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Abstract. In this paper we propose a Kohn-Vogelius type formulation for an
inverse source problem of partial differential equations. The unknown source

term is to be determined from both Dirichlet and Neumann boundary condi-

tions. We introduce two different boundary value problems, which depend on
two different positive real numbers α and β, and both of them incorporate the

Dirichlet and Neumann data into a single Robin boundary condition. This al-

lows noise in both boundary data. By using the Kohn-Vogelius type Tikhonov
regularization, data to be fitted is transferred from boundary into the whole

domain, making the problem resolution more robust. More importantly, with

the formulation proposed here, satisfactory reconstruction could be achieved
for rather small regularization parameter through choosing properly the values

of α and β. This is a desirable property to have since a smaller regularization

parameter implies a more accurate approximation of the regularized problem to
the original one. The proposed method is studied theoretically. Two numerical

examples are provided to show the usefulness of the proposed method.

1. Introduction. Let Ω ⊂ Rd (d ≤ 3: space dimension) be an open bounded set
with a Lipschitz boundary Γ, and let Ω0 ⊂ Ω be a Lipschitz subset. We consider
the following inverse source problem: Given g1 and g2 on Γ, find p such that the
solution of boundary value problem (BVP)

(1)

{
−∆u+ u = pχΩ0

in Ω,

∂u
∂n = g2 on Γ

satisfies

(2) u = g1 on Γ.

Here ∂
∂n is the outward normal derivative, and χΩ0

is the characteristic function
of Ω0, i.e., its value is 1 in Ω0 while 0 outside Ω0. In the context of applications
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in bioluminescence tomography, Ω0 is known as a permissible region of the source
function p.

It is well known that inverse source problems are under-determined and ill-posed.
In this paper, we consider using Tikhonov regularization [9, 13] to obtain a sta-
ble approximate solution for the inverse source problem associated with the BVP
(1). We note that the inverse source problem (1)–(2) has been studied extensively
through Tikhonov methods in the field of bioluminescence tomography, see e.g.
[7, 8, 11] and references therein. With the Tikhonov regularization, the original
inverse source problem (1)–(2) is converted to the following minimization problem:

(3) pε = arg min
p∈Qad

1

2
‖u(p)− g1‖20,Γ +

ε

2
‖p‖20,Ω0

, ε > 0,

where Qad ⊂ Q := L2(Ω0) is an admissible set, incorporating a priori information
about the source function p; for each p ∈ Q, u(p) is the weak solution of the BVP
(1) in the Sobolev space V := H1(Ω); ‖ · ‖0,Γ and ‖ · ‖0,Ω0

are standard norms of the
spaces L2(Γ) and L2(Ω0). Under some assumptions, Problem (3) admits a unique
solution pε, and as ε → 0, pε converges to p∗, a solution of (1)–(2) with minimal
L2-norm ([7]).

In [12], a Kohn-Vogelius type functional is used for the data fitting in solving
the inverse source problem. In general, Kohn-Vogelius functionals are expected to
lead to more robust optimization procedures [1]. For the inverse problem (1)–(2),
the formulation studied in [12] is

(4) pε = arg min
p∈Qad

1

2
‖u1(p)− u2(p)‖20,Ω +

ε

2
‖p‖20,Ω0

, ε > 0,

where u1(p), u2(p) ∈ V are the weak solutions of BVPs{
−∆u1 + u1 = pχΩ0

in Ω,
u1 = g1 on Γ,

and {
−∆u2 + u2 = pχΩ0 in Ω,

∂u2

∂n = g2 on Γ,

respectively; ‖ · ‖0,Ω is the standard L2(Ω) norm. Under certain assumptions, Prob-
lem (4) admits a unique stable solution pε which converges to p∗ ([12]).

The regularization parameter ε plays an important role in solution accuracy
and stability. In this paper, we propose a new Kohn-Vogelius type functional to
solve the inverse source problem which allows the use of very small values of the
parameter ε. Consequently, we can compute accurate approximations of the solution
corresponding to rather small ε. This is a desirable property since the smaller the
regularization parameter, the better the approximation of the regularized problem
to the original one. Moreover, with introduction of two positive real parameters,
boundary condition data and boundary measurement data can be incorporated into
a single boundary value condition, and this improves the stability of the solution
with respect to the noise in the data. Moreover, data to be fitted is transferred
from boundary into the whole domain, making the problem resolution more robust.

The structure for the rest of this paper is as follows. The new Kohn-Vogelius
type method is proposed for the problem (1)–(2) in section 2. Some theoretical
properties are shown in this section. We discuss in section 3 the model when
the data contains random noise, and a convergence result is proved. In section
4, we provide a direct study of a system that defines the source function from
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the regularized formulations, with or without the noise. In section 5, an iterative
algorithm is stated for practical reconstructions. Its convergence is ensured when
the two parameters α and β are sufficiently close. Several numerical examples are
presented in section 6 to demonstrate the feasibility and efficiency of the proposed
method. Finally, concluding remarks are given in section 7.

2. A new Kohn-Vogelius type method. Let α 6= β be two positive constants.
Consider the following two BVPs:

(5)

{
−∆u1 + u1 = pχΩ0

in Ω,
∂u1

∂n + αu1 = g2 + α g1 on Γ,

and

(6)

{
−∆u2 + u2 = pχΩ0

in Ω,
∂u2

∂n + β u2 = g2 + β g1 on Γ.

Then the inverse source problem (1)–(2) can be transferred to the one of finding
a p such that the solution u1 of (5) and the solution u2 of (6) are equal: u1 = u2

in Ω. Indeed, if (u, p) satisfy (1)–(2), then (5) and (6) follow immediately with
u1 = u2 = u. Conversely, if there is a p such that the solutions of (5) and (6) satisfy
u1 = u2 in Ω, we subtract the two boundary conditions to have (β−α)(u1−g1) = 0
on Γ, implying u1 = g1 on Γ since β 6= α. Substitute u1 = g1 back into (5) to get
∂u1

∂n = g2 on Γ. Therefore, (u1, p) (= (u2, p)) satisfy (1)–(2).
Based on the two BVPs (5) and (6), we give a new Kohn-Vogelius type method

for the inverse source problem. Following the idea of Tikhonov regularization, we
define a Kohn-Vogelius type objective functional

Jε(p) =
1

2
‖u1(p)− u2(p)‖21,Ω +

ε

2
‖p‖20,Ω0

,

where u1(p), u2(p) ∈ V are the weak solutions of BVPs (5) and (6), respectively;

‖ · ‖1,Ω =
(
‖∇ · ‖20,Ω + ‖ · ‖20,Ω

)1/2
; ε is a regularization parameter. Assuming

g1, g2 ∈ H−1/2(Γ), it follows from the Lax-Milgram lemma ([2, 5]) that for each
p ∈ Q, the solutions u1, u2 ∈ V exist and are unique. Here H−1/2(Γ) is the dual of
H1/2(Γ) ([10, Chapter I]).

Compared with the original fitting condition (2): u(p) = g1 on Γ, the new fitting
condition u1(p) = u2(p) in Ω appears to make the problem less under-determined.
Moreover, the regularity assumption on g1 is g1 ∈ H−1/2(Γ) rather than g1 ∈
H1/2(Γ); note that for noisy measurement data, we only have g1 ∈ L2(Γ), not
g1 ∈ H1/2(Γ). Also, it is rather direct to calculate the term ‖u1(p)−u2(p)‖1,Ω. For
‖u(p) − g1‖0,Γ, we need to use values of u(p) on Γ; in the case of a general curved
boundary, it is a rather delicate issue to calculate ‖u(p)− g1‖0,Γ accurately.

The source function is sought within an admissible set Qad, assumed to be a
closed convex subset of Q. We introduce the following regularized problem.

Problem 1. Find pε ∈ Qad such that

(7) Jε(pε) = inf
p∈Qad

Jε(p).

Regarding Problem 1, we have the following well-posedness results.

Proposition 1. For ε > 0, Problem 1 admits a unique solution pε ∈ Qad, which de-
pends continuously on g1, g2 ∈ H−1/2(Γ) and ε. The following first order necessary
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and sufficient condition for pε holds:

(8)

∫
Ω0

(
εpε − (αΦ1 − βΦ2)

)
(q − pε)dx ≥ 0 ∀ q ∈ Qad,

where Φ1,Φ2 ∈ V are weak solutions of the adjoint BVPs

(9)

{
−∆Φ1 + Φ1 = 0 in Ω,

∂Φ1

∂n + αΦ1 = u1(pε)− u2(pε) on Γ,

and

(10)

{
−∆Φ2 + Φ2 = 0 in Ω,

∂Φ2

∂n + β Φ2 = u1(pε)− u2(pε) on Γ,

respectively.

Proof. It is not difficult to verify that for ε > 0, Jε(·) is strictly convex on Q.
Because Qad is a convex and closed subset of space Q, it is a standard result
([2, 10]) that Problem 1 admits a unique solution pε ∈ Qad, depending continuously
on g1, g2 ∈ H−1/2(Γ) and ε > 0, and is characterized by the inequality

(11) J ′ε(pε) (q − pε) ≥ 0 ∀ q ∈ Qad.
Next we derive an equivalent formulation for (11). For any q ∈ Q, we consider

the auxiliary BVPs:

(12)

{
−∆w1 + w1 = qχΩ0 in Ω,

∂w1

∂n + αw1 = 0 on Γ,

and

(13)

{
−∆w2 + w2 = qχΩ0 in Ω,

∂w2

∂n + β w2 = 0 on Γ.

Then for any t ∈ R, the solutions u1(pε + tq), u2(pε + tq) of (5), (6) (p replaced
by pε + tq) equal to u1(pε) + tw1(q), u2(pε) + tw2(q), respectively. Therefore, the
Gateaux derivative of Jε at pε in the direction q ∈ Q is

J ′ε(pε) q = lim
t→0

Jε(pε + t q)− Jε(pε)
t

=

∫
Ω

[∇(u1(pε)− u2(pε)) · ∇(w1(q)− w2(q))

+ (u1(pε)− u2(pε)) · (w1(q)− w2(q))] dx+ ε

∫
Ω0

pεq dx.

By using integration by parts together with the definitions of w1(q), w2(q), Φ1

and Φ2, the above expression reduces to

J ′ε(pε) q =

∫
Ω0

(
εpε − (αΦ1 − βΦ2)

)
q dx;

Thus, (8) follows from (11). The proof is completed.

Throughout this paper, we assume that there is at least one solution to the
original noise-free inverse source problem (1)–(2), and denote by S ⊂ Q the set of
all the solutions, which is also the solution set of Problem 1 with ε = 0. It is not
difficult to verify that S is closed and convex. Denote by p∗ the unique element in
S with minimal L2-norm. Since

Jε(pε) ≤ Jε(p∗) =
1

2
ε‖p∗‖20,Ω0

,
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we have
‖pε‖0,Ω0 ≤ ‖p∗‖0,Ω0 .

Then with arguments similar to those in [7, Proposition 3.5], we have the following
limiting property.

Proposition 2. pε → p∗ in Q as ε→ 0+.

The optimality condition (8) is equivalent to a nonlinear equation

(14) pε = PQad

(1

ε
(αΦ1 − βΦ2)

)
,

where PQad is a orthogonal projection from Q onto Qad.
On the function 1

ε (αΦ1 − βΦ2), we have the following result.

Proposition 3. Fix α and take β = α+O(
√
ε). Then 1

ε (αΦ1 − βΦ2) is uniformly
bounded in V with respect to ε for small ε > 0.

Proof. Denote by u1, u2 ∈ V the weak solutions of (5) and (6) respectively, both
with p replaced by pε. From the regularity estimate of elliptic BVPs ([6]), we have

‖u1‖1,Ω ≤ c (‖pε‖0,Ω0
+ ‖g2 + α g1‖−1/2,Γ)

≤ c (‖p∗‖0,Ω0 + α‖g1‖−1/2,Γ + ‖g2‖−1/2,Γ) ≤ c.
(15)

The difference function δu = u2 − u1 satisfies∫
Ω

(∇δu·∇v + δu v) dx+ β

∫
Γ

δu v ds

= (α− β)

∫
Γ

u1 v ds+ (β − α)

∫
Γ

g1 v ds ∀ v ∈ V.(16)

Taking v = δu in (16) and using (15), we get

‖δu‖1,Ω ≤ c|β − α| (‖u1‖−1/2,Γ + ‖g1‖−1/2,Γ) ≤ c|β − α|.(17)

Similarly, from definition of Φ1 in (9) and Φ2 in (10),∫
Ω

(∇Φ1·∇v + Φ1 v) dx+ α

∫
Γ

Φ1 v ds = −
∫

Γ

δu v ds ∀ v ∈ V,(18) ∫
Ω

(∇Φ2·∇v + Φ2 v) dx+ β

∫
Γ

Φ2 v ds = −
∫

Γ

δu v ds ∀ v ∈ V.(19)

Taking v = Φ1 in (18) and v = Φ2 (19), and using (17), we obtain

‖Φ1‖1,Ω ≤ c|β − α|, ‖Φ2‖1,Ω ≤ c|β − α|.(20)

The function δΦ = Φ2 − Φ1 satisfies∫
Ω

(∇δΦ·∇v + δΦ v) dx+ β

∫
Γ

δΦ v ds = (α− β)

∫
Γ

Φ1 v ds ∀ v ∈ V.(21)

Taking v = δΦ in (21) and using (20) give

‖δΦ‖1,Ω ≤ c |β − α|‖Φ1‖−1/2,Γ ≤ c |β − α|‖Φ1‖0,Ω ≤ c (β − α)2.(22)

Combine (20) and (22) to give

‖αΦ1 − βΦ2‖1,Ω = ‖α δΦ + (β − α)Φ2‖1,Ω ≤ c (β − α)2

Therefore, if β − α = O(
√
ε), then

‖1

ε
(αΦ1 − βΦ2)‖1,Ω = O(1),

and the proof is completed.

Inverse Problems and Imaging Volume 9, No. 4 (2015), 1051–1067
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Proposition 3 indicates that a reasonable reconstruction could be achieved for
rather small regularization parameter with properly selected α and β. More pre-
cisely, β = α + O(

√
ε), and this provides a guidance on how to choose α and β in

numerical simulations, cf. Section 6.

3. Noise model and solution convergence. In this section, the discussion fo-
cuses on the case where the Dirichlet data g1 and Neumann data g2 are allowed to
contain random noise. Thus, assume noise data gδ1 and gδ2 satisfy

(23) ‖gδ1 − g1‖0,Γ ≤ δ and ‖gδ2 − g2‖0,Γ ≤ δ,

where δ > 0 is known as the noise level. Here and below, we make the natural
assumption that g1, g2, gδ1 and gδ2 all belong to the space L2(Γ).

The problem we need to solve is: find a source function p in Qad so that the
weak solution uδ1 = uδ1(p) ∈ V of

(24)

{
−∆uδ1 + uδ1 = pχΩ0 in Ω,

∂uδ1
∂n + αuδ1 = gδ2 + α gδ1 on Γ,

equals to the weak solution uδ2 = uδ2(p) ∈ V of

(25)

{
−∆uδ2 + uδ2 = pχΩ0

in Ω,
∂uδ2
∂n + β uδ2 = gδ2 + β gδ1 on Γ,

i.e., uδ1(p) = uδ2(p) in Ω. A preliminary computation shows that

(26) ‖uδ1(p)− u1(p)‖1,Ω ≤ c δ, ‖uδ2(p)− u2(p)‖1,Ω ≤ c δ.

Similar to the noise-free model, we define a Kohn-Vogelius type objective func-
tional

Jδε (p) =
1

2
‖uδ1(p)− uδ2(p)‖21,Ω +

ε

2
‖p‖20,Ω0

,

and introduce the following regularized problem.

Problem 2. Find pδε ∈ Qad such that

Jδε (pδε) = inf
p∈Qad

Jδε (p).

Remark 1. In the ordinary Tikhonov regularization, noisy measurements are only
used in objective functional for data fitting. In our framework here, noisy data,
including both Dirichlet and Neumann type, are used in defining the forward prob-
lems.

Similar to Problem 1, for ε > 0, Problem 2 admits a unique solution pδε ∈ Qad,
which depends continuously on boundary data gδ1, gδ2 and parameter ε. Thus pδε →
pε in Q as δ → 0. Moreover, similar to (8) and (14), both the first order necessary
and sufficient condition of pδε,∫

Ω0

(
εpδε − (αΦδ1 − βΦδ2)

)
(q − pδε)dx ≥ 0 ∀ q ∈ Qad

and the nonlinear projection equation,

(27) pδε = PQad

(1

ε
(αΦδ1 − βΦδ2)

)
Inverse Problems and Imaging Volume 9, No. 4 (2015), 1051–1067
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hold. Here Φδ1,Φ
δ
2 ∈ V are the weak solutions of

(28)

{
−∆Φδ1 + Φδ1 = 0 in Ω,

∂Φδ1
∂n + αΦδ1 = uδ1(pδε)− uδ2(pδε) on Γ,

and

(29)

{
−∆Φδ2 + Φδ2 = 0 in Ω,

∂Φδ2
∂n + β Φδ2 = uδ1(pδε)− uδ2(pδε) on Γ,

respectively.
Recall that we always assume exact measurement g1 is attainable. Therefore the

solution set S of the original noise-free problem is non-empty and p∗, the exact
solution with minimum norm, exists. Next we discuss the convergence of pδε to p∗

as the noise level δ → 0.

Proposition 4. Given a sequence of noise levels {δn}n≥1, δn → 0 as n → ∞, let
εn = ε(δn) be chosen satisfying εn → 0 and δ2

n/εn → 0, as n → ∞. Denote by

pδnεn ∈ Qad the solution of Problem 2 with gδ1, gδ2 and ε replaced by gδn1 , gδn2 and εn
respectively. Then the sequence {pδnεn}n≥0 converges to p∗ as n→∞.

Proof. For simplicity in exposition, write pn = pδnεn , gn1 = gδn1 and gn2 = gδn2 . More-

over, denote by un1 = uδn1 (pn) and un2 = uδn2 (pn) the unique weak solutions of (24)
and (25) in V respectively, both with p, gδ1 and gδ2 replaced by pn, gn1 and gn2 . From
the definition of p∗, we have u1(p∗) = u2(p∗), Φ1(p∗) = Φ2(p∗) = 0. Then, using
(26),

Jδnεn (pn) ≤ Jδnεn (p∗) =
1

2
‖un1 (p∗)− un2 (p∗)‖21,Ω +

εn
2
‖p∗‖20,Ω0

≤ c δ2
n +

1

2
εn ‖p∗‖20,Ω0

which implies that for n large enough,

(30) ‖pn‖20,Ω0
≤ c δ

2
n

εn
+ ‖p∗‖20,Ω0

.

From the regularity bound of elliptic BVPs,

‖un1‖1,Ω ≤ c (‖pn‖0,Ω0
+ ‖gn1 ‖0,Γ + ‖gn2 ‖0,Γ)

≤ c (‖pn‖0,Ω0
+ 2 δn + ‖g1‖0,Γ + ‖g2‖0,Γ).

(31)

Similarly,

‖un2‖1,Ω ≤ c (‖pn‖0,Ω0 + 2 δn + ‖g1‖0,Γ + ‖g2‖0,Γ).(32)

Therefore, from (30)–(32), {(pn, un1 , un2 )} is uniformly bounded with respect to n in
Q×V ×V , and there is a subsequence {n′} of the sequence {n}, and some elements
p∞ ∈ Qad, u∞1 , u∞2 ∈ V such that as n′ →∞,

pn
′
⇀ p∞ in Q, un

′

1 ⇀ u∞1 , u
n′

2 ⇀ u∞2 in V

un
′

1 → u∞1 , u
n′

2 → u∞2 in L2(Ω), un
′

1 → u∞1 , u
n′

2 → u∞2 in L2(Γ).
(33)

We verify that u∞1 = u1(p∞). From the definition of un1 , we have∫
Ω

(∇un
′

1 · ∇v + un
′

1 v) dx+ α

∫
Γ

un
′

1 v ds

=

∫
Ω0

pn
′
v dx+ α

∫
Γ

gn
′

1 v ds+

∫
Γ

gn
′

2 v ds ∀ v ∈ V.
(34)

Inverse Problems and Imaging Volume 9, No. 4 (2015), 1051–1067



1058 Xiaoliang Cheng, Rongfang Gong and Weimin Han

Let n′ → 0, and use (23) and convergence relations (33) above to get∫
Ω

(∇u∞1 · ∇v + u∞1 v) dx+ α

∫
Γ

u∞1 v ds

=

∫
Ω0

p∞v dx+ α

∫
Γ

g1v ds+

∫
Γ

g2v ds ∀ v ∈ V,
(35)

which shows u∞1 = u1(p∞). Similarly, we have u∞2 = u2(p∞).

Subtracting (35) from (34), taking v = un
′

1 −u∞1 and using convergence relations

in (33) again give to un
′

1 → u∞1 in V as n′ → 0. Similarly, un
′

2 → u∞2 in V as
n′ →∞.

Therefore, as n′ →∞,

Jδn′
εn′ (pn

′
) =

1

2
‖un

′

1 − un
′

2 ‖21,Ω +
εn′

2
‖pn

′
‖20,Ω0

→ 1

2
‖u∞1 − u∞2 ‖21,Ω,

where we use the uniform boundness of pn
′

(cf. (30)). Since

Jδn′
εn′ (pn

′
) ≤ Jδn′

εn′ (p∗) ≤ c δ2
n′ +

εn′

2
‖p∗‖20,Ω0

→ 0, as n′ →∞,

we deduce that
u1(p∞) = u2(p∞) in V.

As a result, (p∞, u∞1 ) or (p∞, u∞2 ) is a solution of original noise-free inverse source
problem (1)–(2). Hence, p∞ ∈ S.

Next we prove p∞ = p∗. From the lower semi-continuity of norm ‖ · ‖0,Ω0 and

the weak convergence of pn
′

to p∞, we have

‖p∞‖0,Ω0 ≤ lim inf
n′→∞

‖pn
′
‖0,Ω0 .

Therefore, for any fixed η > 0, there exists a positive integer N such that ∀n′ > N ,
the following relation holds:

(36) ‖pn
′
‖20,Ω0

≥ ‖p∞‖20,Ω0
− η.

We note that (30) also holds when p∗ is replaced by p∞. Therefore, together
with (36),

−η ≤ ‖pn
′
‖20,Ω0

− ‖p∞‖20,Ω0
≤ c δ

2
n′

εn′

holds for big enough n′ > N . Letting first n′ →∞ and then η → 0 in the relation
above, we have

(37) lim
n′→∞

‖pn
′
‖0,Ω0

= ‖p∞‖0,Ω0
.

By the definition of p∗, ‖p∗‖0,Ω0
≤ ‖p∞‖0,Ω0

. Combining it with (30) and (36),
for big enough n′ > N , the following relation holds:

‖pn
′
‖20,Ω0

− ‖p∞‖20,Ω0
≤ ‖pn

′
‖20,Ω0

− ‖p∗‖20,Ω0
≤ c δ

2
n′

εn′

Letting n′ →∞ again in the relation above and using (37), we arrive at

(38) ‖p∞‖0,Ω0
= ‖p∗‖0,Ω0

.

Using the definition of p∗ again, (38) means p∞ = p∗ and pn
′
⇀ p∗ in Q, as n′ →∞.

Thus the limit does not depend on the subsequence selected, and then the entire
solution sequence pn ⇀ 0 in Q, as n′ →∞.

The strong convergence holds due to limn→∞ ‖pn‖0,Ω0 = ‖p∗‖0,Ω0 and weak
convergence.
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4. Study of a mapping. From the discussion in sections 2 and 3, we see that
the source function from the regularized problem can be equivalently defined by
a system: (5), (6), (9), (10) and (14) for the noise-free case, and (24), (25), (28),
(29) and (27) for the noise model. The study of the system is the same for either
case, and here for simplicity in notation, we consider the noise-free case. To further
simplify the notation, we write

gα := g2 + α g1, gβ := g2 + β g1.

Then, for any p ∈ Qad, we first define u1, u2 ∈ V by∫
Ω

(∇u1·∇v + u1v) dx+ α

∫
Γ

u1v ds =

∫
Ω0

p v dx+

∫
Γ

gαv ds ∀ v ∈ V,(39) ∫
Ω

(∇u2·∇v + u2v) dx+ β

∫
Γ

u2v ds =

∫
Ω0

p v dx+

∫
Γ

gβv ds ∀ v ∈ V,(40)

then define Φ1,Φ2 ∈ V by∫
Ω

(∇Φ1·∇v + Φ1v) dx+ α

∫
Γ

Φ1v ds =

∫
Γ

(u1 − u2) v ds ∀ v ∈ V,(41) ∫
Ω

(∇Φ2·∇v + Φ2v) dx+ β

∫
Γ

Φ2v ds =

∫
Γ

(u1 − u2) v ds ∀ v ∈ V,(42)

and finally define

(43) Π(p) = PQad

(1

ε
(αΦ1 − βΦ2)

)
.

In this way, we have defined a mapping Π : Qad → Qad.
We fix α > 0 and assume α and β satisfy the relation

(44) |β − α| ≤ c0
√
ε.

We will show that if c0 > 0 is small enough, then the mapping Π is a contraction
from Qad to Qad. For this purpose, let p1, p2 ∈ Qad and denote δp = p1 − p2. For
i = 1, 2, corresponding to pi, the solutions of (39)–(42) are denoted as ui1, ui2, Φi1,
and Φi2. We denote δuj = u1

j − u2
j ∈ V and δΦj = Φ1

j − Φ2
j ∈ V for j = 1, 2. Then

from the definitions (39)–(42), we have∫
Ω

(∇δu1·∇v + δu1v) dx+ α

∫
Γ

δu1v ds =

∫
Ω0

δp v dx ∀ v ∈ V,(45) ∫
Ω

(∇δu2·∇v + δu2v) dx+ β

∫
Γ

δu2v ds =

∫
Ω0

δp v dx ∀ v ∈ V,(46) ∫
Ω

(∇δΦ1·∇v + δΦ1v) dx+ α

∫
Γ

δΦ1v ds =

∫
Γ

(δu1 − δu2) v ds ∀ v ∈ V,(47) ∫
Ω

(∇δΦ2·∇v + δΦ2v) dx+ β

∫
Γ

δΦ2v ds =

∫
Γ

(δu1 − δu2) v ds ∀ v ∈ V.(48)

Take v = δu1 in (45) and v = δu2 in (46) to get

(49) ‖δuj‖1,Ω ≤ c ‖δp‖0,Ω0
, j = 1, 2.

Subtracting (46) from (45), we have, for any v ∈ V ,∫
Ω

[∇(δu1 − δu2)·∇v + (δu1 − δu2)v] dx+α

∫
Γ

(δu1−δu2)v ds = (β−α)

∫
Γ

δu2v ds.

Take v = δu1 − δu2 and apply (49) to obtain

(50) ‖δu1 − δu2‖1,Ω ≤ c |β − α| ‖δu2‖0,Γ ≤ c |β − α| ‖δp‖0,Ω0 .
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Similarly, take v = δΦ1 in (47), v = δΦ2 in (48) and apply (50) to get

(51) ‖δΦj‖1,Ω ≤ c ‖δu1 − δu2‖0,Γ ≤ c |β − α| ‖δp‖0,Ω0 , j = 1, 2.

Subtracting (48) from (47), we have, for any v ∈ V ,∫
Ω

[∇(δΦ1 − δΦ2)·∇v + (δΦ1 − δΦ2)v] dx+ α

∫
Γ

(δΦ1 − δΦ2)v ds

= (β − α)

∫
Γ

δΦ2v ds.

Take v = δΦ1 − δΦ2 and apply (51) to obtain

(52) ‖δΦ1 − δΦ2‖1,Ω ≤ c |β − α| ‖δΦ2‖0,Γ ≤ c (β − α)2 ‖δp‖0,Ω0 .

Also, from (47) and by applying (51)–(52), we have

(53) ‖α δΦ1− β δΦ2‖1,Ω = ‖(α− β) δΦ1 + β(δΦ1− δΦ2)‖1,Ω ≤ c (β −α)2‖δp‖0,Ω0
.

Since the projection operator is non-expansive ([2, Proposition 3.4.4]), we get
from the definition (43) that

(54) ‖Π(p1)−Π(p2)‖0,Ω0
≤
∥∥∥1

ε
(αδΦ1 − βδΦ2)

∥∥∥
0,Ω0

.

Then apply (53),

‖Π(p1)−Π(p2)‖0,Ω0
≤ c ε−1(β − α)2‖δp‖0,Ω0

.

By the assumption (44),

(55) ‖Π(p1)−Π(p2)‖0,Ω0 ≤ c c20‖p1 − p2‖0,Ω0 .

Thus, if c0 > 0 is small enough, the mapping Π is a contraction from Qad to Qad,
and we can apply the Banach fixed-point theorem to obtain the following result (cf.
[2, Theorem 5.1.3]).

Theorem 4.1. Assume (44) with a sufficiently small c0 > 0. Then the system
defined by (39)–(43) has a unique solution

(p, u1, u2,Φ1,Φ2) ∈ Qad × V 4.

Moreover, for any p0 ∈ Qad, the iteration method pn+1 = Π(pn), n ≥ 0, converges:

(pn, un1 , u
n
2 ,Φ

n
1 ,Φ

n
2 )→ (p, u1, u2,Φ1,Φ2) ∈ Qad × V 4, as n→∞.

Here, un1 , un2 , Φn1 , Φn2 denote the solutions of the BVPs (39)–(42) with p replaced
by pn.

Note that the theorem provides a convergence result for the fixed point iteration
method in solving the system (39)–(43).

5. Gradient projection method. In this section, a gradient projection iterative
scheme for obtaining an approximation to pε, the solution of Problem 1, is stated.
We first mention that pε is also characterized by a linear variational inequality
(LVI): ∫

Ω0

(
pε −

1

ε
(αΦ1 − βΦ2)

)
(q − pε)dx ≥ 0 ∀ q ∈ Qad.

Applying the gradient projection method ([3, 4]) to LVI above, we introduce the
following iterative scheme to compute an approximation of pε:
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Algorithm 5.1.
1. Given precision ε > 0 and data g1, g2; properly choose ε, α, β with 0 < α < β,

and ρ; Set p0 ∈ Qad and n = 0.
2. Solve (5) and (6), both with pε replaced by pn to get u1(pn) and u2(pn).
3. Solve (9) and (10), both with u1(pε)− u2(pε) replaced by u1(pn)− u2(pn) to

get Φ1(pn) and Φ2(pn).
4. Compute g(pn) = pn − 1

ε

(
αΦ1(pn)− βΦ2(pn)

)
.

5. Compute pn+1 = PQad

(
pn − ρg(pn)

)
.

6. Compute en+1 = ‖pn+1 − pn‖0,Ω0 . If en+1 ≤ ε stop; otherwise, set n := n+ 1
and return to Step 2.

Convergence of Algorithm 5.1 can be studied similar to the fixed-point iteration,
as stated in Theorem 4.1. Indeed, instead of (43), we define

(56) Π(p) = PQad

(
(1− ρ) p+

ρ

ε
(αΦ1 − βΦ2)

)
.

Instead of (54), we have

‖Π(p1)−Π(p2)‖0,Ω0
≤
∥∥∥(1− ρ) δp+

ρ

ε
(αδΦ1 − βδΦ2)

∥∥∥
0,Ω0

and then

(57) ‖Π(p1)−Π(p2)‖0,Ω0
≤ (1− ρ) ‖δp‖0,Ω0

+
ρ

ε
‖αδΦ1 − βδΦ2‖0,Ω0

.

The inequality (53) still holds and we use it in (57):

(58) ‖Π(p1)−Π(p2)‖0,Ω0
≤
[
(1− ρ) + c ρ ε−1(β − α)2

]
‖p1 − p2‖0,Ω0

.

Thus, for ρ ∈ (0, 1), if c0 > 0 in (44) is small enough, the mapping defined by
(39)–(42) and (56) is a contraction, and the statement of Theorem 4.1 holds for this
mapping. In particular, we have the convergence of Algorithm 5.1. Note that the
the same convergence statement is valid also for the discrete version of the system.
We comment that in numerical simulations, convergence occurs even for moderately
large values of c0.

In practice, Qad often has one of three forms: (1) Qad = Q; (2) Qad = {p ∈ Q |
p ≥ 0 a.e. in Ω0}; (3) Qad = {p ∈ Q | p ≤ p ≤ p a.e. in Ω0} with p, p ∈ C(Ω0). In
these cases, PQad has simple forms. Particularly, in the case Qad = Q, the iteration
in Algorithm 5.1 can be avoided. In fact, in this case, PQad = I, the identical
operator in Q, and pε = 1

ε (αΦ1 − βΦ2)χΩ0 . Substituting 1
ε (αΦ1 − βΦ2)χΩ0 for p

back into (5) and (6), and together with (9) and (10), we arrive at a forward system
of partial differential equations. Once Φ1 and Φ2 are computed from the reduced
system, we obtain pε = 1

ε (αΦ1 − βΦ2)χΩ0
.

We note that all statements above hold for noise model in Section 3, just with
g1 and g2 being replaced by gδ1 and gδ2. In the next section, finite element methods
will be used for obtaining discrete approximate solutions based on Algorithm 5.1
and some numerical experiments are presented.

6. Numerical experiments. In this section, some numerical results are reported
based on our new reconstruction framework for the inverse source problem (1)–(2).
Standard linear finite element methods are applied to obtain discrete approximate
solutions of the BVPs. Let Ω be the problem domain and h be the mesh parameter,
i.e., the maximal diameter of the elements in a partition Th of Ω. These results
are computed in a Matlab environment. For a two dimensional domain, triangular
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meshes are produced and refined by using of the PDE Toolbox. For a three dimen-
sional domain, tetrahedral meshes are produced and refined through a COMSOL
Multiphysics software. In all examples, biconjugate gradient (BICG) methods are
used to solve the resulting linear algebraic system. The Dirichlet data g1, which
may or may not include noise, are obtained by solving the forward BVP (1) on
a rather fine mesh for a given true source p and Neumann data g2. Indicated by
Proposition 3, without loss of generality, we set

α = 1 and β − α = O(
√
ε) =

√
mε

with m to be chosen. For better assessing the accuracy of approximate solutions,
we define the L2-norm relative error in an approximate solution:

Err(phε ) :=
‖phε − p‖0,Ω0

‖p‖0,Ω0

,

where p is the true source function, phε stands for an approximate solution of pε (for
noise-free data) or pδε (for noise data).

Example 1. In this example, Ω = {(x, y) ∈ Ω | x2+y2 < 1}, Ω0 is a circle, centered
at (0.55, 0.45) with radius 0.2. The true source function p(x, y) = 1 + x+ y in Ω0.
The Neumann data g2 = 0.2 on Γ. Then Dirichlet data g1 is computed through (1)
on a mesh with h = 0.0003278, 351232 elements and 176177 nodes.

Table 1. Err(phε ) for noise-free data.

ε HCW SH CGH

10−1 0.8104 0.9201 0.9734

10−2 0.2953 0.5339 0.8018

10−3 0.03261 0.09746 0.3467

10−4 0.02444 0.003205 0.08941

10−5 0.1017 0.04778 0.03773

10−6 0.2314 0.1500 0.03114

10−7 0.7288 0.3214 0.03056

10−8 1.700 0.9816 0.03068

10−9 4.541 1.857 0.03066

10−10 8.972 5.531 0.03078

10−11 19.66 9.488 0.03061

10−12 48.02 64.75 0.03348

We consider first the case where the source function p is searched in the whole
space Q, i.e., Qad = Q. For fixed m = 105, reconstruction is repeated on a mesh
with h = 0.02134, 1372 elements and 722 nodes for different ε, and L2-norm relative
errors in approximate source functions are reported in fourth column of Table 1.
For comparison with methods in [7] and [12], approximate source functions are also
computed with these two methods. The associated L2-norm relative errors are listed
in the second and third columns of Table 1 respectively. In Table 1, symbols ‘HCW’,
‘SH’ and ‘CGH’ mean that results in the corresponding column are obtained with
reconstruction models (3), (4) and (7), respectively. Table 1 shows that all the three
methods perform well for properly selected parameters. We conclude from Table 1
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Figure 1. Left subgraph: noise-free case; right subgraph: noise case.

that, although Proposition 3 is discussed for accurate pε, it also holds for phε , that
is, phε is uniform with respect to ε when ε is small enough. In other words, with
our new method, a reasonable source function can be reconstructed for rather small
regularization parameter ε. It is meaningful by noticing the fact that the smaller ε
is, the better the regularized problem approaches to the original one is. As a result,
without the need for concern of possible instability associated with a very small ε,
in our new method, we can choose a small value of ε based on the consideration of
the solution accuracy, and the method will work as long as β − α is small enough.

Table 2. Err(phε ) for 5% noise data.

ε HCW SH CGH

10−1 0.7973 0.9146 0.9742

10−2 0.2467 0.5016 0.8319

10−3 0.06167 0.03798 0.4792

10−4 0.4263 0.1401 0.2117

10−5 1.440 0.8318 0.1147

10−6 5.857 2.019 0.08748

10−7 20.38 5.600 0.08008

10−8 33.50 19.11 0.07780

10−9 141.3 51.64 0.07730

10−10 905.5 186.2 0.07686

10−11 2296 746.7 0.07683

10−12 4825 2353 0.07686

To measure the stability of the new K-V type reconstruction model, 5% uniformly
distributed noise is added to g1. Set m = 104. The above experiments are repeated,
and the resulting approximate solution errors are shown in the fourth column of
Table 2. Counterpart with methods in [7] and [12] are also computed, and shown in
the second and third columns. Table 2 shows that the results for model with noise
are similar to those for noise-free case: 1

ε (αΦδ1 − βΦδ2) is uniform with respect to ε
for small enough ε; with properly selectly α and β, reasonable approximate source
functions could be obtained for rather small ε. More importantly, we can see from
it that the reconstruction model is stable. For clarity, Tables 1 and 2 are plotted in
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Figure 2. phε for noise-free model.

Figure 3. phε for 5% noise model.

Figure 1. Finally, we show in Figures 2 and 3 the approximate source function phε
with the best accuracy. Specifically, Figure 2 is phε for δ = 0, ε = 10−7 and m = 105;
Figure 3 is phε for δ = 0.05, ε = 10−11 and m = 104.

Example 2. In this example, a 3D source is reconstructed. For this purpose, set
the problem domain Ω:

Ω = {(x, y, z)|x2 + y2 ≤ 100, 0 ≤ z ≤ 10}.
Assume Ω0 is sphere centered at (5, 5, 6) with unit radius and we place a true
source p = 5 in Ω0. Then for given g2 = | sin(x + y + z)|, (1) is used to compute
measurement g1, on a mesh with h = 0.1355, 162759 tetrahedrons and 29043 nodes.
A sketch of computational mesh is shown in Figure 4.

Figure 4. A sketch of computation mesh.
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With m = 103, Algorithm (5.1) is used again to obtain approximate source
functions for different ε on a mesh with h = 0.2210, 8463 tetrahedrons and 1656
nodes. We list the L2-norm relative errors, computed with methods in [7], [12] and
this paper respectively, in Table 3. As 2D example above, for the 3D problem,
similar conclusions can be drawn from Table 3.

Table 3. Err(phε ) for noise-free data.

ε HCW SH CGH

10−1 0.6362 0.6656 0.7292

10−2 0.07430 0.08240 0.3657

10−3 0.1475 0.1785 0.1709

10−4 0.2386 0.2586 0.1070

10−5 0.4192 0.4494 0.08777

10−6 0.5078 0.6657 0.08193

10−7 0.5207 0.7128 0.08013

10−8 0.5216 0.7171 0.07952

10−9 0.5221 0.7181 0.07933

10−10 0.5216 0.7186 0.07928

10−11 0.5215 0.7182 0.07926

10−12 0.5224 0.7191 0.07925
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Figure 5. Left subgraph: noise-free case; right subgraph: noise case.

Again, for verifying the stability of our formulation, 5% random noise is added
to Dirichlet data g1. Set m = 104, reconstruction above is repeated for this 3D
problem. Approximate solution errors are shown in Table 4. Again, we plot Tables
3 and 4 in Figure 5. Finally, the approximate source function phε with the best
accuracy for noise-free model and 5% noise model are displayed in Figures 6 and
7, respectively. Specifically, Figure 6 is phε for δ = 0, ε = 10−3 and m = 104 while
Figure 7 is phε for δ = 0.05, ε = 10−3 and m = 104. Conclusion could be drawn from
these results that the model explored here is stable.

We note that all numerical results above are obtained for Case 1: Qad = Q.
Using Algorithm 5.1, we repeat the experiments for Case 2: Qad = {p ∈ Q |
p ≥ 0 a.e. in Ω0} and Case 3: Qad = {p ∈ Q | p ≤ p ≤ p̄ a.e. in Ω0}, and the
reconstructed results are similar to those for Case 1. In summary, we conclude from
them that the method proposed here is feasible and effective.
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Table 4. Err(phε ) for 5% noise data.

ε HCW SH CGH

10−1 0.6355 0.6645 0.6417

10−2 0.07348 0.07901 0.1582

10−3 0.1699 0.1834 0.08592

10−4 0.3410 0.2818 0.1216

10−5 0.6943 0.6155 0.1340

10−6 0.8573 0.9584 0.1383

10−7 0.8804 1.032 0.1397

10−8 0.8829 1.041 0.1402

10−9 0.8833 1.041 0.1403

10−10 0.8835 1.041 0.1404

10−11 0.8824 1.041 0.1402

10−12 0.8841 30.94 0.1404

Figure 6. phε for noise-free model.

Figure 7. phε for 5% noise model.

7. Concluding remarks. In this paper, a new Kohn-Vogelius type formulation
is proposed for the inverse source problem of elliptic PDEs. Different from exist-
ing methods in the literature, we introduce two positive parameter to form two
different but related BVPs, so that the original boundary fitting is transferred to
domain fitting. With two new BVPs, the boundary measurement is incorporated
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into Robin boundary condition. From the practical point of view, this is meaningful
since the effects of noise in forward boundary condition and noise in measurement
on solution accuracy are different. The most important feature of the new method
is that an accurate approximate source function can be reconstructed for rather
small regularization parameter, even in the case where the data is polluted by ran-
dom noise. Therefore, although in standard regularization methods for the inverse
source problem, choosing a proper regularization parameter is delicate issue, our
new method allows the use of a very small regularization parameter based mostly
on the consideration of the solution accuracy.
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