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Abstract Bioluminescence tomography (BLT) is a promising new method in biomedical imaging. The BLT
problem is an ill-posed inverse source problem, usually studied through a regularization technique. A new approach
is proposed for solving the BLT problem based on an adjoint equation. Numerical examples show that the new
formulation allows us to obtain accurate solutions.
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1 Introduction

Molecular imaging is a rapidly developing biomedical imaging technique for studying physiological and patho-
logical processes in vivo at the cellular and molecular levels; see e.g. [1–5] and references therein. The goal of
molecular imaging is to depict non-invasively cellular and molecular processes in vivo sensitively. Applications
include the monitoring of multiple molecular events, cell trafficking and targeting in tumorigenesis studies, cancer
diagnosis, metastasis detection, drug discovery and development, gene therapy, and orthopedic research [3,6–8].
Molecular imaging is broadly based on three technologies: nuclear imaging [9,10], magnetic resonance imaging
(MRI) [11,12], and optical imaging [13,14]. Numerous instrumentations have been developed based on the three
technologies. For instance, nuclear imaging includes positron emission tomography (PET) [15–17] and single pho-
ton emission computed tomography (SPECT) [18], while optical imaging mainly involves fluorescence molecular
tomography (FMT) [14,19] and bioluminescent imaging (BLI) [20–22]. The difference between FMT and BLI are
discussed in [23]. Different technologies can also be used in a combined system [25].

BLT has received considerable attention in recent years because of its advantages regarding sensitivity and
specificity. A major issue in BLT is the determination of the distribution of a bioluminescent source. With the
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introduction of BLT, a bioluminescent-source distribution inside a living small animal can be localized and
quantified in three dimensions. In the absence of BLT, bioluminescence imaging is primarily qualitative. With
BLT, quantitative and localized analysis of a bioluminescent-source distribution becomes feasible in a living sub-
ject [24–28]. In BLT, an internal bioluminescent source is constructed from a measured bioluminescent signal on
the external surface of a small animal. The problem of determining the photon density on the small animal surface
from the bioluminescent-source distribution inside the animal requires accurate representation of photon transport
in biological tissue. The bioluminescent-photon propagation in biological tissue can be well described by either a
radiative-transfer equation (RTE) or a Monte Carlo model. However, at present, because transmission of the biolu-
minescent photons through the biological tissue is subject to both scattering and absorption, neither description is
computationally feasible in most practical applications. In practical implementation, approximation of the diffusion
equation of RTE is chosen if scattering is dominant over absorption in the process of propagation of light inside a
small animal [29].

In Sect. 2, a mathematical statement of the BLT problem is given. In Sect. 3, a new formulation for BLT is
introduced, based on the use of an adjoint equation. In Sect. 4, the discretization of the new formulation by the
finite-element method is discussed. Several numerical examples are presented in Sect. 5 to demonstrate the feasibility
of the proposed method. Concluding remarks are given in the last section.

2 Problem statement

Let �⊂ R
3 with boundary � of class C0,1 be the domain occupied by a biological medium. We denote by u0 =

u0(x, θ, t) the light flux in direction θ ∈ S2 (S2: the unit sphere) at x ∈ � and t > 0, and by p0 = p0(x, θ, t) the
internal light source. Light transport in the biological tissue can be described by RTE [29,30],

1

c

∂u0

∂t
+ θ · ∇x u0 + µu = µs

∫
S2

k(θ · θ ′)u0(x, θ ′, t) dθ ′ + p0 in �, (1)

where c is the photon speed, µ = µa + µs , and µa , µs are absorption and scattering coefficients. The scattering
kernel function k ≥ 0 is such that

∫
S2 k(θ · θ ′) dθ ′ = 1. The initial and boundary conditions for equation (1) are

u0(x, θ, 0) = 0, x ∈ �, θ ∈ S2

and

u0(x, θ, t) = g−(x, θ, t), t > 0, x ∈ �, θ ∈ S2 such that ν(x) · θ ≤ 0,

respectively, where ∂ν is the outward-normal differentiation operator on the boundary �. To reconstruct the internal
light source p0, we consider measurements of the outgoing radiation on the boundary �:

g(x, t) =
∫

S2
ν(x) · θu0(x, θ, t) dθ, t > 0, x ∈ �.

Because the RTE is highly dimensional, it presents a serious challenge for accurate numerical simulations, given
the current level of development of computer software and hardware. However, because the mean-free path of the
photon is between 500 nm and 1,000 nm in biological tissues, which is very small compared to a typical object
in this context, scattering dominates transport [29]. Since the internal bioluminescence distribution induced by
reporter genes is relatively stable, we neglect the time dependence. The diffusion approximation of the RTE (1) is
(see [31,32] for detail)

− div(D∇u) + µau = p in �. (2)

Here u = u(x) and p = p(x), defined as

u(x) = 1

4π

∫
S2

u0(x, θ) dθ, p(x) = 1

4π

∫
S2

p0(x, θ) dθ,
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are the average light flux and average light-source distribution in any direction respectively, D = [3(µa + µ
′
s)]−1,

µ
′
s = (1 − k)µs is the reduced scattering coefficient with

k = 1

4π

∫
S2

θ · θ ′k(θ · θ ′) dθ ′.

Accordingly, the boundary condition reduces to

u + 2D∂νu = g− ≡ g2 on �, (3)

while the boundary measurement reduces to

g = −D∂νu on �. (4)

From (3) and (4), we obtain a third boundary condition for Eq. 2,

u = g− + 2g ≡ g1 on �. (5)

Note that only two of the three boundary conditions (3), (4) and (5) are independent. As pointed out in [26],
to determine the source function p, we may associate one of the above three boundary conditions (3), (4) and (5)
with the differential equation (2) to form a boundary-value problem, while choosing one of the remaining boundary
conditions to form an inverse problem for p. In [26], the inverse problem was discussed for the boundary-value
problem (2) and (3) with the measurement matching for (5):

Problem 1 Given D > 0, µa ≥ 0, g1 and g2, suitably smooth, find a source function p such that the solution of
the boundary-value problem,
{−div(D∇u) + µa u = pχ�0 in �

u + 2D∂νu = g2 on �,
(6)

satisfies

u = g1 on �. (7)

Here �0 is a measurable subset of �, known as the permissible region, χ�0 is the characteristic function of �0, i.e.,
its value is 1 in �0 and is 0 outside �0. Even with this simplification, it still remains to develop efficient ways of
simulating diffusion-based BLT [26–28,33–36].

Next, we discuss, BLT problem based on Problem 1. The purpose of this paper is to introduce a new formulation
as the basis of a potentially more effective numerical method to solve the BLT problem. Different from conventional
ways, which often involve minimizing a cost functional subject to a system of differential equations, we convert the
determination of a source function p to the problem of solving a system of equations. In this way, the BLT problem
is solved through linear systems of elliptic partial differential equations by passing optimization. We will see that
our new method provides good numerical results.

In what follows, we let � be a domain in R
d (d = 3 for applications) with boundary �. Moreover, for our future

needs, we introduce a few symbols. For G = �, �0 or �, and s ≥ 0, we denote by Hs(G) the standard Sobolev
space associated with inner product (·, ·)s,G and norm ‖·‖s,G , H0(G) = L2(G). Denote V = H1(�), V0 = H1

0 (�)

and Q = L2(�0).
For any q ∈ Q, we denote by u = u(q)∈ V the solution of the problem∫

�

(D∇u · ∇v + µa u v) dx + 1

2

∫
�

u v ds =
∫

�0

q v dx + 1

2

∫
�

g2 v ds ∀v ∈ V . (8)

This is a weak formulation of the boundary-value problem defined by (6) with p replaced by q. Suppose that the
admissible source function p belongs to a closed convex subset Qad of the space Q.

Problem 1 is usually studied via a least-squares optimization approach.
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Problem 2 Find p ∈ Qad such that

J (p) = inf
q∈Qad

J (q),

where

J (q) = 1

2
‖u(q) − g1‖2

0,�.

As noted in [26], Problems 1 and 2 are ill-posed. In general, there are infinitely many solutions. When the form of
the source function is pre-specified, there is no solution if the data are inconsistent. Moreover, the source function
does not depend continuously on the data. To circumvent these difficulties, a Tikhonov-type regularization version
of the problem is introduced and numerically solved. Define a functional

Jε(q) = 1

2
‖u(q) − g1‖2

0,� + ε

2
‖q‖2

0,�0
, ε ≥ 0.

Then for BLT reconstruction, we study the following constrained optimization problem.

Problem 3 Find pε ∈ Qad such that

Jε(pε) = inf
q∈Qad

Jε(q).

By Theorems 3.2 and 3.3 in [26], this reformulation is well-posed for ε > 0. Moreover, it is shown there that the
reformulated problem with ε > 0 permits stable and convergent numerical solutions.

3 A new formulation for BLT

Our main objective in this section is to introduce a new formulation for studying the BLT problem. Let � ⊂ R
d

be an open and bounded convex set with boundary �. It is shown in [37, Sect. 1.2] that the boundary of an open,
bounded and convex set is Lipschitz continuous; consequently, the unit outward normal vector exists on �. Assume
that the coefficients D, µa and measurements g1, g2 belongs to space L∞(�) such that D ≥ D0 in � for some
constant D0 > 0, µa ≥ 0 a.e. in �, and µa > 0 a.e. in a subset of � with positive measure.

For the derivation of our new formulation for BLT, let u = u(q) be the solution of problem{−div(D∇u) + µa u = qχ�0 in �

u + 2D∂νu = g2 on �.
(9)

Denote by u∗ = u(pε) and ũ the solutions of the problems{−div(D∇u∗) + µa u∗ = pεχ�0 in �

u∗ + 2D∂νu∗ = g2 on �
(10)

and{−div(D∇ũ) + µa ũ = qχ�0 in �

ũ + 2D∂ν ũ = 0 on �,
(11)

respectively. Together with problem (9), we have, for any q ∈ Qad, u(pε + tq) = u∗ + t ũ. Then, for any t ∈ R

and q ∈ Qad,

Jε(pε + tq) − Jε(pε) = 1

2

∫
�

[u(pε + tq) − g1]2 ds + ε

2

∫
�0

(pε + tq)2 dx

− 1

2

∫
�

(u∗ − g1)
2 ds − ε

2

∫
�0

p2
ε dx = t

[∫
�

(u∗ − g1) ũ ds + ε

∫
�0

pε qdx

]

+ t2

2

(∫
�

ũ2 ds + ε

∫
�0

q2 dx

)
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and the Gateaux derivative of Jε at pε in the direction of q ∈ Qad is

J ′
ε(pε) q = lim

t→0

Jε(pε + tq) − Jε(pε)

t
=

∫
�

(u∗ − g1) ũ ds + ε

∫
�0

pε q dx . (12)

Let w be the solution of the adjoint problem{−div(D∇w) + µa w = 0 in �

w + 2D∂νw = u∗ − g1 on �.
(13)

We multiply (13) by ũ, integrate over � and integrate by parts to get∫
�

(D∇w · ∇ũ + µa w ũ) dx + 1

2

∫
�

w ũ ds = 1

2

∫
�

(u∗ − g1) ũ ds. (14)

Similarly, from (11), we obtain∫
�

(D∇w · ∇ũ + µa w ũ) dx + 1

2

∫
�

ũ w ds =
∫

�0

q w dx . (15)

Combining (14), (15) and (12), we obtain

J ′
ε(pε) q =

∫
�0

(2w + εpε) qdx . (16)

Because Qad is a convex and closed subset of space Q, the following first-order necessary and sufficient condition
[38,39] of the solution pε ∈ Qad of Problem 3 holds:

J ′
ε(pε) (q − pε) ≥ 0 ∀q ∈ Qad

or∫
�0

(2w + εpε) (q − pε) dx ≥ 0 ∀q ∈ Qad.

Therefore, pε is the projection of −2w/ε on Qad with respect to the L2(�0) inner product ([38, Sect. 5.3]). If Qad

consists of the non-negatively valued L2(�0) functions, we have

pε = max

{
−2

ε
w, 0

}
in �0.

If Qad = Q, then

pε = −2

ε
w in �0. (17)

This holds when −2w/ε ∈ Qad. Consequently, we consider the following equations and boundary conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−div(D∇u∗) + µau∗ + 2
ε
wχ�0 = 0 in �

−div(D∇w) + µaw = 0 in �

pε = − 2
ε
w in �0

u∗ + 2D∂νu∗ = g2 on �

w + 2D∂νw = u∗ − g1 on �.

(18)

A new formulation for studying the BLT problem follows.

Problem 4 Find (u∗, w) ∈ V × V such that⎧⎨
⎩

a(u∗, v) + b1(w, v) = f1(v) ∀ v ∈ V,

b2(u∗, v) + a(w, v) = f2(v) ∀ v ∈ V,

pε = − 2
ε
w in �0,

(19)

where

a(u, v) =
∫

�

(D∇u · ∇v + µau v) dx + 1

2

∫
�

u v ds, b1(u, v) =
∫

�0

2

ε
u v dx,

b2(u, v) = −1

2

∫
�

u v ds, f1(v) = 1

2

∫
�

g2 v ds, f2(v) = −1

2

∫
�

g1 v ds.

Next, we focus on the numerical performance of the new formulation.
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4 Finite-element approximation

In this section, we consider the problem of approximating the solution of Problem 4 with FEMs. For simplicity, we
assume that both � ⊂ R

d and �0 ⊂ � are polyhedral convex set. We note that � and �0 can be any bounded open
convex domains. Let {Th}h and {T0,H }H be regular families of finite-element partitions of � and �0, respectively.
For any triangulation Th = {K }, T0,H = {T }, define the finite-element spaces

V h = {v ∈ C(�) | v |K ∈ Pk
K or Qk

K ∀K ∈ Th},
Q H = {q ∈ Q | q|T ∈ P t

T or Qt
T ∀T ∈ T0,H },

where Ps
G and Qs

G denote spaces of polynomials over the set G of total degree and individual degree less than or
equal to s, respectively. Denote by 	H the orthogonal projection operator from space Q onto space Q H :

(	H p, q H )0,�0 = (p, q H )0,�0 ∀p ∈ Q, q H ∈ Q H. (20)

Then we have an approximation to continuous Problem 4 as follows.

Problem 5 Find (u∗
h, wh) ∈ V h × V h such that⎧⎨

⎩
a(u∗

h, vh) + b1(wh, vh) = f1(vh) ∀ v ∈ V h,

b2(u∗
h, vh) + a(wh, vh) = f2(vh) ∀ v ∈ V h,

pH
ε,h = − 2

ε
wH

h = − 2
ε
	H wh in �0.

(21)

Let ϕi (x) ∈ V h , i = 1, 2, . . . , n be the node basis functions of finite-element space V h associated with grid
nodes xi , where n is the number of the nodes of triangulation Th . Then the solution u∗

h ∈ V h can be written as
u∗

h = ∑n
i=1 u∗

i ϕi , where u∗
i denotes the value of function u∗ at grid node xi , i.e., u∗

i = u∗(xi ). Similarly, wh can be
expanded by wh = ∑n

i=1 wiϕi with wi = w(xi ). Moreover, let φs(x) ∈ Q H , s = 1, 2, . . . , N (N is the number of
the nodes of triangulation T0,H ), be the node basis functions of finite-element space Q H associated with grid nodes
xs , and denote ϕ0,l , l = 1, 2, . . . , N0, for those basis functions associated with nodes x0,l contained in �0.

Then Problem 5 is equivalent to the following.

Problem 6 Solve linear system

K Y = F, (22)

and compute the approximation light-source function p by

pH
ε,h = −2

ε

N∑
s=1

(
N0∑

l=1

wlϕ0,l(xs)

)
φs in �0, (23)

where

K �
(

A B1

B2 A

)
, Y � (U t , W t )t , F � (Ft

1, Ft
2)t ,

U = (u∗
1, u∗

2, . . . , u∗
n)t , W = (w1, w2, . . . , wn)t , Fk = ( fk1, fk2, . . . , fkn)t ,

fk j = fk(ϕ j ), A = (a ji ), a ji = a(ϕi , ϕ j ), B1 = (b ji
1 ), b ji

1 = b1(ϕi , ϕ j ),

B2 = (b ji
2 ), b ji

2 = b2(ϕi , ϕ j ), i, j = 1, 2, . . . , n, k = 1, 2,

and (·)t is the transposition of (·).
We note that if Th = {K } and T0,H = {T } are consistent, then H = h, N = N0 and (23) reduces to

ph
ε,h = −2

ε

N∑
s=1

wsφs in �0. (24)
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5 Numerical examples

In this section, we present numerical results for two model problems. Our goal is to demonstrate the feasibility of
our new formulation for the BLT problem. Let � be the problem domain and �0 be the permissible region. Assume
an absorption coefficient µa ≡ 0.02 and a reduced scattering coefficient µ′

s ≡ 1.00 in �. We use uniform square
partitions of the regions � and �0 with mesh parameters h = H , where h and H are the maximal diameters of
the elements in the partitions Th and T0,H , respectively. For finite-element spaces V h and Qh , we use continuous
piecewise bilinear functions and piecewise constant functions corresponding to the partitions Th and T0,h . From the
boundary value of a finite-element solution of BVP (2)–(3) for a small enough meshsize we compute the function
g1; in our experiment, we choose 1/512 for this small meshsize. In the following, we compute the approximate
source function ph

ε,h for different grid parameter h and different regularization parameter ε.

5.1 Model 1

In this model, we have � = (0, 1) × (0, 1), �0 = (0.5, 0.75) × (0.5, 0.75), p ≡ 1 pW for the true light source in
�0, and set g2 ≡ 0 on the boundary � = ∂�. Denote the error E = ph

ε,h − p.

We first demonstrate the performance of the solution ph
ε,h of BLT obtained from our new formulation when

the data g1 and g2 are noise-free. For different meshsize and regularization parameter, we reconstruct light-source
functions ph

ε,h and plot one of them in Fig. 1 for h = 1/64 and ε = 10−5. Tables 1–2 show the dependence of

the error in the approximate light-source function ph
ε,h on the meshsize and regularization parameter, respectively.

Note that ‖ · ‖∞ and ‖ · ‖0 are the L∞ and L2 norms, respectively. The accuracy of discrete solution improves as h
or ε gets smaller. Further features of the discrete solution can be seen from Figs. 2–3. Figure 2 shows the error of
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Fig. 1 Model 1: Reconstructed light-source function ph
ε,h for meshsize h = 1/64 and regularization parameter ε = 10−5

Table 1 Model 1: Error in approximate light-source function ph
ε,h for regularization parameter ε = 10−5

h 1/4 1/8 1/16 1/32 1/64 1/128

‖E‖∞ 4.1211 3.4971×10−1 5.9186×10−2 2.1386×10−2 7.1987×10−3 2.8881×10−3

‖E‖0 1.0303 4.7054×10−2 5.2836×10−3 1.2056×10−3 3.8184×10−4 2.0781×10−4
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128 X. Cheng et al.

Table 2 Model 1: Error in approximate light-source function ph
ε,h for meshsize h = 1/64

ε 10−1 10−2 10−3 10−4 10−5

‖E‖∞ 6.2449×10−1 1.7197×10−1 4.5229×10−2 1.0708×10−2 7.1987×10−3

‖E‖0 1.5149×10−1 3.3547×10−2 4.9663×10−3 9.1736×10−4 3.8184×10−4

Fig. 2 Model 1: Error in
approximate light-source
function ph

ε,h against
meshsize h in scale −log2
and log10, respectively, for
different values of
regularization parameter ε
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 h
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ε=1e−7
ε=1e−9

Fig. 3 Model 1: Error in
approximate light-source
function ph

ε,h against
regularization parameter ε

in scale −log10 and log10,
respectively, for different
values of meshsize h
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the approximate solution in the norm L∞ versus (vs.) the meshsize. The red, blue, black, green and yellow curves
correspond to parameter ε = 10−1, 10−3, 10−5, 10−7, and 10−9, respectively. It appears that ε = 10−5 is a best
choice (the black curve in Fig. 2). Figure 3 plots the error against the regularization parameter. These figures suggest
that values of h and ε should match in order to achieve optimal numerical performance.

To examine the stability of our modality, we introduce random noise on the observation data g1 with three noise
level, δ = 1%, 10%, and 20%. For each noise level δ, we compute the discrete solution ph

ε,h ten times and use the
average error of the corresponding solutions as the error of the approximate solution associated with δ. Figure 4
plots the L∞ norm of the error of the approximate solution agianst the meshsize h for four noise levels, 0, 1%, 10%,
and 20%. Higher noise level leads to higher solution error. The same conclusion can be drawn from Fig. 5 for
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Fig. 4 Model 1: Error in
approximate light-source
function ph

ε,h against
meshsize h in scale −log2
and log10, respectively, for
different values of noise
level δ when regularization
parameter ε = 10−5
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Fig. 5 Model 1: Error in
approximate light-source
function ph

ε,h against
regularization parameter ε

in scale −log10 and log10,
respectively, for different
values of noise level δ when
meshsize h = 1/64
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the error of the approximate solution in L∞ norm against the regularization parameter ε. These numerical results
clearly demonstrate that the numerical solution is stable with respect to the perturbation in the measurement data.

5.2 Model 2

In the second model, we assume that the permissible region �0 of light-source function is the union of k dis-
joint subdomains �0i , i = 1, 2, . . . , k. In our simulation, we take k = 4, �01 = (0.25, 0.375) × (0.25, 0.375),
�02 = (0.625, 0.75)×(0.25, 0.375), �03 = (0.25, 0.375)×(0.625, 0.75) and �04 = (0.625, 0.75)×(0.625, 0.75).
The true light-source function is piecewise constant: p(x) = pi in �0i , i = 1, 2, 3, 4; we take p1 = 1.0, p2 = 1.3,
p3 = 1.0 and p4 = 1.3. Again we let H = h and g2 ≡ 0 on the boundary � = ∂�.

Similar to Model 1, we consider boundary measurement g1 with or without noise, obtaining similar results. A
reconstructed light source ph

ε,h is shown in Fig. 6. Tables 3 and 4 show the dependence of the error in both L∞ and

L2–norms in the approximate light-source function on the meshsize h and regularization parameter ε. Numerical
results corresponding to noise-free data and noise data are reported in Figs. 7–8 and in Figs. 9–10, respectively.

We conclude this section by emphasizing that the numerical values of − 2
ε
wH

h in �0 are always non-negative in
our numerical experiments, and this justifies the use of (17) in these examples.
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Fig. 6 Model 2:
Reconstructed light-source
function ph

ε,h for meshsize
h = 1/128 and
regularization parameter
ε = 10−7

Table 3 Model 2: Error in approximate light-source function ph
ε,h for regularization parameter ε = 10−10

h 1/8 1/16 1/32 1/64 1/128

‖E‖∞ 1.1511×101 1.9453 4.9522×10−1 2.1376×10−1 1.4795×10−1

‖E‖0 1.4389 1.4762×10−1 2.8379×10−2 9.1141×10−3 6.9120×10−3

Table 4 Model 2: Error in approximate light-source function ph
ε,h for meshsize h = 1/128

ε 10−1 10−3 10−5 10−7 10−9

‖E‖∞ 2.8833 2.6776×10−1 2.0564×10−1 1.4795×10−1 6.7984×10−1

‖E‖0 3.5897×10−1 1.9108×10−2 1.1957×10−2 6.9120×10−3 1.8558×10−2

Fig. 7 Model 2: Error in the
approximate light-source
function ph

ε,h against
meshsize h in scale −log2
and log10, respectively, for
different values of
regularization parameter ε
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Fig. 8 Model 2: Error in the
approximate light-source
function ph

ε,h against
regularization parameter ε

in scale −log10 and log10,
respectively, for different
values of meshsize h
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Fig. 9 Model 2: Error in the
approximate light-source
function ph

ε,h against
meshsize h in scale −log2
and log10, respectively, for
different values of noise
level δ and regularization
parameter ε = 10−7
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Fig. 10 Model 2: Error in
approximate light-source
function ph

ε,h vs.
regularization parameter ε

in scale −log10 and log10,
respectively, for different
values of noise level δ when
meshsize h = 1/128
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6 Conclusions

Bioluminescence tomography (BLT) is a promising new method, attracting increasing attention in the community
of biomedical imaging. One major challenge is the development of efficient and effective numerical methods for
solving the BLT problem. The aim of this paper is to explore an efficient method for obtaining a good approximation
to the light source of the BLT problem. Because of the ill-posedness of the BLT, we adopt Tikhonov regulariza-
tion. The conventional methods for the BLT problem are to treat it as a PDE constrained optimization problem
(Problem 3). Consequently, numerical simulations are usually handled by an expensive iterative procedure where,
at each iteration step, one needs to solve the BVP (8). In contrast, with our method we only need to solve the bound-
ary-value problem (19) once. In this paper, FEMs have been applied to discretize PDEs for obtaining a approximate
light-source function. Numerical experiments indicate that the method performs well.

Problem 4 and Problem 3 are identical only if pε from Problem 4 is non-negative, for the relevant BLT
application. While currently there are no theoretical results that would guarantee the non-negativity of pε for
Problem 4, numerical results on numerous simulations performed provide non-negative discrete light-source func-
tions. If the non-negativity condition is violated for a numerical solution of Problem 4, the problem may be fixed
through the use of a projection of the numerical solution of pε onto the admissible set Qad. If necessary, a few
iterative solutions of the system (18) are performed where the 2

ε
w term on the left-hand side of the first equation of

(18) is replaced by the projected numerical values. This idea is currently under consideration.
The method proposed in this paper can be applied for source function reconstruction problems of more general

PDEs if the admissible set Qad for the source function has a convexity structure such as non-negativity of function
values.
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