q�u
Jδε (η, s).

Remark 2: Alternatively,wemay consider a different but relatedTikhonov regularization
framework by replacing Jδε in (20) with the objective functional

J̃δε (φ, t) = 1
2
‖uδ

2(φ, t)‖21,� + ε

2
‖φ‖20,�u

+ ε

2
‖t‖20,�u

.

We can verify that for any (φ, t), (η, s) ∈ Q�u × Q�u ,

(Jδε )′(φ, t) (η, s) = (uδ
2(φ, t), u

δ
2(η, s) − uδ

2(0, 0))0,� + ε (φ, η)0,�u + ε (t, s)0,�u ,
(Jδε )′′(φ, t) (η, s)2 = ‖uδ

2(η, s) − uδ
2(0, 0)‖20,� + ε‖η‖20,�u

+ ε‖s‖20,�u
.

Hence, for ε > 0, Jδε ( · ) is strictly convex.
About Problem 3.2, we first give the following well-posedness result and the first-order

optimization condition.
Proposition 3.3: For any ε > 0, Problem 3.2 has a unique solution (φδ

ε , tδε ) ∈ Q�u × Q�u

which depends continuously on all data. Moreover, (φδ
ε , tδε ) is characterized by

φδ
ε = −1

ε
wδ
2|�u , tδε = −1

ε
wδ
1|�u , (21)

where wδ
1 = wδ

1(φ
δ
ε , tδε ) and wδ

2 = wδ
2(φ

δ
ε , tδε ) are the real and imaginary parts of the weak

solution wδ of the adjoint BVP:
{

−div(κ ∇wδ) = uδ
2 in �,

κ ∂wδ

∂n + i w = 0 on �,
(22)
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 7

and uδ
2 = uδ

2(φ
δ
ε , tδε ) is the imaginary part of the solution of the problem (17), with (φ, t)

being replaced by (φδ
ε , tδε ).

Proof: For ε > 0, Jδε is strictly convex over Q�u × Q�u . Thus, the well-posedness of
Problem 3.2 follows from a standard result on convex minimization problems.[60,61]
Moreover, the solution (φδ

ε , tδε ) is characterized by

(Jδε )′(φδ
ε , t

δ
ε ) (η, s) = 0 ∀ (η, s) ∈ Q�u × Q�u . (23)

With arguments similar to those in the proofs of [58, Proposition 3.1], we have

(uδ
2(φ

δ
ε , t

δ
ε ), u

δ
2(η, s) − uδ

2(0, 0))0,� = (wδ
1, s)0,�u + (wδ

2, η)0,�u .

Therefore,

(Jδε )′(φδ
ε , t

δ
ε ) (η, s) = (wδ

1 + ε tδε , s)0,�u + (wδ
2 + ε φδ

ε , η)0,�u . (24)

Substitute (24) into (23) and take η = wδ
2|�u + ε φδ

ε , s = wδ
1|�u + ε tδε to get (21). �

Next we explore a limiting behaviour of (φδ
ε , tδε ) as δ, ε → 0. For this purpose, assume

the exact Cauchy data (�,T) are compatible. Then according to [62], Problem 1.1 admits
a solution (φ∗, t∗) ∈ H−1/2(�u) ×H1/2(�u). Moreover, from [59], the solution is unique.
For a sequence of noise levels {δn}n≥1 which converges to 0 in R as n → ∞, let εn = ε(δn)

be chosen satisfying εn → 0 and δ2n/εn → 0, as n → ∞. Denote by (φ
δn
εn , t

δn
εn ) ∈ Q�u ×Q�u

the solution of Problem 3.2 with (�δ ,Tδ) and ε replaced by (�δn ,Tδn) and εn respectively,
and assume additionally that φ∗ belongs to Q�u . Then the following result holds:
Proposition 3.4: The solution sequence {(φδn

εn , t
δn
εn )}∞n=1 converges to (φ∗, t∗) in Q�u ×Q�u

as n → ∞.
Proof: For simplicity in exposition, set �n = �δn , Tn = Tδn , φn = φ

δn
εn and tn = tδnεn .

Moreover, denote by un = un1 + i un2 = uδn(φn, tn) ∈ V for the solution of (17). Recall
that (φ∗, t∗) is the unique solution of Problem 1.1. Then, it is also the unique solution
of Problem 1.1 due to the equivalence of the two problems, and thus u2(φ∗, t∗) = 0 in
�, where u2(φ∗, t∗) is the imaginary part of the solution of the problem (10) with (φ, t)
replaced by (φ∗, t∗). Therefore, from the definition of (φn, tn) and using (19), we have

Jδnεn (φ
n, tn) ≤ Jδnεn (φ

∗, t∗) = 1
2
‖uδn

2 (φ∗, t∗)‖20,� + εn

2
‖φ∗‖20,�u

+ εn

2
‖t∗‖20,�u

= 1
2
‖uδn

2 (φ∗, t∗) − u2(φ∗, t∗)‖20,� + εn

2
‖φ∗‖20,�u

+ εn

2
‖t∗‖20,�u

≤ c δ2n + εn

2
‖φ∗‖20,�u

+ εn

2
‖t∗‖20,�u

, (25)

implying

‖φn‖20,�u
+ ‖tn‖20,�u

≤ c
δ2n
εn

+ ‖φ∗‖20,�u
+ ‖t∗‖20,�u

. (26)

Moreover, from (18), there holds

|||un|||1,� ≤ c (‖f ‖0,� + ‖�n‖0,�m + ‖Tn‖0,�m + ‖φn‖0,�u + ‖tn‖0,�u)

≤ c (‖f ‖0,� + 2 δn + ‖�‖0,�m + ‖T‖0,�m + ‖φn‖0,�u + ‖tn‖0,�u). (27)
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8 X. L. CHENG ET AL.

Therefore, combining (26) and (27), forn large enough, {(φn, tn, un)} is uniformly bounded
with respect to n in Q�u × Q�u × V, and there is a subsequence {n′} of the sequence {n},
and some elements (φ∞, t∞) ∈ Q�u × Q�u , u∞ ∈ V such that as n′ → ∞,

(φn′
, tn

′
)⇀(φ∞, t∞) in Q�u × Q�u ,

un
′
⇀u∞ in V, un

′ → u∞ in Q, un
′ → u∞ inQ�. (28)

It is not difficult to verify that u∞ = u(φ∞, t∞). In fact, from the definition of un′
, we

have

a(un
′
, v) = Fδn′ (φn′

, tn
′ ; v) ∀ v ∈ V. (29)

Let n′ → ∞ in (29), and use convergence relations (28) to get

a(u∞, v) = F(φ∞, t∞; v) ∀ v ∈ V, (30)

i.e. u∞ = u(φ∞, t∞). Moreover, as n′ → ∞,

Jδn′εn′ (φ
n′
, tn

′
) = 1

2
‖un′

2 ‖20,� + εn′

2
‖φn′‖20,�u

+ εn′

2
‖tn′‖20,�u

→ 1
2
‖u∞

2 ‖20,�, (31)

where we use the uniform boundedness of (φn′ , tn′
) and the fact that εn′ → 0 as n′ → ∞.

From (25), there holds

0 ≤ Jδn′εn′ (φ
n′
, tn

′
) ≤ Jδn′εn′ (φ

∗, t∗) ≤ c δ2n′ + εn′

2
‖φ∗‖20,�u

+ εn′

2
‖t∗‖20,�u

→ 0 as n′ → ∞.

(32)

Combine (31) and (32) to get

u∞
2 = 0 in �,

which shows that (φ∞, t∞) ∈ Q�u × Q�u is a solution of Problem 2.1. Since (φ∗, t∗)
is the unique solution of Problem 2.1, we conclude that (φ∞, t∞) = (φ∗, t∗). Thus the
limit does not depend on the subsequence selected, and then the entire solution sequence
(φn, tn)⇀(φ∗, t∗) in Q�u × Q�u as n → ∞.

Finally, using (26) and the weak convergence, we have

‖φn − φ∗‖20,�u
+ ‖tn − t∗‖20,�u

= ‖φn‖20,�u
+ ‖tn‖20,�u

+ ‖φ∗‖20,�u
+ ‖t∗‖20,�u

− 2 (φn,φ∗)0,�u − 2 (tn, t∗)0,�u

≤ c
δ2n
εn

+ 2 ‖φ∗‖20,�u
+ 2 ‖t∗‖20,�u

− 2 (φn,φ∗)0,�u − 2 (tn, t∗)0,�u → 0

as n → ∞. This shows the strong convergence. �
Note that if φ∗ ∈ H−1/2(�u) rather than φ∗ ∈ Q�u , we can prove that (φ

δn
εn , t

δn
εn ) →

(φ∗, t∗) in H−1/2(�u) × Q�u as n → ∞, with arguments similar to those above, with a
slight modification.
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 9

4. An algorithm for the regularized optimal problem

AsQ�u ,Q�u are linear spaces, we obtain linear system for the solution of the optimization
Problem 3.2. Indeed, by Proposition 3.3, substitute (21) back into (17) to give

a(uδ , v) + 1
ε

(wδ
2, v̄)0,�u + i

1
ε

(wδ
1, v̄)0,�u = (f , v̄)0,� + (�δ + i Tδ , v̄)0,�m ∀ v ∈ V.

(33)

The weak form of (22) reads:

wδ ∈ V, a(wδ , v) = (uδ
2, v̄)0,� ∀ v ∈ V. (34)

Then by combining (21), (33) and (34), we give the following solver of Problem 3.2:

(1) Solve
⎧⎪⎪⎨
⎪⎪⎩

(κ ∇u1,∇v)0,� − (u2, v)0,� + 1
ε
(w2, v)0,�u = (f , v)0,� + (�δ , v)0,�m ∀ v ∈ V ,

(κ ∇u2,∇v)0,� + (u1, v)0,� + 1
ε
(w1, v)0,�u = (Tδ , v)0,�m ∀ v ∈ V ,

−(u2, v)0,� + (κ ∇w1,∇v)0,� − (w2, v)0,� = 0 ∀ v ∈ V ,
(κ ∇w2,∇v)0,� + (w1, v)0,� = 0 ∀ v ∈ V .

(35)
(2) Compute

φδ
ε = −1

ε
w2|�u , tδε = −1

ε
w1|�u . (36)

For real reconstruction, (35) and (36) need to be solved numerically. Standard con-
forming linear finite-element methods are applied to solve (35). Specifically, let {Th}h be a
regular family of finite-element partitions of �, and define the linear finite-element space

Vh = {v ∈ C(�) | v is linear in T ∀T ∈ Th}.

Then a finite-element discretization of (35) and (36) reads:

(1) Solve

⎧⎪⎪⎨
⎪⎪⎩

(κ ∇uh1,∇vh)0,� − (uh2, v
h)0,� + 1

ε (wh
2 , v)0,�u = (f , vh)0,� + (�δ , vh)0,�m ∀ vh ∈ Vh,

(κ ∇uh2,∇vh)0,� + (uh1, v
h)0,� + 1

ε (wh
1 , v

h)0,�u = (Tδ , vh)0,�m ∀ vh ∈ Vh,
−(uh2, v

h)0,� + (κ ∇wh
1 ,∇vh)0,� − (wh

2 , v
h)0,� = 0 ∀ vh ∈ Vh,

(κ ∇wh
2 ,∇vh)0,� + (wh

1 , v
h)0,� = 0 ∀ vh ∈ Vh.

(37)

(2) Compute

φh
ε = −1

ε
wh
2 |�u , thε = −1

ε
wh
1 |�u . (38)

Set Vh = Vh ⊕ iVh, and define

Qh
�u

= {gh ∈ Q�u | ∃ vh ∈ Vh s.t. gh = vh|�u}.
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10 X. L. CHENG ET AL.

Then it is easy to verify that

(φh
ε , t

h
ε ) = arg min

(ηh,sh)∈Qh
�u×Qh

�u

Jhε (ηh, sh)

with

Jhε (φ, t) = 1
2
‖uh2(φ, t)‖20,� + ε

2
‖φ‖20,�u

+ ε

2
‖t‖20,�u

,

where uh2(φ, t) is the imaginary part of the solution uh ∈ Vh of

a(uh, vh) = Fδ(φ, t; vh) ∀ vh ∈ Vh.

For fixed δ, ε > 0, we can prove (φh
ε , thε ) → (φδ

ε , tδε ) in Q�u × Q�u as h → 0. We omit the
detailed argument of this convergence result here.

5. Numerical results

In this section, we present some numerical results to illustrate the feasibility and effective-
ness of the CCBM-based Tikhonov regularization for solving the Cauchy problem. Denote
by (φ∗, t∗) the true Neumann and Dirichlet data we want to recover on �u, and by (φh

ε , thε )

the approximation of (φ∗, t∗) computed from (37) and (38). Note that (37) reduces to a
linear system Ax = b, which can be solved by the biconjugate gradient method. To better
assess the solution accuracy, we define the L2-norm relative errors in the solutions φh

ε and
thε , and the one in the corresponding state uh1 in (37) as follows:

Errφ = ‖φh
ε − φ∗‖0,�u

‖φ∗‖0,�u

, Errt = ‖thε − t∗‖0,�u

‖t∗‖0,�u

, Erru = ‖uh1 − u∗‖0,�u

‖u∗‖0,�u

,

where u∗, corresponding to (φ∗, t∗), is the true state in (1).
For comparison of the present work with the existing ones, we consider the examples

from [1]. Specifically, in the following experiments, let � ⊂ R
2 be a ring with inner radius

r1 = 0.6 and external radius r2 = 1. Assume the Cauchy data (�,T) on the external circle
�m is computed from a true state u∗ given in advance. Then we recover the data (φ∗, t∗)
on the inner circle �u from the Cauchy data (�,T). All experiments are implemented on
a mesh with 1416 nodes, 2592 elements and mesh size h = 0.07145. To be concise, we
omit all figures about the solution uh1 in � except noting that in all experiments below, the
accuracy in uh1 is better than that in φh

ε and thε .
Example 1: We first consider an analytic example. Specifically, set κ ≡ 1 and f (x, y) = 0
in �, and let u∗(x, y) = ex cos (y). Then T(x, y) = ex cos (y), �(x, y) = ex(x cos (y) −
y sin (y)), φ∗(x, y) = 5

3 e
x(y sin (y) − x cos (y)) and t∗(x, y) = ex cos (y).

For ε = 10−6, (37) and (38) are applied to compute approximate solutions (φh
ε , thε ) of

(φ∗, t∗) from the Cauchy data (�,T). We plot (φh
ε , thε ) in Figure 1. Observe that the results

are quite satisfactory.
To verify the stability of the reconstructionmodel explored here, a uniformly distributed

noise with a noise level δ = 0.05, 0.10 and 0.20, respectively, is added to (�,T) of Test 1
to get (�δ ,Tδ):
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 11

Figure 1. Reconstructed φh
ε and t

h
ε from (�, T) (Example 1).

Table 1. The dependence of the errors on δ (Example 1).

δ 0 5% 10% 20%

Errφ 9.1482e−3 9.2774e−2 8.5991e−2 9.9572e−2
Errt 1.7730e−3 7.4745e−2 7.7622e−2 8.7462e−2
Erru 6.1776e−4 2.8125e−2 3.3620e−2 4.8458e−2

�δ(x) = [1 + δ · (2 rand(x) − 1)] �(x), x ∈ �m,
Tδ(x) = [1 + δ · (2 rand(x) − 1)]T(x), x ∈ �m,

where rand(x) returns a pseudo-random value drawn from a uniform distribution on
[0, 1]. The experiments are repeated on the same mesh for ε = 10−4. The errors in the
solutions are listed in Table 1. We conclude from Table 1 that Problem 3.2 is stable.
Example 2: In the second example, let f (x, y) = 0,

κ =
[
1 0
0 ε

]
,

and u∗(x, y) = e
√

ε x cos (y). Then

�(x, y) = e
√

ε x(
√

ε x cos (y) − ε y sin (y)), T(x, y) = e
√

ε x cos (y) on �m,

φ∗(x, y) = 5
3
e
√

ε x(ε y sin (y) − √
ε x cos (y)), t∗(x, y) = e

√
ε x cos (y) on �u.

This model arises in applications of orthotropic materials.
Relations (37) and (38) are applied again to obtain approximations of (φ∗, t∗) from

(�,T). We show in Figures 2 and 3 the Neumann data φh
ε and Dirichlet data φh

t with
ε = 0.01, 0.05, 0.1 and 0.5. The regularization parameters for the four reconstructions are
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12 X. L. CHENG ET AL.

Figure 2. Reconstructed φh
ε from (�, T) for different ε (Example 2).

Figure 3. Reconstructed thε from (�, T) for different ε (Example 2).

10−4, 10−4, 10−5 and 10−6, respectively. We can see from Figures 2 and 3 the results are
satisfactory even for small parameter ε. The solution accuracy improves when ε gets closer
to 1. For clarity, the dependence of the errors in φh

ε and φh
t on ε ∈ [0.005, 10] is plotted in

Figure 4.
Fixing ε = 0.1, a uniformly distributed noise with δ = 0.05, 0.10 and 0.20, respectively,

is added to (�,T) to get noisy Cauchy data (�δ ,Tδ). The experiments are repeated with
ε = 10−4, and the errors in the solutions are reported in Table 2. Table 2 shows again that
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 13

Figure 4. The dependence of the errors in solutions on ε (Example 2).

Table 2. The dependence of the errors on δ (Example 2).

δ 0 5% 10% 20%

Errφ 9.0739e−3 1.5405e−1 2.8359e−1 5.4733e−1
Errt 5.2960e−3 5.4152e−2 6.0903e−2 7.8367e−2
Erru 2.3831e−3 2.6601e−2 3.2882e−2 4.8345e−2

Problem 3.2 is stable. During our experiments, we found that when ε is near 1, the results
are rather stable even for big δ like 0.2; when ε is far away from 1, the results are still stable
for not too big δ like δ ≤ 0.05.
Example 3: In the last example, we intend to recover the singular data on�u. Specifically,
let a point source P0 be placed at (x0, y0) which is near the unaccessible or accessible
boundary and assume u∗(z) =Re(1/(z − z0)), with z0 = x0 + i y0, z = x + i y, (x, y) ∈ �.
Then

�(z) = Re( − z/(z − z0)2), T(z) = Re(1/(z − z0)) on �m,

φ∗(z) = 5
3
Re(z/(z − z0)2), t∗(z) = Re(1/(z − z0)) on �u.

For simplicity of statements, let y0 = 0. For x0 = 0.3, 0.5, 1.1 and 1.3, (37) and (38)
are used to recover (φh

ε , thε ) from (�,T). The regularization parameters corresponding
to four x0 are 10−7, 10−8, 10−5 and 10−6 respectively. We show in Figures 5 and 6 the
Neumann data φh

ε and the Dirichlet data φh
t respectively. The results are still reasonable

when the data on the boundary are singular, and the solution accuracy improves when
the singularity reduces. For clarity, the dependence of the relative errors in (φh

ε , thε ) on the
value of x0 ∈ [0, 0.5]∪[1.1, 10] is shown in Figure 7, which shows that the results get better
as the source moves away from �.
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14 X. L. CHENG ET AL.

Figure 5. Reconstructed φh
ε from (�, T) for different positions of point sources (Example 3).

Figure 6. Reconstructed thε from (�, T) for different positions of point sources (Example 3).

To verify the stability, we fix x0 = 1.3 and add uniformly distributed noise with
δ = 0.05, 0.10 and 0.20 to � and T , The experiments are performed repeatedly. The
regularization parameters corresponding to the four different δ are 10−6, 10−5, 10−5 and
10−4, respectively. The errors in the solutions are listed in Table 3. Again, the results are
stable. Moreover, like the behaviour of the parameter ε in Example 2, the position (x0, y0)
of the point source P0 affect the stability of the solutions. Specifically, the results are rather
stable even for big δ when P0 is far way from the boundary � of �; when P0 is near to �,
the results are still stable for not too big δ, δ ≤ 0.05 for instance.
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INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 15

Figure 7. The dependence of the errors on x0 (Example 3).

Table 3. The dependence of the errors on δ (Example 3).

δ 0 5% 10% 20%

Errφ 1.6575e−1 2.3465e−1 2.7432e−1 3.3648e−1
Errt 1.5189e−2 3.0876e−2 3.3795e−2 1.0920e−1
Erru 5.1688e−3 1.1388e−2 1.5667e−2 3.6711e−2

We note that in all experiments above, because the true solution (φ∗, t∗) is known,
all optimal regularization parameters are chosen approximately by sweeping them from
10−1, 10−2, 10−3, . . .. When (φ∗, t∗) is not available, many methods such as discrepancy
principle (DP), L-curve rule, quasi-optimality, monotone error rule, generalized cross-
validation (GCV), etc., can be used for proper selection of ε. For example, using the
Morozov DP, Example 1 is tested again and we get similar convergence results. We refer to
[63,64] for some further comments on these methods for the choice of the regularization
parameters.

6. Conclusions

A CCBM-based Tikhonov regularization framework is presented for solving the Cauchy
problem on a general domain. With the proposed method, the data needed to fit the
boundary is transferred to the inner of the domain, and the missing data on the unac-
cessible boundary as well as the corresponding solution in the inner can be reconstructed
simultaneously. Since all boundary conditions are used as parts of a Robin boundary
condition, no Dirichlet BVP needs to be solved. This makes the resolution of the forward
problem easier. Particularly, this allows us to recover both φ and t in Q�u . Moreover,
through a complex adjoint equation, a simple solver is given to derive the solution of the
regularized optimal problem. Thus no iteration is needed and the resolution is fast. In
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16 X. L. CHENG ET AL.

conclusion, as shown by the theories and numerical experiments, the method explored in
this paper is feasible, effective and stable, for both smooth and non-smooth solutions. We
comment that the method discussed in this paper can be applied directly to the Cauchy
problem governed by other types of partial differential equations.
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